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ABSTRACT

Let f: Y — X be a proper flat morphism of locally noetherian schemes. Then the locus
in X over which f is smooth is stable under generization. We prove that, under suitable
assumptions on the formal fibers of X, the same property holds for other local properties
of morphisms, even if f is only closed and flat. Our proof of this statement reduces
to a purely local question known as Grothendieck’s localization problem. To answer
Grothendieck’s problem, we provide a general framework that gives a uniform treatment
of previously known cases of this problem, and also solves this problem in new cases,
namely for weak normality, seminormality, F-rationality, and the ‘Cohen—Macaulay and
F-injective’ property. For the weak normality statement, we prove that weak normality
always lifts from Cartier divisors. We also solve Grothendieck’s localization problem for
terminal, canonical, and rational singularities in equal characteristic zero.

1. Introduction

Let f: Y — X be a proper flat morphism of locally noetherian schemes. By [EGAIV3, Théoreme
12.2.4(iii)], the locus of points x € X such that f~!(z) is smooth over x(z) is open, and, in
particular, is stable under generization. In [EGAIV3, (12.0.2)], Grothendieck and Dieudonné
asked whether similar statements hold for other local properties of morphisms, in the following
sense.

Question 1.1. Let R be a property of noetherian local rings, and consider a proper flat morphism
f:Y — X of locally noetherian schemes. Is the locus

Ur(f) = {z € X | f~!(2) is geometrically R over k(z)} C X
stable under generization?

Question 1.1 was answered for many properties R in [EGAIV3, §12], and is a global version
of Problem 1.2 below, which is known as Grothendieck’s localization problem (see, for example,
[AF94]). Our goal is to provide a general framework with which to answer Question 1.1, assuming
that R is well behaved in the sense that it satisfies the following four permanence conditions.

(R7) (Ascent via geometrically R homomorphisms) For every flat local homomorphism A — B
of noetherian local rings with geometrically R fibers, if A satisfies R, then B satisfies R.
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(Rir) (Descent) For every flat local homomorphism A — B of noetherian local rings, if B satisfies
R, then A satisfies R.

(Rrv) (Lifting from Cartier divisors) For every noetherian local ring A and for every nonzerodi-
visor ¢ in its maximal ideal, if A/tA satisfies R, then A satisfies R.

(Rv) (Localization) If a noetherian local ring A satisfies R, then A, satisfies R for every prime
ideal p C A.

These conditions on R are studied in [EGAIVy, §7] (see also Conditions 3.1), and are satis-
fied by many common properties R (see Table 2). The notation (R}) is used instead of (Ryp)
because the latter condition in [EGAIVy, (7.3.10)] asserts that R ascends via geometrically
regular homomorphisms. The condition (Ryy) is called ‘deformation’ in commutative algebra, is
related to inversion of adjunction-type results in birational geometry, and can also be thought
of as an inverse to local Bertini-type theorems. The terminology ‘lifts from Cartier divisors’ was
suggested to us by Janos Kollar.

Our main result says that under an additional assumption on the formal fibers of the local
rings of X, a more general version of Question 1.1 holds.

THEOREM A. Let R be a property of noetherian local rings satisfying (Ry), (Ru), (Riv), and
(Ry), such that regular local rings satisfy R. Consider a flat morphism f:Y — X of locally
noetherian schemes.

(i) Suppose that f maps closed to closed points, and that the local rings of X at closed points
have geometrically R formal fibers. If every closed fiber of f is geometrically R, then all
fibers of f are geometrically R.

(ii) Suppose that f is closed, and that the local rings of X have geometrically R formal fibers.
Then the locus

Ur(f) = {z € X | f~Y(z) is geometrically R over k(z)} C X

is stable under generization.

In the statement above, a locally noetherian scheme X over a field k is geometrically R over
k if, for all finite field extensions k C &/, every local ring of X ®y k' satisfies R. We consider
the fiber f~1(x) of a morphism f as a scheme over the residue field x(z) at z € X. We will
use similar terminology for noetherian algebras over a field k£ and homomorphisms of noetherian
rings. A semi-local noetherian ring A has geometrically R formal fibers if the m-adic completion
homomorphism A — A has geometrically R fibers, where m is the product of the maximal ideals
in A.

Theorem A(ii) answers Question 1.1 since proper morphisms are closed. Combined with the
constructibility results proved in [EGAIV3, §9] and [BF93, § 7], Theorem A (ii) implies that many
properties of fibers are open on the target for closed flat morphisms of finite type between locally
noetherian schemes with nice formal fibers. In Theorem A(i), the condition that a morphism
maps closed points to closed points is much weaker than properness or even closedness, since it
is satisfied by all morphisms locally of finite type between algebraic varieties, or more generally
between Jacobson schemes [EGAI, ., Corollaire 6.4.7 and Proposition 6.5.2].

Theorem A does not need to assume that f is proper or even of finite type, and therefore
answers a question of Shimomoto [Shil7, p. 1058]. Shimomoto proved versions of (i) and (ii)
for morphisms of finite type between excellent noetherian schemes [Shil7, Main Theorem 1 and
Corollary 3.8|, and asked whether similar results hold without finite type hypotheses.
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The main ingredient in the proof of Theorem A is a purely commutative-algebraic statement,
which is of independent interest. In [EGAIV;], Grothendieck and Dieudonné asked whether the
following local version of Question 1.1 holds.

Problem 1.2 (Grothendieck’s localization problem; see [EGAIV,y, Remarque 7.5.4(i)]). Let R be
a property of noetherian local rings, and consider a flat local homomorphism ¢: A — B of noethe-
rian local rings. If A has geometrically R formal fibers and the closed fiber of ¢ is geometrically
R, then are all fibers of ¢ geometrically R?

In other words, Problem 1.2 asks whether the property of having geometrically R fibers local-
izes for flat local homomorphisms of noetherian local rings. We call Problem 1.2 ‘Grothendieck’s
localization problem’ following Avramov and Foxby [AF94], who proved many cases of this prob-
lem; see Table 1. We resolve Problem 1.2 for well-behaved properties R, extending [EGAIVy,
Proposition 7.9.8] and [Mar84, Theorem 2.1] to non-zero residue characteristic.

THEOREM B. Problem 1.2 holds for properties R of noetherian local rings satistying (Ry), (Ri),
(Ryv), and (Ry), such that regular local rings satisfy R.

The proof of Theorems A and B now proceeds as follows.

(I) We reduce Theorem A to Theorem B by replacing X and Y with Spec(Ox,) and
Spec(QOy,y) for suitable points z € X and y € Y. This step uses the assumption either
that f maps closed points to closed points, or that f is closed.

(IT) We reduce to the case when A is quasi-excellent by replacing A with its completion A. This
step uses (R}), (Rir), and the condition on the formal fibers of A.

(III) We reduce to the case when A is a regular local ring by applying Gabber’s weak local
uniformization theorem [[LO14, Exposé VII, Théoreme 1.1]. This step uses (R}), (Rm),
(Rrv), (Rv), and the quasi-excellence of A obtained in (II).

(IV) Finally, we are in a situation where we can apply [EGAIVa, Lemme 7.5.1.1], which is a
statement similar to Problem 1.2 when A is regular. This step uses (Rrv).

The main innovation in our approach to Theorems A and B is the use of Gabber’s theorem in
(III). Grothendieck and Dieudonné [EGAIVs, Proposition 7.9.8] and Marot [Mar84, Theorem 2.1]
separately proved versions of Theorem B under the assumption that every reduced module-finite
A-algebra has a resolution of singularities. This assumption on resolutions of singularities holds
when A is a quasi-excellent Q-algebra [Hir64, Chapter I, §3, Main Theorem I(n)], or when A
is quasi-excellent of dimension at most three [Lip78, Theorem; CP19, Theorem 1.1], but is not
known to hold in general.

On the other hand, Gabber’s weak local uniformization theorem says that a variant of resolu-
tions of singularities exists for arbitrary quasi-excellent noetherian schemes [ILO14, Exposé VII,
Théoréme 1.1]. Gabber’s theorem is a version of de Jong’s alteration theorem [dJ96, Theorem 4.1]
for quasi-excellent noetherian schemes that are not necessarily of finite type over a field or a dis-
crete rank one valuation ring (DVR). Both of their theorems say that variants of resolutions of
singularities exist after possibly passing to a finite extension of the function field. As presented
by Kurano and Shimomoto [KS21, Main Theorem 2], Gabber previously used this theorem to
prove that quasi-excellence is preserved under ideal-adic completion.

We note that one can also ask about generization on the source space Y in the context of
Theorem A. Such a statement follows from Theorem B for arbitrary flat morphisms f: Y — X
of locally noetherian schemes, with appropriate assumptions on the formal fibers of the local
rings of X; cf. [EGAIVa, Remarque 7.9.10(ii)].

99

https://doi.org/10.1112/S0010437X21007715 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007715

T. MURAYAMA

In the second half of this paper, we answer Question 1.1 and Problem 1.2 in specific cases.
Starting with André’s theorem on the localization of formal smoothness [And74, Théoreme
on p. 297], previous cases of Problem 1.2 were proved using a variety of methods, including
André—Quillen homology [And67, Qui70], Grothendieck duality [Har66], and the Cohen factor-
izations of Avramov, Foxby, and Herzog [AFH94|. See Table 1 for known cases of Problem 1.2.
By checking the conditions (Rf), (Ri1), (Riv), and (Ry) (see Table 2), we give a uniform treat-
ment of most of the results in Table 1 using Theorem B. Additionally, Theorem B resolves
Problem 1.2 for weak normality, seminormality, F-rationality, and the ‘Cohen—Macaulay and
F-injective’ property, the latter three of which were previously known only under additional
finiteness assumptions [Has01, Theorem 5.8 and Remark 6.7; Shil7, Corollaries 3.4 and 3.10;
PSZ18, Theorem 5.13]. The result for F-rationality completely answers a question of Hashimoto
[Has01, Remark 6.7].

For weak normality, we prove that weak normality lifts from Cartier divisors for all noetherian
local rings (Proposition 4.10), extending a result of Bingener and Flenner [BF93, Corollary 4.1]
to non-excellent rings. We also solve Grothendieck’s localization problem for terminal, canonical,
and rational singularities in equal characteristic zero (Corollary 4.18) using [EGAIV2, Proposition
7.9.8].

As an application of Theorem B, we consider the following version of Grothendieck’s lifting
problem for semi-local rings.

Problem 1.3 (Local lifting problem; cf. [EGAIV2, Remarque 7.4.8A]). Let A be a noetherian
semi-local ring that is [-adically complete with respect to an ideal I C A. If A/I has geometrically
R formal fibers, then does A have geometrically R formal fibers?

We call Problem 1.3 the ‘local lifting problem’ following Nishimura and Nishimura [NN8§], in
order to distinguish Problem 1.3 from Grothendieck’s original lifting problem asked in [EGAIV,
Remarque 7.4.8A], which does not restrict to semi-local rings. Using Theorem B and the
axiomatic approach to Problem 1.3 due to Brezuleanu and Ionescu [BI84, Theorem 2.3], we
give a solution to Problem 1.3 under the additional assumption that A/I is Nagata. This result
extends [Mar84, Theorem 5.2] to non-zero residue characteristic.

THEOREM C. Let R be a property of noetherian local rings that satisfies the hypotheses in
Theorem B. Suppose, moreover, that the locus

Ur (Spec(C)) == {p € Spec(C) | Cy satisfies R} C Spec(C)

is open for every noetherian complete local ring C. If A is a noetherian semi-local ring that is
I-adically complete with respect to an ideal I C A, and if A/I is Nagata and has geometrically
R formal fibers, then A is Nagata and has geometrically R formal fibers.

The condition on Ur (Spec(C)) is condition (Rjyr) in Conditions 3.1. Recall that a noetherian
semi-local ring is Nagata if and only if it has geometrically reduced formal fibers; see Remark 2.5.
Theorem C therefore answers Problem 1.3 for properties R such that regular = R = reduced,
and gives a uniform treatment of most known cases of Problem 1.3; see Table 1. Theorem C also
implies that for semi-local Nagata rings, the property of having geometrically R formal fibers is
preserved under ideal-adic completion; see Corollary 3.11.

We end this introduction with one question that is still open. Nishimura showed that the
non-local version of Problem 1.3 is false for all properties R such that regular = R = reduced
[Nis81, Example 5.3], and Greco showed that similar questions for the properties ‘universally
catenary’ and ‘excellent’ are also false [Gre82, Proposition 1.1]. Instead, inspired by the axiomatic
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approach of Valabrega [Val78, Theorem 3], Imbesi conjectured that the following formulation of
Problem 1.3 for non-semi-local rings may hold.

Problem 1.4 [Imb95, p. 54]. Let A be a noetherian ring that is I-adically complete with respect
to an ideal I C A. If A/I satisfies R-2 and every local ring of A/I has geometrically R formal
fibers, then is it true that A satisfies R-2 and that every local ring of A has geometrically R
formal fibers?

Here, a ring A satisfies R-2 if for every A-algebra B of finite type, the locus Ur(Spec(B))
is open in Spec(B) [Val78, Definition 1]. Nishimura’s aforementioned example [Nis81, Example
5.3] shows that Problem 1.4 does not hold when R = ‘reduced’. On the other hand, Problem 1.4
for R = ‘normal’ follows from a result proved by Brezuleanu and Rotthaus [BR82, Satz 1] and
by Chiriacescu [Chi82, Theorem 1.5] around the same time, and a result due to Nishimura and
Nishimura [NN88, Theorem A]. Moreover, Gabber proved Problem 1.4 for R = ‘regular’ [KS21,
Main Theorem 1].

Outline
This paper is structured as follows.

In the first half of the paper, we set up the general framework with which we prove
Theorems A, B, and C. To so do, we define geometrically R morphisms and formal fibers,
and review the necessary background on (quasi-)excellent rings and on Gabber’s weak local uni-
formization theorem in § 2. In § 3 we state the various conditions we put on local properties R. of
noetherian rings, and then prove Theorem B, first in the quasi-excellent case (Theorem 3.4), and
then for rings with geometrically R formal fibers (Corollary 3.6). We obtain Theorems A and C
as consequences.

The second half of the paper consists of § 4, where we verify the necessary conditions to apply
Theorems A, B, and C to specific properties R, in particular proving that weak normality lifts
from Cartier divisors (Proposition 4.10). We then solve Problem 1.2 for terminal, canonical, and
rational singularities in equal characteristic zero (Corollary 4.18) using [EGAIVy, Proposition
7.9.8]. Finally, we conclude this paper with two tables: Table 1 contains references for special
cases of Problems 1.2 and 1.3, and Table 2 contains references for the conditions used in our
theorems.

Notation

All rings are commutative with identity, and all ring homomorphisms are unital. We follow
the notation in Definition 2.1 for properties R of noetherian local rings and their associated
properties of morphisms and of formal fibers. We also follow the notation in Conditions 3.1 for
the conditions on R appearing in our results. In addition, if R is a property of noetherian local
rings, then, following [EGAIV,, Proposition 7.3.12], the R locus in a locally noetherian scheme
X is the locus

Ur(X) ={z € X|Ox, satisfies R} C X

at which X satisfies R.

2. Preliminaries

2.1 Geometrically R morphisms and formal fibers
We begin by defining geometrically R morphisms and rings with geometrically R formal fibers.
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DEFINITION 2.1 [EGAIV,, (7.3.1), (7.5.0), and (7.3.13)]. Let R be a property of noetherian
local rings, and let k& be a field. A locally noetherian k-scheme X is geometrically R over k
if X satisfies the following property.

For all finite field extensions k C &/, every local ring of X ®j, k" satisfies R. (1)

A noetherian k-algebra A is geometrically R over k if Spec(A) is geometrically R over k.

A morphism f: Y — X of locally noetherian schemes is geometrically R if it is flat and
if the scheme f~!(x) is geometrically R for every x € X. We consider the fiber f~!(z) of a
morphism f as a scheme over the residue field k(z) at * € X. A ring homomorphism ¢: A — B
is geometrically R if Spec(y) is geometrically R. The geometrically R locus of a flat morphism
f:Y — X of locally noetherian schemes is the locus

Ur(f) = {z € X | f!(2) is geometrically R over k(z)} C X

of points in X over which f is geometrically R.
A noetherian semi-local ring A has geometrically R formal fibers if the m-adic completion
homomorphism A — A is geometrically R, where m is the product of the maximal ideals in A.

Remark 2.2. We note that the property in (1) is called P in [EGAIVa, (7.5.0)]. Following this
terminology, geometrically R morphisms are called P-morphisms in [EGAIVy, (7.3.1)], and semi-
local rings with geometrically R formal fibers are called P-rings in [EGAIV3, (7.3.13)].

2.2 (Quasi-)excellent rings and schemes

We next define (quasi-)excellent rings and schemes. In the definition below, we recall that a
noetherian ring A is a G-ring if Ay has geometrically regular formal fibers for every prime ideal
p C A [Mat89, p. 256].

DEFINITION 2.3 [EGAIVy, Définition 7.8.2and (7.8.5)] (cf. [Mat89, Definitiononp. 260]). A noet-
herian ring A is quasi-excellent if A is a G-ring and if A is J-2, that is, if for every A-algebra B
of finite type the regular locus in Spec(B) is open. A quasi-excellent ring A is excellent if A is
universally catenary.

A locally noetherian scheme X is quasi-excellent (respectively, excellent) if it admits an open
affine covering X = | J,; Spec(4;), such that every A; is quasi-excellent (respectively, excellent).

The condition J-2 is the condition R-2 for R = ‘regular’ in the sense mentioned in §1. We
also define the following closely related notion.

DEFINITION 2.4 [EGAIV;, Chapitre 0, Définition 23.1.1]. A noetherian domain A is Japanese
if, for every finite extension L of the fraction field of A, the integral closure of A inside L is
module-finite over A. A noetherian ring A is Nagata or universally Japanese if every domain B
of finite type over A is Japanese.

Every quasi-excellent noetherian ring is Nagata [EGAIVg, Corollaire 7.7.3].

Remark 2.5. By theorems of Zariski and Nagata [EGAIVy, Théorémes 7.6.4 and 7.7.2] (see also
[Mat89, p. 264]), a noetherian ring A is Nagata if and only if:

(a) Ay has geometrically reduced formal fibers for every prime ideal p C A; and
(b) for every domain B that is module-finite over A, the normal locus is open in Spec(B).

For semi-local rings A, (a) implies (b) by [EGAIVg, Théoreme 7.6.4 and Corollaire 7.6.5], and
(a) holds if and only if A has geometrically reduced formal fibers [EGAIV2, Proposition 7.3.14
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and Corollaire 7.4.5]. Thus, a semi-local ring is Nagata if and only if it has geometrically reduced
formal fibers.

2.3 Gabber’s weak local uniformization theorem
We now recall Gabber’s weak local uniformization theorem, which is a variant of resolutions of
singularities for arbitrary quasi-excellent noetherian schemes. Gabber’s result is a version of de
Jong’s alteration theorem [dJ96, Theorem 4.1] for quasi-excellent noetherian schemes that are
not necessarily of finite type over a field or a DVR.

To state Gabber’s result, we first need to define maximally dominating morphisms. We recall
that a point x on a scheme X is mazimal if it is the generic point of an irreducible component
of X [EGAI,ew, Chapitre 0, (2.1.1)]. We then have the following definition.

DEFINITION 2.6 [ILO14, Exposé II, Définition 1.1.2]. A morphism f: Y — X of schemes is
mazimally dominating if every maximal point of Y maps to a maximal point of X.

We now define the alteration topology on a noetherian scheme.

DEFINITION 2.7 [ILO14, Exposé II, Définition 1.2.2 and (2.3.1)]. Let X be a noetherian scheme.
The category alt/X is the category whose objects are reduced schemes that are maximally dom-
inating, generically finite, and of finite type over X, and whose morphisms are morphisms as
schemes over X. All morphisms in alt/X are maximally dominating, generically finite, and of
finite type [ILO14, Exposé II, Définition 1.2.2 and (2.3.1)].

The alteration topology on X is the Grothendieck topology on alt/X associated to the
pretopology generated by:

(i) étale coverings; and
(ii) proper surjective morphisms that are maximally dominating and generically finite.

We will use the following alternative characterization for coverings in the alteration topology
when X is irreducible. This result implies that coverings in the alteration topology on alt/X are
coverings in Voevodsky’s h-topology [Voe96, Definition 3.1.2]; see [ILO14, p. 263].

THEOREM 2.8 [ILO14, Exposé II, Théoreme 3.2.1]. Let X be an irreducible noetherian scheme.
Then, for every finite covering {Y; — X}, in the alteration topology on X, there exist a proper
surjective morphism m: V — X in alt/X such that V is integral, and a Zariski open covering
V =%, Vi, together with a collection {h;: V; — Y;}I™ | of morphisms, such that the diagram

Vie——V

b lﬂ

y, iy x

commutes for every i € {1,2,...,m}, where the morphisms V; — V are the natural open
immersions.

We now state a special case of Gabber’s weak local uniformization result, which is the main
technical ingredient in the proof of Theorem B.

THEOREM 2.9 (Gabber [ILO14, Exposé VII, Théoreme 1.1]). Let X be a quasi-excellent
noetherian scheme. Then there exists a finite covering {Y; — X}, in the alteration topology
on X, such that Y; is regular and integral for every i € {1,2,...,m}.
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3. Grothendieck’s localization problem and the local lifting problem

In this section we solve Grothendieck’s localization problem (Problem 1.2) by proving Theorem B
in a sequence of steps. We first fix notation for our conditions on local properties R in § 3.1. In § 3.2
we prove Theorem B under the additional assumption that A is quasi-excellent (Theorem 3.4),
in which case Gabber’s weak local uniformization theorem (Theorem 2.9) applies. We then prove
Theorem B in §3.3 by taking a completion to reduce to the quasi-excellent case, using (R}) and
the fact that A has geometrically R formal fibers. Finally, we obtain Theorems A and C as
consequences in §8§ 3.4 and 3.5, respectively.

3.1 Conditions on R
We fix the following notational conventions for permanence conditions on the local properties R.

ConDITION 3.1. Fix a full subcategory % of the category of noetherian rings, and let R be a
property of noetherian local rings. We consider the following conditions on the property R.

(Ro) The property R holds for every field k.

(RY) (Ascent via geometrically regular homomorphisms) For every geometrically regular local
homomorphism ¢: A — B of noetherian local rings in %, if A satisfies R, then B
satisfies R.

(R%) (Descent) For every flat local homomorphism ¢: A — B of noetherian local rings such
that B is in €, if B satisfies R, then A satisfies R.

(Rimr) (Openness) For every noetherian complete local ring C', the locus Ugr(Spec(C)) is open.

(Rigv) (Lifting from Cartier divisors) For every noetherian local ring A in ¥ and for every
nonzerodivisor ¢ in its maximal ideal, if A/tA satisfies R, then A satisfies R.

(R%) (Localization) If a noetherian local ring A in ¢ satisfies R, then A, satisfies R for every
prime ideal p C A.

In addition, we consider the following variant of (RY).

(RY") (Ascent via geometrically R homomorphisms) For every local geometrically R, homo-
morphism ¢: A — B of noetherian local rings in ¥, if A satisfies R, then B
satisfies R.

We also consider the following conditions for R that affect geometrically R homomorphisms.

(P}/;) If p: A— B and ¥: B — C are a geometrically R homomorphism and a geometrically
regular homomorphism of noetherian rings, respectively, and B and C are in €, then ¥ o ¢
is a geometrically R homomorphism.

(P%) (Descent) If ¢: A — B and 1: B — C are two homomorphisms of noetherian rings such
that 1 o ¢ is geometrically R, ¢ is faithfully flat, and C is in ¥, then ¢ is geometrically R.

(Prr) Every field & is geometrically R over itself.

(P%,) (Stability under finitely generated ground field extensions) If a noetherian ring A in 4 is
geometrically R over a field k, then, for all finitely generated field extensions k C &/, the
ring A ®j, k' is geometrically R over k’.

In addition, we consider the following variant of (P¥).

(PF) If p: A— Band: B — C are geometrically R homomorphisms of noetherian rings such
that B and C are in ¥, then 9 o ¢ is also geometrically R.

We drop € from our notation if % is the entire category of noetherian rings.
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Remark 3.2. The list in Conditions 3.1 is a subset of that in [Mar84, Conditions 1.1 and 1.2],
although our naming convention mostly follows [EGAIVjy]. Specifically,

— (Ro), (R1), and (Ryr) appear in [EGAIV,, (7.3.10)], although (Rp) is not named,;

— (Ryq) appears in [EGAIVy, Proposition 7.3.18];

— (R%) specializes to the condition (Ryy) in [EGAIVy, Théoreme 7.5.1] when € is the category
of noetherian complete local rings;

— (RY) is unrelated to the condition (Ry) in [EGAIVs, Corollaire 7.5.2];

(R}) appears in [EGAIV,, Remarque 7.3.11];

— (Py), (P1), and (Py1) appear in [EGAIVy, (7.3.4)];

— (Pyv) appears in [EGAIVs, (7.3.6)]; and

— (P}) appears in [EGAIVy, Remarque 7.3.5(iii)].

See also [EGAIVy, (7.9.7)], [Val78, p. 201], and [BI84, (2.1) and (2.4)].

We will use the following relationships between different conditions on R.

LEMMA 3.3 (cf. [EGAIVy, (7.3.10), Remarque 7.3.11, and Lemme 7.3.7; DM 20, Proposition 4.10]).
Fix a full subcategory % of the category of noetherian rings that is stable under homomorphisms
essentially of finite type, and let R be a property of noetherian local rings.

(i) If R satisfies (Rp), then R satisfies (Pyir).

(ii) Let R’ be another property of noetherian local rings. Suppose that, for every local geo-
metrically R’ homomorphism B — C' of noetherian local rings in ¢, if B satisfies R,
then C satisfies R. If ¢p: A — B and ¥: B — C are geometrically R and geometrically
R’ homomorphisms of noetherian rings, respectively, and B and C are in €, then ¢ o ¢ is
geometrically R.

In particular, if R satisfies (RY), then R satisfies (P¥), and if R satisfies (RY"), then
R satisfies (PY").

(iii) If R satisfies (RY}), then R satisfies (P§).

(iv) IfR satisfies the special cases of (R¥) and (R%) when the homomorphisms ¢ are essentially
of finite type, then R satisfies (P%,).

(v) If R satisfies (P%;), and if ¢: A — B is a geometrically R homomorphism of noetherian
rings such that B is in €, then for every A-algebra C essentially of finite type, the base
change ¢ ® 4 ido: C — B ®4 C is geometrically R.

Proof. (i) is clear from definition of being geometrically R.

To show (ii) and (iii), it suffices to consider the case when A is a field k by transitivity
of fibers; see [EGAIV3y, Remarque 7.3.5(ii)]. Note that for (ii) (respectively, (iii)), we use the
hypothesis on € to guarantee that after this reduction, B and C (respectively, C') are still in &
Consider the composition

k2B Yo
of homomorphisms of noetherian rings, and consider the base change
k/%;B(g)kk’%C@kk’ (2)

for a finite field extension k C k’. For (ii), we first note that since B — B ®; k' is a module-
finite homomorphism, it induces finite field extensions on residue fields. Thus, the base change
1) @y, idy of 1 is geometrically R’. Since the local rings of B ®y k' satisfy R by assumption, we
see that the local rings of C'®y, k' also satisfy R. For (iii), we note that in (2), the local rings of
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C ®y, k' satisfy R by assumption. Thus, the local rings of B ®;, k" also satisfy R by (R(ﬁ), since
1 ®y idgs is faithfully flat by base change.
For (iv), let & C &k’ be a finitely generated field extension. By [DM20, Lemma 4.9], there exist
a finite extension k C k; and a diagram
ko
VAN
/

NS
k

k k1

of finitely generated field extensions, where k1 C ko := (k' ® k1)req is a separable field extension.
Since A is geometrically R over k, the local rings of A ®;, k1 satisfy R. We therefore see that the
local rings of A ®y, ko also satisfy R, since k1 — ko is regular and both A ®p k1 and A ®j ko are
in €. Finally, the local rings of A ®j, k' satisfy R by (R%).

For (v), we note that ¢ ® 4 id¢ is flat by base change, and hence it suffices to show that,
for every prime ideal q C C, the fiber B ®4 C ®¢ k(q) is geometrically R. Letting p =qnN A,
the field extension x(p) C k(q) is finitely generated since A — C' is essentially of finite type
[EGAI,ew, Proposition 6.5.10]. Since

B®aC®ck(q) ~B®ar(q) ~Beak(p) Q) £(q),
we see that B ®4 C ®¢ k(q) is geometrically R by (Pf:,) 0

3.2 Problem 1.2 for quasi-excellent bases

The following result solves Grothendieck’s localization problem when the ring A is quasi-
excellent. This step corresponds to (III) in §1, and forms the technical core of the proof of
Theorem B.

THEOREM 3.4 (cf. [EGAIVy, Proposition 7.9.8; Mar84, Theorem 2.1]). Fix a full subcategory
@ of the category of noetherian rings that is stable under homomorphisms essentially of finite
type. Let R be a property of noetherian local rings, and consider a flat local homomorphism
v: (A,m,k) — (B,n,l) of noetherian local rings. Assume the following:

(i) the ring A is quasi-excellent;
(ii) the ring B appears in €; and
(iif) the property R satisfies (R%), (R%,), (RG), and (P%,).

If the closed fiber of ¢ is geometrically R, then all fibers of ¢ are geometrically R.

The proof in [Mar84] relies on the existence of resolutions of singularities, which we avoid
by using Gabber’s weak local uniformization theorem. As far as we are aware, the idea of using
alterations instead of resolutions of singularities first appeared in [Has01, Remark 6.7, where
Hashimoto proves Grothendieck’s localization problem for F-rationality when the base ring A is
essentially of finite type over a field of positive characteristic using de Jong’s alteration theorem
[dJ96, Theorem 4.1]. When R = Cohen—Macaulay or (S,,), one can use Kawasaki’s Macaulayfi-
cation theorem [Kaw02, Theorem 1.1] to prove Theorem 3.4; see [BI84, Proposition 3.1; Ion08,
Theorem 4.1 and Remark 4.2].

Our strategy will be to ultimately reduce to the following version of Problem 1.2 for regular
bases. This statement corresponds to (IV) in § 1.

LEMMA 3.5 [EGAIVy, Lemme 7.5.1.1]. Fix a full subcategory € of the category of noetherian
local rings that is stable under quotients. Let R be a property of noetherian local rings satisfying
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(R}’“‘{,), and consider a flat local homomorphism ¢: (C,m, k) — (D,n,l) of noetherian local rings
in €, where C is regular. If D ®¢ k satisfies R, then D satisfies R.

We now prove Theorem 3.4.

Proof of Theorem 3.4. We want to show that, for every prime ideal p C A, the x(p)-algebra
B ®4 k(p) is geometrically R over x(p). By noetherian induction, it suffices to show that if
po C A is a prime ideal and B ® 4 k(p) is geometrically R over x(p) for every prime ideal p 2 po,
then B ®4 k(po) is geometrically R over k(po). Replacing A by A/po and B by B/poB, we
may therefore assume that A is a domain and that B ® 4 k(p) is geometrically R over x(p) for
every non-zero prime ideal p C A. We note that A/pg is quasi-excellent by [EGAIVa, Proposition
7.3.15(i)], and that B/poB appears in € by (ii).

We now reduce to showing that the local rings of B ® 4 K satisfy R, where K := Frac(A). We
want to show that, for every finite field extension K C K’, the local rings of B ® 4 K’ satisfy R.
Let A C A’ be a module-finite extension such that A’ is a domain and such that K’ = Frac(A’).
Then A’ is a semi-local ring, and setting B’ :== B®4 A’, we have B®4 K' ~ B’ ®4 K'. Note
that every local ring of B ®4 K’ is a local ring of By ®a K’ for some prime ideals p C A’ and
q € B'. Moreover, denoting by &’ the residue field of A}, we have

B®Ak/EB®AA/®A/ kZ/ZB/@A/ k;/,

Thus, By ® AL k" is a localization of B ®4 k', and hence By ® A k' is geometrically R over k’. We
may therefore replace A by Al, B by B/, and K by K’, in which case it suffices to show that the
local rings of B ®4 K satisfy R. We note that A;g is quasi-excellent by [EGAIVs, Proposition
7.3.15(i) and Théoreme 7.7.2], and that B appears in ¢ by (ii).

We now apply Gabber’s weak local uniformization theorem. Since X := Spec(A) is quasi-
excellent by (i), Theorem 2.9 implies there exists a finite covering {f;: ¥; — X}, of X in the
alteration topology, where Y; is regular and integral for every i. Note that X is irreducible by
our reduction in the first paragraph and by construction of A’ in the previous paragraph. Thus,
Theorem 2.8 implies there exist a proper surjective morphism 7: V — X and a Zariski open
covering V = [J;*, V; fitting into a commutative diagram

Vie——V

ha lﬂ

v, L x
for every i. By base change along the morphism Spec(¢): X’ — X, where X’ := Spec(B), we
obtain the commutative diagram

V;/(—>V/

h:i lﬂ'/

Y = X Q

gzi lSpeC(w)

Y Ji X

with cartesian squares for every i. We now consider a point 1’ € X’ lying over the generic point
of X. We want to show that Ox ,/ satisfies R. Since 7’ is surjective, there exists a point ¢’ € V'
such that 7'(£’) = /. Since 7’ is closed, the specialization 1’ ~ n in X’ = Spec(B) then lifts to
a specialization ¢’ ~» v’ in V' [Sta20, Tag 0066]. Since V' = J, V/ is a Zariski open covering,
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there exists an index igp € {1,2,...,m} such that v/ € Vzg, and since open sets are stable under
generization, we have ¢’ € Vzg as well. We claim that it suffices to show that Oy (¢ satisfies
107 10

R. Since the morphism f;, is maximally dominating, base-changing the bottom square in (3) for
i = ip along the morphism Spec(K) — X = Spec(A), localizing at the generic point of Y;,, and
taking global sections yields the cocartesian square

B®ALZ'0 <;B®AK

I |

Ly «+—— K

of rings, where L;, is the function field of Y;,. The bottom horizontal arrow is faithfully flat;
thus, the top horizontal arrow is also faithfully flat by base change. After localizing, we therefore
obtain a faithfully flat homomorphism

OX,,U/ ~ (B ®A K)n/ — (B ®A LiO)h;O(fl) ~ Oyl h (EI),

107" Vi
and (RY) implies that if Oy (¢y satisfies R, then O, satisfies R. Here we use the fact that
i9? "ig ’
(B ®A LiO)h;O (%) isin % by (11)
It remains to show that Oyilo’h;o(gl) satisfies R. Setting y' = h] (v) and y = gi,(v'), the
residue field extension k C k(y) is finitely generated since f;, is of finite type. Thus, the closed

fiber of the flat homomorphism % in the commutative diagram

OY.' Y/ +—— B
10’

g )

OYZ-U y < A

is geometrically R by (P}%), since B®4 k is in € by (ii). Since Oy, y is regular by construction

and Oy ,, appears in ¢ by (ii), we can apply Lemma 3.5 (which uses (R}é{,)) to deduce that
20’

OY/O o satisfies R. Finally, (Rg) implies that OY{Q B (€) satisfies R, since the specialization

¢ ~ v" in V' maps to the specialization h; (§') ~ h; (v') =y by continuity. O

3.3 Problem 1.2 in general and the proof of Theorem B
We now prove Theorem B by reducing to the complete (hence quasi-excellent) case proved in
Theorem 3.4. This step corresponds to (II) in §1.

We first show the following stronger statement that is more specific about what conditions
from Conditions 3.1 are needed.

COROLLARY 3.6 (cf. [Mar84, Theorem 2.2; BI84, Proposition 1.2]). Fix a full subcategory € of
the category of noetherian rings that is stable under homomorphisms essentially of finite type. Let
R be a property of noetherian local rings, and consider a flat local homomorphism ¢: (A, m, k) —
(B,n,1) of noetherian local rings. Assume the following:

(i) the ring A has geometrically R formal fibers;
(ii) the rings A and B* appear in ¢, where A and B* denote the m-adic completions of A and
B, respectively; and
(iii) the property R satisfies (R%), (R%,), (R%), (PY"), and (P%).

If the closed fiber of ¢ is geometrically R, then all fibers of ¢ are geometrically R.
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Proof. We have the commutative square

1t

A2 B

where o and 7 are the canonical m-adic completion homomorphisms. By (i), the homo-
morphism o is geometrically R. We claim that ¢* is geometrically R. By [EGAI,cy, Chapitre 0,
Lemme 6.8.3.1], the ring B* is a noetherian local ring, and we have

B*®ik~B®ak.

Theorem 3.4 therefore implies that ¢* is geometrically R, where we use the fact that the com-
plete local ring A is excellent by [EGAIVq, Scholie 7.8.3(iii)]. The composition 70¢ = ¢* oo
is geometrically R by (PY'), and therefore ¢ is also by (P%) (which holds by (R%) and
Lemma 3.3(iii)) since 7 is faithfully flat [Mat89, Theorem 8.14]. O

We now deduce Theorem B as a consequence.

THEOREM B. Problem 1.2 holds for properties R. of noetherian local rings satistying (R}), (Ri),
(Rrv), and (Ry), such that regular local rings satisfy R.

Proof. Tt suffices to show that the hypotheses in Theorem B imply those in Corollary 3.6 when &
is the entire category of noetherian rings. Note that (i) is already a hypothesis in Theorem B and
that (ii) is vacuously true. It therefore suffices to note that (Rj) implies (P]) by Lemma 3.3(ii), and
that (Ry) and (Ryy) imply (Pry) by Lemma 3.3(iv). Here, (Ry) holds by (R}) and the assumption
that regular local rings satisfy R. O

We can also prove a version of Corollary 3.6 for a specific choice of the category %, as long
as we put an extra condition on B ® 4 k.

COROLLARY 3.7 (cf. [EGAIVy, Corollaire 7.5.2; BI84, Proposition 1.2]). Denote by € the small-
est full subcategory of the category of noetherian rings containing noetherian complete local rings
that is stable under homomorphisms essentially of finite type. Let R be a property of noetherian
local rings, and consider a flat local homomorphism ¢: (A, m, k) — (B,n,l) of noetherian local
rings. Assume the following:

(i) the rings A and B ® 4 k have geometrically R formal fibers; and
(ii) the property R satisfies (R}), (R%), (R%), (RY), and (P%,).

If the closed fiber of ¢ is geometrically R, then all fibers of ¢ are geometrically R.

Proof. We have the commutative square

A—5B

Ul b
A—“4B

where o and 7 are the canonical m-adic and n-adic completion homomorphisms, respectively. By

(i), the homomorphism o is geometrically R. We claim that ¢ is geometrically R. Note that ¢

is flat by [Mat89, Theorem 22.4(i)], and that B ® 4 k has geometrically R formal fibers by (i).
Thus, the composition

k— Boak— B,k
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is geometrically R by applying (P) (which holds by (Rf) and Lemma 3.3(ii)). Since this com-
position is equal to ¢ ® ; idy, Theorem 3.4 implies that ¢ is geometrically R, where we use the
fact that the complete local ring A is excellent by [EGAIVy, Scholie 7.8.3(iii)].

The composition 7o ¢ = p* o o is geometrically R by (P]), and therefore ¢ is also by (P})
(which holds by (R{}) and Lemma 3.3(iii)) since 7 is faithfully flat [Mat89, Theorem 8.14]. [

3.4 Global applications and the proof of Theorem A
We now prove Theorem A by reducing to the local statements proved above. This step
corresponds to (I) in § 1.

We first give global versions of Theorem 3.4 and Corollaries 3.6 and 3.7. Theorem A(i) will
be deduced from (ii) below. These results are related to a theorem of Shimomoto [Shil7, Main
Theorem 1], which applies to morphisms of finite type between excellent noetherian schemes.

PROPOSITION 3.8 (cf. [Shil7, Main Theorem 1]). Fix a full subcategory € of the category of
noetherian rings that is stable under homomorphisms essentially of finite type. Let R be a
property of noetherian local rings, and consider a flat morphism f: Y — X of locally noetherian
schemes mapping closed points to closed points. Assume one of the following:

(i) R satisfies the hypotheses of Theorem 3.4 for the category €, the local rings of X at closed
points are quasi-excellent, and the local rings of Y at closed points appear in € ;

(ii) R satisfies the hypotheses of Corollary 3.6 for the category €, the local rings of X at closed
points have geometrically R formal fibers, and the rings Ox J(y) and Oy appear in ¢ for
every closed point y € Y, where OY denotes the my,)-adic completion of Oy,y; or

(iii) R satisfies the hypotheses of C’orollary 3.7 for the specific choice of € therein, the local
rings of X at closed points have geometrically R formal fibers, and the local rings O -1,
have geometrically R formal fibers for every closed point x € X and every closed point

y € fl(2).
If every closed fiber of f is geometrically R, then all fibers of f are geometrically R.
Proof. Let £ € Y be an arbitrary point, and let n = f(£). We want to show that Oy ¢ is geomet-
rically R over k(n). By [Sta20, Tag 02IL], the point £ specializes to a closed point y € Y. Since

f maps closed points to closed points, the point x = f(y) is closed in X. After localization, we
then obtain a flat local homomorphism

@: Oxz — Oy,

whose closed fiber is geometrically R by assumption. Finally, we can apply Theorem 3.4,
Corollary 3.6, and Corollary 3.7 to the homomorphism ¢ under the assumptions in (i), (ii),
and (iii), respectively, to conclude that Oy ¢ is geometrically R over (7). O

We also prove that the locus over which f has geometrically R fibers is stable under
generization for closed flat morphisms. Theorem A(i) will be deduced from (ii) below.

ProPoOSITION 3.9. Fix a full subcategory € of the category of noetherian rings that is sta-
ble under homomorphisms essentially of finite type. Let R be a property of noetherian local
rings, and consider a closed flat morphism f:Y — X of locally noetherian schemes. Assume one
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of the following:

(i) R satisfies the hypotheses of Theorem 3.4 for the category €, the local rings of X are
quasi-excellent, and the local rings of Y appear in €;

(ii) R satisfies the hypotheses of Corollary 3.6 for the category €, the local rings of X have
geometrically R formal fibers, and the rings o X,f(y) and O;‘,,y appear in € for every y € Y,
where (’)’{/,y denotes the my,)-adic completion of Oyy; or

(iii) R satisfies the hypotheses of Corollary 3.7 for the specific choice of € therein, the local rings
of X have geometrically R formal fibers, and the local rings O-1(,) ., have geometrically R

)y
formal fibers for every x € X and every y € f~!(x).

Then the locus
Ur(f) = {z € X | f~Y(2) is geometrically R over k(z)} C X
is stable under generization.

Proof. Consider a specialization 7 ~ z in X, and suppose that f~!(z) is geometrically R over
k(z). We want to show that f~1(n) is geometrically R over (n). It suffices to show that, for every
¢ € f~1(n), the local ring Oy is geometrically R over k(). Since f is closed, the specialization
n ~ x lifts to a specialization £ ~ y [Sta20, Tag 0066]. After localization, we then obtain a flat
local homomorphism

P OX,J; B OY,y
whose closed fiber is geometrically R by assumption. Finally, we can apply Theorem 3.4,

Corollary 3.6, and Corollary 3.7 to the homomorphism ¢ under the assumptions in (i), (ii),
and (iii), respectively, to conclude that Oy is geometrically R over 7. O

We now deduce Theorem A as a consequence of Propositions 3.8 and 3.9.

THEOREM A. Let R be a property of noetherian local rings satisfying (R}), (Ru), (Rrv), and
(Ry), such that regular local rings satisfy R. Consider a flat morphism f:Y — X of locally
noetherian schemes.

(i) Suppose that f maps closed to closed points, and that the local rings of X at closed points
have geometrically R formal fibers. If every closed fiber of f is geometrically R, then all
fibers of f are geometrically R.

(ii) Suppose that f is closed, and that the local rings of X have geometrically R formal fibers.
Then the locus

Ur(f) = {z € X | f () is geometrically R over x(z)} C X
is stable under generization.
Proof. As in the proof of Theorem B, it suffices to note that the hypotheses in (i) and (ii) imply

those in Propositions 3.8(ii) and 3.9(ii), respectively, when % is the entire category of noetherian
rings. O

3.5 The local lifting problem
To solve the local lifting problem, we use the following theorem of Brezuleanu and Ionescu. We
state their theorem using the notation in Conditions 3.1 instead of that in [BI84, (2.1)].

THEOREM 3.10 [BI84, Theorem 2.3]. Let R’ be a property of noetherian local rings. Assume
the following:

(i) we have the sequence of implications regular = R’ = reduced;
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(i) the property R’ satisfies (R}), (Ri), (Rm), and (Rv);
(iii) for every flat local homomorphism ¢: A — B of noetherian complete local rings, if the
closed fiber of ¢ is geometrically R/, then all fibers of ¢ are geometrically R/.

Let A be a noetherian semi-local ring that is I-adically complete with respect to an ideal I C A.
If A/I is has geometrically R’ formal fibers, then A has geometrically R’ formal fibers.

We obtain Theorem C and an important corollary as immediate consequences.

THEOREM C. Let R be a property of noetherian local rings that satisfies the hypotheses in
Theorem B. Suppose, moreover, that the locus

Ur (Spec(C)) = {p € Spec(C) | Cy satisfies R} C Spec(C)

is open for every noetherian complete local ring C'. If A is a noetherian semi-local ring that is
I-adically complete with respect to an ideal I C A, and if A/I is Nagata and has geometrically
R formal fibers, then A is Nagata and has geometrically R formal fibers.

Proof. Since a noetherian semi-local ring is Nagata if and only if it has geometrically reduced
formal fibers (Remark 2.5), it suffices to verify the hypotheses in Theorem 3.10 for R’ =
R+ ‘reduced’. Both (i) and (ii) hold by assumption. Theorem B implies (iii) holds, since
complete local rings have geometrically R formal fibers by the assumption that regular local rings
satisfy R. O

COROLLARY 3.11. With assumptions as in Theorem C, if B is a noetherian semi-local Nagata
ring that has geometrically R formal fibers, then for every ideal I C B the I-adic completion of
B is Nagata and has geometrically R formal fibers.

Proof. The I-adic completion B of B is a noetherian semi-local ring that is 1 B—adically complete
by [Bou98, Chapter III, §3, n° 4, Proposition 8]. Thus, by Theorem C, it suffices to show that
B /1 B~B /I is a Nagata ring with geometrically R formal fibers. But B/I has geometrically R
formal fibers by [EGAIV,, Proposition 7.3.15(i)], and is also Nagata by Definition 2.4. O

4. Specific properties R

We now explicitly consider our new cases of Grothendieck’s localization problem and the local
lifting problem. We have listed known cases of conditions (R}), (Ri), (Rm), (Riv), and (Ry) in
Table 2. While Problem 1.2 follows readily from these results when R =‘domain’,
‘Cohen—-Macaulay and F-injective’, and ‘F-rational’, we will have to verify (Rpy) for weak
normality (Proposition 4.10). We will deduce our results for terminal, canonical, and rational
singularities from [EGAIVy, Proposition 7.9.8] instead of Theorems A and B.

We will not explicitly formulate versions of Theorem A below, except for terminal, canonical,
and rational singularities (Corollary 4.19).

4.1 Domain

We first note that a version of Problem 1.2 holds for R =‘domain’. This property satisfies the
hypotheses in Theorem 3.4 (see Table 2). This extends a result of Marot [Mar84], which holds in
residue characteristic zero. We use the terminology ‘geometrically punctually integral’ following
[EGAIVq, Définition 4.6.9] for the property obtained by applying Definition 2.1 to R = ‘domain’.

COROLLARY 4.1 (cf. [Mar84, Theorem 2.1]). Let ¢: A — B be a flat local homomorphism of
noetherian local rings, and assume that A is quasi-excellent. If the closed fiber of ¢ is
geometrically punctually integral, then all fibers of ¢ are geometrically punctually integral.
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Remark 4.2. Since (R{") is false for the property R =‘domain’ [EGAIV,, Remarques 6.5.5(ii)
and 6.15.11(ii)], we only know that global versions of Corollary 4.1 hold under quasi-excellence
assumptions by applying Propositions 3.8(i) and 3.9(i). See also [EGAIVy, Corollaire 7.9.9 and
Remarque 7.9.10(i)].

4.2 F-singularities

We now solve Problems 1.2 and 1.3 for ‘Cohen—Macaulay and F-injective’ and for F-rationality.
See [Fed83, Definition on p. 473] and [HH94, Definition 4.1] for the definitions of F-injectivity
and F-rationality, respectively. We recall (see [DM20, Remark A.4]) that we have the following
sequence of implications:

regular = F-rational = F-injective = reduced. (4)

Since the ‘Cohen—Macaulay and F-injective’ property satisfies the hypotheses in Theorems B
and C (see Table 2 and (4)), we can solve Problems 1.2 and 1.3 for this property. The result for
Problem 1.2 extends a result of Hashimoto [Has01] to the non-F-finite case.

COROLLARY 4.3 (cf. [Has01, Theorem 5.8]). Grothendieck’s localization problem and the local
lifting problem hold for ‘Cohen—Macaulay and F-injective’, where A is assumed to be of prime
characteristic p > 0.

Remark 4.4. Shimomoto and Zhang proved Grothendieck’s localization problem for the
‘Gorenstein and F-pure’ property when A and B are F-finite [SZ09, Theorem 3.10]. Their result
is a special case of Hashimoto’s result, since F-purity and F-injectivity coincide for Gorenstein
rings [Fed83, Lemma 3.3], and since Problem 1.2 holds for Gorensteinness [Mar84, Theorem 3.2].
Corollary 4.3 also extends Shimomoto and Zhang’s result to the non-F-finite case. See also
Remark 4.6.

Next, we consider Grothendieck’s localization problem for F-rationality. The following
extends a result of Hashimoto [Has01] to rings A not necessarily essentially of finite type over a
field, and a result of Shimomoto [Shil7] to homomorphisms not necessarily of finite type, giving
a complete answer to a question of Hashimoto [Has01, Remark 6.7].

COROLLARY 4.5 (cf. [Has01, Remark 6.7; Shil7, Corollary 3.10]). Let ¢: A — B be a flat local
homomorphism of noetherian local rings of prime characteristic p > 0. Assume that A is quasi-
excellent and that B is excellent. If the closed fiber of ¢ is geometrically F-rational, then all
fibers of ¢ are geometrically F-rational.

Proof. We apply Theorem 3.4 when % is the category of excellent rings, which is stable under
homomorphisms essentially of finite type by [EGAIVy, Scholie 7.8.3(ii)]. To verify the hypothe-
ses of Theorem 3.4, it suffices to note that excellent local rings are homomorphic images
of Cohen-Macaulay rings [Kaw02, Corollary 1.2], and hence (R%), (RY), and (P%;) hold
by Table 2. O

Remark 4.6. Patakfalvi, Schwede, and Zhang also obtained a version of Problem 1.2 for proper
flat morphisms f: Y — X, showing that the locus Ur/(f) defined in Definition 2.1 is open when
R =‘Cohen—Macaulay and F-injective’ (respectively, ‘F-rational’) under the assumption that X
is an excellent integral scheme with a dualizing complex [PSZ18, Theorem 5.13]. Theorem A(ii)
(respectively, Proposition 3.9(i)) implies that the locus Ur(f) is stable under generization, even
if f is only closed and flat (respectively, f is closed and flat, X is quasi-excellent, and Y is
excellent).
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For F-rationality, we note that Theorem A(i) does not apply, but one can apply Proposi-
tion 3.8(i) instead.

4.3 Weak normality and seminormality
In this subsection we prove that weak normality lifts from Cartier divisors. We then solve
Problems 1.2 and 1.3 for both weak normality and seminormality.

To fix notation, we first define weak normality and seminormality.

DEFINITION 4.7 (see [Koll6, Definition 50]). Let X be a noetherian scheme. A morphism
g: X' — X is a partial normalization if X' is reduced, g is integral, and X’ — X,.q is birational.
A partial normalization is a partial weak normalization if g is a universal homeomorphism. A

partial weak normalization is a partial seminormalization if the induced extensions of residue
fields

k(z) C k(971 (2)red) (5)

are bijective for all z € X.

We say that X is weakly normal (respectively, seminormal) if every finite partial weak
normalization (respectively, finite partial seminormalization) ¢g: X’ — X is an isomorphism.
A noetherian ring A is weakly normal (respectively, seminormal) if Spec(A) is weakly normal
(respectively, seminormal).

We have the sequence of implications
normal = weakly normal = seminormal = reduced (6)

where for the last implication, we use that X,.q — X is a finite partial seminormalization; see
[Kol16, (4.4)]. We also note that a partial normalization is a partial weak normalization if and
only if the extensions (5) are purely inseparable for all x € X by [EGAIV,, Corollaire 18.12.11].

To show that weak normality lifts from Cartier divisors, we follow the proof in [BF93], with
suitable modifications to avoid excellence hypotheses.

LEMMA 4.8 (cf. [BF93, Proposition 4.7]). Let (A,my4) be a noetherian local ring with
depth(Ayeq) > 2, and let B be a module-finite A-algebra such that Spec(B) — Spec(A) is a
partial weak normalization. Set U = Spec(A) — {ma}. Then the local hull

C=T(U,B|v)
is a module-finite local B-algebra with depth(C') > 2, such that Spec(C') — Spec(B) is a partial
weak normalization.

Here, * denotes the sheaf associated to a module on an affine scheme.

Proof. Throughout this proof, if R is a local ring, then we denote by mp and kr the maximal
ideal and residue field of R, respectively. By replacing A with its reduction A,.q, it suffices to
consider the case when A is reduced.

We first show that B — C is module-finite, for which it suffices to show that A — C' is
module-finite. By Kolldr’s finiteness theorem [Koll7, Theorem 2], (5) = (1), it suffices to show
that for every p € Assa(B), the local hull

L(U.(A/p)"|v)
is a finitely generated A-module. Since A and B are reduced and Spec(B) — Spec(A) is a homeo-

morphism, we see that Asss(A) = Assa(B). Thus, applying Kollar’s finiteness theorem [Koll7,
Theorem 2], (1) = (5) to F' = Ogpec(a), it suffices to show that the local hull T'(U, A|y) is a finitely
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generated A-module. But this is automatic since the natural homomorphism A — T'(U, Ay) is
an isomorphism by [Kol17, Lemma 14|, using the condition depth(A) > 2.

We now show that Spec(C) — Spec(B) is a universal homeomorphism. Let A’ :== A" be a
strict Henselization of A, and set U’ := Spec(A’) — {m 4 }. Denoting B’ :== B®4 A" and C’ =
C ®4 A" it suffices to show that the morphism

Spec(C”") — Spec(B') (7)

is a universal homeomorphism by [EGAIV,, Corollaire 2.6.4(iv)] since A — A’ is faithfully flat.
Setting

U' = Spec(A’) — {ma} and V':=Spec(B’')— {mp},

we see that (7) is an isomorphism over V', and hence it suffices to show that there is only
one prime ideal in C’ lying over mp/, and that the residue field extension kg — k¢ is purely
inseparable [EGAIV,, Corollaire 18.12.11]. First, since depth(A’) > 2 by [BH98, Proposition
1.2.16(a)], Hartshorne’s connectedness theorem [EGAIVa, Théoreme 5.10.7] implies that the
punctured spectrum U’ is connected, and thus, V' is also connected by the fact that Spec(B’) —
Spec(A’) is a homeomorphism. By the Henselian property of A’ = A%, the semi-local ring C is a
direct product of local rings [EGAIV,, Proposition 18.5.9(ii)]. But the fact that V' is connected
forces there to be only one factor in this decomposition, since the morphism (7) is an isomorphism
over V', and the support of

' ~T (U, B'v) (8)

is the closure of the inverse image of V/ under (7) by [Koll7, Definition 1, (3")]. Thus, C’ is
a local ring, and there is therefore only one prime ideal in C’ lying over mp/. Note that the
isomorphism (8) follows from flat base change for local hulls [Koll7, (13)] since the preimage
of {mp} in Spec(B’) is {mp }. Finally, since k4 is separably closed, the residue field extension
kg — ke is purely inseparable, and hence (7) is a universal homeomorphism.

We now note that

depth,, (C) = depth,, , (C) > 2, 9)

where the first equality is [EGAIV;, Chapitre 0, Proposition 16.4.8|, and the second inequal-
ity follows from [Koll7, Lemma 14] since C is module-finite over A. Moreover, the morphism
Spec(C) — Spec(B) is birational since it induces an isomorphism between Spec(B) — {mp} and
Spec(C') — {m¢}, which are dense in Spec(B) and Spec(C), respectively. It remains to show that
C' is reduced. Since Spec(C') — Spec(B) is birational, we see that C satisfies (Ry), and satisfies
(S1) everywhere except possibly at mg. But (9) implies

depth,,.(C) > 2 > 1 = min{1,dim(C)}.
Thus, C satisfies (S1) at me, and C' is therefore reduced. O

The following result allows us to restrict a partial weak normalization to a reduced Cartier
divisor.

LEMMA 4.9 (cf. [BF93, Proposition 4.8]). Let (A,m4) be a noetherian local ring, and let t € m
be a nonzerodivisor such that A/tA is reduced of dimension > 1. Let B be a module-finite
A-algebra such that Spec(B) — Spec(A) is a partial weak normalization that is an isomorphism

(6]
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along V (t) — {ma}. Then the local hull
¢ =1 (U.Bl)
is a module-finite local B-algebra such that the composition
Spec(C/tC) — Spec(B/tB) —L Spec(A/tA)
is a partial weak normalization.

Proof. Throughout this proof, if R is a local ring, then we denote by mp the maximal ideal of R.
We note that A is reduced since reducedness lifts from Cartier divisors [EGAIV2, Proposition
3.4.6].

Set A= A/tA and C := C/tC. We have

depth(A) > min{1,dim(4)} >1

since A/tA satisfies (S1) [EGAIV,, Proposition 5.8.5]. Thus, we have depth(A) > 2 by [BH9S,
Proposition 1.2.10(d)], and hence Spec(C') — Spec(B) is a partial weak normalization by
Lemma 4.8. Since g o h is an integral universal homeomorphism by base change, to show that
goh is a partial weak normalization, it suffices to show that g o h is birational and that C is
reduced.

We start by showing that g o h is birational. Since g o h is a universal homeomorphism and
A is reduced, to show that g o h is birational, it suffices to show that A — C localizes to an
isomorphism flﬁ 5 C'ﬁ at every minimal prime p C A. Let p C A be the prime in A corresponding
to such a minimal prime p. Since regularity lifts from Cartier divisors [EGAIV;, Chapitre 0,
Corollaire 17.1.8] and A is reduced, we see that A, is regular, in which case the homomorphism
A — C induces an isomorphism A, = Cy by the fact that regular rings are weakly normal; see
(6). Thus, g o h is birational.

We now show that C' is reduced. By our assumption that Spec(B) — Spec(A) is an iso-
morphism along V (t) — {ma}, we know that Spec(C') — Spec(B) — Spec(A) is an isomorphism
along V() — {m4} by [Kol17, Definition 1, (4')]. Since A is reduced and g o h is birational, we
see that A — C is injective by [EGAley, Corollaire 1.2.6]. Thus, the homomorphism A — C
restricts to an isomorphism

Alg — Clg
over U := Spec(A) — {m4}. Since A is reduced, this shows that C satisfies (Ry), and satisfies

(S1) everywhere except possibly at mg. It suffices to show depth(C') > 1, since this would imply
depth(C) > min{1,dim(C)} =1

by the assumption that dim(A) = dim(C') > 1. Note that depth(C') > 2 by Lemma 4.8, and hence
it suffices to show that ¢ is a nonzerodivisor on C' by [BH98, Proposition 1.2.10(d)]. Consider the
commutative diagram

A——C

[ I

Frac(A) —— Frac(C)

where the isomorphism of total rings of fractions on the bottom holds by the birationality
of go h and the two vertical homomorphisms are injective since A and C' are reduced. Since
A — Frac(A) is flat, it maps ¢ to a nonzerodivisor on Frac(A). By the commutativity of the
diagram, t is therefore a nonzerodivisor on C. g
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We can now show that weak normality satisfies (Rry). This statement is due to Bingener
and Flenner in the excellent case [BF93].

PROPOSITION 4.10 (cf. [BF93, Corollary 4.1]). Let (A, m) be a noetherian local ring, and let
t € m be a nonzerodivisor. If A/tA is weakly normal, then A is weakly normal.

Proof. We want to show that, for every module-finite A-algebra B such that Spec(B) — Spec(A)
is a partial weak normalization, the homomorphism A — B is an isomorphism. We will show
that A, — By is an isomorphism for every prime ideal p C A containing ¢, which would suffice
since m is a prime ideal containing .

Set A := A/tA and B := B/tB. We induce on the height of p := pA. If ht(p) = 0, then Ay ~
Ap/tA, is regular since A is reduced by (6), and hence A, is regular since regularity lifts from
Cartier divisors [EGAIV, Chapitre 0, Corollaire 17.1.8]. Thus, A, is weakly normal by (6), and
Ap — By is an isomorphism.

Now suppose that ht(p) > 0. By the inductive hypothesis, we know that A, — B, is an
isomorphism along V'(t) — {pAp} C Spec(A). Applying Lemmas 4.8 and 4.9 on Ay, the local
hull

C =T (Spec(Ay) — {PAp}, Bplspec(a,)—(pay})

is module-finite over A and yields a partial weak normalization Spec(C) — Spec(B) such that
the composition

Spec(C/tC) — Spec(By) — Spec(4y)

is a partial weak normalization. Since Ay ~ A,/tA, is weakly normal by [Man80, Corollary
IV.2], we see that this composition is an isomorphism. The Nakayama—Azumaya—Krull lemma
[Mat89, Theorem 2.2] then implies that A, — C'is an isomorphism. Since B, — C'is injective by
[EGAIcw, Corollaire 1.2.6], we see that By, — C'is an isomorphism as well, and hence A, — B,
is also an isomorphism. O

Since we have seen that both weak normality and seminormality satisfy the hypotheses in
Theorems B and C (see Table 2 and (6)), we can solve Problems 1.2 and 1.3 for both weak
normality and seminormality. The proof of Problem 1.2 for seminormality extends a result of
Shimomoto [Shil7] in the finite type case.

COROLLARY 4.11 (cf. [Shil7, Corollary 3.4]). Grothendieck’s localization problem and the local
lifting problem hold for weak normality and seminormality.

4.4 Terminal, canonical, and rational singularities
We now consider Problem 1.2 for terminal, canonical, and rational singularities in equal
characteristic zero, using the version of Theorem B in [EGAIVy, Proposition 7.9.8].

See [Koll3, Definition 2.8] for the definition of terminal and canonical singularities, which
apply to excellent noetherian schemes with dualizing complexes. For rational singularities, we
will work with the following definition.

DEFINITION 4.12 [KKMS73, p. 51; Mur21, Definition 7.2]. Let A be a quasi-excellent local
Q-algebra. We say that A has rational singularities if A is normal and if, for every resolution
of singularities f: W — Spec(A), we have R f,Ow = 0 for all i > 0. If X is a locally noetherian
Q-scheme whose local rings Ox , are quasi-excellent, we say that X has rational singularities if
Ox  has rational singularities for every z € X. By [Mur21, Lemma 7.3], a quasi-excellent local
Q-algebra R has rational singularities if and only if Spec(R) has rational singularities.
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Remark 4.13 (cf. [KKMST73, p. 51; Koll13, Corollary 2.86)]. The object R f.Oy does not depend
on the choice of resolution f: W — Spec(A), since higher direct images of structure sheaves
vanish for morphisms of noetherian schemes of finite type over a quasi-excellent local Q-algebra
(one combines the strategy of [Hir64, (2) on pp. 144-145] with the version of elimination of
indeterminacies in [Hir64, Chapter I, §3, Main Theorem II(N)]). Thus, to show that a quasi-
excellent local Q-algebra has rational singularities, it suffices to show that A is normal and that
there exists a resolution of singularities f: W — Spec(A) such that R'f.Oy = 0 for all i > 0.

In particular, this shows that if X is a quasi-excellent Q-scheme of finite Krull dimension,
then the rational locus is open in X: since resolutions of singularities exist in this context
[Tem08, Theorem 1.1}, the rational locus is the normal locus intersected with the complement
of U;~ Supp(R' f«Ow), where f: W — X is a resolution of singularities.

We now show the following strong version of (Pry).

LEMMA 4.14. Let R be a quasi-excellent local Q-algebra, and let k — R be a homomorphism
from a field of characteristic zero.

(i) If R has a dualizing complex, then Spec(R) has terminal (respectively, canonical) singulari-
ties if and only if Spec(R ®y, k') has terminal (respectively, canonical) singularities for every
finitely generated field extension k C k'.

(ii) Spec(R) has rational singularities if and only if Spec(R ®y, k') has rational singularities for
every finitely generated field extension k C k'.

Proof. < holds by setting k = k’. It therefore suffices to show the converse. The terminal and
canonical cases follow from [Kol13, Proposition 2.15], since R — R ®j, k’ is surjective and essen-
tially smooth by base change [EGAIV,, Proposition 6.8.3(iii); EGAIV,, Théoréme 17.5.1]. Here,
we note that R ®j k' has a dualizing complex by [Har66, (2) on p. 299]. For the rational case,
we use the criterion for rational singularities stated in Remark 4.13. Let f: W — Spec(R) be a
resolution of singularities. Since R — R ®j, k' is flat with geometrically regular fibers, the mor-
phism f': W ®; k' — Spec(R ® k) is a resolution of singularities [Mat89, Theorem 23.7] and
satisfies R’ fiOweg, e = 0 for all i > 0 by flat base change. Finally, R ®j, k" is normal by [Mat89,
Corollary to Theorem 23.9]. O

The main ingredient for terminal and canonical singularities is the following version of (Rrv),
which follows from the deformation results for complex varieties due to Kawamata [Kaw99] for
canonical singularities and Nakayama [Nak04] for terminal singularities. Note that similar results
do not hold for Kawamata log terminal or log canonical singularities without assuming that the
canonical divisor on A is Q-Cartier; see [Ish18, Example 9.1.7 and Remark 9.1.15].

PROPOSITION 4.15 (cf. [Kaw99, Main Theorem; Nak04, Chapter VI, Theorem 5.2(2)]). Let (A, m)
be a local ring essentially of finite type over a field k of characteristic zero, and let t € m be a
nonzerodivisor. If A/tA has terminal (respectively, canonical) singularities, then A has terminal
(respectively, canonical) singularities.

Proof. Note that A is a normal domain by [Sey72, Proposition 1.7.4] and [EGAIV3, Proposition
3.4.5).

STEP 1. It suffices to show that if A’ is a normal domain of finite type over k, and t' € A’ is a
non-zero element such that A’/t' has terminal (respectively, canonical) singularities, then A’ has
terminal (respectively, canonical) singularities along V (t').
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Since A is essentially of finite type over k, there exist a ring A’ of finite type over k, a prime
ideal p C A’ such that A = Aj, and an element ¢' € A" such that ¢ maps to ¢ € A. Since the
normal locus in Spec(A’) is open [EGAIVs, Corollaire 6.13.5], we can replace Spec(A’) by an
affine open subset containing p to assume that A’ is normal domain and that ¢’ is non-zero. Since
the locus over which Spec(A’/t') has terminal (respectively, canonical) singularities is open by
[Kol13, Corollary 2.12], we can replace A’ by an affine open subset again to assume that A’/t’
has terminal (respectively, canonical) singularities. Then A’ has terminal (respectively, canonical)
singularities by assumption, and hence A; has terminal (respectively, canonical) singularities by
[Kol13, Corollary 2.12].

STEP 2. It suffices to show that the statement in Step 1 holds when k = C.

Since A is of finite type over k, there exists a subfield ky C k that is a finitely generated field
extension of Q together with a ring Ay of finite type over kg such that A ~ Ay ®y, k, and such
that there exists an element tg € Ayp mapping to t € A under the homomorphism Ay — A. Note
that Ag is a normal domain by [Mat89, Corollary to Theorem 23.9] and [EGAIVy, Proposition
2.1.14]. Since Ag/toAo ®, k ~ AJtA, applying Lemma 4.14, we know that Ag/tpAp ®k, C has
terminal (respectively, canonical) singularities, and, moreover, that A has terminal (respectively,
canonical) singularities if Ay ®j, C does. Note that the image of ty in Ay ®j, C is a nonzerodi-
visor by flat base change, and that Ay ®j, C is normal by [Mat89, Corollary to Theorem 23.9].
Working one direct factor of Ag ®j, C at a time, the statement in Step 1 for k¥ = C implies that
Ap ®p, C has terminal (respectively, canonical) singularities.

STEP 3. The statement in Step 1 holds for k = C.

The terminal case is [Nak04, Chapter VI, Theorem 5.2(2)] and the canonical case is [Kaw99,
Main Theorem]| (see also [Nak04, Chapter VI, Theorem 5.2(1)]). O

For rational singularities, we prove (Ryy) in greater generality. For the proof, we will work
with the notion of pseudo-rational rings defined below, which gives a characteristic-free version
of rational singularities.

DEFINITION 4.16 [LT81, §2]. Let (A, m) be a noetherian local ring of dimension d. We say that
A is pseudo-rational if:

(i) A is normal,
(ii) A is Cohen-Macaulay;
(iii) the m-adic completion A of A is reduced; and
(iv) for every proper birational morphism f: W — Spec(A4) with W normal, if E = f~'({m}) is
the closed fiber, then the canonical homomorphism

54 (Ow)

Hii(A) = Hipy (fOw) HE(Ow)

appearing as the edge map in the Leray—Serre spectral sequence for the composition of
functors I'ymy o f« = I'g is injective.

We now prove (Rry) for rational singularities using the strategy in [MS21, Proposition 3.4].
The case when A is essentially of finite type over a field of characteristic zero is due to Elkik

[EIK78].

PROPOSITION 4.17 (cf. [EIk78, Théoreme 5]). Let (A, m) be a quasi-excellent local Q-algebra,
and let t € m be a nonzerodivisor. If A/tA has rational singularities, then A has rational
singularities.
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Proof. By [Mur21l, Remark 7.4], a quasi-excellent local Q-algebra has rational singularities if
and only if it is pseudo-rational. Since A is normal and Cohen-Macaulay by [Sey72, Proposition
1.7.4] and [BH98, Theorem 2.1.3(a)], and A is reduced by [Mat89, Corollary to Theorem 23.9], it
suffices to show that for every resolution of singularities f: W — Spec(A), the homomorphism
(535(014/) is injective, where d = dim(A).

Let E = f~'({m}). Set W, = f~1(V(t)), and let g: W/ — W} be a resolution of singularities,
which exists by [Hir64, Chapter I, § 3, Main Theorem I(n)]. Consider the commutative diagram

0 —— HY(A/tA) — HY(A) —— HI(A) —— 0

|##Ow) |#ow)

0o — H%_l((’)wt) —— Hi(Ow) LN HL(Ow) —— 0

d—1
Hgfl(E)(OWt/)

where the top half is obtained from [Mur21l, Lemma 3.12]. The top left arrow is injective since
the composition in the left column is injective by the hypothesis that A/tA has rational sin-
gularities, where we use the fact that the edge maps in Definition 4.16(iv) behave well under
composition of morphisms [Smi97, Proposition 1.12]. The rows are exact on the left by the fact
that A is Cohen—-Macaulay and by the version of Grauert—Riemenschneider vanishing in [Mur21,
Theorem B*(i)], respectively.

Now suppose there exists an element 0 # 7 € ker(é?((’)w)). Since every element in Hd(A) is
annihilated by a power of ¢, after multiplying n by a power of ¢ we may assume that tn = 0, in
which case 7 lies in the image of HS'(A/tA) in the top row. The commutativity of the diagram
implies that the composition H& 1(A/tA) — HZ(Ow) is injective. Since n € ker(é?((’)w)) by
assumption, this shows that = 0, which is a contradiction. ]

We can now solve Grothendieck’s localization problem for terminal, canonical, and rational
singularities using [EGAIVa, Proposition 7.9.8]. While our Theorems B and 3.4 apply to positive
or mixed characteristic, we are not able to prove this result in these contexts in part because we
do not know whether Propositions 4.15 and 4.17 hold in positive or mixed characteristic.

COROLLARY 4.18. Let ¢: A— B be a flat local homomorphism of quasi-excellent local
Q-algebras.

(i) Suppose that B is essentially of finite type over a field of characteristic zero. If the closed fiber
of ¢ has terminal (respectively, canonical) singularities, then all fibers of ¢ have terminal
(respectively, canonical) singularities.

(ii) If the closed fiber of ¢ has rational singularities, then all fibers of ¢ have rational
singularities.

Proof. By Lemma 4.14, we do not need to distinguish between ‘has terminal (respectively, canon-
ical, rational) singularities’ and ‘geometrically has terminal (respectively, canonical, rational)
singularities’. We want to apply [EGAIVa, Proposition 7.9.8] where the category C in their
notation is the category of schemes essentially of finite type over a field of characteristic zero in
situation (i), and the category of schemes locally essentially of finite type over a quasi-excellent
local Q-algebra in situation (ii).

80

https://doi.org/10.1112/S0010437X21007715 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X21007715

A UNIFORM TREATMENT OF GROTHENDIECK’S LOCALIZATION PROBLEM

— For [EGAIVy, (7.9.7.1)], the category C is stable under morphisms locally essentially of
finite type by definition.

— For [EGAIVy, (7.9.7.2)], the terminal and canonical locus of a scheme X in C' is open by
[Kol13, Corollary 2.12], and the rational locus of a scheme X in C' is open by Remark 4.13.

— The condition [EGAIVs, (7.9.7.3)] is our condition (R%;) when € is the category of rings
whose spectra are in C, which holds by Propositions 4.15 and 4.17.

— The condition [EGAIVs, (7.9.7.4)] is a version of our condition (P%;) when € is the category
of rings whose spectra are in C, which holds by Lemma 4.14.

— For [EGAIVq, (7.9.8.2)], every module-finite A-algebra has a resolution of singularities by
[Hir64, Chapter I, § 3, Main Theorem I(n)]. O

We state a global version of this result as well. A similar statement for the behavior of
rational singularities in proper flat families was shown to us by Janos Kollar; see also [EIk78,
Théoréme 4].

COROLLARY 4.19. Let f: Y — X be a flat morphism of locally noetherian Q-schemes, such
that the local rings of X and Y are quasi-excellent.

(i) Suppose f maps closed points to closed points. If every closed fiber of f has rational singu-
larities, then all fibers of f have rational singularities. If the local rings of Y are essentially of
finite type over fields of characteristic zero, and every closed fiber of f has terminal (respec-
tively, canonical) singularities, then all fibers of f have terminal (respectively, canonical)
singularities.

(ii) Suppose f is closed. Then the locus of points x € X over which f~!(x) has rational singu-
larities is stable under generization. If the local rings of Y are essentially of finite type over
fields of characteristic zero, then the locus of points x € X over which f~!(z) has terminal
(respectively, canonical) singularities is stable under generization.

Proof. This follows from Corollary 4.18 using the strategies in Propositions 3.8 and 3.9. (|

For completeness, we end by showing that pseudo-rationality satisfies (Rﬁ) when % is the
category of noetherian rings with residual complexes in the sense of [Har66, Definition on p. 304].
A special case of this statement was shown to us by Karl Schwede. Similar results hold for
cyclically pure homomorphisms of Q-algebras whose local rings are quasi-excellent; see [Bou87,
Théoréme on p. 65; Mur21, Theorem C].

PROPOSITION 4.20. Let ¢: (A,m) — (B,n) be a flat local homomorphism of noetherian local
rings, such that B has a residual complex. If B is pseudo-rational, then A is pseudo-rational.

Proof. First, we know that A is normal [Mat89, Corollary to Theorem 23.9] and Cohen—Macaulay
[BH98, Theorem 2.1.7]. To prove that A is reduced, we note that

@A—>B

is flat, where B is the n-adic completion of B [Mat89, Theorem 22.4(i)]. But B is reduced by
assumption, and hence A is reduced by [Mat89, Corollary to Theorem 23.9].

It remains to show that condition (iv) holds. Let ¢ C B be a minimal prime lying over m.
The localization By is pseudo-rational since B has a residual complex [LT81, §4, Corollary of
(iii)]. By replacing B with By, we reduce to the case where B/mB is zero-dimensional, in which
case vVmB = n. Let f: W — X = Spec(A) be a proper birational morphism, where W is normal.
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TABLE 1. Special cases of Problems 1.2 and 1.3. All results except those in the bottom section

can be obtained from our methods.

R Grothendieck’s localization problem 1.2 Local lifting problem 1.3
Regular [And74, Thm. on p. 297] [Rot79, Thm. 3]
(Ry) + (Spi1) [BI84, Prop. 1.5] [BIS4, 2.4(iv)]
Normal [Nis81, Prop. 2.4] [Nis81, Thm. on p. 154]
Weakly normal Corollary 4.11 Corollary 4.11
Seminormal Corollary 4.11 Corollary 4.11
Reduced [Nis81, Prop. 2.4] [Mar75, Prop. 3.6]

Complete intersection
Gorenstein
Cohen—Macaulay

(CI,)

C-M + F-injective

[Tab84, Thm. 2]

[HS78, Thm. 3.3; Mars4,
Thm. 3.2]
[AF94, Thm. 4.1]

[C193, Corollary 2.3; AF94,
Thm. 4.5]
[CI93, Thm. 2.2 and Rem. 2.8;
AF94, Thm. 4.5]
[AF94, Thm. 4.5]

Corollary 4.3

[Tab84, Thm. 2] + [BI84,
Thm. 2.3]N
[Mar84, Thm. 3.2] + [BIs4,
Thm. 2.3
[AF94, Thm. 4.1] + [BI84,
Thm. 2.3]N
[C193, Corollary 3.5

[Mar84, Thm. 3.2] + [CI93,
Thm. 3.4]N

[AF94, Thm. 4.1] + [CI93,
Thm. 3.4]N
Corollary 4.3

Normal + (Ry,)
Domain

Terminal singularities
Canonical singularities
Rational singularities

[BI84, Prop. 1.2]!
Corollary 4.12
Corollary 4.18(i)har0
Corollary 4.18(j)char0
Corollary 4.18(ii)<

[BIS4, 2.4(iii)]

F-rational Corollary 4.5°

(Rn) [Ton86, Thm. 1.2]4 [lon86, Thm. 1.4]"N
cid<n [AF94, Main Thm. (a)]®

cmd < n [AF94, Main Thm. (b)]6

Note: ‘C-M’ stands for ‘Cohen—Macaulay’.
See [AF94, Remark 4.2 and pp. 1-2] for definitions of (CI,), (G), (Sn), cid, and cmd.

We list necessary assumptions for the results in the bottom two sections of the table.

! Either B is universally catenary, or B ®4 k has geometrically (normal + (R,)) formal fibers.

2 A is quasi-excellent.

3 A is quasi-excellent and B is excellent.

4 B is equidimensional.

5 A has complete intersection formal fibers.
6 A has Cohen-Macaulay formal fibers.

7 A is universally catenary.

N A/I is Nagata.

Q A and B are quasi-excellent Q-algebras.
chard A i5 a quasi-excellent Q-algebra and B is essentially of finite type over a field of characteristic

Zero.
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TABLE 2. Properties satisfying Conditions 3.1. The conditions hold under additional assumptions for the properties in the second

and third sections of the table.

R Ascent (Rf") Descent (Rf) Openness (Ry1) Lifting from Cartier divisors (R%;) Localization (R{)
Regular [Mat89, Thm. 23.7] [EGAIV2, Thm. 6.12.7) [EGAIVy, Ch. 0, Cor. 17.1.8] [Mat89, Thm. 19.3]

(Rn) + (Sn+1) See (Ry) and (Sn) See (Ry) and (Sn) [BR82, Lem. 0(ii)] See (Ry) and (Sn)
Normal [Mat89, Cor. to Thm. 23.9] [EGAIV3, Cor. 6.13.5] [Sey72, Prop. 1.7.4] [Bou98, Ch. V, §1, n° 5, Prop. 16]
Weakly normal [Kol16, Thm. 37] [Man80, Cor. I1.2] [BF93, Thm. 7.1.3] Proposition 4.10 [Man80, Cor. IV.2]
Seminormal [Kol16, Thm. 37] [GT80, Thm. 1.6] [GTS80, Cor. 2.3] [Hei08, Main Thm.] [GTS0, Cor. 2.2]
Reduced [Mat89, Cor. to Thm. 23.9] [Bou98, Ch. II, § 2, n°® 6] [EGAIV2, Prop. 3.4.6] [Bou98, Ch. II, § 2, n® 6, Prop. 17]
Complete intersection [Avr75, Thm. 2] [GMT78, Cor. 3.3] [BH98, Thm. 2.3.4(a)] [Avr75, Cor. 1]
Gorenstein [BH98, Cor. 3.3.15] [GM78, Cor. 1.5] [BH98, Prop. 3.1.19(b)] [BH98, Prop. 3.1.19(a)]

Cohen—Macaulay
(CIy)

(Gn)

(Sn)

C-M + F-injective

[BHOS, Thm. 2.1.7]
[C193, Prop. 1.10]
[RFT72, Prop. 1; Pau73a, Prop. 1]

[EGAIVs, Cor. 6.11.3]

[C193, Prop. 1.10]
[00i80, Prop. 18(2)]

[Mat89, Thm. 23.9(iii)]
[Ene09, Thm. 4.3] [Has10, Lem. 4.6]

[EGAIVs, Prop. 6.11.2(ii)]
[Has10, Cor. 4.18]

[BH9S, Thm. 2.1.3(a)]
[Imb95, Lem. 3.1]
[RFT72, Prop. 3]
[BR82, Lem. 0(i)]
[Fed83, Thm. 3.4(1)]

[BHOS, Thm. 2.1.3(b)]
[C193, Prop. 1.10]
[RFT72, Cor. (b) to Prop. 1]
[EGAIVs, Rem. 5.7.3(iv)]
[Has10, Cor. 4.11]

Normal + (Ry)

See normal and (Ry) See normal and (Ry,)

See normal and (Ry)!

See normal and (Ry)

[Nag59, Lem. 1]
[Kol13, Cor. 2.12]¢har0
[Kol13, Cor. 2.12]¢har0

Remark 4.139

[EGAIVa, Prop. 3.4.5]
[Kaw99, Main Thm.]char0
[Nak04, Ch. VI, Thm. 5.2(2)]°har0
Proposition 4.17Q

[Bou98, Ch. II, §2, n° 1, Rem. 7]
[Kol13, Cor. 2.12]¢har0
[Kol13, Cor. 2.12]¢har0

[Mur21, Lem. 7.3]Q

Domain false? [EGAIVg, Prop. 2.1.14]
Terminal singularities
Canonical singularities
[E1k78, Thm. 5|2

Rational singularities Proposition 4.20Q

F-rational [Ene00, Thm. 2.27]3¢  [DM20, Prop. A.5] [Vé195, Thm. 3.5] [HH94, Thm. 4.2(h)]M [HH94, Thm. 4.2(f)]°M
(Rn) [Mat89, Thm. 23.9(i),(ii)] [EGAIVg, Prop. 6.12.9] [Ton86, Lem. 2.1]* [CI93, Prop. 1.6]
cid <n [Avr77, Prop. 3.6]* [Avr77, Prop. 3.4] [Avr77, Prop. 3.10] [Avr77, Prop. 3.8]
cmd < n [EGAIV2, Cor. 6.3.2]* [EGAIV3, Prop. 6.11.2(i)] [EGAIVy, Ch. 0, Prop. 16.4.10(i)] [EGAIV3, Prop. 6.11.5]

Note: ‘C—M’ stands for ‘Cohen—Macaulay’. See [AF94, Remark 4.2 and pp. 1-2] for definitions of (CI,), (Gr), (Sn), cid, and cmd.

1 (RS,) is false when R = ‘(R,)’ [EGAIVs2, Remarque 5.12.6], but holds if one restricts € to be the category of equidimensional catenary noetherian rings. For ‘normal + (R,)’, we
note that normal local rings are equidimensional.

2 (RY") is false when R = ‘domain’ [EGAIV2, Remarques 6.5.5(ii) and 6.15.11(ii)].

3 (RF') holds when R = ‘F-rational’ if € is the category of excellent rings; cf. [Has01, Theorem 6.4]. Enescu assumes that B/mB ®Aa/m Fg(A/m) is noetherian for every e > 0, which
is used in the proof of [Ene00, Theorem 2.19]. Enescu states that this latter result holds without this assumption as long as ideals generated by systems of parameters in the rings
B/mB ®4/m F7(A/m) are Frobenius closed in [Ene00, Remark 2.20]. This condition holds by the proof of [DM20, Proposition 3.11].

4 (Rig’) holds for complete intersection (respectively, Cohen—-Macaulay) homomorphisms when R = ‘cid < n’ (respectively, ‘cmd < n’). The cited references relate the complete
intersection (respectively, Cohen—Macaulay) defects of the domain and fiber to that of the codomain.

¢ This property holds if € is the category of excellent rings.

Q (R;g/)7 (R;{;\;, , and (R;‘f) hold when % is the category of Q-algebras whose local rings are quasi-excellent, and (Rprr) holds for complete local Q-algebras. For (Rig’), Elkik works
with rings essentially of finite type over a field of characteristic zero, but the same proof works after replacing [Elk78, Théoréme 2] with Proposition 4.17.

*® This property holds for pseudo-rationality if € is the category of noetherian rings that have a residual complex in the sense of [Har66, Definition on p. 304].

CM This property holds if € is the category of homomorphic images of Cohen—Macaulay rings.

char0 (Rirr) holds for complete local Q-algebras since resolutions of singularities exist [Hir64, Chapter I, § 3, Main Theorem I(n)], and the other properties hold if % is the category of
rings essentially of finite type over possibly different fields of characteristic zero. The results for (RIK\,) require some extra work; see Proposition 4.15.
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Set Y := Spec(B), and consider the commutative diagram

f ’

7z —— W Y
dq b
W — X

where the square is cartesian, where g := Spec(p), and where v is the normalization of W' :=
W xx Y. Note that f’ is proper by base change and birational by flat base change [EGAT, ey,
Proposition 3.9.9], and hence v is finite by [LT81, (iv)” in Remark (a) on pp. 102-103]. We then
have the commutative diagram

d 510,(02) d / d
HE, ) (O2) HE (0 ),0) ———— HJ(B)
T 54((g'ov)+Oz) T ‘
H%((g/oy)*(gz) (f— H?m}((fog/oy)*oz) e Héll B)
T 54(Ow) T
Hi(Ow) : HE L (£.0w) Hg(A)

where the top half of the diagram is from [Smi97, Proposition 1.12], and the bottom half is from
the naturality of 5?(—) applied to the pullback map Oy — (¢’ 0 1), Oz [Smi97, Lemma 1.11].
The horizontal arrow on the top left is injective by the assumption that B is pseudo-rational,
the vertical arrow on the top right is an equality since vmB = n, and the vertical arrow on the
bottom right is injective by the flatness of . The commutativity of the diagram shows that
(535 (Ow) is injective as required. O
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