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Abstract

We examine a recursive sequence in which sn is a literal description of what the binary expansion of the
previous term sn−1 is not. By adapting a technique of Conway, we determine the limiting behaviour of {sn}
and dynamics of a related self-map of 2N. Our main result is the existence and uniqueness of a pair of
binary sequences, each the complement-description of the other. We also take every opportunity to make
puns.
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1. Introduction

The Look-Say sequence is defined as follows. Let s1 = 1. Given sn, the next term of
the sequence is a literal description of the digits of the previous one [4]. The first few
terms are

1, 11, 21, 1211, 111221, . . . .

We use |s| to denote the length of a finite string s.

THEOREM 1.1 (Conway [1, 5]). Let sn be the nth term of the Look-Say sequence. Then

lim
n→∞
|sn+1|
|sn| = λ,

where

λ = 1.3035 . . . .

Shockingly, λ is an algebraic integer of degree 71 [5]. Theorem 1.1 follows
from Conway’s cosmological theorem [1]. In short, the terms of any Look-Say-type
sequence (not necessarily starting at s1 = 1) will eventually decompose into a concate-
nation of certain fundamental substrings identified by Conway as ‘elements’.
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This problem has also been considered in terms of binary strings. Given a binary
string sn, the next term of the binary Look-Say sequence is a literal description of the
bits of the previous term, where the counts are expressed in base two [6]. The first few
terms are

1, 11, 101, 111011, . . . .

THEOREM 1.2 (Johnston [2]). Let sn be the nth term of the binary Look-Say sequence.
Then

lim
n→∞
|sn+1|
|sn| = λ,

where

λ = 1.465571 . . . .

We shake this up by introducing a new player, a Knave in the style of Smullyan. As
opposed to the previous recursions, our sn is instead the literal description of what the
bits of sn−1 are not. Our main result concerns the limiting behaviour of the Look-Knave
sequence.

THEOREM 1.3. There is a unique pair of binary sequences Seven and Sodd such that
Seven is a literal description of the bitwise complement of Sodd and vice versa.

The rest of the paper is organised as follows. In Section 2 we define the Look-Knave
sequence and pose our problem. Then, in Section 3, we simplify the problem and prove
Theorem 1.3. Finally, in Section 4, we offer avenues for future work.

2. The Knave

Recall Smullyan’s game of Knights and Knaves, a logic puzzle in which Knights
always tell the truth and Knaves are always compelled to lie [3]. Our Knave is a very
idiosyncratic liar. When looking at a string of n 0s, the Knave correctly tells us they
see n bits of the same parity, but they will lie by saying that there are n 1s. Likewise,
while looking at k 1s, the Knave will happily tell us there are k 0s instead.

The Knave understands how to express natural numbers in base two and will write
down their observations for us as such. Thus, when the Knave looks at the string

110,

they write down

10 0 1 1

for the two 0s and one 1 they claim to have seen. Here, we have inserted white space
to enhance the Knave’s handwriting.

Now, our Knave has not yet realised that they could have lied about their count by
inverting the bits representing n and k above. I won’t tell them if you won’t.
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TABLE 1. The first 10 entries of the Look-Knave sequence.

s2n+1 s2n+2

1 10
1011 1011100
1011110101 1011100011101110
10111101111101111011 1011100011101011100011100
1011110111110111011110111110101 101110001110101111011100011101011101110

Thus begins our new game. We will supply a binary string and command ‘Look,
Knave’. Dutifully, the Knave will read the string and then record the observations on
a fresh piece of paper for us. We return this paper to the Knave, who reads their own
report and transcribes it in the only way a Knave can. The game continues.

Let us begin with the string s1 = 1 and take sn to be the Knave’s description of sn−1.
This defines the Look-Knave sequence. For example, s3 = 1011. We see that there is
one bit which is not 0, followed by one bit which is not 1 and then two bits which are
not 0. Thus, s4 must be the string 1011100. In short, sn is a a binary string describing
precisely what sn−1 is not.

Looking at Table 1, it is tempting to conjecture that the subsequences {s2n+1} and
{s2n+2} are approaching some bitwise limits. So, do there exist binary sequences Seven
and Sodd such that Sodd is the Knave’s description of Seven and vice versa?

A binary sequence S can be described by the Knave, so long as the tail end of S
is not all 0s or all 1s. Let S ⊂ 2N be the set of all such sequences. Then the Knave
imposes a map k : S → S.

It will be convenient to view finite strings as belonging to 2N. We say that a string
whose final bit is 0 is followed by a tail of all 1s and vice versa. For example,

101↔ 101000 . . . ,
100↔ 100111 . . . .

Our Knave does not have the patience for these infinite matters, so when we do compel
them to act on 2N, the Knave will report

000 . . .

as

111 . . .

and vice versa. Thus, these tails will never interfere with the preceding string. We will
(somewhat abusively) treat these either as sequences or strings, depending on which is
more convenient.

Note that k is not invertible; already

k(10) = k(00000) = 1011.
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3. Metamorphosis

For a natural number n, let [n] denote the string which represents n in base two.
We will call any string of n 0s or k 1s a ribbit, short for repeated bit. If we need to
clarify what bit is repeated, we can say that 111 is a ribbit of three 1s or an odd ribbit.
Likewise, 000 is a ribbit of three 0s and an even ribbit. Thus, any binary sequence
S ∈ S decomposes into a sequence of ribbits of alternating parity.

Let S ∈ S. Since the Knave must begin the report with a 1, we assume that S begins
with an odd ribbit. Then S decomposes into ribbits as

S = r1 r2 r3 . . . .

Happily, this means that odd ribbits are indexed by odd subscripts and vice versa.
We may write

k(S) = [|r1|] 0 [|r2|] 1 [|r3|] 0 . . . .

It is unfortunate here that the leftmost 1 arising from r2�+1 will always form a ribbit
with [|r2�+2|], as in

k(101) = 101110.

However, the decomposition of sn into even and odd ribbits allows us to get the Knave’s
reports piecemeal; keeping

S = r1 r2 r3 . . .

with r1 odd, then

k(S) = k(r1) k(r2 r3) k(r4 r5) . . . .

Thus, we can determine the behaviour of k by examining all possible pairs of ribbits
occurring in the decomposition of all sn. Fortunately, there are not many to check. We
will call a ribbit r belonging to S maximal if it is not contained in a ribbit of larger size.

LEMMA 3.1. Let {sn} be the Look-Knave sequence. A maximal ribbit occurring in sn
cannot have length greater than five.

PROOF. Suppose that n is the smallest index such that sn contains a ribbit r of length
six or greater, either

sn = . . . 1

≥6
︷︸︸︷

0 . . . 0 1 . . .

or

sn = . . . 0

≥6
︷︸︸︷

1 . . . 1 0 . . . .

What is sn describing? Or, rather, what isn’t sn describing? If r is even, then sn−1
contains a ribbit of length at least 64; this ribbit can only occur if sn−1 has a ribbit r′
such that the binary representation of |r′| has at least six 0s. This is a contradiction.
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The case where r is odd is more complicated. We already see that such an r could
arise from an r′ in sn−1, where the binary representation of |r′| has at least five 1s,
which is again impossible.

However, r could represent the concatenation of two separate descriptions of ribbits;
the first even and the second odd. In this case,

sn = . . .
︷������︸︸������︷

. . . 01 . . . 1 1
︷������︸︸������︷

1 . . . 10 . . . 0 . . . ,

where the first overbrace indicates the binary expansion of the length of an odd ribbit in
sn−1, and the second overbrace indicates the binary expansion of the length of an even
ribbit in sn−1. From our assumption on n, we see that the only acceptable arrangement is

sn = . . .
︷�︸︸�︷

. . . 111 1
︷︸︸︷

11 0 . . . .

Unfortunately,
︷�︸︸�︷

. . . 111

is the binary expansion of some n ≥ 7 and we croak. �

In fact, once we know the bound for maximal ribbits in general, we can tighten up
the proof for some edge cases.

COROLLARY 3.2. A maximal even ribbit occurring in sn cannot have length greater
than three.

COROLLARY 3.3. If 11111 occurs in sn, it is not preceded by 000.

PROOF. If we consider sn as

sn = . . .
︷︸︸︷

00 0
︷︸︸︷

11 1
︷︸︸︷

11 0 . . . ,

then sn−1 contains at least four 1s. Otherwise, if we consider sn as

sn = . . .
︷�︸︸�︷

. . . 011 1
︷︸︸︷

11 0 . . . ,

then sn−1 contains at least 11 1s. Both possibilities contradict our previous results. �

We may now examine the Knave’s behaviour on all possible ribbit pairs (r, r′)
occurring in some sn, with r′ possibly empty. This is shown in Table 2. Note that
in all cases, k(r r′) is no shorter than rr′.

From our observation in Table 1, we want to determine if the sequences {s2n+1}
and {s2n+2} converge in S. To this end, we will endow 2N with a simple metric. Two
distinct binary sequences S, S′ which first differ at the nth bit satisfy d(S, S′) = 2−n. As
expected, we set d(S, S) = 0. Note that S is not complete under this metric, but 2N is.

For � ≥ 1, let β� be the string given by the first � bits in s�, which are then truncated
to the last maximal ribbit. Here β stands for βρεκεκεκεκ, of course. For example, β3 is
the string 10, taken from s3 = 1011.

LEMMA 3.4. For � ≥ 1, the strings s�+1 and s�+3 agree up to the (|β�| + 1)th bit.
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TABLE 2. Elements of the Knave map.

r r′ k(r r′)

0 1
00 101
000 111
1 10
01 1110
001 10110
0001 11110
011 11100
0011 101100
00011 111100
0111 11110
00111 101110
000111 111110
01111 111000
001111 1011000
0001111 1111000
011111 111010
0011111 1011010

PROOF. We induct on �. According to Table 2, we have |k(r r′)| ≥ |r r′| for all elements
of the Knave map. Because β� begins with 10, we see that |k(β�)| > |r�|. In the
induction, we see that the first |β�| bits of s� and s�+2 determine at least the first |β�| + 1
bits of s�+1 and s�+3. �

Note that � − 4 ≤ |r�| ≤ �.
COROLLARY 3.5. The sequences {k2n(1)} and {k2n(10)} converge in S.

Thus, we can take Seven = limn→∞ k2n(10) and Sodd = limn→∞ k2n(1). It turns out that
not only are Seven and Sodd fixed points of k2, they attract all other orbits under k in S.

THEOREM 3.6. Let S ∈ S be a binary sequence. Then either

lim
n→∞ d(kn(S), kn(1)) = 0

or

lim
n→∞ d(kn(S), kn(10)) = 0.

PROOF. We see that k(S) must begin with an odd ribbit. If k(S) begins with an odd
ribbit of length � ≥ 2, then k2(S) begins with an odd ribbit of length strictly less than �.
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Otherwise, k(S) begins with 10 and so does k2(S). Thus, some iterate kn(S) begins
with 10.

Then kn+1(S) begins with 101, and kn+2(S′) = 10r . . . , where r is a maximal odd
ribbit of length at least three. If |r| ≥ 5, then kn+3(S) = 10r′ . . . , where r′ is a maximal
odd ribbit of length at most 2 + log2(r). Further iteration of the Knave map reduces to
the case |r| = 3, 4.

If |r| = 3, 4, using the argument in Lemma 3.4, we see that the prefix of kn+2(S)
determines a longer prefix of kn+4(S′) and so on. Then

lim
n→∞ d(kn(S), kn(1)) = 0

or

lim
n→∞ d(kn(S), kn(10)) = 0,

depending on the parities of |r| and n. �

COROLLARY 3.7. Let S be any binary sequence in S. Then limn→∞ k2n(S) exists and
is equal to one of Seven or Sodd.

COROLLARY 3.8. The only fixed points of k2 in S are Seven and Sodd.

COROLLARY 3.9. The only fixed points of k2 in 2N are Seven and Sodd, which are
attracting, and 000 . . . and 111 . . . , which are repelling.

4. Future study

We have left open the question of the asymptotic growth of |sn|. Experimentally, we
expect that

lim
n→∞
|sn+1|
|sn| = 1.12 . . . .

Adapting Johnston’s argument to this problem would be an appropriate problem for a
student.

Further, we conjecture that the binary strings S are in fact the sections of a larger
dynamical system via the diagonal entries of certain Kermitian matrices.
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