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Abstract. Greek antiquity saw the development of two distinct systems of logic: Aristotle’s
theory of the categorical syllogism and the Stoic theory of the hypothetical syllogism. Some ancient
logicians argued that hypothetical syllogistic is more fundamental than categorical syllogistic on the
grounds that the latter relies on modes of propositional reasoning such as reductio ad absurdum.
Peripatetic logicians, by contrast, sought to establish the priority of categorical over hypothetical
syllogistic by reducing various modes of propositional reasoning to categorical form. In the 17th
century, this Peripatetic program of reducing hypothetical to categorical logic was championed by
Gottfried Wilhelm Leibniz. In an essay titled Specimina calculi rationalis, Leibniz develops a theory
of propositional terms that allows him to derive the rule of reductio ad absurdum in a purely categor-
ical calculus in which every proposition is of the form A is B. We reconstruct Leibniz’s categorical
calculus and show that it is strong enough to establish not only the rule of reductio ad absurdum, but
all the laws of classical propositional logic. Moreover, we show that the propositional logic generated
by the nonmonotonic variant of Leibniz’s categorical calculus is a natural system of relevance logic
known as RMI¬→ .

From its beginnings in antiquity up until the late 19th century, the study of formal logic
was shaped by two distinct approaches to the subject. The first approach was primarily
concerned with simple propositions expressing predicative relations between terms. The
second focused on compound propositions and the operations by which they are con-
structed from simple ones. The former approach treated logic fundamentally as a logic
of terms, the latter as a logic of propositions.

While the term-based approach has its origins in Aristotle’s theory of the categorical
syllogism, the proposition-based approach was exemplified in antiquity by the Stoic theory
of the hypothetical syllogism. During the Hellenistic period, various arguments were put
forward in favor of the relative priority of one of these two approaches over the other. For
instance, some ancient logicians argued that hypothetical logic is prior to categorical logic
on the grounds that Aristotle’s assertoric syllogistic relies on modes of propositional rea-
soning such as reductio ad absurdum. Peripatetic logicians, by contrast, sought to establish
the priority of categorical over hypothetical logic by reducing various modes of proposi-
tional reasoning to categorical syllogisms. This latter ambition of reducing hypothetical to
categorical logic is known in the literature as the ‘Peripatetic program’.
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While traces of the Peripatetic program appear intermittently throughout the history of
logic, it received renewed attention by logicians in the 17th century. The champion of
this early modern movement in the Peripatetic program was Gottfried Wilhelm Leibniz.
Leibniz proposed a comprehensive implementation of the program based on the over-
arching idea that every proposition can be conceived of as a term. Thus, according to
Leibniz, a categorical proposition such as Peter is wise can be transformed into an abstract
propositional term, Peter’s being wise, which can then serve as the subject or predicate of
a further categorical proposition, as in Peter’s being wise is Peter’s being just.

Leibniz employed this device of propositional terms in the analysis of hypothetical
syllogisms such as:

If Peter is wise, then Peter is just
If Peter is just, then Peter is noble

Therefore: If Peter is wise, then Peter is noble.

By transforming the constituent propositions into propositional terms, this hypothetical
syllogism is reduced to the following categorical one:

Peter’s being wise is Peter’s being just
Peter’s being just is Peter’s being noble

Therefore: Peter’s being wise is Peter’s being noble.

On the model of this example, Leibniz developed a theory of propositional terms that
allowed him to reduce a wide class of hypothetical syllogisms to categorical ones. By
enabling such a wide-ranging reduction, Leibniz’s theory of propositional terms lies at
the heart of one of the most systematic and successful implementations of the Peripatetic
program in the history of logic.

The plan of this article is as follows. We begin by situating Leibniz within the broader
tradition of the Peripatetic program dating back to Theophrastus’ treatment of wholly
hypothetical syllogisms (§1). We next discuss the problem of how to give a satisfactory
formulation of the rule of reductio ad absurdum in categorical logic (§2). We proceed to
explain how Leibniz solves this problem by means of his theory of propositional terms.
In particular, we consider how Leibniz utilizes this theory to derive the rule of reductio
ad absurdum in an essay titled Specimina calculi rationalis. We reconstruct the proof of
reductio given by Leibniz in the Specimina, and show that this proof can be formulated in
a purely categorical language in which every proposition is of the form A is B (§3 and §4).
As it turns out, the categorical calculus employed by Leibniz in this proof is strong enough
to establish not only the rule of reductio but all the laws of classical propositional logic
(§5). Moreover, the nonmonotonic variant of this calculus gives rise to a natural system
of relevance logic known as RMI¬→(§6). These results serve to illustrate how Leibniz’s
theory of propositional terms provides a fruitful framework for exploring the ways in
which various systems of propositional logic can be built up from purely categorical
foundations.

In what follows, we refer to the works of Aristotle by means of the standard Bekker
pagination. The works of ancient commentators such as Alexander of Aphrodisias,
Ammonius, and Philoponus are referred to by means of the standard pagination employed
in the Berlin Academy edition of the Commentaria in Aristotelem Graeca (1882–1909). In
addition, we adopt the following abbreviations for editions of Leibniz’s writings:
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A Gottfried Wilhelm Leibniz: Sämtliche Schriften und Briefe. Ed. by the
Deutsche Akademie der Wissenschaften, Berlin: Akademie Verlag. Cited
by series, volume, and page.

C Opuscules et fragments inédits de Leibniz. Ed. by L. Couturat, Paris:
Félix Alcan, 1903.

The two essays by Leibniz that we will have most frequent occasion to reference are the
Generales inquisitiones de analysi notionum et veritatum (A VI.4 739–88) and the Specim-
ina calculi rationalis (A VI.4 807–14). Each of these essays consists of serially numbered
sections, which we designate by references such as ‘§16’ and ‘§72’.1 We sometimes use the
abbreviation ‘GI’ for the Generales inquisitiones. Translations from the Greek and Latin
are our own.

§1. The Peripatetic program. The history of formal logic begins with Aristotle’s the-
ory of the categorical syllogism. The core of this theory consists of the assertoric syllogistic
developed in the opening chapters of the Prior Analytics. There, Aristotle investigates the
inferential relations that obtain between the following four kinds of proposition:

AaB A belongs to all B (or: Every B is A)
AeB A belongs to no B (or: No B is A)
AiB A belongs to some B (or: Some B is A)
AoB A does not belong to some B (or: Some B is not A).

In these propositional forms, the letters ‘A’ and ‘B’ stand for terms such as man, animal,
and walking. Propositions instantiating these forms are traditionally referred to as categor-
ical propositions, and valid inferences consisting of such propositions are referred to as
categorical syllogisms.

Aristotle’s assertoric syllogistic deals with a class of simple categorical syllogisms which
are divided into three figures based on the internal arrangement of their terms. In chapters
1.2 and 1.4–6 of the Prior Analytics, Aristotle develops a deductive system in which some
of these syllogisms can be derived from others. The principles of this system include the
following ‘perfect’ syllogistic moods in the first figure:

AaB, BaC � AaC (Barbara)
AeB, BaC � AeC (Celarent)
AaB, BiC � AiC (Darii)
AeB, BiC � AoC (Ferio).

In addition, the principles of Aristotle’s deductive system include the following three
conversion rules:

AeB � BeA (e-conversion)
AiB � BiA (i-conversion)
AaB � BiA (a-conversion).

By means of these perfect first-figure moods and conversion rules, Aristotle is able
to establish the validity of syllogistic moods in the second and third figures. In most

1 The Specimina calculi rationalis consists of two parts, each of which comprises its own series of
numbered sections. Unless otherwise specified, our references to the Specimina are exclusively
to the first part (A VI.4 807–10).
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cases, he does so by a direct deduction, as in the following proof of the mood Camestres
(27a9–14):

1 Ba A major premise

2 BeC minor premise

3 CeB e-conversion: 2

4 CeA Celarent: 1, 3

5 AeC e-conversion: 4

There are, however, some valid syllogistic moods that cannot be established by means of
a direct deduction in Aristotle’s system. In these cases, Aristotle establishes the validity of
the mood in question by an indirect deduction using the method of reductio ad absurdum.
This method is based on the assumption that an a-proposition is the contradictory of the
corresponding o-proposition, and an e-proposition the contradictory of the corresponding
i-proposition. Thus, for example, Aristotle provides the following proof by reductio of the
second-figure mood Baroco (27a36–27b1):

1 Ba A major premise

2 BoC minor premise

3 AaC assumption for reductio

4 Ba A reiteration: 1

5 BaC Barbara: 3, 4

6 AoC reductio: 2, 3–5

Aristotle provides a similar proof by reductio of the third-figure mood Bocardo, which
likewise cannot be established by means of a direct deduction in his system (28b17–
20).2 Given the method of reductio ad absurdum, the perfect moods and conversion rules
suffice to derive all the syllogisms which Aristotle identifies as valid in his assertoric
syllogistic.

Now, Aristotle’s theory of the categorical syllogism was not the only system of logic
developed in Greek antiquity. One of the most prominent alternatives was the theory of
the hypothetical syllogism developed by the Stoics. While Aristotle’s logic is concerned
exclusively with simple propositions expressing predicative relations between terms, Stoic
logic deals with compound propositions such as those of the form:

2 Neither Baroco nor Bocardo can be established by means of a direct deduction in Aristotle’s
system because it does not include a conversion rule for o-propositions (see Alexander In Pr. An.
83.12–25, Łukasiewicz 1957: 54). In the case of Bocardo, Aristotle mentions an alternative proof
that employs the method of ecthesis instead of reductio (Pr. An. 1.6 28b20–1). However, he does
not mention a proof by ecthesis for Baroco, and it is not clear whether such a proof is available.
For example, the formulation of the rule of ecthesis given by Parsons (2014: 36–7) allows for a
proof of Bocardo but not Baroco (similarly, Ebert & Nortmann 2007: 333–7). Without appealing
to ecthesis, the only way for Aristotle to establish the validity of Baroco and Bocardo in his
system is by means of reductio.
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If ϕ then ψ
Either ϕ or ψ
Both ϕ and ψ .

In these propositional forms, the letters ‘ϕ’ and ‘ψ’ do not stand for terms but for propo-
sitions. Compound propositions instantiating these forms are traditionally referred to as
hypothetical propositions, and valid inferences containing at least one hypothetical propo-
sition are referred to as hypothetical syllogisms.3

Paradigmatic examples of hypothetical syllogisms include those of the form modus
ponens, which the Stoics called first indemonstrables:

If ϕ then ψ, ϕ � ψ .

The Stoics also identified a number of other indemonstrable hypothetical syllogisms in-
cluding, for example, those of the form modus tollens. In addition, they posited a number
of reduction rules, or themata, by which various hypothetical syllogisms can be reduced to
indemonstrable ones. The first of these themata, which pertains to the logic of propositional
negation, is:

ϕ,ψ � χ
ϕ, CON(χ) � CON(ψ)

In this formulation of the first thema, ‘CON’ is used to indicate the contradictory of a
proposition. Thus, ϕ and CON(ϕ) are contradictory propositions, i.e., either CON(ϕ) is the
propositional negation of ϕ or vice versa. Based on the themata and indemonstrables, the
Stoics developed a system of logic by means of which they were able to validate a wide
variety of hypothetical syllogisms.4

It was a topic of discussion among some ancient logicians how exactly the theory of
the categorical syllogism relates to that of the hypothetical syllogism. In particular, the
question was raised as to whether one of these two theories ought to be regarded as, in
some sense, prior to the other. Thus, Alexander of Aphrodisias reports in his commentary
on Aristotle’s Topics:

Even in logic there are some matters that are inquired into compara-
tively, such as: ‘Which is more convincing, induction or deduction?’ and
‘Which kind of syllogism is primary, the categorical or the hypotheti-
cal?’. (Alexander of Aphrodisias, On Aristotle’s Topics 218.3–5)

The second question cited by Alexander in this passage concerns the relative priority of
categorical and hypothetical syllogisms. Apart from Alexander’s testimony that there was
some discussion of this question among ancient logicians, we do not have much further
evidence regarding the exact nature and scope of the debate.5 For one thing, it is not clear
whether the participants in the debate had in mind the Stoic theory of the hypothetical
syllogism or some other system of hypothetical logic developed in antiquity.6 Nor is it clear

3 See Barnes 1983: 284, 1985: 563, Bobzien 1997: 299–301.
4 See the exposition of Stoic hypothetical syllogistic in Bobzien 1996.
5 See Frede 1974: 30–2.
6 It is conceivable, for example, that the debate was addressed to one of the systems of hypothetical

syllogistic developed by Peripatetic logicians working in the tradition of Theophrastus. For a
discussion of these Peripatetic systems of hypothetical logic, see Bobzien 2002a: 380–93, 2002b,
2002c, 2004: 80–100.
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whether Aristotle or the Stoics themselves entertained such questions of relative priority.
In any case, Alexander’s report confirms that these questions were a topic of interest to
some ancient logicians, with various considerations being put forward in support of one or
the other side of the matter.7

One consideration that might speak in favor of the priority of hypothetical over cate-
gorical logic concerns Aristotle’s appeal to the method of reductio ad absurdum in his
assertoric syllogistic. Thus, for example, the 2nd-century author Apuleius (or whoever
wrote the Latin De interpretatione) claims that, in employing this method, Aristotle relies
on the first thema of the Stoics:

Common to all [categorical syllogisms] . . . is another proof, which is
called per impossibile and named by the Stoics the first law or first
thema. They define it in this way: if from two propositions a third fol-
lows, then from either one of them together with the contradictory of the
conclusion, the contradictory of the remaining one follows. (Apuleius,
De interpretatione XII 209.10–14)

According to Apuleius, the law underwriting Aristotle’s proofs by reductio in the assertoric
syllogistic is the first thema of the Stoics.8 For example, given that CON(AaB) is the
proposition AoB, Aristotle’s indirect proof of Baroco by means of Barbara relies on the
following instance of the first thema:

Ba A, AaC � BaC

Ba A, CON(BaC) � CON(AaC)

In the same vein, Neoplatonic authors such as Philoponus, Pseudo-Ammonius, and Proclus
argue that Aristotle’s proofs by reductio rely on principles of Stoic hypothetical syllogistic
(though not on the first thema, but on modus tollens and other indemonstrables).9 A similar
claim to the effect that these proofs rely on principles of propositional logic was endorsed
several centuries later by Avicenna and his followers.10 In modern times, the same point
has been made by commentators such as Łukasiewicz and Patzig.11 If the point stands,

7 Barnes describes the ancient debate over the relative priority of categorical and hypothetical
syllogistic as follows: ‘It was often supposed that the two syllogistics were partners, each adequate
in its own area. This irenic view is misleading. The Peripatetics thought that their categorical
syllogistic embraced the whole of logic: any argument which submitted to formal treatment
at all submitted to categorical syllogistic. And the Stoics held the same for their hypothetical
syllogisms. The two systems regarded themselves as rivals; and behind the texts there is a genuine
and philosophical rivalry, between ‘term’ logic which supposes that relations among terms are the
fundamental logical relations and ‘sentence’ logic which assumes that it is sentences on which
logic must ground itself’ (Barnes 1999: 77–8).

8 See Londey & Johanson 1987: 37.
9 See Philoponus In Pr. An. 246.15–247.19, In Post. An. 292.7–16, 293.26–30, Pseudo-Ammonius

In Pr. An. 69.11–25, Proclus In Eucl. Elem. 254.21–256.8; similarly, Pseudo-Themistius In Pr.
An. 94.32–95.8. While their analyses differ in some details, all of these commentators agree that
Aristotle’s proofs by reductio rely on the second Stoic indemonstrable, i.e., modus tollens; see
Ierodiakonou 2016: 352–7.

10 Avicenna al-Shifā’: al-Qiyās 8.3 408.4–411.7 (transl. Hodges 2017: 597–9), al-Najāt: al-Mant.iq
91 (transl. Ahmed 2011: 79–80); cf. Shehaby 1973: 277–8, Street 2004: 545–7 and 576–7.

11 See Łukasiewicz 1935: 120–1, 1957: 49 and 56–9, 1963: 14 and 106–7, Patzig 1968: 151–6.
Similarly, Barnes (2007: 510–11) argues that Aristotle’s proofs by reductio rely on a certain kind
of hypothetical syllogism, namely, the disjunctive syllogism.
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then Aristotle’s use of reductio in his indirect proofs of Baroco and Bocardo relies upon
the Stoic theory of the hypothetical syllogism or some other comparable system of propo-
sitional logic. In this event, hypothetical logic would be presupposed by categorical logic
and would thus have a claim to priority over the latter.

In fact, some ancient logicians working in the Stoic tradition argued that the dependence
of categorical on hypothetical logic extends well beyond Aristotle’s use of reductio ad
absurdum. As Alexander reports, these logicians claimed that even instances of the mood
Barbara should be rendered as hypothetical syllogisms by adding a further conditional
premise asserting that the conclusion of the syllogism is implied by its two categorical
premises.12 On this account, even the perfect first-figure moods posited by Aristotle as
principles of his system are underwritten by hypothetical syllogisms.

By contrast, some Peripatetic logicians adopted the view that certain hypothetical syllo-
gisms can be reduced to categorical ones. This Peripatetic ambition of reducing hypothet-
ical to categorical syllogisms can be traced back, in part, to an elliptical remark made by
Aristotle in Prior Analytics 1.32:

If it is necessary for animal to be if man is, and substance to be if animal
is, then it is necessary for substance to be if man is; but this has not yet
been syllogized, for the premises are not disposed in the manner that we
have said.13 (Aristotle, Prior Analytics 1.32 47a28–31)

In this passage, Aristotle discusses an argument which consists of three conditionals, each
of the form It is necessary for A to be if B is. Abbreviating these conditionals by the phrase
‘If B is, then A is’, this argument reads as follows:

If man is, then animal is
If animal is, then substance is

Therefore: If man is, then substance is.

The propositions that appear as antecedents and consequents in these conditionals are Man
is, Animal is, and Substance is. While Aristotle does not explain the precise meaning of
these propositions, and there is some room for debate over their interpretation, most com-
mentators agree that these propositions signify existential statements such as Man exists
and Animal exists (or: There is a man and There is an animal).14 For present purposes,

12 Alexander In Pr. An. 262.28–9, 345.13–18, 390.16–18; see Mueller 1969: 179–80, Frede 1974:
2–5 and 10, Barnes 1990: 73–5 and 114–16.

13πάλιν εἰ ἀνθρώπου ὄντος ἀνάγκη ζῷον εἶναι καὶ ζῴου οὐσίαν, ἀνθρώπου ὄντος ἀνάγκη
οὐσίαν εἶναι· ἀλλ’ οὔπω συλλελόγισται· οὐ γὰρ ἔχουσιν αἱ προτάσεις ὡς εἴπομεν. Our
translation of the phrase ἀνθρώπου ὄντος ἀνάγκη ζῷον εἶναι as ‘it is necessary for animal to be
if man is’ follows Smith (1989: 51). By contrast, Striker (2009: 52) translates this phrase as ‘what
is a man is necessarily an animal’. However, the relative clause ‘what is a man’ is not an adequate
translation of Aristotle’s genitive-absolute phrase ἀνθρώπου ὄντος (see Ebrey 2015: 190 n. 12).
For, the latter phrase does not contain a relative pronoun, and it would be unusual for Aristotle
to use a genitive-absolute participle when the subject of the participle is co-referential with the
accusative subject of the superordinate clause (see Kühner & Gerth 1904: 78–9). Striker (2009:
214–15) claims that her translation is supported by Alexander’s interpretation of the passage, but
this is not the case (see n. 25 below).

14 This existential interpretation is adopted, e.g., by von Kirchmann 1877: 75, Owen 1889: 157,
Jenkinson 1928, Tredennick 1938: 365–7, Ross 1949: 399, Smith 1989: 51, Bolton 1994: 117,
Primavesi 1996: 163–4 and 178 n. 26, Ebert & Nortmann 2007: 78 and 805. There are some
commentators who reject this existential interpretation and instead take the propositions in

https://doi.org/10.1017/S1755020318000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000266


148 MARKO MALINK AND ANUBAV VASUDEVAN

however, all that is important is that the argument discussed by Aristotle is of the following
form (where ‘ϕ’, ‘ψ’, and ‘χ ’ stand for any propositions):15

If ϕ then ψ, If ψ then χ � If ϕ then χ .

Arguments of this form, and similar arguments consisting exclusively of conditionals, are
traditionally referred to as ‘wholly hypothetical syllogisms’.

In the passage just quoted, Aristotle acknowledges that the conclusion of a wholly
hypothetical syllogism follows necessarily from its premises.16 He insists, however, that
the argument is not a syllogism because, as he puts it, ‘the premises are not disposed in
the manner that we have said’. This claim admits of multiple interpretations. Alexander,
for example, takes Aristotle to mean that the validity of a wholly hypothetical syllogism
derives from a missing categorical premise that somehow asserts the transitivity of the
conditional connective ‘If · · · then —’. He argues that, by supplying this missing premise,
a wholly hypothetical syllogism can be transformed into a categorical one.17

An alternative proposal for how to transform wholly hypothetical into categorical syl-
logisms was put forward by Aristotle’s pupil Theophrastus. In parallel with the three fig-
ures of categorical syllogisms, Theophrastus classified wholly hypothetical syllogisms into
three figures depending on the arrangement of their constituent propositions.18 His classifi-
cation is based on the following analogy between conditionals and categorical propositions:

Aristotle’s argument to be of the form What is A is B or If something is A, then it is B
(Slomkowski 1997: 106–7 n. 42, Bobzien 2000: 92–6 and 107–8, Barnes 2007: 434–5, 2012:
442–9, Striker 2009: 52, Crubellier 2014: 141). In our view, however, the existential interpretation
is more plausible because it is supported by a number of parallel passages in Aristotle’s writings.
For example, when Aristotle writes ‘if fish is, then animal is, but it is not necessary for fish to
be if animal is’ (ἐνύδρου μὲν ὄντος ἔστι ζῷον, ζῴου δὲ ὄντος οὐκ ἀνάγκη ἔνυδρον εἶναι,
Cat. 13 15a6–7), he means that the existence of fish implies the existence of animals but not vice
versa (Ackrill 1963: 40). Similarly, Aristotle writes: ‘if two are, it follows at once that one is,
but if one is, it is not necessary that two are’ (δυεῖν μὲν γὰρ ὄντων ἀκολουθεῖ εὐθὺς τὸ ἓν
εἶναι, ἑνὸς δὲ ὄντος οὐκ ἀναγκαῖον δύο εἶναι, Cat. 12 14a31–2). By this, Aristotle means that
the existence of two units implies the existence of one unit but not vice versa (Panayides 1999:
329, Coope 2005: 91 n. 14, Menn 2009: 217 n. 6, Peramatzis 2011: 235; see also the pseudo-
Aristotelian Divisiones Aristotelis 65 64.15–24). Since, presumably, being two is incompatible
with being one, the conditional expressed by Aristotle in this passage cannot be taken to be of the
form What is A is B or If something is A, then it is B. For, it is neither the case that What is two
is one, nor that If something is two, then it is one. For further passages that support the existential
interpretation of Aristotle’s conditionals, see Cat. 7 7b19–35, EE 7.1 1235a27–8, De caelo 1.7
276a10.

15 Against this, Bobzien (2000: 92–6 and 107–8) contends that the argument discussed by Aristotle
does not consist of conditionals of the form If ϕ then ψ , but instead of universally quantified
statements of the form For any x, if x is A, then x is B. This interpretation, however, is not
a natural way of reading Aristotle’s Greek, for the reasons given in nn. 13 and 14 (see Ebrey
2015: 190–1; cf. Crivelli 2011: 148 n. 120). Bobzien does not offer direct textual evidence for
her interpretation but adopts it primarily because, in her view, this is the only plausible reading of
the argument on which it is reducible to a categorical syllogism of the form Barbara (see Bobzien
2000: 93–5 and 107–8). In our view, this consideration is not conclusive since, as we shall see
below, there exist alternative ways of carrying out such a reduction.

16 Pr. An. 1.32 47a22–4 and 47a31–5; cf. Alexander In Pr. An. 346.10–348.39.
17 Alexander In Pr. An. 347.23–348.9; similarly, Philoponus In Pr. An. 323.5–14. See Barnes 1990:

114–16, 2007: 435.
18 See Alexander In Pr. An. 326.8–328.5, Philoponus In Pr. An. 302.6–19; cf. Bobzien 2000:

102–11.
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To be a consequent, or to follow from something, is analogous to being a
predicate, and to be an antecedent is analogous to being a subject. For, in
a way, an antecedent is a subject for what is inferred from it. (Alexander
of Aphrodisias, On Aristotle’s Prior Analytics 326.31–2)

As Alexander reports in this passage, Theophrastus held that the antecedent of a conditional
is analogous to the subject term of a categorical proposition, and the consequent to its pred-
icate term. Based on this analogy, Theophrastus observed an isomorphism between wholly
hypothetical and categorical syllogisms. This isomorphism is described by Philoponus as
follows:

Theophrastus says that [wholly hypothetical syllogisms], too, can be
reduced to the three figures [of categorical syllogisms]. For when we
say If A, then also B; If B, then also C , and then conclude hence: If A,
then also C , then A is analogous to the minor term, i.e., the subject, B
to the middle, which is predicated of A and subject of C , which is itself
analogous to the major term. Hence, in this way, there will be the first
figure. (Philoponus, On Aristotle’s Prior Analytics 302.14–19)

Now, it is conceivable that Theophrastus’ analogy was meant to do nothing more than
highlight a superficial structural similarity between wholly hypothetical and categorical
syllogisms. Both Alexander and Philoponus, however, state that Theophrastus intended
this analogy to do something more, namely, to provide the basis for ‘reducing’ (ἀνάγεσθαι)
wholly hypothetical syllogisms to the three figures of categorical syllogisms.19 Alexander’s
testimony, in particular, implies that Theophrastus sought to explain the validity of wholly
hypothetical syllogisms by reducing them to categorical form.20 Thus, Theophrastus aimed
at a more substantial reduction according to which, as Bobzien puts it, ‘a wholly hypotheti-
cal syllogism would reduce to a categorical syllogism . . ., if its validity was
derived from the latter; that is, if one can logically transform it into a categorical
syllogism’.21

The categorical reduction of wholly hypothetical syllogisms envisioned by Theophrastus
proceeds by transforming each of the three conditionals involved in the syllogism into
a categorical proposition. Specifically, a conditional If ϕ then ψ is transformed into an
equivalent categorical proposition whose subject and predicate terms are the reductive

19 Alexander In Pr. An. 326.20–2, Philoponus In Pr. An. 302.14–15.
20 Alexander reports that Theophrastus showed how wholly hypothetical syllogisms are ‘reduced

(ἀνάγονται) to the three figures’ (In Pr. An. 326.20–1). Aristotle uses the phrase ‘reduce to the
three figures’ in Prior Analytics 1.32 to describe a general procedure whereby arguments that
are valid but do not have the form of a categorical syllogism can be reformulated as categorical
syllogisms (1.32 46b40–47a1; see Ebert & Nortmann 2007: 798, Striker 2009: 212). The aim
of this procedure is to resolve, or analyze (ἀναλύειν, 47a4), valid noncategorical arguments
into categorical syllogisms (Pacius 1597: 184, Byrne 1997: 62–4). In particular, this procedure
is meant to be applied to the wholly hypothetical syllogism discussed by Aristotle in chapter
1.32 (47a28–31). In his commentary on chapter 1.32, Alexander notes that this procedure was
discussed by Theophrastus in his On the Analysis of Syllogisms, and that Theophrastus listed
various applications of the procedure in a treatise titled Arguments Reduced to Figures (In Pr.
An. 340.13–21). Thus, when Alexander states that Theophrastus reduced wholly hypothetical
syllogisms to the three figures (326.20–2), it seems clear that this reduction is a particular
application of the same general procedure of rendering valid noncategorical arguments as
categorical syllogisms.

21 Bobzien 2000: 107.
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analogues of the propositions ϕ and ψ , respectively. To give a general representation
of such a reduction, we will use ‘[ϕ]’ and ‘[ψ]’ as abstract placeholders for the term-
analogues of these propositions. In this notation, the categorical reduct of the conditional
If ϕ then ψ is a categorical proposition in which [ϕ] and [ψ] figure as subject and predicate
terms. In order to validate wholly hypothetical syllogisms, this categorical reduct must be
the a-proposition [ψ]a [ϕ].22 For, among a-, e-, i-, and o-propositions, only a-propositions
express a transitive relation between terms. Thus, a wholly hypothetical syllogism of the
form:

If ϕ then ψ, If ψ then χ � If ϕ then χ

is reduced to the following categorical syllogism in the mood Barbara:

[χ ]a [ψ], [ψ]a [ϕ] � [χ ]a [ϕ].

Of course, this representation of Theophrastus’ reduction does not settle the question
of how to understand the terms [ϕ] and [ψ] which serve as the reductive analogues of
propositions. Unfortunately, the ancient sources offer little guidance on this point. With
respect to the hypothetical premise If man is, then animal is mentioned by Aristotle in
Prior Analytics 1.32, it has been suggested by some that its categorical reduct is the a-
proposition Animal belongs to all man (or: Every man is an animal).23 On this account, the
wholly hypothetical syllogism discussed by Aristotle reduces to the following categorical
syllogism:

Substance belongs to all animal
Animal belongs to all man

Therefore: Substance belongs to all man.

In the above notation, this would mean that the terms [man is ], [animal is ], and [substance
is] that figure in Theophrastus’ proposed reduction are just the terms man, animal, and
substance.

As natural as this may seem, there is little evidence to suggest that this is what Theophras-
tus had in mind. On the contrary, there is reason for doubt. In order for this proposed
reduction to be successful, the putative categorical reduct Animal belongs to all man must
be, in some sense, equivalent to the conditional If man is, then animal is. For otherwise it
would be unclear how the validity of the wholly hypothetical syllogism could be derived
from the validity of the categorical syllogism to which it is reduced. But given the usual
meaning of conditional constructions of the form If A is, then B is in Aristotle’s writings,
the conditional If man is, then animal is is not equivalent to Animal belongs to all man.
For example, Aristotle accepts as true the conditional If two are, then one is, by which he
means: if there exists a plurality consisting of two items, then there exists a single item.24

Presumably, however, he would not accept the categorical proposition One belongs to all
two, since, by definition, no plurality consisting of two items is a single item. So, One
belongs to all two is not equivalent to the original conditional If two are, then one is. Thus,
as this example serves to illustrate, Aristotle’s intended meaning of a conditional of the

22 See Barnes 1983: 315.
23 Pacius 1597: 185–6, Bobzien 2000: 92–3; similarly, Ebert & Nortmann 2007: 805–6, Striker

2009: 214–15.
24 Cat. 12 14a31–2; see n. 14 above.
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form If A is, then B is precludes its straightforward reduction to the categorical proposition
B belongs to all A.25

The same conclusion is reached by Jonathan Barnes, who argues that the simplistic
reduction described above misrepresents Theophrastus’ intended analogy between hypo-
thetical and categorical propositions. Barnes argues that Theophrastus and other Peripatetic
logicians aimed at a more comprehensive reduction which would apply not only to the
specific sort of argument discussed by Aristotle in Prior Analytics 1.32, but to a much
wider class of wholly hypothetical syllogisms. According to Barnes, they took the desired
reduction to be based on the general postulate that any proposition can be transformed
into a term, and that any conditional is equivalent to the a-proposition relating the terms
that result from transforming its antecedent and consequent.26 This kind of reduction is
naturally viewed as part of a broader theoretical program aimed at a systematic reduction
of hypothetical syllogisms to categorical ones. Following Barnes, we will refer to this
program as the ‘Peripatetic program’ in categorical logic.27

It is not clear to what extent ancient logicians made progress towards the fulfillment
of this Peripatetic program. Nor is it clear to what extent they were committed to the
comprehensive aim of reducing all hypothetical syllogisms to categorical ones. What we
do know is that Theophrastus sought to extend his reductive analysis to a wide variety
of wholly hypothetical syllogisms including those he grouped into the second and third
figures. This latter group includes arguments of the form:

If ϕ then ψ, If χ then CON(ψ) � If ϕ then CON(χ).

The validity of such wholly hypothetical syllogisms depends not only on the conditional
connective ‘If · · · then —’ but also on the operation CON( · · · ), which maps a proposition to
its contradictory. The same is true for all wholly hypothetical syllogisms in the second and
third figures.28 Thus, insofar as Theophrastus and his followers sought a categorical reduc-
tion of these wholly hypothetical syllogisms, they must have reckoned with the problem
of how to represent CON( · · · ) in the language of categorical logic. In doing so, they might
even have been led to consider modes of propositional reasoning involving CON( · · · ) that
fall outside the scope of the wholly hypothetical syllogistic, such as the rule of reductio ad
absurdum. The extant sources, however, provide no evidence on this score.

Whatever advances in the Peripatetic program may have been made by Theophrastus
and his followers in the Hellenistic period, in the subsequent centuries there seems to have
been a general loss of interest in the foundational debates over the relative priority of
categorical and hypothetical logic. Instead, these two kinds of logic came to be viewed as

25 Alexander notes that the wholly hypothetical syllogism discussed by Aristotle can be turned into
a categorical syllogism if its two premises are replaced by the categorical propositions Animal
belongs to all man and Substance belongs to all animal (In Pr. An. 348.16–19). Alexander’s
remark is, of course, correct in that the latter two categorical propositions do constitute the
premises of a syllogism in Barbara. Crucially, however, Alexander does not say that these
categorical propositions are equivalent to the original conditional premises stated by Aristotle
at 47a28–30. In fact, Barnes (2012: 443 and 448 n. 3) argues that Alexander did not take them
to be equivalent. Thus, Alexander’s remark should not be read as a proposal for how to reduce
wholly hypothetical to categorical syllogisms.

26 See Barnes 1983: 311–16.
27 Barnes writes: ‘The old Peripatetic logicians . . . held that all formally valid inferences could

be construed within an extension of Aristotelian syllogistic. The task of establishing that thesis
constitutes what I shall call the Peripatetic programme’ (Barnes 1983: 282).

28 See Bobzien 2000: 89–91.
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resting on independent foundations, with the question of how one might be reduced to the
other becoming an increasingly marginal issue.29 This growing attitude of indifference is
clearly evinced by Galen, who writes:

As far as disputes of that sort are concerned, it is no great matter whether
you discover the truth or remain in ignorance. For you need to know both
kinds of syllogism [categorical and hypothetical]—that is what is useful.
You may call one prior, or teach it to be prior, as you please—but you
must not be ignorant of the other. (Galen, Institutio logica vii.3)

Galen’s lack of interest in disputes over the relative priority of categorical and hypothet-
ical logic seems to have been shared by most logicians from late antiquity through the
Middle Ages.30 During this period, only sporadic traces of the Peripatetic program can be
found.31 The 16th and 17th centuries, however, saw a renewed interest in the Peripatetic
program, with many textbooks in circulation at the time containing proposals for how
various kinds of hypothetical syllogism can be reduced to categorical form.32 One of the
most ambitious of these proposals appears in the logical writings of Gottfried Wilhelm
Leibniz.33

Leibniz’s commitment to the Peripatetic program is manifest in his view that:

absolute [i.e., categorical] and hypothetical truths have one and the same
laws and are contained in the same general theorems, so that all syllo-
gisms become categorical. (Leibniz, Generales inquisitiones §137)

Leibniz attached great value to the reduction of hypothetical to categorical propositions,
viewing it as an important source of unification and simplicity in his logical theory:

If, as I hope, I can conceive all propositions as terms, and all hypothetical
propositions as categorical, and if I can give a universal treatment of
them all, this promises a wonderful ease in my symbolism and analysis

29 See, e.g., Speca 2001: 132.
30 For example, Boethius wrote two separate treatises devoted to categorical and hypothetical

syllogisms, respectively, and he did not undertake to reduce one kind of syllogism to the other. As
Barnes points out, ‘Boethius shows no interest in reducing hypothetical to categorical syllogisms;
nor does he advert to the ‘analogies’ between the two types of syllogistic’ (Barnes 1983: 303
n. 3). During the medieval period, most logicians in the Latin tradition either did not discuss
hypothetical syllogisms or closely followed Boethius’ treatment of them (see Ierodiakonou 1996:
111–14).

31 One notable exception is Avicenna, who did inquire into the possibility of reducing certain
hypothetical propositions to categorical ones (see al-Shifā’: al-Qiyās 5.3 256.11–258.12 and 5.4
264.1–20; translated in Shehaby 1973: 55–7 and 62–3). For a discussion of Avicenna’s proposed
reduction, see Shehaby 1973: 241–2, Street 2004: 545–6 and 566.

32 See, e.g., Crellius 1595: 218–21, Dietericus 1618: 355–6, Jungius 1638: 167 and 229–35, Wallis
1687: 235–55, Aldrich 1691: 27–9 (cf. Ashworth 1968: 188). Aldrich’s textbook had an influence
on the 19th-century logician Whately (1827: 118–21), who argued that all hypothetical syllogisms
can be reduced to categorical ones. Following Whately, Boole (1952: 163) observed that ‘a
hypothetical judgment is reducible to a categorical form’ (see Boole 1952: 146 and 162–4; cf.
Prior 1949: 176, Nambiar 2000: 221–8).

33 For Leibniz’s commitment to the Peripatetic program in categorical logic, see Sommers 1982:
153–5, 1993: 169–78, Barnes 1983: 281. Barnes regards Leibniz as ‘the modern hero of term
logic’, and observes that ‘we may fairly name the theory championed by Leibniz Aristotelian or
Peripatetic logic’ (Barnes 1983: 281).
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of concepts, and will be a discovery of the greatest moment. (Leibniz,
Generales inquisitiones §75)

In line with Theophrastus’ analogy, Leibniz analyzed conditionals as categorical propo-
sitions by construing the antecedent of a conditional as the subject term of an a-proposition
and the consequent as the predicate term.34 For the purposes of this analysis, Leibniz intro-
duced a novel kind of abstract term to serve as the reductive analogue of the propositions
that occur as the antecedents and consequents of conditionals:

I reduce hypothetical propositions to categorical propositions in which
these abstract terms occur as components. For example, the hypothetical
proposition If Peter is wise, then Peter is just, I reduce to the following
categorical proposition: Peter’s being wise is Peter’s being just. In this
way, the same rules hold for hypothetical propositions that hold for cat-
egorical propositions. (Leibniz, De abstracto et concreto, A VI.4 992)

In this passage, Leibniz proposes to reduce the conditional If Peter is wise, then Peter is
just to the categorical proposition Peter’s being wise is Peter’s being just. He intends this
latter proposition to be a universal affirmative proposition, the phrase ‘A is B’ being one of
his standard ways of expressing the a-proposition Ba A. The subject and predicate terms of
this proposition are abstract terms which Leibniz designates by the phrases ‘Peter’s being
wise’ and ‘Peter’s being just’. In Leibniz’s implementation of Theophrastus’ analogy, these
terms serve as the reductive analogues, [Peter is wise ] and [Peter is just ], of the antecedent
and consequent of the conditional. In what follows, we refer to such abstract terms as
‘propositional terms’.35

In developing his theory of propositional terms, Leibniz does not provide an account of
what these terms are meant to denote. In this respect, he differs from other logicians work-
ing in the Peripatetic tradition, who put forward various proposals for how to specify the
denotation of the term analogues of propositions in Theophrastus’ analogy. For example,
Avicenna suggested that the term analogue of a proposition denotes the times at which that
proposition is true.36 The 17th-century logician John Wallis, on the other hand, took the
term analogue of a proposition to denote the ‘cases’ in which that proposition is true.37 By
contrast, Leibniz does not subscribe to either a temporal or a case-based account of proposi-
tional terms. Instead, he adopts a more proof-theoretic approach, characterizing the nature
of propositional terms, not by specifying their denotation, but rather by positing logical
principles that govern their operation in a deductive system. This proof-theoretic approach
comports well with the fact that Leibniz regards propositional terms as abstract terms, with

34 Leibniz writes: ‘A hypothetical proposition is nothing other than a categorical proposition when
the antecedent is turned into the subject and the consequent into the predicate’ (A VI.4 811 n. 6).
See also A VI.4 862–3.

35 The label ‘propositional term’ is borrowed from Sommers 1982: 156, 1993: 172–3, Barnes 1983:
315, and Swoyer 1995: 110–11.

36 Avicenna al-Shifā’: al-Qiyās 5.4 262.1–275.14 and 6.1 295.5–304.5; translated in Shehaby 1973:
61–72 and 91–9. Such a temporal interpretation is also adopted, e.g., by Boole (1854: 159–84
and 241) and Schröder (1891: 1–24 and 59–63).

37 Wallis 1687: 242–4. Such a case-based interpretation is also adopted, e.g., by Whately (1827:
118–21), De Morgan (1847: 23), and Boole (1847: 48–50). Similarly, Sommers takes a
propositional term [ϕ] to denote the states of affairs in which ϕ (Sommers 1970: 3 and 16–17,
1982: 153–6), or the worlds characterized by ϕ (Sommers 1993: 176–8, Sommers & Englebretsen
2000: 206–7).
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the important qualification that they are merely ‘logical, or, notional’ abstracts.38 He thus
adopts a nominalistic conception of propositional terms, according to which they are to be
regarded ‘not as corresponding to things, but as shorthands for discourse’.39

Given such nominalistic scruples, it is perhaps understandable why Leibniz did not
undertake to provide an account of the denotation of propositional terms. Nonetheless,
it is clear that Leibniz would agree with both Avicenna and Wallis that the term [A is ] that
serves as the reductive analogue of the proposition A is in Theophrastus’ analogy cannot
simply be identified with the term A.40 Instead, Leibniz insists that the term [A is ], which
he expresses by the phrase ‘A’s being’, is a ‘new term’ distinct from A:

Let A be a term, and A is or A is true be a proposition. Then, A true,
or A’s being true, or A’s being will be a new term, from which a new
proposition can in turn arise. (Leibniz, Generales inquisitiones §198.7)

It is clear from this passage that Leibniz would take the propositional term man’s being
to be distinct from the term man. Consequently, he would reject the simplistic reduction
of Aristotle’s conditional If man is, then animal is to the categorical proposition Animal
belongs to all man. Instead, he would reduce this conditional to the a-proposition in which
the propositional term animal’s being is predicated of the propositional term man’s being.41

As we shall see, Leibniz’s theory of propositional terms opens a promising route to the
fulfillment of the Peripatetic program. Not only does this theory allow Leibniz to achieve
Theophrastus’ aim of reducing all wholly hypothetical syllogisms to categorical ones, it
also allows him to overcome the challenges to the Peripatetic program raised by Aristotle’s
reliance upon the method of reductio ad absurdum.

§2. The rule of reductio in categorical logic. Throughout the history of logic, one of
the main objections that has been raised against the Peripatetic program concerns Aristo-
tle’s use of reductio ad absurdum in his assertoric syllogistic. As we have seen, Aristotle’s

38 A VI.4 740; see also A VI.4 987, 992.
39 A VI.4 996. In accordance with Leibniz’s nominalism, an abstract term can be used without

ascribing to it any object that serves as its denotation. For example, regarding the abstract
term heat, Leibniz writes: ‘when I speak of heat (calor), there is no need to make mention of
some vague subject or to say that something is hot—and to that extent I am a nominalist, at
least provisionally’ (A VI.4 996). Likewise, Leibniz takes himself to be able to employ abstract
propositional terms in his calculus without ascribing to them any objects that they denote. Thus,
contrary to Sommers’s contention, Leibniz’s use of propositional terms does not commit him to
‘an ontology of states of affairs’ (Sommers 1982: 159). Instead, as Leibniz puts it, ‘it suffices to
posit only substances as things and to assert truths about these’ (A VI.4 996).

40 On Avicenna’s temporal interpretation, the term [Man is] denotes the set of times at which the
proposition Man is is true. On Wallis’s case-based interpretation, [Man is] denotes the set of cases
in which this proposition is true. On neither interpretation is the term [Man is] coextensive with
the term man, which denotes the set of all humans.

41 In keeping with scholastic terminology, Leibniz refers to propositions of the form A is as ‘secundi
adjecti’, and to those of the form A is B as ‘tertii adjecti’ (GI §§144–51; cf. A VI.4 1160 and Alsted
1628: 313, 1630: 453 and 455). This terminology derives from Aristotle’s distinction between
existential statements such as Man is, on the one hand, and predicative statements such as Man
is just, on the other, in which, as Aristotle puts it, “is’ is predicated additionally as a third item’
(De int. 10 19b14–22; see Prior 1955: 164–5, Parkinson 1966: xlv n. 1, Nuchelmans 1992: 7–35,
Weidemann 2014: 341–2). Thus, the class of propositions secundi adjecti discussed by Leibniz
includes the existential statements Man is, Animal is, and Substance is that serve as antecedents
and consequents in Aristotle’s example of a wholly hypothetical syllogism (see n. 14).
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use of this method opened him to the charge of presupposing principles of hypothetical
syllogistic in his theory of the categorical syllogism. Thus, Neoplatonic authors such as
Philoponus and Pseudo-Ammonius claimed that any deduction that employs the method
of reductio ad absurdum is not a categorical syllogism but a hypothetical one.42 In fact,
Aristotle himself acknowledges that arguments by reductio are not ‘ostensive’ syllogisms
but only ‘syllogisms from a hypothesis’.43 As such, Aristotle concedes, they cannot be
fully justified within his theory of the three figures of categorical syllogisms:

And similarly for arguments that are brought to a conclusion through an
impossibility; for these too cannot be analyzed [into the three figures of
categorical syllogisms44]. Instead, the part that leads to the impossibility
can be so analyzed since it is proved by a syllogism, but the other part
cannot since the conclusion is reached from a hypothesis. (Aristotle,
Prior Analytics 1.44 50a29–32)

In this passage, Aristotle states that every argument by reductio contains a part that can
be analyzed into the three syllogistic figures. This part of the argument consists of a
direct deduction occurring within the subordinate proof initiated by the assumption for
reductio.45 Aristotle maintains, however, that no such syllogistic analysis is available for
the final step of the argument, in which the assumption for reductio is discharged and the
desired conclusion inferred. Thus, Aristotle admits that the rule of reductio that licenses
this final step cannot be justified within his theory of the three figures of categorical
syllogisms, but must instead be posited as a separate rule of inference.

For this reason, those who take the rule of reductio to fall within the purview of proposi-
tional logic contend that Aristotle’s theory of the categorical syllogism presupposes modes
of propositional reasoning. Among modern commentators, this view has been endorsed,
for example, by Łukasiewicz:

No one can fully understand Aristotle’s proofs who does not know that
there exists besides the Aristotelian system another system of logic more
fundamental than the theory of the syllogism. It is the logic of propo-
sitions. . . . The first system of propositional logic was invented about
half a century after Aristotle: it was the logic of the Stoics. . . . It seems
that Aristotle did not suspect the existence of another system of logic
besides his theory of the syllogism. Yet he uses intuitively the laws of
propositional logic in his proofs of imperfect syllogisms [such as Baroco
and Bocardo]. (Łukasiewicz 1957: 47–9)

In order to capture its supposed reliance on propositional logic, Łukasiewicz regards
Aristotle’s syllogistic as a theory formulated within a propositional object language em-
ploying propositional operators such as negation, conjunction, and the material conditional.
He is thus able to formulate reductio as a rule of inference between compound propositions
in this language and justify the rule by appeal to the laws of classical propositional logic.

42 Philoponus In Pr. An. 246.19–21, 247.17–32, and 302.1–6, Pseudo-Ammonius In Pr. An. 65.31–2,
66.13–14, 67.6–12, 69.15–16, and 69.24–5; see also Pseudo-Themistius In Pr. An. 94.35–7.

43 Pr. An. 1.23 40b23–9.
44 See Pr. An. 1.44 50b2–3 in conjunction with 1.44 50a16 and 1.32 46b40–47a1.
45 See also Pr. An. 1.23 41a32–4; cf. Alexander In Pr. An. 259.9–11, 261.24–8, and 262.3–4, Pseudo-

Ammonius In Pr. An. 66.39–67.4, Lear 1980: 34, Crivelli 2011: 125.
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This way of modeling Aristotle’s syllogistic has been rightly rejected by commenta-
tors such as Corcoran and Smiley. As Smiley points out, ‘the deductive machinery of
propositional logic . . . is conspicuous by its absence from Aristotle’s writings’.46 Thus,
Łukasiewicz is wrong to suggest that Aristotle’s syllogisms ought to be understood as con-
ditionals formulated in a propositional object language. Instead, as Corcoran and Smiley
maintain, the syllogisms discussed by Aristotle should be regarded as arguments consisting
of only simple categorical propositions.47

This raises the question as to how the rule of reductio is to be formulated with respect
to an object language that admits only categorical propositions and does not include an
operator of propositional negation. Corcoran and Smiley provide such a formulation of the
rule by appealing to the contradictory relations that obtain between categorical proposi-
tions, as specified in the traditional square of opposition.48 These relations are captured
by the following operation, CON( · · · ), which maps each categorical proposition to its
contradictory:

ϕ CON(ϕ)

AaB AoB
AeB AiB
AiB AeB
AoB AaB

By means of this operation, the rule of reductio employed by Aristotle in his indirect proofs
of Baroco and Bocardo can be formulated as follows:49

ϕ,ψ � χ
ϕ, CON(χ) � CON(ψ)

The apparent similarity between this formulation of the rule of reductio and the first
Stoic thema helps to explain why ancient logicians were led to claim that Aristotle’s proofs
by reductio rely on this Stoic principle. There is, however, a crucial difference between
the first Stoic thema and the rule of reductio as it appears in systems of categorical logic
such as those put forward by Corcoran and Smiley. The difference is that, for the Stoics, as
well as for Łukasiewicz, the operation CON( · · · ) is defined in terms of a primitive object-
language operator of propositional negation. By contrast, no such operator is available in
purely categorical systems of logic. This is because these systems do not countenance any
primitive propositional operators for constructing compound propositions, but only admit
simple, categorical propositions which result from applying the a-, e-, i-, or o-copula to a

46 Smiley 1973: 137.
47 Corcoran 1972: 696–700, 1974: 94–112, Smiley 1973: 136–42, Smith 1989: xvi–xxii.
48 Corcoran 1972: 696–8, 1974: 101–12, Smiley 1973: 141–2, Smith 1989: xix–xxi, Moss 2011:

182–3, van Rooij 2012: 87.
49 It should be noted that this rule does not underwrite Aristotle’s proof by reductio of Darapti (Pr.

An. 1.7 29a36–9; see also 1.6 28a22–3). In this proof, Aristotle employs a variant of the rule in
which the contradictory of χ , CON(χ), is replaced by the contrary of χ , where the contrary of an
a-proposition is the corresponding e-proposition, and vice versa; see Thom 1981: 39–41, Crivelli
2011: 156–8. The contrariety of a- and e-propositions is also assumed by Aristotle in his proof
by reductio of the rule of a-conversion (Pr. An. 1.2 25a17–19). This gives rise to the well-known
problem of existential import, which we discuss in §6 below.
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pair of terms.50 Consequently, as Smiley points out, the operation CON( · · · ) which figures
in the above formulation of the rule of reductio must be treated as ‘part of the metatheory
and not a connective belonging to the system itself’.51

For a categorical logician, this metatheoretical account of reductio has the advantage of
avoiding the need to posit any principles in the object language that exceed the syntactic
bounds of categorical logic. At the same time, there is a potential cost that comes with
relegating the rule of reductio to the metatheory. In particular, such a metatheoretical
formulation of the rule fails to be schematic in the sense that its object-language instances
cannot be obtained simply by replacing the schematic letters ‘ϕ’, ‘ψ’, and ‘χ ’ with propo-
sitions of the object language.52 If, for example, the schematic letter ‘χ ’ appearing in the
expression ‘CON(χ)’ is replaced by a categorical proposition, the resulting expression still
includes the metatheoretical operator ‘CON( · · · )’ and hence is not a proposition of the
object language. Consequently, in order to determine the object-language instances of the
rule of reductio, one must know how to apply the metatheoretical operation CON( · · · ) cod-
ified by the traditional square of opposition. Thus, while the systems of categorical logic
put forward by Corcoran and Smiley are able to implement the rule of reductio in a purely
categorical object language, they do so only at the expense of adopting a nonschematic
formulation of this rule which presupposes substantive metatheoretical knowledge of the
traditional square of opposition.53

Now, a categorical logician could avoid the need to make such a compromise by giv-
ing separate schematic formulations for each of the specific categorical rules of infer-
ence that are licensed by the general rule of reductio. For example, the rule of reductio
employed in Aristotle’s indirect proofs of Baroco and Bocardo could be formulated as
follows:

ϕ, AaB � CaD

ϕ,CoD � AoB

50 See Smith 1989: xvii, Patterson 1995: 17–18, Whitaker 1996: 80–1, Charles 2000: 380, Malink
2013: 25.

51 Smiley 1973: 141; similarly, van Rooij 2012: 87.
52 According to this criterion of schematicity, the instances of a schema are all and only those

expressions which result from replacing the schematic letters appearing in the schema with
object-language expressions of the appropriate syntactic type. This substitutional criterion of
schematicity is presupposed, e.g., by Vaught (1967: 473) and Quine (1986: 50–51). By contrast,
Corcoran (2006: 219–23) discusses a broader notion of schematicity which allows for a schema
to include additional ‘side conditions’ that impose substantive constraints on which expressions
are to count as its object-language instances (see n. 53 below).

53 For comparison, consider the following formulation of Tarski’s T-schema: ‘x is a true sentence
if and only if p’ (Tarski 1956: 155–6). Tarski adds to this formulation of the T-schema a side
condition to the effect that its instances are to be obtained by substituting ‘in place of the
symbol “p” in this schema any sentence, and in the place of “x” any individual name of
this sentence’. The application of this formulation of the T-schema presupposes substantive
metatheoretical knowledge as to which expressions of the object language count as names of
which sentences. Hence, this formulation fails to be schematic in the sense just described (despite
being schematic in the broader sense discussed by Corcoran (2006); see n. 52 above). By contrast,
the following formulation of the T-schema is fully schematic: ‘“p” is a true sentence if and
only if p’ (Tarski 1956: 159). Given that the quotation marks surrounding the first occurrence
of ‘p’ are part of the object language, the application of this schema no longer presupposes any
substantive metatheoretical knowledge, since its object-language instances are obtained simply
by substituting sentences for the schematic letter ‘p’.
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Unlike the general metatheoretical formulation of reductio, this specific rule is schematic
in the sense that its object-language instances can be obtained simply by replacing the
schematic letters ‘ϕ’, ‘A’, ‘B’, ‘C’ and ‘D’ with expressions of the object language that
are of the appropriate syntactic type. Additional schematic rules of this sort involving
different combinations of categorical propositions would then be needed to account for
Aristotle’s proofs by reductio of other syllogistic moods, such as Darii, Ferio, Camestres,
and Festino.54 For instance, the specific rule of reductio underwriting Aristotle’s indirect
proof of Darii from Celarent would be formulated as follows:

ϕ, AeB � CeD

ϕ,Ci D � AiB

Taking into account all possible combinations of a-, e-, i-, and o-propositions, there are
sixteen schematic rules of this sort that would be required to reproduce the full effect
of the general rule of reductio in a categorical language which countenances only these
four kinds of proposition. Thus, one way to license the method of reductio by means of
principles that are schematic with respect to a categorical object language is to posit each
of these sixteen rules as a separate principle.

This case-by-case approach has the obvious disadvantage of obscuring the fact that the
sixteen specific rules of reductio are not unrelated, but are all underwritten by one and the
same general principle. A categorical logician following Aristotle’s lead would presumably
be dissatisfied with this lack of generality in the formulation of reductio. For, Aristotle
himself formulates the rule of reductio in general terms using the abstract notion of the
contradictory of a proposition. Thus, he characterizes the assumption for reductio as the
‘contradictory (ἀντίφασις) of the conclusion’, and makes it clear that this characterization
applies regardless of the specific kind of categorical proposition the conclusion happens to
be.55 This is in keeping with Aristotle’s broader methodological maxim that a satisfactory
formulation of a law should do more than merely assert each of its instances. Rather,
the law should be formulated in terms of the most general properties in virtue of which
it applies in any given case. Take, for example, the geometrical law that, for any given
triangle, the sum of its interior angles is equal to the sum of two right angles. According to
Aristotle, a satisfactory formulation of this law should not consist of separate statements for
equilateral, isosceles, and scalene triangles. Although every triangle is of one of these three
kinds, someone who has established three separate theorems to the effect that equilateral,
isosceles, and scalene triangles each have the desired property does not yet possess a proper
understanding of the law. Instead, Aristotle insists, to arrive at such an understanding, one
must establish a fully general formulation of the law that applies to all triangles, simply
insofar as they are triangles.56 Likewise, a satisfactory formulation of the rule of reductio
should not consist of multiple versions of the rule that apply separately to a-, e-, i-, and

54 Aristotle uses the method of reductio to streamline his deductive system by deriving the
perfect moods Darii and Ferio from Celarent (Pr. An. 1.7 29b1–19; see Alexander In Pr. An.
113.5–114.30, Weidemann 2004: 73–5, Barnes 2007: 364–6, Ebert & Nortmann 2007: 354–6).
Moreover, Aristotle mentions proofs by reductio of Camestres (1.5 27a14–15) and Festino (1.7
29b5–6).

55 Pr. An. 1.23 41a23–37, 2.11 61a19–21, 2.14 62b29–38. Aristotle indicates that this
characterization applies regardless of whether the conclusion to be established by the reductio
argument is an affirmative or negative categorical proposition (62b37–8).

56 Post. An. 1.5 74a25–32, see also 74a17–25; cf. Philoponus In Post. An. 76.28–78.9, Barnes 1993:
123–4.
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o-propositions—even if these are all the categorical propositions there are. Instead, a proper
formulation of this rule should apply to all propositions in general, simply insofar as they
are propositions.

Thus, all told, a categorical logician faces a challenge in providing a fully general
formulation of reductio that is also schematic with respect to the object language of cat-
egorical logic. By contrast, a general and schematic formulation of reductio is readily
available in the language of propositional logic, which includes an operator of propositional
negation. This fact may help to account for the view, reiterated by a number of logicians
over the centuries, that in employing the method of reductio Aristotle tacitly relies on
principles of propositional logic. Of course, a categorical logician might respond to this
charge by simply rejecting the requirement that the rule of reductio be given a general
and schematic formulation.57 Depending on which of these two desiderata is rejected, the
method of reductio could then be implemented either by a multiplicity of schematic rules,
each capturing a specific categorical application of reductio, or by a single general rule
based on the metatheoretical relation of contradictoriness codified by the traditional square
of opposition.

In principle, either of these approaches constitutes an acceptable way for a categorical
logician to counter the charge of tacitly relying on propositional logic. Nonetheless, the
question remains whether one can offer a more satisfactory response to the charge by
developing a purely categorical system of logic in which the rule of reductio has a general
and schematic formulation. At first blush, it is not obvious how, if at all, this can be
achieved. For, it would require that the operation CON( · · · )mapping each proposition to its
contradictory be represented in the object language of categorical logic without introducing
into the syntax any primitive propositional operators or other noncategorical elements. In
what follows, we show how this aim can be achieved by utilizing the theory of propositional
terms developed in the logical writings of Leibniz. The key elements of this theory are
expounded in an essay titled Specimina calculi rationalis, in which Leibniz undertakes to
justify the rule of reductio within a purely categorical system of logic.

§3. Leibniz’s categorical proof of reductio. Throughout his logical writings, Leibniz
makes frequent use of the method of reductio ad absurdum. For the most part, he employs
this method freely without any further explanation. On some occasions, however, he is
unwilling to take the validity of this method for granted, but instead seeks to derive the
rule of reductio from more basic principles of categorical logic. For example, in his 1686
treatise Generales inquisitiones de analysi notionum et veritatum, Leibniz presents a series
of proofs by reductio accompanied by the following remark:

This mode of reasoning, i.e., reductio ad absurdum, has, I believe, al-
ready been established in what precedes. (Leibniz, Generales inquisi-
tiones §91, A VI.4 766 n. 36)

In this passage, Leibniz regards the rule of reductio as something that needs to be ‘es-
tablished’, that is, as something to be derived rather than simply posited as a principle.
Contrary to what he suggests, no such derivation of the rule of reductio appears in the
Generales inquisitiones. Leibniz does, however, supply the outline of such a derivation

57 For example, van Rooij rejects the desideratum of schematicity in his implementation of the
Peripatetic program, arguing that the positing of a nonschematic metatheoretical rule of reductio
does not imply that ‘syllogistic depends on propositional logic’ (van Rooij 2012: 87 n. 3).
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in a related essay titled Specimina calculi rationalis, written sometime between 1686 and
1690.58 Since Leibniz’s treatment of the rule of reductio in this essay is somewhat intricate,
it calls for a detailed point-by-point exegesis.

In §15 of the Specimina calculi rationalis, Leibniz describes how a theorem of the form
ϕ � ψ can be established by means of the method of reductio:

Let us posit that that [i.e., the proposition ϕ] is true, and that, neverthe-
less, this [i.e., the proposition ψ] is false, so that if something absurd
will follow therefrom, then this [i.e., ψ] undoubtedly will be derivable
from that [i.e., ϕ] (by the Lemma of the following paragraph). (Leibniz,
Specimina calculi rationalis §15)

At the end of this passage, Leibniz indicates that the method of reductio is to be justified
‘by the Lemma of the following paragraph’. In fact, the lemma Leibniz is here referring to
is stated, not in §16, but in §17 of the Specimina, where it is formulated as follows:59

In §15 we assumed that if, when A is posited, B follows, then non-A
follows from non-B. Or, more generally, according to our way of sub-
suming hypothetical propositions under categorical ones, we assumed
this consequence: A is B, therefore non-B is non-A.60 (Leibniz, Specim-
ina calculi rationalis §17)

In the first sentence of this passage, Leibniz supplies the lemma he promised in §15 as
part of his argument justifying the method of reductio. While it is not entirely clear how
Leibniz’s formulation of this lemma ought to be construed, some guidance on this point
can be gleaned from his subsequent remark in the passage that the lemma is a special case
of the following, more general law of contraposition:

A is B � non-B is non-A.

By the phrase ‘A is B’ Leibniz means to express the a-proposition Ba A which occurs,
for example, in categorical syllogisms of the form Barbara.61 Moreover, the expressions
‘non-A’ and ‘non-B’ are used by Leibniz to designate privative terms such as non-rational

58 The title ‘Specimina calculi rationalis’ is not used by Leibniz but is adopted in the Akademie
edition of Leibniz’s works. For the dating of this essay between 1686 and 1690, see A VI.4 807,
Lenzen 1986: 19, Schupp 2000: x–xi and xxxii.

59 The phrase ‘by the Lemma of the following paragraph’ translates Leibniz’s ‘per Lemma prop.
sequentis’ (A VI.4 809). Schupp (2000: 184 n. 23) suggests that this phrase refers, not to §17, but
to the subsequent sentences of §15. This reading, however, is implausible since these sentences do
not contain a lemma that would in any way help to justify the rule of reductio. Moreover, Leibniz
often uses the abbreviation ‘prop.’ to refer to numbered paragraphs of an essay rather than to
particular propositions within such a paragraph (see, e.g., A VI.4 150, 815, 831–44). Finally,
since the passage from §17 deals with what Leibniz explicitly identifies as an assumption made
in §15, it is natural to identify this assumption with the lemma referred to in §15.

60 This is the original version of the text, which Leibniz subsequently revised by replacing the
clause ‘A is B, therefore non-B is non-A’ with ‘A is B, therefore it is false that non-B is A’
(see the textual notes at A VI.4 809). The most likely reason for this revision is that Leibniz
was unable to provide a satisfactory proof of the law of contraposition expressed by the original
clause (see Lenzen 1986: 32, Schupp 2000: 185–6 n. 29). We will discuss Leibniz’s treatment
of contraposition below. For now, we focus on Leibniz’s justification of reductio based on
contraposition, as intended in the original version of the text.

61 See, e.g., A VI.4 206, 280, GI §28, §124, §129.
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and non-animal. Such privative terms are discussed by Aristotle in the De interpretatione,
and by late antiquity they had come to be regarded as an integral part of categorical logic.
These terms figure prominently in Leibniz’s categorical logic, and in many of his essays
he takes it for granted that, for any term A, there is a corresponding privative term, non-A.
For the sake of brevity, we will write ‘A’ to designate the privative term non-A. Using this
notation, the above law of contraposition reads as follows:

Ba A � AaB.

In the passage from §17 of the Specimina just quoted, Leibniz claims that this law of
contraposition comprehends the lemma needed for the proof of reductio. Leibniz for-
mulates this lemma as follows: ‘if, when A is posited, B follows, then non-A follows
from non-B’. The obvious problem with viewing this lemma as an instance of the law
of contraposition is that, in the latter, the letters ‘A’ and ‘B’ designate terms that serve
as the subject or predicate of a categorical proposition. In the lemma, on the other hand,
these letters seem to designate propositions. This, at least, is strongly suggested by the
fact that B is said to ‘follow’ from A. Moreover, insofar as the lemma is to play a role
in justifying the rule of reductio, the letters ‘A’ and ‘B’ must somehow represent the
propositions ϕ and ψ which appear in Leibniz’s characterization of reductio in §15 of the
Specimina.

Fortunately, Leibniz supplies the background needed to resolve these apparent ambi-
guities in §16 of the Specimina. There, he explains how to interpret standard expressions
of categorical logic such as ‘non-A’ and ‘AaB’ when ‘A’ and ‘B’ are taken to designate
propositions rather than ordinary terms such as rational and animal. He writes:

If A is a proposition or statement, by non-A I mean that the proposition
A is false. And when I say A is B, and A and B are propositions, I mean
that B follows from A. . . . If A is B is called C , then C will be the same
as A’s being B. Thus, when we say E is F follows from A is B, this
is the same as if we were to say A’s being B is E’s being F . (Leibniz,
Specimina calculi rationalis §16)

In the second sentence of this passage, Leibniz states that, when ‘A’ and ‘B’ designate
propositions, the categorical proposition Ba A means that B follows from A. While this
might be taken to imply that a proposition can serve as the subject or predicate of a
categorical proposition, the last two sentences of the passage suggest that this is not quite
what Leibniz intends. As he explains, it is not the proposition E is F itself that serves
as the subject or predicate, but rather a certain syntactic transform of this proposition,
which he signifies by the phrase ‘E’s being F’.62 As Leibniz makes clear in the Generales
inquisitiones, this syntactic transformation has the effect of converting a proposition into a
term:63

62 The phrase ‘E’s being F’ translates ‘E esse F’. This latter phrase differs from that which signifies
the original proposition, ‘E est F’, in using the infinitive form of the verb, ‘esse’, instead of the
finite form, ‘est’. Sometimes Leibniz also adds the Greek definite article τό, writing ‘τὸ E esse
F’ instead of ‘E esse F’ (e.g., GI §§138–42 and A VI.4 740).

63 See Schupp 2000: 184 n. 25. This syntactic transformation reflects Leibniz’s view that ‘every
proposition can be conceived of as a term’ (GI §75, §109, and §197). When a proposition is
conceived of as a term, Leibniz describes the proposition as giving rise to a ‘new term’ (terminus
novus, §197 and §198.7; contra Parkinson 1966: 86 n. 2).
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If the proposition A is B is considered as a term, as we have explained
that it can be, there arises an abstract term, namely A’s being B. And if
from the proposition A is B the proposition C is D follows, then from this
there comes about a new proposition of the following kind: A’s being B is
(or contains) C’s being D; or, in other words, the B-ness of A contains the
D-ness of C, or the B-ness of A is the D-ness of C. (Leibniz, Generales
inquisitiones §138)

In this passage, Leibniz stipulates that the phrases ‘A’s being B’ and ‘the B-ness of A’
signify an abstract propositional term generated from the proposition A is B.64 The phrases
used by Leibniz to signify propositional terms are chosen so as to ensure that the categorical
propositions into which they enter are grammatically well-formed. For present purposes,
what is important is that the expressions for propositional terms can be derived from those
for the corresponding propositions in a systematic manner, so that the latter can be put in
one-to-one correspondence with the former. We will use square brackets to indicate the
operation mapping any given proposition to the corresponding propositional term. Thus,
for example, [Ba A] is the propositional term corresponding to the proposition Ba A. In
this notation, the complex categorical proposition A’s being B is C’s being D is written as
follows:

[DaC]a [Ba A].

In the passage just quoted, Leibniz takes this categorical proposition to express the
claim that the proposition DaC follows from the proposition Ba A. Thus, he endorses
the following principle concerning a-predications between propositional terms:

Ba A � DaC if and only if � [DaC]a [Ba A].

In §16 of the Specimina, Leibniz gives a more general formulation of this principle, assert-
ing that ‘when I say A is B, and A and B are propositions, I mean that B follows from A’.65

In this formulation, the letters ‘A’ and ‘B’ stand for any categorical propositions ϕ and ψ .
Accordingly, the expression ‘A is B’ designates the a-proposition in which the propositional
term corresponding to ψ is predicated of the propositional term corresponding to ϕ, i.e.,
[ψ]a [ϕ]. On the other hand, when Leibniz writes that ‘B follows from A’, he means that
the proposition ψ follows from the proposition ϕ, i.e., ϕ � ψ . Thus, the principle stated
by Leibniz in §16 of the Specimina can be formulated as follows:

ϕ � ψ if and only if � [ψ]a [ϕ].

We will refer to this biconditional as the principle of ‘propositional a-predication’.66

64 Leibniz refers to such terms not as ‘propositional terms’ but as ‘complex terms’ (see GI §61, §65,
§75; cf. A VI.4 528–9). He describes these terms as ‘abstract’ at GI §§138–42, A VI.4 740, 992.

65 Similarly, Leibniz writes: ‘For a proposition to follow from a proposition is nothing other than
for the consequent to be contained in the antecedent as a term in a term. By this method
we reduce consequences to propositions, and propositions to terms’ (GI §198.8). In §138
of the Generales inquisitiones, Leibniz asserts this principle only for the case in which the
antecedent and consequent are a-propositions. Nonetheless, it is clear that, even in the Generales
inquisitiones, Leibniz intends this principle to apply not only to a-propositions but to any
categorical propositions; see GI §§139–142. For example, in §140b he applies the principle to
i-propositions.

66 The principle of propositional a-predication guarantees that the categorical relations that obtain
between propositional terms exactly mirror the inferential relations that obtain between the
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In addition to the principle of propositional a-predication, in §16 of the Specimina
Leibniz introduces a second principle pertaining to propositional terms. This principle,
which explicates the meaning of the privative of a propositional term, asserts that, ‘if A
is a proposition or statement, by non-A I mean that the proposition A is false’. Similarly,
Leibniz writes in the Generales inquisitiones:

If B is a proposition, non-B is the same as B is false, or, B’s being false.
(Leibniz, Generales inquisitiones §32, A VI.4 753 n. 18)

Let ϕ be the proposition designated by the letter ‘B’ in this passage. Then the expression
‘non-B’ designates the privative of the propositional term corresponding to ϕ, i.e., [ϕ].
In the passage just quoted, Leibniz states that this privative term is the same as the term
ϕ’s being false, which is the propositional term generated from the proposition ϕ is false.
Leibniz uses phrases of the form ‘ϕ is false’ to designate the contradictory of ϕ in proofs
by reductio.67 In our notation, the contradictory of ϕ is expressed by ‘CON(ϕ)’. Thus, in
the above passage, Leibniz states that the privative term [ϕ] is the same as the proposi-
tional term [CON(ϕ)].68 Now, when Leibniz asserts that a term A is ‘the same as’ a term
B, this is tantamount to asserting the pair of a-propositions AaB and Ba A.69 All told,
then, Leibniz endorses the following two laws concerning the privatives of propositional
terms:

� [CON(ϕ)] a [ϕ] � [ϕ] a [CON(ϕ)].

We will refer to these two laws, collectively, as the principle of ‘propositional privation’.
The device of propositional terms, along with the principles of propositional

a-predication and privation, provide the background needed to understand Leibniz’s jus-
tification of the method of reductio in the Specimina calculi rationalis. In particular, these
principles allow us to make sense of Leibniz’s claim in §17 that reductio relies on the
lemma that ‘if, when A is posited, B follows, then non-A follows from non-B’. As it stands,
this formulation of the lemma exhibits an incongruity. On the one hand, the expressions
‘non-A’ and ‘non-B’ seem to designate privatives of propositional terms. Like any other
terms, these privative terms can stand in the categorical relation of a-predication to one

corresponding propositions. This marks an important difference between Leibniz’s theory of
propositional terms and Boole’s categorical analysis of hypothetical propositions. Unlike Leibniz,
Boole maintains that the logic of hypothetical propositions of the form If A is B, then C is D ‘does
not depend upon any considerations which have reference to the terms A, B, C , D. . . . We may,
in fact, represent the propositions A is B, C is D, by the arbitrary symbols X and Y , respectively’
(Boole 1847: 48; cf. 1854: 164–7). Thus, in Boole’s system, the hypothetical proposition If A is
B, then C is D is represented by a formula such as ‘X is Y ’, which makes no reference to the
constituent propositions A is B and C is D. Consequently, Boole’s system cannot express the
way in which the logic of hypothetical propositions supervenes on the deductive relations that
obtain between their constituent propositions. Peirce (1873: 371) regards this as an ‘obvious
imperfection’ of Boole’s system. Likewise, Frege (1979: 14–15) argues that, for this reason,
Boole’s system lacks organic unity. Leibniz’s categorical analysis of hypothetical propositions,
on the other hand, is not open to such criticisms since the propositional terms appearing in the
complex proposition [DaC]a [Ba A] preserve reference to the constituent propositions Ba A and
DaC .

67 See, e.g., the proofs by reductio given by Leibniz in GI §§93–4 and in §15 of the Specimina. See
also Leibniz’s formulation of the rule of reductio at A VI.4 499.

68 This is in accordance with Leibniz’s statement that, when ‘A’ signifies a proposition, ‘non-A’
signifies the contradictory of that proposition (contradictoriam propositionis, GI §13).

69 A VI.4 285; cf. A VI.4 813, GI §30.
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another. A term, however, cannot ‘follow from’ another term. Instead, what can stand in this
relation of following are propositions and their contradictories. Thus, there are two natural
ways of resolving the incongruity in Leibniz’s formulation of the lemma: either replace the
privatives of propositional terms by the contradictories of the corresponding propositions,
or replace the relation of following by that of a-predication. The former option yields the
following version of the rule of reductio:

ϕ � ψ
CON(ψ) � CON(ϕ)

The latter option yields the following law of contraposition for propositional terms:

[ψ] a [ϕ] � [ϕ] a [ψ].

In opting for his incongruous formulation of the lemma, Leibniz presumably means to
assert both the former rule of reductio and the latter law of contraposition at the same time.
Moreover, he indicates that the former is to be derived from the latter. This is suggested
by his subsequent remark in §17 to the effect that, ‘according to our way of subsuming
hypothetical propositions under categorical ones’, the lemma can be subsumed under the
general law of contraposition for terms, Ba A � AaB.

As we have just seen, Leibniz’s method of ‘subsuming hypothetical propositions under
categorical ones’ is explicated in §16 and is captured by the principles of propositional a-
predication and privation. Given these two principles, it is easy to see how Leibniz intended
to derive the rule of reductio from the general law of contraposition. The proof proceeds
as follows. Suppose that ϕ � ψ . By propositional a-predication, this implies � [ψ]a [ϕ].
We then have the following derivation:

1 [ψ]a [ϕ] premise

2 [ϕ] a [ψ] contraposition: 1

3 [CON(ϕ)] a [ϕ] propositional privation

4 [ψ] a [CON(ψ)] propositional privation

5 [CON(ϕ)] a [CON(ψ)] Barbara: 2, 3, 4

Given � [ψ]a [ϕ], this derivation establishes � [CON(ϕ)] a [CON(ψ)]. Hence, by proposi-
tional a-predication, CON(ψ) � CON(ϕ).

Thus, by means of the law of contraposition, Leibniz is able to establish a rule of reductio
to the effect that ϕ � ψ entails CON(ψ) � CON(ϕ). In fact, however, Leibniz’s proofs by
reductio in the Specimina and elsewhere require a slightly stronger version of this rule
which is applicable to inferences with multiple premises, such as ϕ,ψ � χ . Consider, for
example, the proof by reductio given by Leibniz in §17 of the Specimina:

(1) A is B by hypothesis, I claim that it is false that (2) non-B is A.
For, since B can be substituted for A (by 1), let it be substituted in 2, so
that we will have non-B is B, which is false by §6. (Leibniz, Specimina
calculi rationalis §17)
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In this proof by reductio, the conclusion that non-B is A is false is derived from the premise
A is B and the additional premise that non-B is B is false.70 In our notation, the conclusion
of this proof is formulated as ‘CON(AaB)’ and the second premise as ‘CON(BaB)’. Thus,
the claim established by Leibniz in the passage is:

Ba A, CON(BaB) � CON(AaB).

Leibniz proves this claim as follows:71

1 Ba A premise

2 CON(BaB) premise

3 AaB assumption for reductio

4 Ba A reiteration: 1

5 BaB Barbara: 3, 4

6 CON(AaB) reductio: 2, 3–5

In this proof, the conclusion of the reductio subproof stated in line 5 is derived not only
from the assumption for reductio in line 3, but also from the original premise in line 1
(which is reiterated in line 4). The proof thus relies on the following rule of inference:

Ba A, AaB � BaB

Ba A, CON(BaB) � CON(AaB)

Since the antecedent of this rule is an inference from two premises, Ba A and AaB, the
rule is not an instance of the single-premise version of reductio discussed above. Instead,
it is an instance of the following two-premise version of reductio:

ϕ,ψ � χ
ϕ, CON(χ) � CON(ψ)

While Leibniz does not explicitly state this two-premise version of the rule in the Spec-
imina, he does endorse this version of reductio elsewhere, in an essay titled De formis
syllogismorum mathematice definiendis:

In the method of reductio, we use the following principle: if the conclu-
sion is false (i.e., if its contradictory is true), and one of the premises is
true, then the other premise must necessarily be false, or, its contradic-
tory must necessarily be true. The method of reductio, therefore, assumes

70 Leibniz takes this latter premise to be a consequence of the assumption that B is a ‘possible’ term
or, as Leibniz puts it, ‘a being’ (ens); see §§1–2 and §6 of the Specimina. Leibniz often reasons
under the assumption that the terms appearing in a given proposition are possible. In Leibniz’s
proof by reductio, this assumption is in place for the term B.

71 When, in this proof, Leibniz writes that ‘B can be substituted for A’, he has in mind an application
of the syllogistic mood Barbara, whereby the premise Ba A licenses the substitution of B for A
when A occurs as the predicate of an a-proposition. Accordingly, in §17 of the Specimina, Leibniz
describes the application of Barbara as ‘one-sided substitution’ (substitutio unilateralis); see also
A VI.4 143–5, 154, 275, 672.
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the principle of contradiction, but a contradiction obtains between a uni-
versal affirmative and particular negative, or, if the A is false then the
O is true, and vice versa; likewise between the universal negative and
the particular affirmative, or, if the E is false then the I will be true, and
vice versa. (Leibniz, De formis syllogismorum mathematice definiendis,
A VI.4 499)

It is clear from this passage that Leibniz intends the rule of reductio to apply not only
to arguments with a single premise, but to two-premise arguments as well.72 The two-
premise version of reductio, however, cannot be derived from the categorical principles
stated above. The most obvious way to establish this version of reductio is to posit the
following two-premise version of the principle of propositional a-predication:

ϕ,ψ � χ if and only if ϕ � [χ ]a [ψ]

Given this version of the principle, the proof of the two-premise rule of reductio proceeds
just as before. Suppose that ϕ,ψ � χ . By the two-premise version of propositional a-
predication, this implies ϕ � [χ ]a [ψ]. We then have the following derivation:

1 ϕ

2 [χ ]a [ψ] ϕ � [χ ]a [ψ]: 1

3 [ψ] a [χ ] contraposition: 2

4 [CON(ψ)] a [ψ] propositional privation

5 [χ ] a [CON(χ)] propositional privation

6 [CON(ψ)] a [CON(χ)] Barbara: 3, 4, 5

This derivation shows that ϕ � [CON(ψ)] a [CON(χ)]. Hence, by the two-premise version
of propositional a-predication, we have ϕ, CON(χ) � CON(ψ).

In his various statements of propositional a-predication, Leibniz does not distinguish
between the one-premise version of the principle and its two-premise counterpart. Nev-
ertheless, given the role that this principle plays in Leibniz’s justification of the two-
premise version of reductio, it seems clear that he endorses the two-premise version of
propositional a-predication. More generally, once the principle is allowed to apply not
only to arguments with a single premise but also to arguments with two premises, there is
no reason to object to the application of the principle to arguments with any finite number
of premises.73 Thus, Leibniz’s commitment to the one-premise and two-premise versions

72 After his statement of the two-premise version of reductio in this passage, Leibniz proceeds to
utilize this version of the rule to derive the syllogistic moods Baroco and Bocardo from Barbara
(A VI.4 500). For similar applications of the two-premise version of reductio, see A VI.4 144,
167, 815, C 208, 304–9.

73 The shift from the one-premise to the two-premise version of propositional a-predication carries
significant consequences for the interpretation of a-propositions of the form [ψ]a [ϕ] (see n.
106 below). In the notation of Fitch-style proofs, the two-premise version of propositional a-
predication licenses a rule of reiteration whereby a single proposition appearing in a superordinate
proof can be reiterated within a subproof of ψ from ϕ used to establish [ψ]a [ϕ]. By contrast, the
shift from the two-premise to the multi-premise version of propositional a-predication is much
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of propositional a-predication can naturally be captured by the following more general
version of the principle, in which � is any finite set of propositions:

�, ϕ � ψ if and only if � � [ψ]a [ϕ].

All told, then, the rule of reductio employed by Leibniz in the Specimina can be derived
from the following principles:

Barbara: AaB, BaC � AaC

contraposition: AaB �� Ba A

propositional privation: � [CON(ϕ)] a [ϕ] and � [ϕ] a [CON(ϕ)]

propositional a-predication: �, ϕ � ψ iff � � [ψ]a [ϕ]

Apart from the syllogistic mood Barbara, which Leibniz takes for granted in the Specimina,
his derivation of reductio relies on the principles of contraposition, propositional privation,
and propositional a-predication. These are exactly the three principles that Leibniz high-
lights in §§16–17 of the Specimina.

As for the law of contraposition, Leibniz does not regard it as a primitive of his system
but undertakes to derive it from more fundamental principles. In the Specimina, he makes
a few attempts to provide such a derivation, none of which is ultimately successful.74

Leibniz makes more significant progress toward a proof of contraposition in the Generales
inquisitiones. In §99 of this treatise, he offers the following proof of contraposition:75

A is B is the same as A is non-non-B (by §96), and this is the same (by
§87) as No A is non-B, that is, No non-B is A (by the conversion of the
universal negative), which (by §87) is the same as Every non-B is non-A
= A is B. Q.E.D. (Leibniz, Generales inquisitiones §99)

In the first sentence of this passage, Leibniz infers the a-proposition Ba A from Ba A. This
inference relies on the principle of double privation, which Leibniz states in §96 and which
can be represented by the following two laws:76

� Aa A � Aa A.

less significant, since it does not pertain to the question of whether a proposition can be reiterated
into a subproof, but only to that of how many propositions can be reiterated.

74 Leibniz abandons his first attempt to prove contraposition in §17 of the first part of the Specimina
(A VI.4 809); see Lenzen 1986: 32, Schupp 2000: 185–6 n. 29, and n. 60 above. He makes a
new attempt at such a proof in §22 of the second part of the Specimina (A VI.4 813). This latter
attempt fails because it relies on the assumption that A is not B entails A is non-B. As Leibniz
points out elsewhere, this assumption is not valid (GI §92); cf. Schupp 2000: xxxviii and 191–2.
For Leibniz’s various attempts to establish contraposition in these and other passages, see Lenzen
1986: 13–14 and 27–32, 1988: 63–4.

75 In §§93–4, Leibniz attempts to prove contraposition by means of the method of reductio ad
absurdum. In §95, he expresses dissatisfaction with this way of establishing contraposition and
seeks out an alternative proof (which he supplies in §99). Leibniz’s dissatisfaction with his earlier
proof by reductio is perhaps not surprising given the essential role that contraposition plays in his
justification of reductio in the Specimina.

76 In §96, Leibniz asserts that the terms A and A coincide (see also GI §2, §96, §171.4, §189.2,

§198.3, A VI.4 807, 811). This is equivalent to affirming the pair of a-propositions Aa A and

Aa A (see n. 69 above).
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Leibniz proceeds to identify the proposition Ba A with the e-proposition BeA, which he
expresses by the phrase ‘No A is non-B’. This is justified by a traditional principle of
categorical logic which is known as obversion and is stated by Leibniz in §87 as follows:77

No A is B is the same as A is non-B . . . . We thus have a transition between
infinite affirmatives and negatives.78 (Leibniz, Generales inquisitiones
§87)

In our notation, the principle of obversion is expressed by the following bidirectional rule
of inference:

BeA �� Ba A.

A version of this rule is endorsed by Aristotle in the De interpretatione, when he states
that the proposition No non-man is just is equivalent to Every non-man is non-just.79 More
detailed treatments of obversion were given by Neoplatonic authors in late antiquity, who
referred to the rule as ‘the canon of Proclus’.80 Obversion figured prominently in scholastic
systems of categorical logic and is often invoked by Leibniz in his logical writings.81

In addition to the principles of double privation and obversion, Leibniz’s proof of con-
traposition in §99 of the Generales inquisitiones also relies on the rule of e-conversion,
which he refers to as ‘the conversion of the universal negative’. Thus, Leibniz’s proof of
contraposition proceeds as follows:

1 Ba A premise

2 BaB double privation

3 Ba A Barbara: 1, 2

4 BeA obversion: 3

5 AeB e-conversion: 4

6 AaB obversion: 5

77 The principle of obversion is also stated by Leibniz at GI §97–8, §190, A VI.4 126, C 230, 301.
78 By ‘infinite affirmatives’ Leibniz means a-propositions with a privative predicate term (see GI

§80). This terminology derives from Aristotle’s characterization of privative terms as ‘indefinite’
(ἀόριστον); De int. 2 16a29–32, 3 16b12–15, 10 19b5–12, 20a31–6.

79 De int. 10 20a39–40; see Soreth 1972: 413–6, Whitaker 1996: 148, Weidemann 2014: 366–7.
80 The canon of Proclus is described by the Neoplatonic commentator Stephanus as follows:

‘Aristotle demonstrated with examples which propositions follow from which, but Proclus gives a
general method for finding these propositions. The method is as follows: if a proposition is given,
keep the same subject term and the same quantity, but change the quality and the predicate term.
The quality you change as follows: if the given proposition is affirmative, make it negative, and
conversely if it is negative, make it affirmative. The predicate term you change as follows: if it is
definite, make it indefinite, and conversely if it is indefinite, make it definite’ (Stephanus In De
int. 46.24–32). Similarly, Ammonius In De int. 181.30–182.25; cf. Soreth 1972: 410–11 and 422,
Weidemann 2014: 366–7, Helmig 2017: 189.

81 For a discussion of the role that obversion plays in Leibniz’s logic, see Lenzen 1986: 9–14. For
the role played by obversion in scholastic logic, see, e.g., Parsons 2014: 75–6. Some medieval
logicians rejected the e-a-direction of obversion (i.e., BeA � Ba A) for reasons relating to the
problem of existential import; see, e.g., Buridan, Treatise on Consequences Book 1, Chapter 8,
17th Conclusion (cf. n. 130 below).

https://doi.org/10.1017/S1755020318000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000266


THE PERIPATETIC PROGRAM IN CATEGORICAL LOGIC 169

Given this proof of contraposition from e-conversion, obversion, and double privation,
Leibniz’s derivation of the rule of reductio in the Specimina calculi rationalis can be seen
to rely on the following six principles:

Barbara: AaB, BaC � AaC

e-conversion: AeB � BeA

obversion: AeB �� AaB

double privation: � Aa A and � Aa A

propositional privation: � [CON(ϕ)] a [ϕ] and � [ϕ] a [CON(ϕ)]

propositional a-predication: �, ϕ � ψ iff � � [ψ]a [ϕ]

These six principles together entail the rule of reductio. At the same time, it should be
noted that the operation CON( · · · ) appearing in the principle of propositional privation has
so far been left undefined. Consequently, it has not yet been shown whether and, if so, how
the rule of reductio can be given a general and schematic formulation in the language of
categorical logic. To achieve this further end, we must find a way of defining the operation
CON( · · · )within the object language of categorical logic. As we shall see, Leibniz’s theory
of propositional terms provides an elegant solution to this problem.

§4. The syntax of Leibniz’s categorical calculus. Leibniz’s derivation of the rule
of reductio in the Specimina calculi rationalis does not rely on any specific account of
the operation CON( · · · ), which maps each categorical proposition to its contradictory.
Nonetheless, as it turns out, the principles employed by Leibniz in this derivation suffice
to determine an explicit definition of the operation CON( · · · ) within the object language
of his categorical logic. Specifically, these principles entail that, for any proposition ϕ, its
contradictory CON(ϕ) is provably equivalent to the a-proposition [ϕ] a [ϕ]. To see this, we
first observe that, given the principles listed above, [ϕ] a [ϕ] can be derived from CON(ϕ)
as follows:

1 CON(ϕ) premise

2 ϕ assumption for propositional a-predication

3 CON(ϕ) reiteration: 1

4 [CON(ϕ)] a [ϕ] propositional a-predication: 2–3

5 [ϕ] a [ϕ] Barbara: 4, propositional privation

Conversely, CON(ϕ) can be derived from [ϕ] a [ϕ] as follows:82

82 This derivation employs a variant of the rule of reductio according to which ϕ,ψ � CON(χ)
entails ϕ, χ � CON(ψ). This variant of reductio can be established from Leibniz’s categorical
principles in the same way as the rule of reductio stated above, according to which ϕ,ψ � χ
entails ϕ, CON(χ) � CON(ψ).
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1 [ϕ] a [ϕ] premise

2 [CON(ϕ)] a [ϕ] Barbara: 1, propositional privation

3 ϕ assumption for reductio

4 [CON(ϕ)] a [ϕ] assumption for reductio

5 ϕ reiteration: 3

6 CON(ϕ) propositional a-predication: 4, 5

7 CON([CON(ϕ)] a [ϕ]) reductio: 3, 4–6

8 CON(ϕ) reductio: 2, 3–7

Thus, the principles employed by Leibniz in his derivation of reductio entail that, for any
categorical proposition ϕ, CON(ϕ) is provably equivalent to the a-proposition [ϕ] a [ϕ].

The Fitch-style notation employed in the above two proofs encodes a number of implicit
structural assumptions concerning the nature of the derivability relation �. For example,
the representation of proofs in sequential form encodes a commitment to the rule of cut,
which licenses the construction of complex derivations through the consecutive application
of primitive rules of inference. However, not all of the structural rules implicit in the Fitch-
style notation are needed to derive the equivalence of CON(ϕ) and [ϕ] a [ϕ]. In fact, the
only structural rule needed to establish this equivalence is the following weak rule of
cut:83

If ϕ � ψ and � ϕ, then � ψ .

When this weak rule of cut is added to Leibniz’s categorical principles stated above, the
following is a theorem of the resulting calculus:84

CON(ϕ) �� [ϕ] a [ϕ].

This theorem provides us with an explicit definition of the operation CON( · · · ) in the
object language of Leibniz’s categorical calculus. With this definition in hand, the rule of
reductio can be formulated as follows:

ϕ,ψ � χ
ϕ, [χ ] a [χ ] � [ψ] a [ψ]

This formulation of reductio is fully general in that it comprehends all possible applications
of reductio in the language of Leibniz’s categorical logic. At the same time, the formulation
is schematic in that its object-language instances are obtained simply by replacing the
schematic letters ‘ϕ’, ‘ψ’, and ‘χ ’ with any arbitrary categorical propositions. Hence,
the above formulation of reductio is both general and schematic with respect to an ob-
ject language which includes only categorical propositions and countenances no primitive
propositional operators.

83 This weak rule of cut is a special case of the general rule of cut: if �, ϕ � ψ and � � ϕ, then
� ∪� � ψ .

84 For a proof of this claim, see Theorems 7.25 and 7.26 and the discussion following Theorem 7.26
in the appendix below.
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Of course, this formulation of reductio involves propositional terms, and in this way
goes beyond the syntax of Aristotle’s assertoric syllogistic.85 Nevertheless, the extended
syntax employed by Leibniz in his derivation of reductio remains strictly categorical in
that every proposition is of the form AaB, AeB, AiB, or AoB, where A and B are any
terms, propositional or otherwise. Thus, while the principles of Leibniz’s calculus license
modes of reasoning that are not available in Aristotle’s assertoric syllogistic, the increased
expressive and deductive power of Leibniz’s system is not due to the positing of a new,
noncategorical kind of proposition. Instead, it is due to the positing of a new kind of term
along with the logical principles governing its operation. As we have seen, these principles
are strong enough not only to justify the rule of reductio, but also to provide a general
and schematic formulation of this rule within categorical logic. In this way, Leibniz’s
theory of propositional terms provides the basis for a compelling response to the charge,
raised at various points throughout the centuries, that the method of reductio ad absurdum
presupposes laws of propositional logic.

In addition, Leibniz’s theory of propositional terms allows for a significant simplification
of the standard syntax of categorical logic. Recall that Aristotle’s assertoric syllogistic
countenances four kinds of primitive proposition, namely, a-, e-, i-, and o-propositions.
Leibniz’s theory allows us to eliminate e-, i-, and o-propositions from the list of syntac-
tic primitives by reducing them all to a-propositions. For example, using the categorical
definition of CON( · · · ), an o-proposition AoB can be defined as CON(AaB), i.e.:

[AaB] a [AaB].

In this way, o-propositions can be eliminated from the list of syntactic primitives by defin-
ing them as a-propositions relating propositional terms and their privatives. Furthermore,
as Leibniz points out, the law of obversion can be used to reduce e- to a-propositions by
defining AeB as AaB.86 Thus, e-propositions can be eliminated as well, and the law of
obversion can be omitted from the list of Leibniz’s categorical principles. Finally, AiB can
be defined as CON(AeB), i.e.:

[ AaB] a [ AaB].

In this way, by utilizing Leibniz’s device of propositional terms, e-, i-, and o-propositions
can all be defined as a-propositions relating complex terms.

Although this specific way of reducing i- and o- to a-propositions is not explicitly
discussed by Leibniz, it was clearly a theoretical ambition of his to reduce all categorical
propositions to a-propositions. This ambition is part of Leibniz’s broader commitment to
his conceptual containment theory of truth, according to which the truth-conditions of any
proposition consist in one term being conceptually contained in another. As Leibniz puts

85 While the assertoric syllogistic developed by Aristotle in Prior Analytics 1.1–7 does not
countenance propositional terms, it is clear from the rest of the Analytics that Aristotle intended
his syllogistic to be applicable not only to terms such as animal and rational but also to
a wider range of terms of varying complexity. Indeed, it is arguable that Aristotle would
even have been open to the introduction of propositional terms in his broader theory of the
categorical syllogism. Thus, Mendell argues that, in the application of his syllogistic, ‘Aristotle
sometimes allows propositions as terms . . . . The ease with which one can nominalize any
sentence in Greek suggests that a proposition can and does function as a term’ (Mendell
1998: 176).

86 C 301, A VI.4 126, 223, 787 n. 52, GI §190; see Adams 1994: 60.
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it in the Calculus consequentiarum, ‘in every proposition the predicate is said to inhere in
the subject’.87 Similarly, he writes in §132 of the Generales inquisitiones:

Every true proposition can be proved. For since, as Aristotle says, the
predicate inheres in the subject, or, the concept of the predicate is in-
volved in the concept of the subject when this concept is perfectly un-
derstood, then surely it must be possible for the truth to be shown by the
analysis of terms into their values, or, those terms which they contain.
(Leibniz, Generales inquisitiones §132)

As this passage makes clear, Leibniz took the conceptual containment theory of truth to
apply to all true propositions. Since, for Leibniz, conceptual containment between terms
is expressed by a-propositions, this implies that every proposition must be analyzable into
an a-proposition.88 This is unproblematic for propositions of the form AeB since, as we
have just seen, e-propositions can be reduced to a-propositions by means of the law of
obversion.89 It is less clear how to reduce i-propositions to a-propositions, yet Leibniz
leaves no doubt that the conceptual containment theory of truth is meant to apply to i-
propositions as well:

The predicate or consequent always inheres in the subject or antecedent,
and the nature of truth in general or the connection between the terms of a
statement, consists in this very thing, as Aristotle also observed. . . . This
is true for every affirmative truth, universal or particular, necessary or
contingent, and in both an intrinsic and extrinsic denomination. And here
lies hidden a wonderful secret. (Leibniz, Principia logico-metaphysica,
A VI.4 1644)

In this passage, Leibniz does not provide any specific account of how the conceptual
containment theory of truth can be extended to cover i-propositions. He does put forward
one proposal for how this can be done in the Calculus consequentiarum, suggesting that the
proposition AiB be reduced to the claim that there exists some species of B which contains
A.90 This proposal, however, presents some difficulties. For one thing, it is unclear how to
guarantee the validity of the rule of i-conversion on this interpretation. More importantly,
the proposal involves an existential quantification over the species of B, and existential
quantifications are not expressible in the language of Leibniz’s categorical calculus in any
straightforward way.91 By contrast, the above definitions of i- and o-propositions utilizing

87 A VI.4 223.
88 See Adams 1994: 57–63; similarly, Parkinson 1965: 6 and 33.
89 Leibniz appeals to obversion in order to apply the conceptual containment theory of truth to e-

propositions at A VI.4 223.
90 A VI.4 223; see also GI §190.
91 In the Generales inquisitiones, Leibniz explores the possibility of expressing existential

quantifications in the language of his calculus by means of what he calls ‘indefinite’ letters
(GI §§16–31; see Lenzen 1984a: 7–13, 2004: 47–50, Hailperin 2004: 329). However, the use
of indefinite letters in the calculus leads to complications analogous to those which arise in
connection with the elimination of existential quantifiers in modern quantificational logic (see,
e.g., GI §§21–31). Leibniz was aware of some of these complications and was never entirely
satisfied with the use of indefinite letters, indicating that it would be preferable to omit them from
the language of his calculus (see GI §162 in conjunction with §128 and A VI.4 766 n. 35; cf.
Schupp 1993: 153, 168, and 182–3). In the absence of indefinite letters, the language of Leibniz’s
calculus lacks the resources to express existential quantification.
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the device of propositional terms avoid these difficulties. In particular, these definitions
allow for the reduction of i- and o- to a-propositions to be carried out in a purely categorical
language without existential quantification.92

Leibniz’s categorical principles thus suffice to underwrite a systematic reduction of
e-, i-, and o-propositions to a-propositions. In this way, these principles help to vindicate
Leibniz’s conceptual containment theory of truth by ensuring that this theory is applicable
to all categorical propositions countenanced by the standard syntax of Aristotle’s asser-
toric syllogistic. In fact, as we shall see, these principles are strong enough to underwrite
an even more comprehensive implementation of the conceptual containment theory of
truth, one which covers not only categorical propositions but hypothetical propositions
as well.

§5. Propositional reasoning in Leibniz’s categorical calculus. The principles
posited by Leibniz in his categorical proof of reductio imply that all e-, i-, and
o-propositions can be reduced to a-propositions. Hence, the categorical calculus employed
by Leibniz in this proof can be formulated, without any loss of expressive power, in a
language in which the only primitive propositions are those of the form AaB. The language
of Leibniz’s calculus can thus be defined as follows:

DEFINITION 5.1. Given a countably infinite set of simple terms, the terms and propositions
of the language of Leibniz’s categorical calculus are defined as follows:93

1. Every simple term is a term.

2. If A is a term, then A is a term.

3. If A and B are terms, then AaB is a proposition.

4. If AaB is a proposition, then [AaB] is a term.

In this language, the operation CON( · · · ) can be defined as the function mapping any
proposition ϕ to the a-proposition [ϕ] a [ϕ]. By means of this operation, the other three
kinds of categorical proposition can be defined as follows:

DEFINITION 5.2. For any terms A and B:

1. CON(AaB) is the proposition [AaB] a [AaB].

2. AeB is the proposition AaB.

3. AiB is the proposition CON(AeB).

4. AoB is the proposition CON(AaB).

Based on these definitions, we are now in a position to give a precise formulation of
Leibniz’s categorical calculus. In doing so, we take a ‘calculus’ to be a binary relation

92 Leibniz’s categorical principles thus provide a solution to the recalcitrant problem of how to
define i- and o-propositions in a purely affirmative categorical language. By contrast, Boole’s
(1854: 226–31) attempt to define i- and o-propositions in an affirmative categorical language
using ‘indefinite symbols’ gives rise to various difficulties and was subject to acute criticism by
Peirce (1873: 371–4, 1880: 22), Venn (1881: 161–70 and 306–7), and Schröder (1891: 91–5); cf.
Brady 1997: 174–6, Sánchez-Valencia 2004: 432–42 and 470–2.

93 The simple terms are to be chosen in such a way that no simple term is identical with any other
term or proposition. Following Leibniz, we assume that there are infinitely many simple terms (A
VI.4 271).
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between sets of propositions and single propositions. To indicate that this relation obtains
between a set of propositions � and a proposition ϕ, we write � � ϕ. As usual, � ϕ is
shorthand for ∅ � ϕ. Moreover, we use ψ1, . . . , ψn � ϕ as shorthand for {ψ1, . . . , ψn} �
ϕ, and �,ψ1, . . . , ψn � ϕ as shorthand for � ∪ {ψ1, . . . , ψn} � ϕ.

The six principles of Leibniz’s categorical calculus identified above are: Barbara,
e-conversion, obversion, double privation, propositional privation, and propositional
a-predication. Given the above definition of e-propositions, the principle of obversion is
superfluous and can be omitted from this list. In addition to the five remaining principles,
we must posit structural rules which regulate how theorems are to be derived from these
principles in the calculus. A basic structural rule that any calculus must satisfy in order
to allow for sequential proofs is the weak rule of cut stated above. While Leibniz does
not explicitly assert this rule, it is clear that he takes it for granted throughout his logical
writings. In addition, Leibniz endorses the following structural rule of weakening:94

ϕ,ψ � ϕ.
In endorsing this rule, Leibniz parts ways with Aristotle, who rejects weakening on the
grounds that the conclusion of a syllogism must not appear among its premises.95 We
will explore the consequences of siding with Aristotle in rejecting this rule below, but for
now we follow Leibniz and posit weakening as a structural rule. All told, then, Leibniz’s
categorical calculus consists of the following principles:

DEFINITION 5.3. Leibniz’s categorical calculus, �, is the smallest relation between sets of
propositions and propositions which satisfies the following principles:

Barbara: AaB, BaC � AaC

e-conversion: AeB � BeA

double privation: � Aa A and � Aa A

propositional privation: � [CON(ϕ)] a [ϕ] and � [ϕ] a [CON(ϕ)]

propositional a-predication: �, ϕ � ψ iff � � [ψ] a [ϕ]

weakening: ϕ,ψ � ϕ
weak cut: If ϕ � ψ and � ϕ, then � ψ .

Here, A, B,C are any terms; ϕ,ψ any propositions; and � any finite set of propositions.

In referring to the calculus constituted by these principles as ‘Leibniz’s categorical
calculus’, we do not mean to imply that these are the only categorical principles posited
by Leibniz in his logical writings. For example, in many of his essays, Leibniz posits
additional categorical principles that pertain to the logic of composite terms such as ra-
tional animal. The introduction of composite terms along with the principles governing
their operation significantly increases the expressive and deductive power of Leibniz’s

94 Leibniz states this rule at A VI.4 149.
95 See Pr. An. 1.1 24b19, Top. 1.1 100a25–6, Soph. Ref. 5 167a25–6, 6 168b25–6; cf. Alexander In

Pr. An. 18.12–20.29, Ammonius In Pr. An. 27.34–28.20, Frede 1974: 20–1, Bolton 1994: 110–12,
Barnes 2007: 487–90, Striker 2009: 80.
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calculus.96 Since, however, these terms play no role in Leibniz’s derivation of reductio
in the Specimina calculi rationalis, for the purposes of the present discussion we set them
aside. Our subsequent remarks concerning the logic of propositional terms apply equally
well to the extended version of Leibniz’s calculus which includes composite terms.

By utilizing the device of propositional terms, Leibniz’s categorical calculus is capable
of simulating operations of propositional logic. For example, for any proposition ϕ, its
propositional negation, ¬ϕ, can be defined as the categorical proposition CON(ϕ), i.e.,
[ϕ] a [ϕ]. Moreover, following Theophrastus’ analogy, the conditional ϕ → ψ can be de-
fined as the categorical proposition [ψ] a [ϕ]. By means of these definitions, any complex
propositional formula involving negation and implication is expressible in the language of
Leibniz’s categorical calculus. For example, the propositional formula ¬(ϕ → ¬ψ) → ψ
just is the categorical proposition:

[ψ] a [CON([CON(ψ)] a [ϕ])].

Thus, the language of Leibniz’s categorical calculus has all the expressive power of the
implication-negation fragment of the language of propositional logic. This naturally gives
rise to the question as to what kind of propositional logic is determined by the principles of
Leibniz’s categorical calculus. We have already seen, for example, that the rule of reductio
is derivable in this calculus. But apart from this rule, what other laws of propositional
logic can be derived in the calculus? The answer is: all the laws of classical propositional
logic. This can be seen from the following theorem, which states that all the principles
of Łukasiewicz’s axiomatization of classical propositional logic are derivable in Leibniz’s
categorical calculus:

THEOREM 5.4. For any propositions ϕ and ψ , let ¬ϕ be the proposition CON(ϕ), and
ϕ → ψ the proposition [ψ] a [ϕ]. Then the following claims hold in Leibniz’s categorical
calculus:

Łukasiewicz 1: � ϕ → (ψ → ϕ)

Łukasiewicz 2: � (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

Łukasiewicz 3: � (¬ϕ → ¬ψ) → (ψ → ϕ)

modus ponens: ϕ → ψ , ϕ � ψ
reflexivity: ϕ � ϕ
monotonicity: If � � ϕ, then � ∪� � ϕ.

cut: If �, ϕ � ψ and � � ϕ, then � ∪� � ψ .

Here, ϕ,ψ, χ are any propositions, and �,� any finite sets of propositions.

It is not difficult to verify that each of these principles is derivable in Leibniz’s cate-
gorical calculus. First, consider the structural rules of reflexivity, monotonicity, and cut.
Reflexivity is an immediate consequence of the rule of weakening.97 Moreover, the full

96 For example, these additional principles are strong enough to ensure that the terms of Leibniz’s
calculus constitute a Boolean algebra; see Lenzen 1984b: 200–2, Malink & Vasudevan 2016:
707–9.

97 Since we defined a calculus to be a relation between sets (as opposed to sequences) of propositions
and propositions, reflexivity can be expressed as {ϕ, ϕ} � ϕ, which is an instance of weakening.
Leibniz asserts reflexivity at A VI.4 149.
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rule of cut stated in the theorem can be derived from the rule of weak cut in Leibniz’s
categorical calculus.98 This is due to the fact that, given propositional a-predication, the
syllogistic mood Barbara in effect functions as a method for cutting propositional terms.99

Finally, given the full rule of cut, monotonicity follows from weakening.100

Next, consider the logical principles of Łukasiewicz’s axiomatization of classical propo-
sitional logic. Modus ponens is derivable in Leibniz’s categorical calculus from reflexivity
and propositional a-predication. Łukasiewicz 1 follows from weakening by two appli-
cations of propositional a-predication. Łukasiewicz 2 is likewise derivable by repeated
applications of propositional a-predication, cut, and reflexivity.101 Finally, for Łukasiewicz
3, it suffices to establish that:

¬ϕ → ¬ψ � ψ → ϕ.

The proof of this theorem is as follows:

1 [CON(ψ)] a [CON(ϕ)] premise

2 [ψ] a [ϕ] Barbara: 1, propositional privation

3 [ϕ] a [ψ] e-conversion: 2

4 [ϕ] a [ψ] Barbara: 3, double privation

This last proof highlights the role that the syllogistic principles of Barbara and e-conversion
play in establishing the laws of classical propositional logic.

Thus, Leibniz’s categorical calculus validates all the laws of classical propositional
logic. Conversely, these are the only laws of propositional logic that are validated by the
calculus.102 In this sense, Leibniz’s categorical calculus is both sound and complete with

98 See Theorem 7.23 below.
99 Thus, for example, Barbara can be used to establish the following special case of cut: if ϕ � ψ and
χ � ϕ, then χ � ψ . To see this, suppose ϕ � ψ and χ � ϕ. Given propositional a-predication,
we have � [ψ] a [ϕ] and � [ϕ] a [χ ]. By Barbara, propositional a-predication, and weak cut, it
follows that � [ψ] a [χ ] (see Theorem 7.6 below). Hence, by propositional a-predication, χ � ψ .

100 First, we establish monotonicity for the case in which � is empty and � is the singleton set {ψ}:
if � ϕ, then ψ � ϕ. By weakening, we have ϕ,ψ � ϕ. Hence, given � ϕ, it follows by cut
that ψ � ϕ. Next, we establish monotonicity for the case in which � is nonempty and � is the
singleton set {ψ}: if � � ϕ and � �= ∅, then � ∪ {ψ} � ϕ. Let χ be any proposition in �. By
weakening, we have χ,ψ � χ . Hence, given � � ϕ, it follows by cut that � ∪ {ψ} � ϕ. The
rule of monotonicity stated above, in which � and � are any finite sets of propositions, follows
immediately from these two cases.

101 By reflexivity and propositional a-predication, we have ϕ → ψ, ϕ � ψ and ψ → χ,ψ � χ .
Hence, by cut: ψ → χ, ϕ → ψ, ϕ � χ . Moreover, by reflexivity and propositional a-predication,
we have ϕ → (ψ → χ), ϕ � ψ → χ . Hence, by cut: ϕ → (ψ → χ), ϕ → ψ, ϕ � χ .
Łukasiewicz 2 follows by three applications of propositional a-predication.

102 This is because classical propositional logic is Post-complete in the sense that it has no consistent
schematic extension. Thus, if the categorical calculus were to validate any non-classical law
of propositional logic, it would be inconsistent in the sense that every proposition would be
derivable. To see that the categorical calculus is not inconsistent in this sense, it suffices to
construct a semantics with respect to which the calculus is sound (and in which some propositions
are not satisfied). One such semantics is given in n. 103 below.
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respect to classical propositional logic.103 In other words, the propositional logic generated
by Leibniz’s categorical calculus is exactly classical propositional logic.

This result entails that all the standard connectives of classical propositional logic are
definable in the language of Leibniz’s categorical calculus. For example, if the conjunction
of two propositions, ϕ ∧ ψ , is defined as ¬(ϕ → ¬ψ), i.e.:

CON([CON(ψ)] a [ϕ]),

this definition validates the classical laws of conjunction, such as ϕ ∧ ψ � ϕ and ϕ,ψ �
ϕ ∧ ψ . Similar categorical definitions can be given for the other connectives of classical
propositional logic. Since every proposition in the language of Leibniz’s categorical cal-
culus is of the form AaB, this means that all hypothetical propositions can be reduced to
a-propositions. As a result, Leibniz’s conceptual containment theory of truth applies not
only to all categorical propositions but to all hypothetical propositions as well. In this way,
Leibniz manages to achieve the aim of the Peripatetic program of reducing hypothetical to
categorical logic, vindicating his claim that:

absolute [i.e., categorical] and hypothetical truths have one and the same
laws and are contained in the same general theorems, so that all syllo-
gisms become categorical. (Leibniz, Generales inquisitiones §137)

The fact that Leibniz’s categorical calculus validates all the laws of classical proposi-
tional logic bears on a dispute in the literature concerning the nature of the conditional
expressed by propositions of the form [ϕ] a [ψ] in Leibniz’s logic. The two main positions
in this dispute have their clearest articulation in the work of Héctor-Neri Castañeda and
Wolfgang Lenzen. Castañeda argues that the propositional terms of Leibniz’s calculus
are subject to all the laws of classical propositional logic.104 Consequently, he maintains
that the relation of a-predication when applied to propositional terms obeys the laws of

103 More generally, Leibniz’s categorical calculus is both sound and complete with respect to the class
of partially ordered sets endowed with (i) a unary operation of negation obeying the laws of double
negation and contraposition, and (ii) a designated element which is less than its own negation.
Specifically, let an interpretation of the language of Leibniz’s categorical calculus consist of an
algebraic structure 〈A,≤,′ ,⊥〉 and a functionμmapping each term of the language to an element
of A, such that:

1. 〈A,≤〉 is a partially ordered set.
2. ′ is a unary operation on A such that, for any x, y ∈ A: (i) x ′′ = x , and (ii) if x ≤ y, then

y′ ≤ x ′.
3. ⊥ ∈ A such that ⊥ ≤ �, where � is the element ⊥′.
4. For any term A of the language: μ(A) = μ(A)′.
5. For any terms A, B of the language:

μ([AaB]) =
{ � if μ(B) ≤ μ(A),

⊥ otherwise.

We say that a proposition AaB is satisfied in an interpretation (〈A,≤,′ ,⊥〉, μ) iff μ(B) ≤ μ(A).
We write � |� ϕ to indicate that there is no interpretation that satisfies every proposition in � but
does not satisfy ϕ. It can then be shown that Leibniz’s categorical calculus is sound and complete
with respect this semantics, i.e.: � � ϕ iff � |� ϕ. For reasons of space, we omit the proof of this
claim.

104 Castañeda 1990: 24–5. A similar view is held by Doull 1991: 21–2.
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material implication. Lenzen, on the other hand, contends that this relation is not material
implication but is instead some weaker relation of strict implication.105

While the position advanced in the present article is in agreement with Castañeda’s view,
it should be acknowledged that there are certain prima facie considerations that speak
in favor of the view adopted by Lenzen. For example, given that Leibniz interprets the
relation of a-predication as conceptual containment, one might doubt whether he would be
willing to accept that, for any two propositional terms, one is conceptually contained in the
other—as is required by the laws of material implication. Leibniz himself does not discuss
the question of whether such laws hold for conceptual containment between propositional
terms. Indeed, he does not offer any account of what it means for one propositional term
to be conceptually contained in another. Nevertheless, there are a number of claims that
Leibniz makes in his logical writings that can help to adjudicate between the differing
accounts put forward by Castañeda and Lenzen.

As we have seen, Leibniz’s derivation of reductio in the Specimina calculi rationalis
relies on the following two-premise version of the principle of propositional a-predication:

ϕ,ψ � χ if and only if ϕ � [χ ] a [ψ].

Using the notation introduced above, this reads:

ϕ,ψ � χ if and only if ϕ � ψ → χ .

While this principle is valid when ‘→’ is interpreted as material implication, it is invalid
when this operator is interpreted as strict implication.106 Thus, the fact that Leibniz is
committed to this principle speaks against interpreting a-predication between propositional
terms as strict implication.

A further consideration that speaks against this interpretation derives from the various
claims that Leibniz makes about negation, falsehood, and contradiction in his logical writ-
ings. On the one hand, Leibniz maintains that ‘a negative statement is nothing other than
that statement which says that the affirmative statement is false’.107 So, for example, ‘Not:
A is B, or A is not B, is the same as: the statement A is B is false’.108 Thus, for Leibniz,
to assert that a proposition ϕ is false just is to assert the negation of that proposition, ¬ϕ.
At the same time, Leibniz defines falsehood for propositions as follows: ‘that proposition
is false which contains opposite propositions, as in � and non-�’.109 In other words, ‘a
falsehood is that which implies a contradiction’.110 Taken together, these claims entail that,
for Leibniz, to assert the negation of a proposition is to assert that that proposition contains
a contradiction. Thus, Leibniz maintains that, for any proposition ϕ, if ¬ϕ is true, then there

105 Lenzen 1987 and 2004: 35–9. A similar view is held by Juniewicz 1987: 51. Kauppi (1960: 259)
goes even further than Lenzen, arguing that the relation of a-predication between propositional
terms fails to obey not only the laws of material implication but those of strict implication as
well. In particular, she argues that the law of explosion, (ϕ ∧ ¬ϕ) → ψ , fails to hold in Leibniz’s
calculus. Kauppi’s argument for this view, however, is not convincing; see Malink & Vasudevan
2017: 153 n. 12.

106 Strict implication does obey the one-premise version of this law: ϕ � ψ if and only if � ϕ → ψ .
However, this one-premise version of the law does not suffice to derive the two-premise version
of reductio which Leibniz clearly intends to establish in §§15–17 of the Specimina.

107 A VI.4 811 n. 6.
108 A VI.4 811; see also GI §5, §32a, §84, A VI.4 807 n. 1, 808.
109 GI §196; similarly, §130b.
110 A VI.4 912.
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is a proposition ψ such that the conditionals ϕ → ψ and ϕ → ¬ψ are both true. While
this claim holds for any interpretation in which ‘→’ is taken to be material implication, it
does not hold in general when this operator is taken to be strict implication.

Now, one piece of evidence adduced by Lenzen that would seem to speak in favor of his
interpretation is Leibniz’s claim that ‘A contains B is a true proposition if A non-B implies
a contradiction’.111 Lenzen argues that, when A and B are taken to be propositions, this
passage asserts the standard definition of strict implication in modal propositional logic,
according to which, for any propositions ϕ and ψ :112

ϕ → ψ if and only if ¬�(ϕ ∧ ¬ψ).
Lenzen’s interpretation is based on the assumption that, when Leibniz says that a propo-
sition ϕ ‘implies a contradiction’, he intends to say not only that it is false but that it is
impossible, i.e., ¬�ϕ. This, however, is not Leibniz’s intended meaning. Recall that, for
Leibniz, ‘a falsehood is that which implies a contradiction’, so that to say that a proposition
implies a contradiction just is to say that that proposition is false.113 In order for a false
proposition to be impossible, on Leibniz’s view, not only must it imply a contradiction, but
it must have the further property that one of the contradictions it implies can be disclosed
through a finite as opposed to an infinite process of analysis. Thus, Leibniz writes:

That term or proposition is false which contains opposites, however they
are proved. That term or proposition is impossible which contains op-
posites that are proved by reduction to finitely many terms. So, A =
AB, if a proof has been produced through a finite analysis, must be
distinguished from A = AB, if a proof has been produced through an
analysis ad infinitum. From this there already results what has been said
about the necessary, the possible, the impossible, and the contingent.
(Leibniz, Generales inquisitiones §130b)

As this passage shows, there are propositions which imply a contradiction, and hence are
false, but are not impossible since the contradictions they imply cannot be revealed through
any finite process of analysis. Thus, contrary to what Lenzen suggests, Leibniz’s claim that
‘A contains B is a true proposition if A non-B implies a contradiction’ does not assert that
ϕ → ψ is true just in case ϕ ∧ ¬ψ is impossible. Instead, it asserts that ϕ → ψ is true just
in case ϕ ∧ ¬ψ is false, which is the usual definition of material implication.114

Independently of these considerations, we have already seen that the laws of material
implication are a direct consequence of the principles posited by Leibniz in his derivation of
reductio in the Specimina calculi rationalis. Consequently, in order to deny that the relation
of a-predication between propositional terms obeys the laws of material implication, at
least one of these principles must be rejected. Lenzen, for example, does not include
any version of the principle of propositional privation in his reconstruction of Leibniz’s
calculus.115 This omission is what makes it possible for Lenzen to interpret a-predication
between propositional terms as non-classical strict implication. By contrast, Castañeda

111 A VI.4 862.
112 Lenzen 2004: 36.
113 See nn. 109 and 110 above.
114 This reading fits well with the formulation of this claim given by Leibniz in §199 of the Generales

inquisitiones: ‘A contains B is the same as A non-B is not true’.
115 See Lenzen 1986, 2004: 35–9.
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endorses all of the principles posited by Leibniz in the Specimina, including propositional
privation, and hence acknowledges that a-predication between propositional terms obeys
the laws of material implication.116

In the subsequent development of the Peripatetic program since Leibniz, a number of
logicians have taken the relation of a-predication between propositional terms to obey the
laws of material implication.117 Like Leibniz, many of these logicians endorse the principle
of propositional privation, or some close variant of it, in their treatment of propositional
terms.118 Admittedly, this does not sit well with the temporal and case-based semantics for
conditionals adopted by some categorical logicians at various points in the history of the
Peripatetic program.119 On these interpretations, a conditional ϕ → ψ is taken to be true
just in case every time, or case, at which ϕ is true is also a time, or case, at which ψ is true.
Assuming that there are propositions which are ‘variable’ in the sense that they are true at
some times, or cases, but not at others, this semantics fails to validate the laws of material
implication.120 Thus, for example, if a proposition ϕ is variable in this sense, it follows
that neither ϕ → ¬ϕ nor ¬ϕ → ϕ is true.121

116 See Castañeda 1990: 23–5. In fact, Castañeda (1990: 23, Axiom 6.2) posits a stronger version
of propositional privation, which applies not only to propositional terms but to non-propositional
terms as well. Consequently, he attributes to Leibniz the view that all terms, propositional and
non-propositional alike, obey the laws of classical propositional logic. This view, however,
conflicts with several claims made by Leibniz concerning the logic of non-propositional terms
(see Malink & Vasudevan 2016: 716–18).

117 For example, Schröder 1891, 1905, Couturat 1914, and van Rooij 2012. In the systems developed
by Schröder and Couturat, [ϕ] a [ψ] is provably equivalent to the Boolean disjunction of [ϕ] and
the complement of [ψ] (see Schröder 1891: 68, Couturat 1914: 85; cf. Peckhaus 1998: 20–1
and 29–30). This guarantees that [ϕ] a [ψ] obeys the laws of material implication. Likewise, van
Rooij (2012: 96–8) establishes that the propositional terms in his system obey the laws of classical
propositional logic.

118 Schröder (1891: 52 and 65, 1905: 484) and Couturat (1914: 84) take propositional terms to
be subject to the law [[ϕ] = 1] = [ϕ]. Moreover, they take this law to apply to all Boolean
compounds of propositional terms (see, e.g., Schröder 1891: 68, Couturat 1914: 85). In particular,
when applied to the privatives of propositional terms, this law states: [[ϕ] = 1] = [ϕ].
Since Schröder and Couturat take [ϕ] = 1 to be equivalent to [ϕ] a [ϕ], this is equivalent to
[[ϕ] a [ϕ]] = [ϕ]. Given that Schröder (1890: 184–5) and Couturat (1914: 6) use ‘=’ to indicate
mutual a-predication, this is exactly the principle of propositional privation. Similarly, van Rooij
(2012: 96–7, Axiom 11) posits a variant of the law [[ϕ] = 1] = [ϕ], in which [ϕ] = 1 is replaced
by a syllogistic i-proposition which ensures that the extension of the term [ϕ] is both nonempty
and a superset of the extension of every propositional term.

119 For categorical logicians who adopt such a temporal or case-based semantics, see nn. 36 and 37
above.

120 For example, this is the case for the temporal semantics of conditionals given by Boole (1854:
163–4). Following Aristotle, Boole admits variable propositions that are true at some times
and false at others. For Aristotle’s acknowledgement of temporally variable propositions, see
Categories 5 4a23–6 and 4a34–4b1; cf. Crivelli 2004: 183–9.

121 By contrast, the laws of material implication can be validated in a temporal or case-based
semantics provided that variable propositions are excluded from consideration. For example,
Schröder (1891: 1–24 and 59–63) adopts a temporal semantics for conditionals in which every
proposition is either always true or never true (see Schröder 1891: 51–2, 63–5, 312; 1905:
484). An alternative strategy is adopted by Sommers, who takes a propositional term [ϕ] to
denote the worlds that are characterized by the proposition ϕ (Sommers 1993: 176–8, Sommers
& Englebretsen 2000: 206–7). Sommers stipulates that the domain of worlds includes only a
single world, namely, the actual one (1993: 179–81, Sommers & Englebretsen 2000: 206–7). In
both Schröder’s temporal semantics and Sommers’s world-based semantics, propositional terms
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Of course, the fact that the principles of Leibniz’s categorical calculus are incompatible
with certain temporal or case-based semantics for conditionals does not pose any prob-
lem for Leibniz. For, nowhere does he suggest that the truth-conditions of a-propositions
relating propositional terms should be taken to consist in the subsumption of one set of
times, or cases, under another. Indeed, Leibniz has good reason for not wanting to commit
himself to such a semantics. Leibniz makes it clear that he intends his calculus to be an
abstract deductive system which admits of multiple interpretations.122 Thus, for example,
he asserts that the terms and propositions of his calculus admit of both extensional and
intensional interpretations.123 On an extensional interpretation, the semantic value of a
term is taken to be the set of individuals falling under that term, and a proposition of
the form AaB is true just in case every individual falling under B also falls under A.
On an intensional interpretation, by contrast, the semantic value of a term is the set of
concepts that are, in some sense, conceptual parts of that term, and AaB is true just in
case every conceptual part of A is also a conceptual part of B.124 In general, Leibniz
tends to prefer intensional over extensional interpretations of his calculus, in part because
the former do ‘not depend on the existence of individuals’.125 Now, both the temporal
and the case-based interpretation outlined above are extensional interpretations, in which
the individuals falling under a propositional term are taken to be either times or cases.
Hence, given Leibniz’s general preference for intensional interpretations of his calculus,
one should not expect his theory of propositional terms to be based on semantic intuitions
deriving from extensional interpretations of this sort.126 More generally, given his desire

can take only one of two values, and hence obey all the laws of classical propositional logic.
In fact, Schröder’s semantics was criticized by Ladd Franklin (1892: 128–30) on the grounds
that it gives rise to the paradoxes of material implication. In particular, she regarded Schröder’s
assumption of omnitemporal bivalence for propositional terms as ‘a most unfortunate restriction.
Why exclude from an Algebra which is intended to cover all possible instances of . . . reasoning
such propositions as “sometimes when it rains I am pleased and sometimes when it rains I am
indifferent”?’ (Ladd Franklin 1892: 129). A similar objection was raised by Peirce in a letter
to Schröder from 1897 (see Houser 1990: 228–9). Elsewhere, however, Peirce himself adopts
an assumption of bivalence for propositional terms, similar to that adopted by Sommers (Peirce
1885: 184 and 187).

122 See, e.g., A VI.4 834–5; cf. Lenzen 2000: 79–82, Mugnai 2017: 175–6.
123 See, e.g., A VI.4 199–200, 247–8, 838–9; cf. Swoyer 1995: 104–6, Bassler 1998: 132–6. In

addition, Leibniz considers geometrical and arithmetical interpretations of his calculus, in which
the semantic value of a term is taken to be a line segment or a number, respectively (see GI
§§113–27).

124 For such intensional interpretations of Leibniz’s calculus, see Lenzen 1983: 145, van Rooij 2014:
188–92.

125 A VI.4 200; see also A VI.4 247–8.
126 This is not to say that the principles of Leibniz’s categorical calculus cannot be validated on

an extensional interpretation of propositional terms. For example, these principles are valid
on the temporal and world-based interpretations given by Schröder and Sommers (see n. 121
above). Another extensional interpretation that validates all the principles of Leibniz’s categorical
calculus is given by Barnes (1983). In this semantics, ‘[ϕ] is the term being such that ϕ produced
from the sentence ‘ϕ’. Plainly, [ϕ] is true of any object just in case that object is such that ϕ; and,
trivially, an object is such that ϕ just in case ϕ. For example, [Verdi is Italian ] is true of Berlioz
just in case Berlioz is such that Verdi is Italian, and Berlioz is such that Verdi is Italian just in
case Verdi is Italian’ (Barnes 1983: 315; with notational adjustments). On this interpretation, the
extension of a propositional term [ϕ] is the set of all individuals in the domain of discourse if the
proposition ϕ is true, and the empty set if ϕ is false. Yet another extensional interpretation that
validates all the principles of Leibniz’s categorical calculus is given by van Rooij (2012: 95–9).
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to construct a calculus which admits of multiple interpretations, he would presumably
want to avoid an appeal to any specific semantic intuitions. This may help to explain
why, in developing his theory of propositional terms, Leibniz is guided not so much by
semantic intuitions but rather by proof-theoretic considerations as to which laws ought
to be derivable in the calculus. A clear example of this is Leibniz’s use of propositional
terms in the Specimina calculi rationalis. In this essay, the principles of propositional
a-predication and propositional privation are posited by Leibniz with the specific aim
of deriving the rule of reductio in his categorical calculus. These principles entail that,
whatever semantic interpretation of propositional terms one might adopt, this interpretation
must validate all the laws of classical propositional logic.

§6. The nonmonotonic categorical calculus. The fact that Leibniz’s categorical cal-
culus validates the laws of classical propositional logic allows us to address a problem in
Aristotle’s assertoric syllogistic which we have not yet discussed, namely, the problem of
existential import. This problem arises from Aristotle’s rule of a-conversion, AaB � BiA.
As it happens, this rule is not derivable in Leibniz’s categorical calculus. Moreover, the rule
cannot be added to the calculus on pain of inconsistency. To see this, consider the result of
applying the rule of a-conversion to propositional terms:

[ψ] a [ϕ] � [ϕ] i [ψ].

In Leibniz’s categorical calculus, the i-proposition [ϕ] i [ψ] is equivalent to ψ ∧ ϕ, i.e., to
the categorical proposition CON([CON(ψ)] a [ϕ]).127 Thus, the rule of a-conversion implies
that, for any propositions ϕ and ψ :

ϕ → ψ � ψ ∧ ϕ.

This schema is not classically valid, and so adding it to the theory of classical propositional
logic leads to inconsistency. Hence, since Leibniz’s categorical calculus contains classical
propositional logic, the calculus is rendered inconsistent by adding to it the rule of a-
conversion.128

Nevertheless, the availability of classical conjunction in the language of Leibniz’s cat-
egorical calculus allows us to formulate an alternative kind of a-proposition for which
the rule of a-conversion does hold. Specifically, this rule will hold for the conjunctive a-
proposition AãB which asserts both that AaB and that B is nonempty in the sense that
BiB. In order to preserve Aristotle’s proof by reductio of moods such as Baroco, we must
also introduce a corresponding disjunctive variant of the o-proposition, AõB, which is just

In this semantics, propositional terms are taken to be 0-ary predicates of individuals. Accordingly,
the extension of a propositional term [ϕ] is the empty set if the proposition ϕ is false, and the
singleton set whose sole member is the empty sequence of individuals if ϕ is true.

127 Given Barbara and propositional privation, we have [ϕ]a[ψ] �� [CON(ϕ)]a[ψ]. Thus, by the
rule of reductio, CON([ϕ]a[ψ]) �� CON([CON(ϕ)]a[ψ]). By definition, the proposition on the
right-hand side is ψ ∧ϕ, and the proposition on the left-hand side is [ϕ] i [ψ] (see Definition 5.2).
See Barnes 1983: 317 n. 2.

128 For this reason, Barnes (1983: 317) concludes that, ‘if the old Peripatetic programme is
unsuccessful, the underlying cause of its failure is to be found in the fact that AaB in Aristotle’s
system entails AiB’. To avoid this difficulty, Barnes (1983: 317–8) proposes to implement the
Peripatetic program in a system of categorical logic which does not include the rule of a-
conversion. Alternatively, van Rooij (2012: 93–6) admits the rule of a-conversion but restricts
it to non-propositional terms in his implementation of the Peripatetic program.
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the contradictory of AãB. Leaving the e- and i-propositions unchanged, we thus arrive at
the following alternative definitions of syllogistic propositions in the language of Leibniz’s
categorical calculus:

AãB is the proposition AaB ∧ BiB
AẽB is the proposition AeB
ÃiB is the proposition AiB
AõB is the proposition ¬(AaB ∧ BiB).

This strategy of rendering a- and o-propositions as propositional compounds has been
employed since medieval times to address the problem of existential import.129 The above
definitions of AãB and AõB, however, are distinctive in that they are formulated in a
purely categorical language that does not include any primitive propositional connectives.
With respect to these alternative definitions, all the rules of Aristotle’s assertoric syllogistic,
including a-conversion and reductio, are derivable in Leibniz’s categorical calculus.130 For
example, the rule of a-conversion, AãB � B̃iA, can be established as follows:

1 AaB ∧ BiB premise

2 AaB conjunction elimination: 1

3 BiB conjunction elimination: 1

4 AiB Darii: 2, 3

5 BiA i-conversion: 4

This proof of a-conversion makes essential use of the classical laws of conjunction
elimination. The validity of these laws in Leibniz’s categorical calculus relies, in turn, on
the structural rule of weakening. Consider, for example, the following proof in the calculus
of ϕ ∧ ψ � ψ :

1. ¬ψ, ϕ � ¬ψ weakening

2. ¬ψ � ϕ → ¬ψ from 1, by propositional a-predication

3. ¬(ϕ → ¬ψ) � ¬¬ψ from 2, by reductio

4. ¬(ϕ → ¬ψ) � ψ from 3, by double negation

Without the structural rule of weakening, conjunction elimination would not be valid in
Leibniz’s categorical calculus, and hence the above proof of a-conversion just described
would not be available. As noted above, however, the rule of weakening is rejected by
Aristotle.131 Furthermore, Aristotle rejects the principle of monotonicity on the grounds
that a syllogism must not contain any superfluous premises not needed to derive the

129 See, e.g., Moody 1953: 52, Thompson 1953: 256–7, Prior 1955: 169, Wedin 1990: 135, Ebert &
Nortmann 2007: 333, Read 2015: 538–43.

130 This does not include the traditional law of obversion, which is not posited by Aristotle as a
principle of his assertoric syllogistic. With respect to the alternative definitions given above, the
e-a-direction of obversion no longer holds, i.e., BẽA �� Bã A (cf. n. 81).

131 See n. 95.
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conclusion.132 For a Peripatetic logician inclined to follow Aristotle on this point, this
raises the question as to what modes of propositional reasoning can be validated in a
nonmonotonic system of categorical logic which does not include weakening among its
structural rules. To address this question, we will consider the following nonmonotonic
calculus obtained from Leibniz’s categorical calculus by omitting the principle of
weakening:

DEFINITION 6.1. The nonmonotonic categorical calculus, |∼ , is the smallest relation
between sets of propositions and propositions which satisfies the following principles:

Barbara: AaB, BaC |∼ AaC

e-conversion: AeB |∼ BeA

double privation: |∼ Aa A and |∼ Aa A

propositional privation: |∼ [CON(ϕ)] a [ϕ] and |∼ [ϕ] a [CON(ϕ)]

propositional a-predication: �, ϕ |∼ ψ iff � |∼ [ψ] a [ϕ]

weak cut: If ϕ |∼ ψ and |∼ ϕ, then |∼ ψ .

Here, A, B,C are any terms; ϕ,ψ any propositions; and � any finite set of propositions.

While some laws of classical propositional logic remain derivable in the nonmonotonic
categorical calculus, others do not. For example, while the rule of reductio is still derivable,
Łukasiewicz’s first axiom, ϕ → (ψ → ϕ), is not. Accordingly, related laws such as that
of explosion no longer hold, i.e.: ϕ,¬ϕ �|∼ ψ .133

So, what exactly are the laws of propositional logic that are derivable in the nonmono-
tonic categorical calculus? It turns out that this calculus gives rise to a natural system of
relevance logic known as RMI¬→ . The axioms of this system are the negation-implication

axioms of the relevance logic R, together with the mingle axiom, ϕ → (ϕ → ϕ).134

The following theorem shows that all the axioms and rules of RMI¬→are derivable in the

nonmonotonic categorical calculus:135

THEOREM 6.2. For any propositions ϕ and ψ , let ¬ϕ be the proposition CON(ϕ), and
ϕ → ψ the proposition [ψ] a [ϕ]. Then the following claims hold in the nonmonotonic
categorical calculus:

132 See Top. 8.11 161b28–30, in conjunction with Pr. An. 1.1 24b18–20; cf. Alexander In Top. 13.28–
14.2 and 568.18–23, Frede 1974: 22, Barnes 1980: 168–9, Smith 1997: 143, Ebert & Nortmann
2007: 227–8, Striker 2009: 81–2, Castagnoli 2016: 14–23.

133 This law of explosion is likewise rejected by Aristotle (Pr. An. 2.15 64a20–2; see Priest 2006:
12 n. 16, 2007: 132, Malink 2013: 61). Moreover, Aristotle appeals to the nonmonotonicity of
his syllogistic theory to refute an argument for a variant of the law of explosion (Soph. Ref. 5
167b21–36, 6 168b22–5; see Castagnoli 2016: 9–20).

134 For an exposition of RMI¬→ , see Avron 1984: 334–5, 2016: 19–21.
135 The principles RMI 1–6 listed in this theorem are exactly the axioms posited by Avron (1984:

335, 2016: 21) in his Hilbert-style axiomatization of RMI¬→ . In Avron 2016: 21, this Hilbert-
style system is referred to as HRMI¬→ . Avron (2016: 16–21) uses the label ‘RMI¬→’ to refer
to the monotonic closure of the system described in the theorem below. Since the principle of
monotonicity runs counter to the spirit of relevance logic, we opt to use the label ‘RMI¬→’ for the
system which results from Avron’s RMI¬→by omitting the structural rule of monotonicity.

https://doi.org/10.1017/S1755020318000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000266


THE PERIPATETIC PROGRAM IN CATEGORICAL LOGIC 185

RMI 1: |∼ ϕ → (ϕ → ϕ)

RMI 2: |∼ (ϕ → (ϕ → ψ)) → (ϕ → ψ)

RMI 3: |∼ (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

RMI 4: |∼ (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))

RMI 5: |∼ (ϕ → ¬ψ) → (ψ → ¬ϕ)
RMI 6: |∼ ¬¬ϕ → ϕ

modus ponens: ϕ → ψ, ϕ |∼ ψ

reflexivity: ϕ |∼ ϕ

cut: If �, ϕ |∼ ψ and � |∼ ϕ, then � ∪� |∼ ψ .

Here, ϕ,ψ, χ are any propositions, and �,� any finite sets of propositions.

To establish this theorem, we first note that the structural rule of reflexivity is still valid in
the nonmonotonic categorical calculus.136 Given this, it is easy to verify that the principles
RMI 1–6 are also valid in the calculus. Take, for example, the mingle axiom RMI 1.
Since we defined a calculus to be a relation between sets (as opposed to sequences) of
propositions and propositions, we have by reflexivity: ϕ, ϕ |∼ ϕ. Thus, by two applications
of propositional a-predication: |∼ ϕ → (ϕ → ϕ). In similar fashion, RMI 2 can be
established as follows:

1. ϕ → (ϕ → ψ) |∼ ϕ → (ϕ → ψ) reflexivity

2. ϕ → (ϕ → ψ), ϕ |∼ ϕ → ψ from 1, by propositional a-predication

3. ϕ → (ϕ → ψ), ϕ |∼ ψ from 2, by propositional a-predication

4. ϕ → (ϕ → ψ) |∼ ϕ → ψ from 3, by propositional a-predication

5. |∼ (ϕ → (ϕ → ψ)) → (ϕ → ψ) from 4, by propositional a-predication

RMI 3–6 can be established in a similarly straightforward fashion, and the same is true for
the rules of modus ponens and cut.137

Thus, the nonmonotonic categorical calculus validates all the laws of RMI¬→ . Conversely,
it can be shown that these are the only laws of propositional logic that are validated by
the calculus.138 In this sense, the nonmonotonic categorical calculus is both sound and
complete with respect to the relevance logic RMI¬→ . In other words, the propositional logic
generated by this calculus is exactly RMI¬→ .

Since the rule of reductio is valid in RMI¬→ , syllogisms such as Baroco and Bocardo are
still derivable in the nonmonotonic categorical calculus. The rule of a-conversion, however,
remains a challenge for a Peripatetic logician who wishes to accommodate the entirety of
Aristotle’s assertoric syllogistic in this framework. Since RMI¬→ is significantly weaker than

136 See Theorem 7.11 below.
137 See Theorems 7.14–7.18 and Theorem 7.23 below.
138 The proof of this claim is somewhat involved, and relies on an algebraic semantics for

RMI¬→ introduced by Avron (1984). We therefore defer this proof to the appendix; see Theorem
7.48 below.
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classical propositional logic, one might reconsider the option of positing a-conversion as
an additional principle:

AaB |∼ BiA.

This option, however, is still not viable because the rule of a-conversion leads to inconsis-
tency even in the weaker setting of the nonmonotonic categorical calculus. To see this, note
that the rule of a-conversion, when applied to propositional terms, implies the following
law:139

|∼ (ϕ → ψ) → ¬(ϕ → ¬ψ).
This law is known as Boethius’ Thesis. In RMI¬→ , it is equivalent to the following schema,

which is known as Aristotle’s Thesis:140

|∼ ¬(ϕ → ¬ϕ).
Systems of propositional logic that satisfy these two theses are commonly referred to as
‘connexive’ logics. The addition of these connexive theses to even quite weak systems
of propositional logic leads to inconsistency.141 This is true, in particular, for the system
RMI¬→ .142 Thus, since the nonmonotonic categorical calculus contains RMI¬→ , adding to
this calculus the rule of a-conversion renders it inconsistent.

It remains an open question, then, how to accommodate Aristotle’s rule of a-conversion
in the framework of Leibniz’s categorical calculus based on his theory of propositional
terms. Nevertheless, the above considerations serve to illustrate the complex interplay
between categorical and propositional logic in this framework. We have seen how different
choices of categorical principles license different modes of propositional reasoning, and
how different categorical calculi generate different systems of propositional logic. For
example, the presence or absence of weakening in the categorical calculus corresponds
to the difference between classical propositional logic and the relevance logic RMI¬→ .
Similarly, the presence or absence of a-conversion corresponds to the difference between
connexive and nonconnexive logics.143 Thus, in the framework of Leibniz’s categorical
calculus, the problem of existential import manifests itself as the problem of how to devise
a consistent connexive logic that validates Aristotle’s and Boethius’ Theses.

139 Since the argument given in n. 127 still holds for the nonmonotonic categorical calculus, the rule
of a-conversion implies ϕ → ψ |∼ ¬(ψ → ¬ϕ). But, by RMI 5, propositional a-predication,
and reductio, we have ¬(ψ → ¬ϕ) |∼ ¬(ϕ → ¬ψ). Hence, ϕ → ψ |∼ ¬(ϕ → ¬ψ). By
propositional a-predication, this implies |∼ (ϕ → ψ) → ¬(ϕ → ¬ψ).

140 Both Boethius’ Thesis and Aristotle’s Thesis are endorsed by Aristotle (Pr. An. 2.4 57b3–14; see
McCall 2012: 415–16).

141 See McCall 1966: 416–17.
142 The schema ¬ϕ → (ϕ → ¬ϕ) is valid in RMI¬→ (see Avron 1984: 335–6, 2016: 21). Hence,

by contraposition: ¬(ϕ → ¬ϕ) → ϕ. Since the antecedent of this conditional just is Aristotle’s
Thesis, adding this thesis to RMI¬→ leads to inconsistency in the sense that every proposition is
provable.

143 The link between a-conversion and connexivity has been noted by McCall and Angell, who
employ a connexive conditional to define a- and i-propositions in such a way that a-conversion
is valid (McCall 1967: 349–56, 2012: 433, Angell 1986: 216–23). By contrast, in the framework
of Leibniz’s categorical calculus, we adopt the opposite approach, deriving connexivity from a-
conversion. This is more in keeping with the Peripatetic program of deriving laws of propositional
logic from categorical principles rather than the other way around.
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As we have seen in this article, Leibniz’s implementation of the Peripatetic program
based on the principles of propositional privation and a-predication accomplishes far more
than merely licensing the method of reductio ad absurdum. These principles allow for
entire systems of propositional logic to be built up from purely categorical foundations.
Leibniz’s theory of propositional terms thus provides a fruitful framework for exploring
the deep interconnections that exist between categorical and hypothetical logic, or, between
the logic of terms and the logic of propositions.

§7. Appendix. In this appendix, we establish that the propositional logic generated
by the nonmonotonic categorical calculus is exactly the relevance logic RMI¬→ . We begin
by supplying some preliminary definitions needed to give a precise statement of this result
(§7.1). We then establish the completeness of the nonmonotonic categorical calculus with
respect to the relevance logic RMI¬→(§7.2). Next, we provide a Hilbert-style axiomatization
of the nonmonotonic categorical calculus (§7.3). Based on this axiomatization, we establish
the soundness of the nonmonotonic categorical calculus with respect to RMI¬→(§7.4).

7.1. Preliminaries. In what follows, we take for granted the terminology introduced in
Definitions 5.1–5.3 and Definition 6.1 above. We first define a language for propositional
logic in which to formulate the calculus RMI¬→ .

DEFINITION 7.1. Given a countably infinite set of primitive expressions referred to as
atomic formulae, the formulae are defined as follows:144

1. Every atomic formula is a formula.

2. If ϕ is a formula, then ¬ϕ is a formula.

3. If ϕ and ψ are formulae, then ϕ → ψ is a formula.

DEFINITION 7.2. The calculus RMI¬→ , � RMI, is the smallest relation between sets of
formulae and formulae which satisfies the following principles:

RMI 1: � RMI ϕ → (ϕ → ϕ)

RMI 2: � RMI (ϕ → (ϕ → ψ)) → (ϕ → ψ)

RMI 3: � RMI (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

RMI 4: � RMI (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))

RMI 5: � RMI (ϕ → ¬ψ) → (ψ → ¬ϕ)
RMI 6: � RMI ¬¬ϕ → ϕ

modus ponens: ϕ → ψ, ϕ � RMI ψ

reflexivity: ϕ � RMI ϕ

cut: If �, ϕ � RMI ψ and � � RMI ϕ, then � ∪� � RMI ψ .

Here, ϕ,ψ, χ are any formulae, and �,� any finite sets of formulae.

144 The atomic formulae are to be chosen in such a way that no atomic formula is identical with any
other formula.
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As usual, � RMI ϕ is shorthand for ∅ � RMI ϕ. Moreover, we use ψ1, . . . , ψn � RMI ϕ
as shorthand for {ψ1, . . . , ψn} � RMI ϕ, and �,ψ1, . . . , ψn � RMI ϕ as shorthand for
� ∪ {ψ1, . . . , ψn} � RMI ϕ.

The formulae of the propositional language specified in Definition 7.1 can be viewed
as schematic expressions to be instantiated by the categorical propositions specified in
Definition 5.1. The following definition indicates how such a categorical instantiation is to
be carried out:

DEFINITION 7.3. A categorical instantiation is a function σ mapping each formula (as
specified in Definition 7.1) to a proposition (as specified in Definition 5.1) such that:

1. σ(¬ϕ) = CON(σ (ϕ))

2. σ(ϕ → ψ) = [σ(ψ)] a [σ(ϕ)].

If � is a finite set of formulae and ϕ is a formula, we write � |∼ ϕ to express that, for
every categorical instantiation σ :

{σ(ψ) : ψ ∈ �} |∼ σ(ϕ).

Given Definitions 7.1–7.3, the soundness and completeness of the nonmonotonic cate-
gorical calculus with respect to the relevance logic RMI¬→can now be expressed as follows.
For any finite set of formulae � and any formula ϕ:

� |∼ ϕ if and only if � � RMI ϕ.

The aim of this appendix is to establish this claim (see Theorems 7.28 and 7.48).

7.2. Completeness. In this section, we establish the completeness of the nonmono-
tonic categorical calculus with respect to RMI¬→(Theorem 7.28). To render the proof of
this completeness result more perspicuous, we introduce the following shorthand:

DEFINITION 7.4. For any propositions ϕ and ψ (as specified in Definition 5.1):

1. ¬ϕ is the proposition CON(ϕ).

2. ϕ → ψ is the proposition [ψ] a [ϕ].

3. ϕ ∧ ψ is the proposition ¬(ϕ → ¬ψ).
This definition gives rise to a systematic, but harmless, ambiguity in our use of the

symbols ‘¬’ and ‘→’. When applied to formulae, these symbols are primitive connec-
tives in the language of propositional logic introduced in Definition 7.1. When applied
to propositions, on the other hand, these symbols function as notational shorthand for
propositions of the categorical language introduced in Definition 5.1. Which of the two
readings is intended will be clear from the context as determined by whether the symbols
‘¬’ and ‘→’ are applied to formulae or propositions. Unless otherwise specified, we will
use the schematic letters ‘ϕ’, ‘ψ’, ‘χ ’, ‘ξ ’ to stand for arbitrary propositions as opposed to
formulae; and ‘�’, ‘�’ to stand for arbitrary finite sets of propositions as opposed to sets
of formulae. Thus, for example, the following theorem is to be understood as applying to
any propositions ϕ and ψ :

THEOREM 7.5. If |∼ ϕ and |∼ ϕ → ψ , then |∼ ψ .

Proof. This follows from propositional a-predication and weak cut. �
In what follows, we write ‘p.a.’ as shorthand for ‘propositional a-predication’.

THEOREM 7.6. If |∼ AaB and |∼ BaC, then |∼ AaC.
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Proof. By Barbara and two applications of p.a., we have |∼ AaB → (BaC → AaC).
Hence, by two applications of T7.5, we have |∼ AaC . �

THEOREM 7.7. If ϕ |∼ AaB and |∼ Ca A, then ϕ |∼ CaB.

Proof. By Barbara and p.a., we have Ca A |∼ [CaB] a [AaB]. Given |∼ Ca A, we
have |∼ [CaB] a [AaB] by weak cut. Now, given ϕ |∼ AaB, we have |∼ [AaB] a [ϕ]
by p.a. So, by T7.6, |∼ [CaB] a [ϕ]. The desired result follows by p.a. �

THEOREM 7.8. If AaB |∼ ϕ and |∼ AaC, then CaB |∼ ϕ.

Proof. By Barbara and p.a., we have AaC |∼ [AaB] a [CaB]. Given |∼ AaC , we
have |∼ [AaB] a [CaB] by weak cut. Now, given AaB |∼ ϕ, we have |∼ [ϕ] a [AaB]
by p.a. So, by T7.6, we have |∼ [ϕ] a [CaB]. The desired result follows by p.a. �

THEOREM 7.9. If |∼ AaB, then |∼ Ba A.

Proof. Given |∼ AaB, we have |∼ AaB by double privation and T7.6. The desired
result follows from e-conversion and weak cut. �

THEOREM 7.10. If ϕ |∼ AaB, then ϕ |∼ Ba A.

Proof. Given ϕ |∼ AaB, we have ϕ |∼ AaB by double privation and T7.7. Hence, by

p.a., we have |∼ [AaB] a [ϕ]. But, by e-conversion and p.a., we have |∼ [Ba A] a [AaB].
Hence, by T7.6, we have |∼ [Ba A] a [ϕ]. The desired result follows by p.a. �

THEOREM 7.11 (Reflexivity). ϕ |∼ ϕ.

Proof. By propositional privation and T7.9, we have both |∼ [ϕ] a [CON(ϕ)] and

|∼ [CON(ϕ)] a [ϕ]. Hence, by double privation and T7.6, |∼ [ϕ] a [ϕ]. The desired result
follows by p.a. �

THEOREM 7.12 (RMI 1). |∼ ϕ → (ϕ → ϕ).

Proof. By reflexivity, we have ϕ, ϕ |∼ ϕ. The desired result follows by two applications
of p.a. �

THEOREM 7.13 (RMI 2). |∼ (ϕ → (ϕ → ψ)) → (ϕ → ψ).

Proof. By reflexivity, we have ϕ → (ϕ → ψ) |∼ ϕ → (ϕ → ψ). Hence, by
two applications of p.a., ϕ → (ϕ → ψ), ϕ |∼ ψ . The desired result follows by two
applications of p.a. �

THEOREM 7.14 (RMI 3). |∼ (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)).

Proof. This follows from Barbara by two applications of p.a. �

THEOREM 7.15 (RMI 4). |∼ (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)).

Proof. By reflexivity, we have ϕ → (ψ → χ) |∼ ϕ → (ψ → χ). Hence, by two
applications of p.a., ϕ → (ψ → χ), ψ, ϕ |∼ χ . The desired result follows by three
applications of p.a. �
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THEOREM 7.16 (RMI 5). |∼ (ϕ → ¬ψ) → (ψ → ¬ϕ).
Proof. By e-conversion, we have [ψ] a [ϕ] |∼ [ϕ] a [ψ]. Hence, by propositional

privation and T7.7, [ψ] a [ϕ] |∼ ψ → ¬ϕ. By propositional privation and T7.8, this
implies ϕ → ¬ψ |∼ ψ → ¬ϕ. The desired result follows by p.a. �

THEOREM 7.17 (RMI 6). |∼ ¬¬ϕ → ϕ.

Proof. By propositional privation, we have |∼ [CON(ϕ)] a [CON(CON(ϕ))]. But, by

propositional privation and T7.9, we have |∼ [ϕ] a [CON(ϕ)]. The desired result follows
by double privation and T7.6. �

THEOREM 7.18 (Modus ponens). ϕ → ψ, ϕ |∼ ψ .

Proof. This follows from reflexivity by p.a. �

THEOREM 7.19. |∼ ϕ → ¬¬ϕ.

Proof. By RMI 5 and p.a., we have ¬ϕ → ¬ϕ |∼ ϕ → ¬¬ϕ. Hence, the desired result
follows from reflexivity by p.a. and weak cut. �

THEOREM 7.20. |∼ (ϕ → ψ) → (¬ψ → ¬ϕ).
Proof. By reflexivity, we have ϕ → ψ |∼ ϕ → ψ . Hence, by T7.19 and T7.7, we have

ϕ → ψ |∼ ϕ → ¬¬ψ . By p.a., this implies |∼ (ϕ → ψ) → (ϕ → ¬¬ψ). But, by RMI
5, |∼ (ϕ → ¬¬ψ) → (¬ψ → ¬ϕ). The desired result follows by T7.6. �

THEOREM 7.21. |∼ (¬ϕ → ¬ψ) → (ψ → ϕ).

Proof. By RMI 5 and p.a., we have ¬ϕ → ¬ψ |∼ ψ → ¬¬ϕ. Hence, by RMI 6 and
T7.7, we have ¬ϕ → ¬ψ |∼ ψ → ϕ. The desired result follows by p.a. �

THEOREM 7.22. |∼ ϕ → (ψ → χ) iff |∼ (ϕ ∧ ψ) → χ .

Proof. For the left-to-right direction, suppose |∼ ϕ → (ψ → χ). By T7.20 and T7.6,
we have |∼ ϕ → (¬χ → ¬ψ). By RMI 4 and T7.5, this implies |∼ ¬χ → (ϕ → ¬ψ).
By T7.20 and T7.5, we have |∼ ¬(ϕ → ¬ψ) → ¬¬χ . Hence, by T7.17 and T7.6, we
have |∼ (ϕ ∧ ψ) → χ .

For the right-to-left direction, suppose |∼ (ϕ ∧ ψ) → χ . By T7.19 and T7.6, we have
|∼ ¬(ϕ → ¬ψ) → ¬¬χ . By T7.21 and T7.5, this implies |∼ ¬χ → (ϕ → ¬ψ). By
RMI 4 and T7.5, we have |∼ ϕ → (¬χ → ¬ψ). Hence, by T7.21 and T7.6, we have
|∼ ϕ → (ψ → χ). �

THEOREM 7.23 (Cut). If �, ϕ |∼ ψ and � |∼ ϕ, then � ∪� |∼ ψ .

Proof. Let � = {γ1, . . . , γn} and � = {δ1, . . . , δm}. Given that �, ϕ |∼ ψ , we have by
repeated applications of p.a.:

|∼ ϕ → (γ1 → (γ2 → · · · (γn → ψ) · · · )). (1)

Since � |∼ ϕ, we have by repeated applications of p.a.:

|∼ δ1 → (δ2 → · · · (δm → ϕ) · · · ).
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By repeated applications of T7.22, we have:

|∼ ((· · · (δ1 ∧ δ2) · · · ) ∧ δm) → ϕ. (2)

Given (1) and (2), we have by T7.6:

|∼ ((· · · (δ1 ∧ δ2) · · · ) ∧ δm) → (γ1 → (γ2 → · · · (γn → ψ) · · · )).
By repeated applications of T7.22, we have:

|∼ δ1 → (δ2 → (· · · (δm → (γ1 → (γ2 → · · · (γn → ψ) · · · ))))).
Hence, by repeated applications of p.a., we obtain � ∪� |∼ ψ . �

THEOREM 7.24 (Reductio). If �, ϕ |∼ ψ , then �,¬ψ |∼ ¬ϕ.

Proof. Suppose �, ϕ |∼ ψ . Then, by p.a., we have � |∼ ϕ → ψ . By T7.20 and p.a.,
ϕ → ψ |∼ ¬ψ → ¬ϕ. Hence, by T7.23, � |∼ ¬ψ → ¬ϕ. The desired result follows
by p.a. �

It can easily be verified that none of the theorems established so far (Theorems 7.5–7.24)
rely on the definition of the operator CON(· · · ) given in Definition 5.2. Thus, all of these
theorems would still be provable in the nonmonotonic categorical calculus if CON(· · · )
were not introduced as a defined notion but rather treated as a primitive propositional
operator. The same is true of the following two theorems, since their proofs likewise do
not rely on the definition of CON(· · · ):
THEOREM 7.25. ¬ϕ |∼ [ϕ] a [ϕ].

Proof. By reflexivity, we have ϕ, ϕ |∼ ϕ. Hence, by T7.24, ϕ,¬ϕ |∼ ¬ϕ, and so, by
p.a., ¬ϕ |∼ ϕ → ¬ϕ. The desired result follows by propositional privation and T7.7. �

THEOREM 7.26. [ϕ] a [ϕ] |∼ ¬ϕ.

Proof. By T7.18, ϕ, ϕ → ¬ϕ |∼ ¬ϕ. Hence, by T7.24, ϕ,¬¬ϕ |∼ ¬(ϕ → ¬ϕ). By
T7.19, p.a., and cut, we have ϕ |∼ ¬(ϕ → ¬ϕ). Hence, by p.a., |∼ ϕ → ¬(ϕ → ¬ϕ).
By T7.16 and T7.5, it follows that |∼ (ϕ → ¬ϕ) → ¬ϕ. By p.a., ϕ → ¬ϕ |∼ ¬ϕ. The
desired result follows by propositional privation and T7.8. �
Since the proofs of Theorems 7.25 and 7.26 do not rely on the definition of CON(ϕ)
given in Definition 5.2, it follows that this definition is conservative with respect to the
nonmonotonic categorical calculus. In other words, the definition of CON(ϕ) does not allow
us to establish any new theorems in the calculus that could not be established if CON(· · · )
were treated as an undefined primitive of the language.

We now establish the completeness of the nonmonotonic categorical calculus with re-
spect to RMI¬→ . To this end, we first note that the rule of cut holds not only for propositions
but for formulae:

THEOREM 7.27. For any finite sets of formulae �,� and any formulae ϕ,ψ: if �, ϕ |∼ ψ
and � |∼ ϕ, then � ∪� |∼ ψ .

Proof. Suppose �, ϕ |∼ ψ and � |∼ ϕ, where �,� are finite sets of formulae and
ϕ,ψ are formulae. Let σ be an arbitrary categorical instantiation. Then, we have {σ(χ) :
χ ∈ �} ∪ {σ(ϕ)} |∼ σ(ψ) and {σ(χ) : χ ∈ �} |∼ σ(ϕ). Hence, by T7.23, {σ(χ) : χ ∈
� ∪�} |∼ σ(ψ). Since σ was chosen arbitrarily, it follows that � ∪� |∼ ψ . �
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THEOREM 7.28 (Completeness). For any finite set of formulae � and any formula ϕ: if
� � RMI ϕ, then � |∼ ϕ.

Proof. Since T7.11–T7.18 hold for arbitrary propositions ϕ,ψ, χ , these theorems also
hold when ϕ,ψ, χ are taken to be arbitrary formulae. Hence, given Definition 7.2, the
desired result follows from T7.11–T7.18 and T7.27. �

7.3. A Hilbert-style axiomatization of |∼ . In this section, we present a Hilbert-style
axiomatization of the nonmonotonic categorical calculus (Theorem 7.39). We begin by
defining the notion of a ‘proof’ in this calculus.

DEFINITION 7.29. An indexed proposition is a pair (�, ϕ) where � is a finite set of
propositions and ϕ is a proposition.

DEFINITION 7.30. Let ϕ be a proposition and � a finite set of propositions. A proof of ϕ
from � is a sequence of indexed propositions (�1, ϕ1), . . . , (�n, ϕn), such that (�n, ϕn) =
(�, ϕ) and, for each i = 1, . . . , n, at least one of the following conditions holds:

1. �i = {ϕi }
2. �i = ∅ and ϕi is a proposition of one of the following forms:

Ax1: AaB → (BaC → AaC)

Ax2: AeB → BeA

Ax3: Aa A

Ax4: Aa A

Ax5: [ϕ] a [CON(ϕ)]

Ax6: [CON(ϕ)] a [ϕ]

Ax7: ϕ → (ϕ → ϕ)

Ax8: (ϕ → (ϕ → ψ)) → (ϕ → ψ)

Ax9: (ϕ → (ψ → χ)) → (ψ → (ϕ → χ)).

3. For some j, k < i , �i = � j ∪ �k and ϕk = ϕ j → ϕi .

We write Pr(�, ϕ) to express that there exists a proof of ϕ from �.

THEOREM 7.31. If Pr(�, ϕ) and Pr(�, ϕ → ψ), then Pr(� ∪�,ψ).
Proof. This follows directly from Definition 7.30. �

THEOREM 7.32. If Pr(�, AaB) and Pr(�, BaC), then Pr(� ∪�, AaC).

Proof. This follows from Ax1 by two application of T7.31. �
Note that a special case of this theorem is that, for any propositions ϕ,ψ, χ : if Pr(�, ϕ →
ψ) and Pr(�,ψ → χ), then Pr(� ∪�,ϕ → χ).

THEOREM 7.33. If Pr(∅, ϕ → (ψ → χ)) and Pr(∅, χ → ξ), then Pr(∅, ϕ → (ψ → ξ)).
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Proof. By Ax1, Pr(∅, (χ → ξ) → ((ψ → χ) → (ψ → ξ))). Given Pr(∅, χ → ξ), we
have Pr(∅, (ψ → χ) → (ψ → ξ)) by T7.31. Given Pr(∅, ϕ → (ψ → χ)), the desired
result follows by T7.32. �

THEOREM 7.34. Pr(∅, (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))).

Proof. By Ax9, Pr(∅, (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))). Hence, by Ax1 and
T7.32, we have Pr(∅, (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → (ϕ → χ)))). The desired
result follows from Ax8 and T7.33. �

THEOREM 7.35. Pr(∅, ϕ → ϕ).

Proof. By Ax3, Ax6, and T7.32, we have Pr(∅, [CON(ϕ)] a [ϕ]). Hence, by Ax2

and T7.31, we have Pr(∅, [ϕ] a [CON(ϕ)]). By Ax4 and T7.32, it follows that
Pr(∅, [ϕ] a [CON(ϕ)]). Now, by Ax2, Ax5, and T7.31, we have Pr(∅, [CON(ϕ)] a [ϕ]).
Hence, the desired result follows by T7.32. �
The following theorem is a variant of the Moh-Church deduction theorem for relevant
sequent calculi:

THEOREM 7.36. If Pr(� ∪ {ϕ}, ψ), then Pr(� − {ϕ}, ϕ → ψ).

Proof. Let (ϕ1, �1), . . . , (ϕn, �n) be a proof of ψ from � ∪ {ϕ}. We will show, by
induction on i , that one of the following two conditions holds, for each i = 1, . . . , n:

(i) ϕ ∈ �i and Pr(�i − {ϕ}, ϕ → ϕi )

(ii) ϕ �∈ �i and Pr(�i , ϕi ).

This will suffice to establish the desired result. For, since ϕ ∈ �n = �∪{ϕ}, the disjunction
of (i) and (ii) holds for (�n, ϕn) iff Pr(�n − {ϕ}, ϕ → ϕn). But since �n − {ϕ} = (� ∪
{ϕ})− {ϕ} = � − {ϕ} and ϕ → ϕn = ϕ → ψ , this means Pr(� − {ϕ}, ϕ → ψ).

To show that the disjunction of (i) and (ii) holds for every (�i , ϕi ), we will consider each
of the three cases described in Definition 7.30. First, suppose �i = {ϕi }. If ϕ �= ϕi , the
claim follows from the fact that Pr({ϕi }, ϕi ). If ϕ = ϕi , the claim follows from T7.35.

Second, suppose that �i = ∅ and ϕi is an instance of one of Ax1–Ax9. Then the claim
follows from the fact that Pr(∅, ϕi ).

Finally, suppose that, for some j, k < i , �i = � j ∪ �k and ϕk = ϕ j → ϕi . There are
four cases to consider:

1. ϕ �∈ � j and ϕ �∈ �k : By the induction hypothesis, Pr(� j , ϕ j ) and Pr(�k, ϕ j → ϕi ).
Then, by T7.31, Pr(�i , ϕi ). But since ϕ �∈ �i , this establishes the claim.

2. ϕ ∈ � j and ϕ �∈ �k : By the induction hypothesis, Pr(� j − {ϕ}, ϕ → ϕ j ) and
Pr(�k, ϕ j → ϕi ). We then have the following proof:

1 (� j − {ϕ}, ϕ → ϕ j ) by hypothesis

2 (�k, ϕ j → ϕi ) by hypothesis

3 (∅, (ϕ j → ϕi ) → ((ϕ → ϕ j ) → (ϕ → ϕi ))) Ax1

4 (�k, (ϕ → ϕ j ) → (ϕ → ϕi )) T7.31: 2, 3

5 ((� j − {ϕ}) ∪ �k, ϕ → ϕi ) T7.31: 1, 4
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Since (� j − {ϕ}) ∪ �k = (� j ∪ �k)− {ϕ}, we have Pr(�i − {ϕ}, ϕ → ϕi ).

3. ϕ �∈ � j and ϕ ∈ �k : By the induction hypothesis, Pr(� j , ϕ j ) and Pr(�k −{ϕ}, ϕ →
(ϕ j → ϕi )). We then have the following proof:

1 (� j , ϕ j ) by hypothesis

2 (�k − {ϕ}, ϕ → (ϕ j → ϕi )) by hypothesis

3 (∅, ϕ → (ϕ j → ϕi )) → (ϕ j → (ϕ → ϕi ))) Ax9

4 (�k − {ϕ}, ϕ j → (ϕ → ϕi )) T7.31: 2, 3

5 (� j ∪ (�k − {ϕ}), ϕ → ϕi ) T7.31: 1, 4

Since � j ∪ (�k − {ϕ}) = (� j ∪ �k)− {ϕ}, we have Pr(�i − {ϕ}, ϕ → ϕi ).

4. ϕ ∈ � j and ϕ ∈ �k : By the induction hypothesis, Pr(� j − {ϕ}, ϕ → ϕ j ) and
Pr(�k − {ϕ}, ϕ → (ϕ j → ϕi )). We then have the following proof:

1 (� j − {ϕ}, ϕ → ϕ j ) by hypothesis

2 (�k − {ϕ}, ϕ → (ϕ j → ϕi )) by hypothesis

3 (∅, (ϕ → (ϕ j → ϕi )) → ((ϕ → ϕ j ) → (ϕ → ϕi ))) T7.34

4 (�k − {ϕ}, (ϕ → ϕ j ) → (ϕ → ϕi )) T7.31: 2, 3

5 ((� j − {ϕ}) ∪ (�k − {ϕ}), ϕ → ϕi ) T7.31: 1, 4

Since (� j − {ϕ}) ∪ (�k − {ϕ}) = (� j ∪ �k)− {ϕ}, we have Pr(�i − {ϕ}, ϕ → ϕi ).

This completes the induction. �

THEOREM 7.37. Pr(�, ϕ → ψ) iff Pr(� ∪ {ϕ}, ψ).

Proof. For the left-to-right direction, let (�1, ϕ1), . . . , (�n, ϕn) be a proof of ϕ → ψ
from �. Then (�n, ϕn) = (�, ϕ → ψ). If we add to the end of this proof the two indexed
formulae ({ϕ}, ϕ) and (� ∪ {ϕ}, ψ), the result is a proof of ψ from � ∪ {ϕ}.

For the right-to-left direction, suppose Pr(� ∪ {ϕ}, ψ). By T7.36, we have Pr(� −
{ϕ}, ϕ → ψ). If ϕ �∈ �, then � − {ϕ} = � and so we have Pr(�, ϕ → ψ). If, on the
other hand, ϕ ∈ �, then we have the following proof:

1 (� − {ϕ}, ϕ → ψ) by hypothesis

2 (∅, (ϕ → ψ) → ((ϕ → ϕ) → (ϕ → ψ))) Ax1

3 (� − {ϕ}, (ϕ → ϕ) → (ϕ → ψ)) T7.31: 1, 2

4 (∅, ϕ → (ϕ → ϕ)) Ax7

5 (� − {ϕ}, ϕ → (ϕ → ψ)) T7.32: 3, 4

Hence, Pr(� − {ϕ}, ϕ → (ϕ → ψ)). But since (� − {ϕ}) ∪ {ϕ} = �, the desired
result follows from the left-to-right direction of the theorem, which has already been
established. �

THEOREM 7.38. � |∼ ϕ iff Pr(�, ϕ).
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Proof. In the left-to-right direction, the proof proceeds by induction on the definition of
|∼ given in Definition 6.1. For the case of Barbara, we have the following proof:

1 ({AaB}, AaB) Definition 7.30

2 ({BaC}, BaC) Definition 7.30

3 (∅, AaB → (BaC → AaC)) Ax1

4 ({AaB}, BaC → AaC) T7.31: 1, 3

5 ({AaB, BaC}, AaC) T7.31: 2, 4

The cases of e-conversion, double privation, and propositional privation are equally
straightforward. The case of propositional a-predication follows from Theorem 7.37. For
the case of weak cut, suppose Pr({ϕ}, ψ) and Pr(∅, ϕ). By T7.37, we have Pr(∅, ϕ → ψ).
Hence, by T7.31, we have Pr(∅, ψ).

For the right-to-left direction, let (�1, ϕ1), . . . , (�n, ϕn) be a proof of ϕ from �. We
will show, by induction on i , that �i |∼ ϕi for i = 1, . . . , n. If �i = {ϕi }, then the
result follows from T7.11. Next suppose �i = ∅ and ϕi is of one of the forms Ax1–9. The
case in which ϕi is an instance of Ax1 follows from Barbara and p.a. The case of Ax2
follows from e-conversion and p.a. The cases of Ax3–4 and Ax5–6 follow from double
privation and propositional privation, respectively. The case of Ax7 follows from RMI 1
(T7.12). The case of Ax8 follows from RMI 2 (T7.13). The case of Ax9 follows from RMI
4 (T7.15). Finally, suppose that, for some j, k < i , �i = � j ∪ �k and ϕk = ϕ j → ϕi . By
the induction hypothesis, � j |∼ ϕ j and �k |∼ ϕ j → ϕi . By p.a., we have �k, ϕ j |∼ ϕi .
Hence, by T7.23, we have �i |∼ ϕi . This completes the induction. �
The following theorem provides a Hilbert-style axiomatization of the nonmonotonic cate-
gorical calculus.

THEOREM 7.39. The set of propositions provable in the nonmonotonic categorical calcu-
lus, {ϕ : |∼ ϕ}, can be defined as follows:

Ax1: |∼ AaB → (BaC → AaC)

Ax2: |∼ AeB → BeA

Ax3: |∼ Aa A

Ax4: |∼ Aa A

Ax5: |∼ [ϕ] a [CON(ϕ)]

Ax6: |∼ [CON(ϕ)] a [ϕ]

Ax7: |∼ ϕ → (ϕ → ϕ)

Ax8: |∼ (ϕ → (ϕ → ψ)) → (ϕ → ψ)

Ax9: |∼ (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))

MP: If |∼ ϕ and |∼ ϕ → ψ , then |∼ ψ .

Proof. This is an immediate consequence of Definition 7.30 and Theorem 7.38. �
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7.4. Soundness. In this section, we establish the soundness of the nonmonotonic cat-
egorical calculus with respect to RMI¬→ (Theorem 7.48). The proof of this result will make
essential use of an algebraic semantics for RMI¬→ presented in Avron 1984.

DEFINITION 7.40. Let A be the lattice 〈A,≤〉 defined by:

1. A = {Tn : n = 0, 1, 2, . . .} ∪ {Fn : n = 0, 1, 2, . . .}
2. ≤ is the smallest partial order on A satisfying:

(i) F0 ≤ x ≤ T0, for all x ∈ A

(ii) Fn ≤ Tn, for all n ≥ 1.

The lattice A is depicted by the following Hasse diagram:

T0

F0

T1

F1

T2

F2

T3

F3

· · ·

· · ·

Tn

Fn

· · ·

· · ·

For any x, y ∈ A, we write x < y to express that x ≤ y and x �= y. Moreover, for any
x ∈ A, we write x ′ for the element of A defined by:

x ′ =
{

Tn if x = Fn,
Fn if x = Tn .

Note that, for any x, y ∈ A, we have (i) x ′′ = x , and (ii) x ≤ y iff y′ ≤ x ′.

DEFINITION 7.41. An Avron model for the language of the nonmonotonic categorical
calculus (as specified in Definition 5.1) is a function μmapping every term of this language
to an element of A, such that, for any terms A, B:

1. μ(A) = μ(A)′

2. μ([AaB]) =
⎧⎨
⎩

max{μ(B)′, μ(A)} if μ(B) ≤ μ(A),
min{μ(B)′, μ(A)} if μ(A) < μ(B),
F0 otherwise.

An Avron model μ satisfies the proposition AaB (written μ |� AaB) iff μ(B) ≤ μ(A).
We write |� AaB to express that, for every Avron model μ, μ |� AaB. If ϕ is a
formula (as specified in Definition 7.1), we write |� ϕ to express that, for every categorical
instantiation σ , |� σ(ϕ).

The following theorem is a straightforward consequence of Definition 7.41:

THEOREM 7.42. For any Avron model μ, and any terms A, B:
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1. μ |� AaB iff μ([AaB]) ∈ {Tn : n ≥ 0}
2. μ([Aa A]) = μ(A)

3. μ([Aa A]) = μ(A).

We next observe the weak soundness of the nonmonotonic categorical calculus with respect
to the class of Avron models.

THEOREM 7.43. For any proposition ϕ: if |∼ ϕ, then |� ϕ.

Proof. Given the Hilbert-style axiomatization of the nonmonotonic categorical calculus
presented in T7.39, the proof of this theorem is tedious but straightforward. Take, for
example, the case of Ax1. Let μ be any Avron model. Then we must show that:

μ |� AaB → (BaC → AaC).

Clearly, this claim holds ifμ(A) = T0 orμ(C) = F0. Moreover, the claim holds ifμ(B) =
T0 or μ(B) = F0. Also, the claim holds if μ(A) = F0 or μ(C) = T0. Now, if neither
μ(A) ≤ μ(B) nor μ(B) ≤ μ(A), then μ([AaB]) = F0 and so the claim holds. Also, if
neither μ(B) ≤ μ(C) nor μ(C) ≤ μ(B), then μ([BaC → AaC]) = T0 and so the claim
holds. Thus, it only remains to consider the case in which there is some n ≥ 1 such that
μ(A), μ(B), μ(C) ∈ {Tn,Fn}. In this case, μ([AaB]), μ([BaC → AaC]) ∈ {Tn,Fn}.
Hence, the claim fails to hold only if μ([AaB]) = Tn and μ([BaC → AaC]) = Fn .
But, in this case, μ([BaC]) = Tn and μ([AaC]) = Fn . This implies μ(A) = Fn and
μ(C) = μ(B) = Tn , which is incompatible with μ([AaB]) = Tn . Hence, the claim
holds.

We leave it to the reader to verify that the remaining axiom schemata Ax2–Ax9 and the
rule of MP listed in T7.39 are sound with respect to the class of Avron models. �
Given Definition 7.3, the following is an immediate consequence of Theorem 7.43:

THEOREM 7.44. For any formula ϕ: if |∼ ϕ, then |� ϕ.

DEFINITION 7.45. A propositional Avron model for the propositional language specified
in Definition 7.1 is a function μ mapping every formula of this language to an element of
A, such that, for any formulae ϕ,ψ :

1. μ(¬ϕ) = μ(ϕ)′

2. μ(ϕ → ψ) =
⎧⎨
⎩

max{μ(ϕ)′, μ(ψ)} if μ(ϕ) ≤ μ(ψ),
min{μ(ϕ)′, μ(ψ)} if μ(ψ) < μ(ϕ),
F0 otherwise.

A propositional Avron model μ satisfies the formula ϕ (written μ |�RMI ϕ) iff μ(ϕ) ∈
{Tn : n ≥ 0}. We write |�RMI ϕ to express that, for every propositional Avron model μ,
μ |�RMI ϕ.

THEOREM 7.46. For any formula ϕ: if |� ϕ, then |�RMI ϕ.

Proof. Let t1, t2, . . . be the simple terms introduced in Definition 5.1, and let p1, p2, . . .
be the atomic formulae introduced in Definition 7.1. Then, there is a unique categorical
instantiation, σ ∗, such that for all n ≥ 1:

σ ∗(pn) = tnatn .
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For any given Avron model μ, let μ∗ be the unique propositional Avron model such that
for all n ≥ 1:

μ∗(pn) = μ(tn).

We first show that, for any given Avron model μ and any formula ϕ, μ([σ ∗(ϕ)]) =
μ∗(ϕ). The proof proceeds by induction on the formulae. For any atomic formula pn , we
have by T7.42.2:

μ([σ ∗(pn)]) = μ([tnatn]) = μ(tn) = μ∗(pn).

Moreover, for any proposition ϕ, we have μ([CON(ϕ)]) = μ([ϕ]) by T7.42.3. Now sup-
pose, for induction, that the claim holds for the formula ϕ. Then, we have:

μ([σ ∗(¬ϕ)]) = μ([CON(σ ∗(ϕ))])
= μ([σ ∗(ϕ)])
= μ([σ ∗(ϕ)])′

= μ∗(ϕ)′

= μ∗(¬ϕ).
Finally, suppose that the claim holds for the formulae ϕ,ψ . Then, we have:

μ([σ ∗(ϕ → ψ)]) = μ([[σ ∗(ψ)] a [σ ∗(ϕ)]])

=
⎧⎨
⎩

max{μ([σ ∗(ϕ)])′, μ([σ ∗(ψ)])} if μ([σ ∗(ϕ)]) ≤ μ([σ ∗(ψ)]),
min{μ([σ ∗(ϕ)])′, μ([σ ∗(ψ)])} if μ([σ ∗(ψ)]) < μ([σ ∗(ϕ)]),
F0 otherwise

=
⎧⎨
⎩

max{μ∗(ϕ)′, μ∗(ψ)} if μ∗(ϕ) ≤ μ∗(ψ),
min{μ∗(ϕ)′, μ∗(ψ)} if μ∗(ψ) < μ∗(ϕ),
F0 otherwise

= μ∗(ϕ → ψ).

This completes the induction.
To prove the theorem, let ϕ be any formula such that |� ϕ. Then, in particular, |� σ ∗(ϕ).

Hence, by T7.42.1, μ([σ ∗(ϕ)]) ∈ {Tn : n ≥ 0} for any Avron model μ. It follows that
μ∗(ϕ) ∈ {Tn : n ≥ 0} for any Avron model μ. In other words, for any Avron model μ,
μ∗ |�RMI ϕ. But since every propositional Avron model is of the form μ∗ for some Avron
model μ, we have |�RMI ϕ. �
The following theorem asserts the weak completeness of RMI¬→with respect to the class of
propositional Avron models. A proof of this theorem is given by Avron (1984: 337–40).

THEOREM 7.47 (Avron 1984). For any formula ϕ: if |�RMI ϕ, then � RMI ϕ.

Given this completeness theorem, we are finally in a position to prove the soundness of the
nonmonotonic categorical calculus with respect to RMI¬→ :

THEOREM 7.48 (Soundness). For any finite set of formulae � and any formula ϕ: if � |∼
ϕ, then � � RMI ϕ.

Proof. Let � = {ψ1, . . . , ψn}. Then, given � |∼ ϕ, we have by p.a.:

|∼ ψ1 → (ψ2 → (· · · (ψn → ϕ) · · · )).
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By T7.44, T7.46, and T7.47, we have:

� RMI ψ1 → (ψ2 → (· · · (ψn → ϕ) · · · )).
The desired result follows from repeated applications of T7.18 and cut. �
Theorems 7.28 and 7.48 together establish that the propositional logic generated by the
nonmonotonic categorical calculus is exactly the relevance logic RMI¬→ .
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Hodges, W. (2017). Ibn Sı̄nā on reductio ad absurdum. Review of Symbolic Logic, 10,
583–601.

Houser, N. (1990). The Schröder-Peirce correspondence. Modern Logic, 1, 206–236.
Ierodiakonou, K. (1996). The hypothetical syllogisms in the Greek and Latin traditions.

Cahiers de l’Institut du Moyen-Âge Grec et Latin, 66, 96–116.
Ierodiakonou, K. (2016). A note on reductio ad impossibile in post-Aristotelian logic. In

Gourinat, J.-B. and Lemaire, J., editors. Logique et dialectique dans l’Antiquité. Paris:
Vrin, pp. 347–361.

Jenkinson, A. J. (1928). Aristotle’s Analytica Priora. In Ross, W. D., editor. The Works of
Aristotle Translated into English, Vol. 1. Oxford: Clarendon Press.

Jungius, J. (1638). Logica Hamburgensis. Hamburg: Offermans.
Juniewicz, M. (1987). Leibniz’s modal calculus of concepts. In Srzednicki, J., editor.

Initiatives in Logic. Dordrecht: Kluwer, pp. 36–51.
Kauppi, R. (1960). Über die Leibnizsche Logik: Mit besonderer Berücksichtigung des

Problems der Intension und der Extension. Helsinki: Suomalaisen Kirjallisuuden
Kirjapaino.

Kühner, R. & Gerth, B. (1904). Ausführliche Grammatik der griechischen Sprache. Zweiter
Teil: Satzlehre. Zweiter Band (third edition). Hannover and Leipzig: Hahn.

Ladd Franklin, C. (1892). Review of E. Schröder, Vorlesungen über die Algebra der Logik.
Mind, 1, 126–132.

Lear, J. (1980). Aristotle and Logical Theory. Cambridge: Cambridge University Press.
Lenzen, W. (1983). Zur extensionalen und “intensionalen” Interpretation der Leibnizschen

Logik. Studia Leibnitiana, 15, 129–148.
Lenzen, W. (1984a). “Unbestimmte Begriffe” bei Leibniz. Studia Leibnitiana, 16, 1–26.
Lenzen, W. (1984b). Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16, 187–203.
Lenzen, W. (1986). ‘Non est’ non est ‘est non’. Zu Leibnizens Theorie der Negation. Studia

Leibnitiana, 18, 1–37.
Lenzen, W. (1987). Leibniz’s calculus of strict implication. In Srzednicki, J., editor.

Initiatives in Logic. Dordrecht: Kluwer, pp. 1–35.
Lenzen, W. (1988). Zur Einbettung der Syllogistik in Leibnizens ‘Allgemeinen Kalkül’.

In Heinekamp, A., editor. Leibniz: Questions de logique. Stuttgart: Steiner Verlag, pp.
38–71.

https://doi.org/10.1017/S1755020318000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000266


202 MARKO MALINK AND ANUBAV VASUDEVAN

Lenzen, W. (2000). Guilielmi Pacidii Non plus ultra, oder: Eine Rekonstruktion des
Leibnizschen Plus-Minus-Kalküls. Logical Analysis and History of Philosophy, 3, 71–
118.

Lenzen, W. (2004). Leibniz’s logic. In Gabbay, D. M. and Woods, J., editors. Handbook
of the History of Logic, Volume 3. The Rise of Modern Logic: From Leibniz to Frege.
Amsterdam: Elsevier, pp. 1–83.

Londey, D. & Johanson, C. (1987). The Logic of Apuleius. Leiden: Brill.
Łukasiewicz, J. (1935). Zur Geschichte der Aussagenlogik. Erkenntnis, 5, 111–131.
Łukasiewicz, J. (1957). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic

(second edition). Oxford: Clarendon Press.
Łukasiewicz, J. (1963). Elements of Mathematical Logic. Warsaw: Państwowe
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