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We study the radial symmetry of large solutions of the semilinear elliptic problem
∆u + ∇h · ∇u = f(|x|, u), and we provide sharp conditions under which the problem
has a radial solution. The result is independent of the rate of growth of the solution
at infinity.

1. Introduction

The radial symmetry of the solutions of ∆u = f(|x|, u) on R
n is a well-studied

problem and various conditions on the rate of growth and monotonicity of f(|x|, u),
as well as the behaviour of u(x) at infinity, have been presented to guarantee radial
symmetry of the solutions. In this paper we study the radial symmetry of large
solutions of the semilinear elliptic problem

∆u(x) + ∇h(x) · ∇u(x) = f(|x|, u(x)), x ∈ R
n (n � 2),

u(x) → ∞, x → ∞.

}
(1.1)

We assume that for large values of |x| and u the function f(|x|, u) is positive and
superlinear, and that lim|x|→∞u(x) = ∞, but we do not assume a particular rate
of growth at infinity for the solution. Our main focus is the effect of the convection
term on the radial symmetry of the solutions. The case h ≡ 0 with a similar
setting has been studied in [6, 7] and, in contrast to the large boundary condition,
symmetry of the small solutions lim|x|→∞u(x) = 0 of the same problem has been
studied in [1–4].

If u(x) is radial, then all of the terms in (1.1), except perhaps h(x), will be radial,
which automatically implies radial symmetry of h(x), at least whenever u is not
constant. Thus, it is natural to assume that h is radial and, whenever clear, we
abuse the notation h(x) = h(|x|). We require that the convection term h satisfy a
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particular integrability condition given by∫ ∞

1
e−h(r)r1−n dr < ∞. (1.2)

This condition is shown to be sharp in the sense that if violated, while all the other
conditions hold, there are examples with no radial solution. Having this condition on
h, a change of variable is proved to be well defined, which converts the radial solu-
tions of the partial differential equation (PDE) into the solutions of a corresponding
ordinary differential equation (ODE). The available ODE theory developed in [6]
combined with comparison arguments can then be used to prove the existence and
symmetry of the solutions.

2. Statements and proofs

To set the appropriate conditions on f(|x|, u), we compare it with a function g(r, s)
that satisfies the following conditions.

(c1) g(r, s) and gs(r, s) are continuous and positive on

Ω = {(r, s) | r > r0, s > s0},

where r0, s0 are positive constants.

(c2) g(r, s) is superlinear in s on Ω in the sense that there exists λ > 1 such that
g(r, vs) � vλg(r, s) for all v > 1 and (r, s) ∈ Ω.

(c3) p(r)eh(r)g(r, s) is monotone in r on Ω, where the function p(r) is given by

p(r) := −
∫ ∞

r

e−h(z)z1−n dz. (2.1)

The following theorem is the main result of this paper.

Theorem 2.1. Let h(r) be continuous and satisfy (1.2). Let f(r, s) and fs(r, s) be
continuous and positive. Assume that there exists a function g(r, s) such that

lim
(r,s)→(∞,∞)

f(r, s)
g(r, s)

= 1,

where g(r, s) satisfies (c1)–(c3). Assume also that f(r, s) is superlinear in s on Ω.
Then, the following hold.

(i) All C2-solutions of (1.1) are radial.

(ii) If (1.1) has a C2-solution, then there exist R � 0, û > 0 such that

−
∫

|x|>R

p(|x|)eh(|x|)f(x, s) dx < ∞ ∀s > û, (2.2)

where p(r) is given by (2.1).

(iii) If, in addition, f(|x|, u) satisfies (c3), (2.2) is also a sufficient condition for
the existence of a solution to (1.1).
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In [6] and [7], Taliaferro studies the relevance of the conditions on f(r, s) for the
problem without the convection term. For example, it is shown that the superlinear-
ity of f(r, s) is a sharp condition for the radial symmetry of the solutions of (2.1).
Indeed, there are non-radial solutions of (2.1) when this condition fails.

Condition (1.2) on h is a sharp condition in the sense that if it does not hold, then
there are cases with no radial solution to (1.1). To see this, let h(x) = β log(|x|).
Note that (1.2) holds for β > 2 − n and it is violated if β � 2 − n. Consider the
critical case when β = 2 − n and let f(r, s) = f(s) be a superlinear function. We
claim that there is no radial solution to (1.1). Assume, on the contrary, that there
exists a radial solution u(x) = u(|x|). We have that

f(u) = ∆u(x) + ∇ log(|x|(2−n)) · ∇u(|x|)

= ∆u(x) + (2 − n)
x

|x|2 · x

|x|u
′(|x|).

Hence,

f(u) =
{

u′′(r) +
n − 1

r
u′(r)

}
+

2 − n

r
u′(r)

= u′′(r) +
1
r
u′(r),

where r = |x|. Now, define the radial function v : R
2 → R by v(y) := u(|y|). Then,

v is a radial solution of ∆v = f(v) in R
2. This is a contradiction because Osserman

showed in [5] that for a superlinear function f(v) the problem ∆v(x) = f(v) has
no large solution in R

2. Therefore, (1.1) has no radial solution or it has no solution
at all, which both indicate necessity of the condition (1.2).

Based on (1.2) on h, we can use the following change of variables to transform
radial solutions of (1.1) into the corresponding ODE solutions.

Lemma 2.2. Let h(r) satisfy (1.2) and let f(|x|, u) satisfy the conditions of theo-
rem 2.1. Then, u(x) is a radial solution of (1.1) if and only if z(t) := u(p−1(t))
solves

z′′(t) = F (t, z(t)),
lim

t→0−
z(t) = ∞,

}
(2.3)

where p(r) is given by (2.1) and F (t, z) is given by

F (t, z) := (p−1(t))2n−2 exp(2h(p−1(t)))f(p−1(t), z). (2.4)

Proof. Let r = |x|, t = p(r) and z(t) = u(p−1(t)). This is a valid change of variable
because, by definition, p(r) is continuous and strictly increasing. We have that

f(r, u(r)) =
[
u′′(r) +

n − 1
r

u′(r)
]

+ h′(r)u′(r)

= p′(r)2z′′(p(r)) +
(

p′′(r) +
n − 1

r
p′(r) + h′(r)p′(r)

)
z′(p(r))

= p′(r)2z′′(p(r)).
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Therefore,

z′′(p(r)) =
1

p′(r)2
f(r, z(p(r)))

= e2h(r)r2n−2f(r, z(p(r)))
= F (p(r), z(p(r))).

Also, the boundary condition lim|x|→∞ u(x) = ∞ is equivalent to limt→0− z(t) = ∞,
because limr→∞ p−1(r) = 0.

Remark 2.3. Note that the definition of F (t, z) implies that for large values of t
and z both F (t, z) and Fz(t, z) are continuous and non-negative, and that F (t, z)
is superlinear in z. This fact is useful when we study the ODE that corresponds
to (1.1). Lemma 2.2 plays an important role in our arguments. In particular, in
the proof of theorem 2.1 we need to construct two sequences of radial functions
for the comparison arguments. The sequences can be constructed, with the help
of lemma 2.2, from the ODE counterparts described in lemma A.2, as follows.
Assuming that the conditions of lemma 2.2 hold, for each M, m > s0 and r1 > r0
there exist an increasing sequence {ρk}∞

k=1 ⊆ (r1,∞), with limk→∞ ρk = ∞, and
two sequences of C2-radial functions {uk(x)} and {Uk(x)} such that

(i) U0(x) and u0(x), u1(x), . . . are radial solutions of

∆u(x) + ∇h(x) · ∇u(x) = f(|x|, u(x)), |x| � r1,

u(x) = m, |x| = r1,

(ii) U1(x), U2(x), . . . are solutions of

∆Uk(x) + ∇h(x) · ∇Uk(x) = f(|x|, Uk(x)), r1 � |x| � ρk,

Uk → ∞, |x| → ρ−
k ,

Uk(x) = M, |x| = r1,

(iii) lim|x|→∞ u0(x) = lim|x|→∞ U0(x) = ∞,

(iv) u1(x), u2(x), . . . are all bounded as |x| → ∞ and

(v) for each |x| > r1 we have limk→∞ uk(x) = u0(x) and limk→∞ Uk(x) = U0(x).

We are now ready to prove theorem 2.1.

Proof of theorem 2.1(iii). We start by proving part (iii) where we have the addi-
tional monotonicity condition (c3) on f(|x|, u). In fact, we prove that, having (c3),
(2.2) is both necessary and sufficient for the existence of a solution to (1.1). This
fact will be useful in the proof of other parts. Let t = p(|x|), where p(r) is given
by (2.1). We have that

−
∫

Ω

p(|x|)eh(|x|)f(|x|, s) dx = −σn

∫ ∞

R

rn−1p(r)eh(r)f(r, s) dr,
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where σn is the perimeter of the unit ball in R
n. Therefore,

−
∫

Ω

p(|x|)eh(|x|)f(x, s) dx = −σn

∫ ∞

R

r2n−2p(r)e2h(r)f(r, s)(e−h(r)r(1−n)) dr

= −σn

∫ ∞

R

p(r)F (p(r), s)p′(r) dr

= −σn

∫ 0

t0

tF (t, s) dt, (2.5)

where in the second equality we used the fact that p′(r) = e−h(r)r(1−n). Assuming
that (2.2) holds, (2.5) implies that

−
∫ 0

t0

tF (t, s) dt < ∞ ∀s > û. (2.6)

By lemma A.1, (2.6) is a necessary and sufficient condition for the existence of
a solution z(t) of z′′(t) = F (t, z(t)). By lemma 2.2, the solution z(t) of the ODE
z′′(t) = F (t, z(t)) can be transformed into a radial solution u(x) = z(p(|x|)) of (1.1).
Conversely, if there is a radial solution to (1.1), using lemma 2.2, we can transform
it into a solution of z′′ = F (t, z). This implies that (2.6) holds. Therefore, by (2.5)
we have that condition (2.2) is true.

Proof of theorem 2.1(ii). Let g(r, s) be as in the statement of the theorem. Because

lim
(|x|,s)→(∞,∞)

f(x, s)
g(x, s)

= 1,

without loss of generality we can assume that r0 and s0 are large enough such that
g(r, s) < 2f(r, s) on Ω. Define l(r, s) := 1

2g(r, s). We work with l(r, s) because we
want to use the monotonicity condition (c3), which is not available for f(|x|, u). We
claim that if (1.1) has a solution, then the problem

∆y(x) + ∇h(x) · ∇y(x) = l(|x|, u(x)), x ∈ R
n (n � 2),

y(x) → ∞, x → ∞,

}
(2.7)

has a radial solution. Assume, on the contrary, that (1.1) has a solution, while there
is no radial solution to (2.7). To reach a contradiction, we study another related
PDE. Consider the constants s1 > s0 and r1 > r0 such that

max
|x|=r0

u(x) < s1 < max
|x|=r1

u(x). (2.8)

These constants exist because lim|x|→∞u(x) = ∞. We want to prove that there
exists r2 > r1 such that there exists a radial solution to the PDE

∆v(x) + ∇h(x) · ∇v(x) = l(x, v), r0 < |x| < r2,

v(x) = s1, |x| = r0,

v(x) = s1, |x| = r1,

v(x) → ∞, |x| → r−
2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)
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Setting

t = p(r), z(t) = v(p−1(t)) and F (t, z) = (p−1(t))2n−2e2a(p−1(t))l(p−1(t), z),

the problem of finding r2 is equivalent to finding t2 ∈ (t1, 0) such that there exists
a solution to

z′′(t) = F (t, z),
z(t0) = z(t1) = s1,

lim
t→t−

2

z(t) = ∞.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

Note that because we assumed that (2.7) has no solution, proof of part (iii) implies
that ∫

|x|>r0

−p(|x|)eh(|x|)l(x, s) dx = ∞, (2.11)

which, again using part (iii), results in

−
∫ 0

t0

tF (t, s) dt = ∞. (2.12)

On the bounded interval [t0, t1], with bounded boundary values z(t0) = z(t1) = s1,
we can use the Green function of − d2/ dt2 to find a solution to z′′ = F (t, z) on
this domain. Let t2 > t1 be the maximal time where z(t) continuously solves z′′ =
F (t, z). Since z′′(t) = F (t, z) � 0 and z(t0) = z(t1), we have that z′(t) � 0. There
are only three possibilities. The first case is when t2 = 0 and limt→0−z(t) = ∞.
This possibility is ruled out because (2.12) implies that (2.3) has no solution. The
second possibility is that t2 = 0 and limt→0−z(t) < ∞. In this case, by integrating
z′′ = F (t, z) twice we have that

−
∫ 0

t1

tF (t, z) dt = z(0−) − z(t1) + t1z
′(t1) < ∞,

which is a contradiction by (2.12). The only remaining possibility is that t2 ∈ (t1, 0)
and limt→t2−z(t) = ∞. Therefore, we find t2 with the required conditions. By
converting (2.10) back into the corresponding PDE, there exists r2 = p−1(t2) ∈
(r1,∞) such that there is a radial solution to (2.9). The set Σ = {x ∈ (r0, r2) |
u(x) > v(x)} is open and non-empty because of the definition of s1. Since f(r, s) �
h(r, s) on Σ ⊂ Ω, we have that

∆(u − v)(x) + ∇h(x) · ∇(u − v)(x) = f(x, u) − l(x, v) > 0 ∀x ∈ Σ.

But u(x) − v(x) = 0 on ∂Σ. This is a contradiction by the maximum principle.
Hence, assumption (2.11) is not true. Therefore, if (1.1) has a solution, then∫

Ω

−p(|x|)eh(|x|)l(x, s) dx < ∞.

Because

lim
(r,s)→(∞,∞)

f(r, s)
l(r, s)

=
1
2
,
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we have that

∃ŝ � s0

∫
|x|>r0

−p(|x|)eh(|x|)f(x, s) dx < ∞ ∀s > ŝ.

Proof of theorem 2.1(i). We start by showing that the difference of any two C2-solu-
tions ua(x) and ub(x) of PDE (1.1) goes to zero at infinity. First, assume that ya(x)
and yb(x) are two radial solutions of the PDE. By setting

t = p(r), z(t) = y(p−1(t)),

F (t, z) := p−1(t)2n−2 exp(2h(p−1(t)))f(p−1(t), z),

lemma 2.2 implies that we can find two solutions za(p(|x|)) = ya(x) and zb(p(|x|)) =
yb(x) of the corresponding ODE. By lemma A.1, the difference of any two large
solutions of the ODE z′′ = F (t, z) goes to zero as t → 0−. This implies that
lim|x|→∞|ya(x) − yb(x)| = 0.

Let r > 0 be large enough such that u(x) > s0 for |x| > r. Let m = min|x|=rua(x)
and M = max|x|=rua(x). Now, consider the sequences uk(x) and Uk(x) described
in the remark of lemma 2.2. By the construction, ua(x) − uk(x) > 0 on |x| = r and
lim|x|→∞ua(x) − uk(x) = ∞. Since fs(r, s) � 0, we have that

∆(ua(x) − uk(x)) + ∇h(x) · ∇(ua(x) − uk(x)) = f(x, ua(x)) − f(x, uk(x)) � 0.

Therefore, the maximum principle implies that ua(x) � uk(x) for all k and all
|x| > r. Hence,

ua(x) � u0(x) = lim
k→∞

uk(x) for |x| > r.

Similarly, ua(x) � Uk(x) for r < |x| < pk. Since limk→∞pk = ∞, we have that
ua(x) � U0(x) on |x| > r. Furthermore, u0(x) and U0(x) are two radial solutions
of (1.1). By the discussion at the beginning of this step, lim|x|→∞|U0(x)−u0(x)| = 0.
Since u0(x) � ua(x) � U0(x), we have that lim|x|→∞|ua(x) − u0(x)| = 0. By a
similar argument for ub(x), we have that lim|x|→∞|ub(x) − u0(x)| = 0.

Now, assume that R is an orthonormal transformation on R
n. We have that

[∇(h(Rx))] · [∇(u(Rx))] = [∇(h(Rx))]T[∇(u(Rx))]

= [(∇h)(Rx)]RRT[(∇u)(Rx)]
= ∇h · ∇u(R(x)).

Furthermore, the Laplace operator is interchangeable with orthonormal operators
in the sense that for uR(x) = u(R(x)) we have that ∆u(R(x)) = ∆uR(x). Therefore,
for a given solution u(x) of (1.1) we have that

∆(uR − u)(x) + ∇h · ∇(uR − u)(x) = f(x, uR) − f(x, u).

By the argument at the beginning of the proof, we know that lim|x|→∞|uR −u| = 0.
Because fs(r, s) � 0, the maximum principle implies that uR ≡ u. Therefore, u(x)
is radial.
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Appendix A.

In this appendix we gather the statements of the ODE lemmas required for our
arguments. See [6] for the proofs of the lemmas.

Lemma A.1. Let Γ = {(t, z) | t̂ � t < 0, 0 < ẑ < z} be given. Assume that F (t, z)
and Fz(t, z) are C0 and non-negative on Γ . Assume also that Fz(t, z) is superlinear
in z and that F (t, z) is monotone in t on Γ . Then, the problem

z′′(t) = F (t, z(t)),
lim

t→0−
z(t) = ∞

}
(A 1)

has a C2-solution if and only if there exists c ∈ (t̂, 0) such that

−
∫ 0

c

tF (t, z) dt < ∞ ∀z > ẑ. (A 2)

Furthermore, for any pair of solutions z1(t), z2(t) to (A 1) we have that

lim
t→0−

|z2(t) − z1(t)| = 0.

Lemma A.2. Let Γ = {(t, z) | t̂ � t < 0, 0 < ẑ < z} be given. Assume that F (t, z)
and Fz(t, z) are C0 and non-negative on Γ . Assume also that F (t, z) is superlinear
in z on Γ . Then, for each z̄ > ẑ and t̄ > t̂ there exist a sequence {ρk}∞

k=0 ⊆ (t̄, 0),
with limk→∞ρk = 0, and two sequences of C2-functions {z(t)}∞

k=0 and {Z(t)}∞
k=0

such that

(i) Z0(t) and z0(t), z1(t), . . . are solutions of

z′′(t) = F (t, z(t)), t � t1,

z(t̄) = z̄,

(ii) for all k � 1, Zk(t) is a solution of

Z ′′
k (t) = F (t, Zk(t)), t1 � t < ρk,

lim
t→ρ−

k

Zk(t) = ∞,

Zk(t̄) = z̄,

(iii) limt→0− z0(t) = limt→0− Z0(t) = ∞,

(iv) for all k � 1, zk(t) is finite as t → 0− and

(v) for each t ∈ (t̄, 0) we have that

lim
k→∞

zk(t) = z0(t) and lim
k→∞

Zk(t) = Z0(t).

https://doi.org/10.1017/S0308210512001229 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001229


Semilinear elliptic equations with convection 147

References

1 C. Li. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on
unbounded domains. Commun. PDEs 16 (1991), 585–615.

2 Y. Li and W.-M. Ni. On the asymptotic behavior and radial symmetry of positive solutions
of semilinear elliptic equations in R

n. Arch. Ration. Mech. Analysis 118 (1992), 195–222.
3 Y. Li and W.-M. Ni. Radial symmetry of positive solutions of nonlinear elliptic equations

in R
n. Commun. PDEs 18 (1993), 1043–1054.

4 Y. Naito. Radial symmetry of positive solutions for semilinear elliptic equations in R
n. J.

Korean Math. Soc. 37 (2000), 751–761.
5 R. Osserman. On the inequality ∆u � f(u). Pac. J. Math. 7 (1957), 1641–1647.
6 S. D. Taliaferro. Are solutions of almost radial nonlinear elliptic equations almost radial?

Commun. PDEs 20 (1995), 2057–2092.
7 S. D. Taliaferro. Radial symmetry of large solutions of nonlinear elliptic equations. Proc.

Am. Math. Soc. 124 (1996), 447–455.

(Issued 2 February 2014 )

https://doi.org/10.1017/S0308210512001229 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210512001229



