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Consider a system of queuing stations in tandem having both flexible servers (who are
capable of working at multiple stations) and dedicated servers (who can only work at
the station to which they are dedicated). We study the dynamic assignment of servers
to stations in such systems with the goal of maximizing the long-run average
throughput. We also investigate how the number of flexible servers influences the
throughput and compare the improvement that is obtained by cross-training
another server (i.e., increasing flexibility) with the improvement obtained by
adding a resource (i.e., a new server or a buffer space). Finally, we show that
having only one flexible server is sufficient for achieving near-optimal throughput
in certain systems with moderate to large buffer sizes (the optimal throughput is
attained by having all servers flexible). Our focus is on systems with generalist
servers who are equally skilled at all tasks, but we also consider systems with
arbitrary service rates.

1. INTRODUCTION

We consider a tandem queuing network with N stations and M servers. There is an
infinite supply of jobs in front of station 1 and infinite room for completed jobs after
station N. At any given time, there can be at most one job in service at each station
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and each server can work on at most one job. We assume that each server i [ f1, 2,
. . . , Mg works at a deterministic rate mij [ [0,1) at each station j [ f1,
2, . . . , Ng. Hence, server i is trained to work at station j if mij . 0. Assume throughout
that

P
j¼1
N mij . 0 for i ¼ 1, . . . , M (because otherwise we can reduce M ). It is poss-

ible for several servers to work together on a job, in which case the service rates are
assumed to be additive. The service requirements of the different jobs at station j [
f1, . . . , Ng are independent and identically distributed random variables with rate
m( j) and the service requirements at different stations are independent of each
other. Without loss of generality, we assume that m( j) ¼ 1 for all j [ f1, . . . , Ng.
We focus on the case when the buffers between the stations are finite but also con-
sider systems with infinite buffers. We assume that the network operates under
the manufacturing blocking mechanism with respect to placing jobs in finite
buffers. For the majority of the article, our focus is on systems with exponential
service requirements, N ¼ 2 stations, and 1�M � 3 servers. However, some of our
results (including numerical experiments) are for more general systems, and the
insights obtained from the results for N ¼ 2 stations and 1 � M � 3 servers might help
with developing effective server assignment policies for systems with more
than two stations in which the number of available servers is not radically different
from the number of stations.

Under the assumption that l � 0 of the M servers are flexible and M 2 l of them are
dedicated to particular stations, our objective is to determine the dynamic server
assignment policy that maximizes the long-run average throughput. More specifically,
we would like to determine which servers should be dedicated (flexible), to which
stations the dedicated servers should be assigned, and the dynamic allocation of the
flexible servers to stations. For simplicity, we assume that the travel and setup
times associated with a server moving between stations are negligible. Even though
we consider systems with arbitrary service rates mij, where i [ f1, . . . , Mg and j [
f1, . . . , Ng, our focus in this article is on systems with generalist servers. In this
case, the service rate of each server at each station can be expressed as the product
of two constants: one representing the server’s speed at every task and the other
representing the intrinsic difficulty of the task at the station (i.e., mij ¼ migj for
all i [ f1, . . . , Mg and j [ f1, . . . , Ng). We refer to this case as generalist
servers because each server is equally skilled at all tasks and, hence, the same set
of servers is better at all tasks in the network. Note that this generalizes the notion
of the generalist servers provided in Andradóttir, Ayhan, and Down [6] (they only
consider the cases where either gj ¼ 1 for all j [ f1, . . . , Ng or mi ¼ 1 for all
i [ f1, . . . , Mg).

Let P be the set of server assignment policies with l flexible and M 2 l dedicated
servers, and for all p [ P and t � 0, let Dp (t) be the number of departures under
policy p by time t. For j ¼ 1, . . . , N 2 1, let Bj denote the size of the buffer
between stations j and j þ 1 and let j ¼1, . . . , N 2 1

Tp(B1;B2; . . . ;BN�1) ¼ lim sup
t!1

E½Dp(t)�
t
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be the long-run average throughput corresponding to the server assignment policy
p [ P. Thus, we are interested in solving the optimization problem

max
p[P

Tp(B1; B2; . . . ;BN�1): (1)

For simplicity, we restrict our attention to Markovian stationary deterministic policies.
Thus, for the rest of the article, P denotes the set of Markovian stationary determinis-
tic server assignment policies with l flexible and M 2 l dedicated servers.

In recent years, there has been a growing interest in queues with flexible servers.
We now provide a brief overview of the literature in this area. A more complete
review is given by Hopp and van Oyen [18].

Several articles focus on flexible servers in parallel queues. For a two-class
queuing system with one dedicated server, one flexible server, and no exogenous
arrivals, Ahn, Duenyas, and Zhang [3] characterized the server assignment policy
that minimizes the expected total holding cost incurred until all jobs initially
present in the system have departed. Under heavy-traffic assumptions, Harrison
and López [16], Bell and Williams [11, 12], and Mandelbaum and Stolyar [21]
developed asymptotically optimal server assignment policies that minimize the dis-
counted infinite-horizon holding cost for parallel queuing systems with flexible
servers and external arrivals. Moreover, Squillante, Xia, Yao, and Zhang [28]
used simulation to study the performance of threshold-type policies for systems
that consist of parallel queues.

On the other hand, most of the articles that have considered the optimal assignment
of servers to multiple interconnected queues focus on minimizing holding costs. For
systems with two queues in tandem and no arrivals, Farrar [13], Pandelis and
Teneketzis [24], and Ahn, Duenyas, and Zhang [2] studied how servers should be
assigned to stations to minimize the expected total holding cost incurred until all
jobs leave the system. Rosberg, Varaiya, and Walrand [26], Hajek [15], and Ahn,
Duenyas, and Lewis [1] studied the assignment of (service) effort to minimize
holding costs in the two-station setting with Poisson arrivals. In a more recent article,
Kaufman, Ahn, and Lewis [20] determined the workforce allocation that minimizes
the long-run average holding cost in systems with two queues in tandem and Poisson
arrivals, assuming that the number of available workers is dynamic. Wu, Lewis, and
Veatch [33] also considered the notion of dedicated and flexible servers (which are
referred to as dedicated and reconfigurable machines in their setting). Their objective
was to determine the allocation of the flexible servers that minimizes the holding
cost in a clearing system (without external arrivals) with two queues in tandem and
in which the dedicated servers are subject to failures. However, they only considered
the allocation of the flexible servers and assumed that their service rates do not
depend on the station. Wu, Down, and Lewis [32] extended the results of Wu et al.
[33] to more general serial lines with external arrivals under the discounted and
average cost criteria. Wang, Perkins, Vakili, and Khurana [31] considered the allocation
of generalist servers with the goal of minimizing the completion time of all activities in
an NPD (new product development) process. Andradóttir and Ayhan [5], Andradóttir,
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Ayhan, and Down [6–8], and Tassiulas and Bhattacharya [29] considered the dynamic
assignment of servers to maximize the long-run average throughput in queuing net-
works with flexible servers. However, these articles do not focus on the case where
some servers are dedicated to specific stations.

Ostalaza, McClain, and Thomas [23], McClain, Thomas, and Sox [22], Zavadlav,
McClain, and Thomas [34], and, more recently, Ahn and Righter [4] have considered
using server flexibility to achieve dynamic line balancing. More specifically, Ostalaza
et al. [23] and McClain et al. [22] studied dynamic line balancing in tandem queues
with shared tasks that can be performed at either of two successive stations. This
work was continued by Zavadlav et al. [34], who studied several server assignment pol-
icies for systems with fewer servers than stations, in which all servers trained to work at
a particular station have the same capabilities at that station. Ahn and Righter [4] studied
how workers who are trained to do a set of consecutive tasks should be assigned dyna-
mically to tandem stations. Bartholdi and Eisenstein [9] defined the “bucket brigades”
server assignment policy for systems in which each server works at the same rate at all
tasks and showed that under this policy, a stable partition of work will emerge yielding
optimal throughput. Bartholdi, Eisenstein, and Foley [10] showed that the behavior of
the bucket brigades policy, applied to systems with discrete tasks and exponentially dis-
tributed task times, resembles that of the same policy applied in the deterministic setting
with infinitely divisible jobs.

Gurumurthi and Benjaafar [14], Hopp, Tekin, and van Oyen [17], and Sheikhzadeh,
Benjaafar, and Gupta [27] considered the use of specific flexibility structures on a set of
existing servers to enhance the system’s performance (see also Jordan and Graves [19]
for related work). More specifically, Gurumurthi and Benjaafar [14] considered the
modeling and analysis of flexible queuing systems. They illustrated that for systems
with identical demand and service rates, a skill chaining flexibility structure yields
most of the benefits of full flexibility. Similarly, Hopp et al. [17] pointed out that the
skill chaining policy can be a robust and efficient approach for implementing workforce
agility in serial production lines operating under the CONWIP release policy, and
Sheikhzadeh et al. [27] showed that chained systems, under the assumption of homo-
geneous demand and service times, achieved most of the benefits of total pooling
(which is attained by grouping the customers in a single queue and routing them to
any server). Similar insights were obtained by Jordan and Graves [19] in a production
planning context. Unlike skill chaining, where each worker is trained to perform a small
number of tasks (e.g., two tasks), in Section 7 we investigate the impact (on system
throughput) of cross-training only a few workers at both tasks.

The remainder of this article is organized as follows: In Section 2 we introduce
the notation used throughout the article and provide some general results. In Sections
3 and 4 we study systems with two stations in tandem, finite buffers, and M ¼ 2 and
M ¼ 3 servers, respectively, and investigate the effect of server flexibility on
system performance by varying the number of flexible servers l from 0 to M. In
Section 5 we show that the throughput of the optimal policy for the finite-buffered
systems considered in Sections 3 and 4 converges to the throughput of the optimal
policy for the corresponding infinite-buffered systems as the (finite) buffer size
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becomes large. Section 6 provides examples that illustrate that the selection of the
dedicated (and flexible) servers, the assignment of dedicated servers to stations, and
the dynamic assignment of the flexible servers can be counterintuitive. In Section 7
we use numerical examples to investigate the effects of server flexibility on the
system throughput. Section 8 contains some concluding remarks. Finally, the
Appendix contains the proof of one of the lemmas in the article.

2. PRELIMINARIES

In this section we provide some general results and introduce notation and assump-
tions that will be used throughout the article. More specifically, in Section 2.1 we
show that any nonidling server assignment policy is optimal when all servers are
flexible and generalists and also consider the case where M ¼ 1. Section 2.2 pro-
vides guidelines on how to select the flexible servers when the servers are generalists.

The following assumptions will be used in our analysis in this section:

ASSUMPTION S: For each j ¼ 1, . . . , N, the service requirements Sk,j of job k � 1 at
station j are independent and identically distributed with mean 1. Moreover, for all
t � 0, if there is a job in service at station j at time t, then the expected
remaining service requirement at station j of that job is bounded above by a scalar
1 � S̄ , 1. Finally, the service discipline is either nonpreemptive or
preemptive-resume.

ASSUMPTION G: For all i ¼ 1, . . . , M and j ¼ 1, . . . , N, mij ¼ migj (and hence all
servers are flexible).

2.1. Systems with Flexible, Generalist Servers

When all servers are flexible, we have the following result.

THEOREM 2.1: Suppose that M � 1, N � 1, and Assumptions S and G hold. Then for
all 0 � B1, B2, . . . , BN21 , 1, any nonidling server assignment policy p is optimal,
with long-run average throughput

Tp(B1; B2; . . . ;BN�1) ¼

XM
i¼1

mi

XN

j¼1

1=gj

:

PROOF: Note that our model is equivalent to one in which the service requirements of
successive jobs at station j are independent and identically distributed with mean 1/gj

and the service rates depend only on the server (i.e., mij ¼ mi). Let Wp,p(t) be the
total work performed by time t for all servers under the nonidling policy p. Then
Wp,p(t) ¼ t

P
i¼1
M mi. Let B ¼

P
j¼1
N21 Bj and let Sk ¼

P
j¼1
N Sk,j be the total service
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requirement (in the system) of job k for all k �1. Let Wp (t) ¼
P

k¼1
Dp (t)þNþB Sk and let

Wp,r(t) ¼ Wp(t)2Wp,p(t) be the total remaining service requirement (work) at time t
for the N þ B jobs starting service at station 1 after job Dp(t) starts service at station 1.
From our assumptions we have

E½Wp;r(t)� � (N þ B) S̄
XN

j¼1

1

gj
; (2)

which implies that limt!1E[Wp,r (t)]/t ¼ 0 and

XM
i¼1

mi ¼ lim
t!1

E½Wp;p(t)�
t

¼ lim
t!1

E½Wp(t)�
t

: (3)

For all n � 0, let Zn ¼ (Sn,1, . . . , Sn,N). It has been shown in [6] that Dp(t) þ N þB is
a stopping time with respect to the sequence of random variables fZng and that
E[Dp(t)] , 1 for all t � 0. Then from Wald’s lemma, we have E[Wp(t)] ¼
(E[Dp(t)] þ N þ B) �

P
j¼1
N (1/gj), and hence (3) implies that

XM
i¼1

mi ¼ lim
t!1

E½Wp(t)�
t

¼ lim
t!1

E½Dp(t)�
t

XN

j¼1

1
gj

¼ Tp(B1;B2; . . . ;BN�1)
XN

j¼1

1
gj
; (4)

which yields the desired throughput. The optimality of this throughput follows from
(3) and (4) and the fact that Wp,p(t)� t

P
i¼1
M mi for all t � 0 and for all server assign-

ment policies p. B

Note that Theorem 2.1 is an extension of Theorem 2.1 of Andradóttir et al. [6],
where we considered the special cases mij¼ mi for all i ¼ 1, . . . , M and j ¼ 1, . . . , N
and mij¼ mj for all i ¼ 1, . . . , M and j ¼ 1, . . . , N. When there is only one server,
this server is flexible (i.e., l ¼ 1) and the conditions of Theorem 2.1 hold, then it is
clear that Theorem 2.1 implies that any nonidling policy is optimal with throughput
1/(
P

j¼1
N 1/m1j). On the other hand, if there is only one server, this server is dedicated

(i.e., l ¼ 0), and if N � 2, then the throughput is obviously equal to zero.

2.2. Systems with Both Flexible and Dedicated, Generalist Servers

In this subsection, we assume that the servers are generalists, so that mij¼ migj

for i ¼ 1, . . . , M and j ¼ 1, . . . , N. Given that l servers move, we show that under
certain assumptions it is optimal to have the fastest l servers as the flexible ones.
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We start by considering the case where the size of the buffers between the
stations is infinite. It then immediately follows from Proposition 4 of Andradóttir
et al. [7] that the l fastest servers should be the flexible ones. In fact, Proposition 4
of Andradóttir et al. [7] implies that for a general queuing network with N stations,
M . l servers, probabilistic routing (so that the queues are not necessarily in
tandem), general service requirements, and infinite buffers in front of all of the stations,
having the l fastest servers as the flexible ones maximizes the throughput in the class of
all policies with at most l flexible servers.

For the remainder of the article, we assume that N ¼ 2 and denote the size B2 of
the buffer between the two stations by B. For all p [ P, consider the stochastic
process fXp(t) : t � 0g, where Xp(t) ¼ 0 if there is a job to be processed at station
1, the number of jobs waiting to be processed between stations 1 and 2 is zero, and
station 2 is starved at time t; Xp(t) ¼ s for 1 � s � B þ 1 if there are jobs to be pro-
cessed at both stations 1 and 2 and in the buffer there are s21 jobs waiting to be
processed at time t; finally, Xp(t) ¼ B þ 2 if station 1 is blocked (so that there is a
job at station 1 whose processing at that station has been completed), B jobs are
waiting to be processed in the buffer, and there is a job to be processed at station 2
at time t. Let S ¼ f0, 1, . . . , B þ 2g be the set of states of fXp(t) : t � 0g and for
all s [ S, let pp(s) ¼ limt!1

Ð t
0 IfXpðuÞ ¼ sgdu=t if the limit exists and equals

a finite constant with probability 1 (where for two integers i, j, Ifi ¼ jg ¼ 1 if i ¼ j
and Ifi ¼ jg ¼ 0 otherwise).

We now consider how the flexible servers should be selected when the buffer B
between the two stations is finite. Let pi1

be a server assignment policy and assume
that under pi1 there is a flexible server i1 and a dedicated server i2 at station 1 such
that mi2

.mi1
. Let pi2 be a policy having the property that the roles of servers i1

and i2 are reversed (i.e., under pi2 server i1 is dedicated to station 1 and server i2
is flexible). Similarly, assume that under policy p 0i1 there is a flexible server i1 and
a dedicated server i2 at station 2 such that mi2 . mi1 . Let p 0i2 be a policy such that
the roles of servers i1 and i2 are reversed (i.e., under p 0i2 server i1 is dedicated to
station 2 and server i2 is flexible). Assume that under policies pi1 , pi2 , p 0i1 , and p 0i2 ,
the flexible servers never idle and the dedicated servers work whenever they can.
The following proposition provides sufficient conditions under which it is desirable
to reverse the roles of servers i1 and i2 in these two cases.

PROPOSITION 2.1: Suppose that N ¼ 2, Assumptions S and G hold, B , 1, pi1
, pi2

,
p 0i1

, p 0i2
[ P, and ppi1

(s), ppi2
(s), pp 0i1

ðsÞ, and pp 0i2
ðsÞ exist for s [ f0, B þ 2g.

(i) Let D1 and D2 denote the set of dedicated servers at station 1 and station 2,
respectively, under policy pi1

. We then have Tpi2
(B) . Tpi1

(B) if and only if

(mi2 � mi1 )ppi2
(Bþ 2)þ ½ ppi1

(Bþ 2)� ppi2
(Bþ 2)�

X
k[D1

mk

þ ½ppi1
(0)� ppi2

(0)�
X
k[D2

mk . 0: (5)
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(ii) Let D01 and D02 denote the set of dedicated servers at station 1 and station 2,
respectively, under policy p 0i1 . We then have Tp 0i2

(B) . Tp 0i1
(B) if and only if

(mi2 � mi1 )pp 0i2
(0)þ ½pp 0i1 (Bþ 2)� pp 0i2

(Bþ 2)�
X

k[D 01

mk

þ ½ pp 0i1
(0)� pp 0i2

(0)�
X

k[D 02

mk . 0: (6)

PROOF:

(i) Let Wp,p(t) and Wp,r(t) be as defined in the proof of Theorem 2.1 and let F
denote the set of flexible servers under policy pi1. Equation (2) implies that

limt!1

Wpi1 ;r
(t)

t
¼ limt!1

Wpi2 ;r
(t)

t
¼ 0:

Consequently, it is clear that

Tp 0i2
(B)� Tp 0i1

(B) ¼ lim
t!1

Wpi2;p
(t)

t
�

Wpi1;p
(t)

t

� �
;

and it suffices to show that the right-hand side is equal to the expression
in (5). We have

lim
t!1

Wpi2;p
(t)

t
�

Wpi1;p
(t)

t

� �

¼
X
k[F

mk þ mi2 � mi1

"
þ½1� ppi2

(Bþ 2)�
X
k[D1

mk þ mi1 � mi2

 !

þ ½1� ppi2
(0)�

X
k[D2

mk

#
�

X
k[F

mk þ ½1� ppi1
(Bþ 2)�

"

�
X
k[D1

mk þ ½1� ppi1
(0)�

X
k[D2

mk

#

¼ (mi2 � mi1 )ppi2
(Bþ 2)þ ½ppi1

(Bþ 2)� ppi2
(Bþ 2)�

�
X
k[D1

mk þ ½ppi1
(0)� ppi2

(0)�
X
k[D2

mk;

which completes the proof of (i). The proof of (ii) is similar and is omitted. B

Since Proposition 2.1 can be used to compare any two policies of the form pi1

and pi2 (or p 0i1
and p 0i2

), it is possible to use it recursively (if the conditions in (5)
or (6) hold each time) to show that the best nonidling policy should have the l
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fastest servers as the flexible ones. Thus, Proposition 2.1 provides sufficient con-
ditions that guarantee that the best nonidling policy should have the l fastest
servers as the flexible ones. When the service requirements are exponentially distrib-
uted, even though the conditions in (5) and (6) might be satisfied for some pi1

(pi2
)

and p 0i1 (p 0i2
), respectively, one can also construct examples with dedicated servers at

both stations for which these conditions are violated. For example, consider a system
with B ¼ 0 and g1 ¼ g2 ¼ 1. Let pi1 be the policy that has two servers with rates 0.9
and 0.1 dedicated to station 1, three servers with rates 0.7, 0.7, and 0.6 dedicated to
station 2, and two flexible servers with rates 0.8 and 0.2. The flexible servers work at
station 1 in states 0 and 1 and at station 2 in state 2. Let the policy pi2

be identical to
policy pi1

except that the server with rate 0.2 is now dedicated to station 1 and the
server with rate 0.9 is now one of the flexible servers. One can easily compute that
1.4118 ’ Tpi1

(B) . Tpi2
(B) ’ 1.3647. We now show that when all of the dedicated

servers are at the same station and the service requirements are exponentially distrib-
uted, the optimal policy with l flexible and M2l dedicated servers should have the l
fastest servers as the flexible ones. Similarly, Proposition 4.2 and Remark 4.1 in
Section 4 state that when the service requirements are exponentially distributed, all
available servers have been assigned to three teams, and it is of interest to dedicate
one team to each station and have one team of flexible servers (who move together
between the stations), then the optimal policy should have the service rate of the
team of flexible servers larger than the service rates of the two teams of dedicated
servers.

We start by showing that the conditions in (5) and (6) simplify significantly when
all the dedicated servers (assuming that the set of dedicated servers is nonempty) are at
the same station. Consider policies pi1

and p 0i1
that are nonidling to the extent possible,

and suppose that pi1
is a policy with all dedicated servers at station 1 and that p 0i1

is a
policy with all dedicated servers at station 2. For both pi1

and p 0i1
, assume that there is a

flexible server i1 and a dedicated server i2 such that mi2
. mi1

. Under policies pi2
and

p 0i2
, the roles of servers i1 and i2 are reversed (as described earlier). The following

corollary follows directly from Proposition 2.1.

COROLLARY 2.1: Suppose that N ¼ 2, Assumptions S and G hold, B , 1, pi1
, pi2

,
p 0i1

, p 0i2
[ P, and ppi1

(s), ppi2
(s), pp 0i1

ðsÞ, and pp 0i2
ðsÞ, exist for s [ f0, B þ 2g. We

then have the following:

(i) If D2 ¼ ; and ppi1
(B þ 2) � ppi2

(B þ 2) . 0, then Tpi2
(B) . Tpi1

(B).
(ii) If D1 ¼ ; and pp 0i1

ð0Þ � pp 0i2
ð0Þ . 0, then Tp 0i2

ðBÞ . Tp 0i1
ðBÞ.

For the remainder of the article we make the following assumption:

ASSUMPTION E: The service requirements of jobs at both stations are independent and
exponentially distributed with rate 1.

The next lemma shows that if the service requirements are exponentially distrib-
uted, then the assumptions of Corollary 2.1 hold.
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LEMMA 2.1: Suppose that N ¼ 2, l , M, assumptions G and E hold, B , 1, andpi1pi2,
p 0i1, p

0
i2 [ P. Then ppi1

(B þ 2) � ppi2
(B þ 2) . 0 and pp 0i1

ð0Þ � pp 0i2
(0) . 0.

PROOF: It is clear that the stochastic processes fXpi1
(t)g and fXpi2

(t)g are birth–
death processes with state space S. Note that under pi1 and pi2, there exists a state s0

[ S such that fs0, . . . , B þ 2g form a recurrent set of states and that states
0, . . . , s0 2 1 are transient. Consequently, we have ppi2

ðBþ 2Þ . 0. For all s [ S
and p [ P, let lp (s) and gp (s) be the birth and death rates in state s under policy p.
Then we have

lpi1
(s) � lpi2

(s) and gpi1
(s) � gpi2

(s) for all s [ S:

For all s [ fs0 , . . . , B þ 2g, we have

ppi1
(s) ¼ ppi1

(s0)
Ys�1

j¼s0

lpi1
( j)

gpi1
( jþ 1)

and

ppi2
(s) ¼ ppi2

(s0)
Ys�1

j¼s0

lpi2
( j)

gpi2
( jþ 1)

:

Note that there must exist an s [ fs0 , . . . , B þ 2g such that ppi1
ðsÞ � ppi2

ðsÞ, because
otherwise we have 1 ¼

PBþ2
s¼s0

ppi2
(s) ,

PBþ2
s¼s0

ppi2
(s) ¼ 1. The fact that lpi2

(i)/gpi1

(i þ 1) � gpi2
(i)/gpi2

(i þ 1) for i ¼ s0, . . . , B þ 1 now implies that ppi1
(B þ 2) �

ppi2
(B þ 2). The proof that pp 0i1

ð0Þ � pp 0i2
is similar and is omitted. B

The following proposition follows immediately from Corollary 2.1 and
Lemma 2.1 which are given above and Proposition 2.1 of Andradóttir and Ayhan
[5], which shows that the optimal policy should be nonidling to the extent possible
for systems with exponentially distributed service requirements.

PROPOSITION 2.2: Suppose that N ¼ 2, l , M, B , 1, and Assumptions G and E
hold. If all of the dedicated servers are at the same station, then the optimal policy
should have the l fastest servers as the flexible servers.

3. SYSTEMS WITH TWO SERVERS

In this section we consider the assignment of M ¼ 2 servers (with arbitrary service rates)
to N ¼ 2 stations when 0 � l � M servers are flexible. In particular, Section 3.1
consider systems where both servers are dedicated. In Section 3.2 we study systems
with one dedicated and one flexible server. Finally, Section 3.3 provides the
optimal server assignment policy when both servers are flexible.
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3.1. Systems with Two Dedicated Servers

When both servers are dedicated, it is clear that the dedicated servers should be
assigned to different stations because otherwise the long-run average throughput
would be zero. Our objective is to determine what stations each server should be
assigned to in order to maximize the long-run average throughput. We have only
two policies to consider. In particular, let p1 be the policy that assigns server 1 to
station 1 and server 2 to station 2, and let p2 be the policy that assigns server 2 to
station 1 and server 1 to station 2. Define

a1 ¼ minfm11;m22g; a2 ¼ minfm21;m12g

and

r1 ¼
a1

maxfm11;m22g
� 1; r2 ¼

a2

maxfm21;m12g
� 1:

Then one can verify that

Tpi (B) ¼ (Ifi ¼ 1gm22 þ Ifi ¼ 2gm12)
XBþ2

s¼1

ppi (s)

¼
ai

1�rBþ2
i

1�rBþ3
i

if ri , 1

ai
Bþ2
Bþ3 if ri ¼ 1;

8<
: (7)

where (in this case) fppi
(s) : s ¼ 0, . . . , B þ 2g is the steady-state distribution of the

number of customers in an M/M/1/(B þ 2) queuing system. The next proposition
compares the throughputs of these policies under certain assumptions.

PROPOSITION 3.1: Suppose that Assumption E holds and B , 1. If r2 , r1 and there
exists B0 such that Tp1

(B0) � Tp2
(B0), then Tp1

(B) . Tp2
(B) for all B . B0.

PROOF: If a2 ¼ 0, then Tp1
(B) . Tp2

(B) ¼ 0 for all B �0. When a2 . 0, we will show
that Tp1

(B0 þ 1) . Tp2
(B0 þ 1). First suppose that r1 , 1. Since Tp1

(B0) � Tp2
(B0),

we have

Tp1 (B0 þ 1) ¼ a1
1� rB0þ3

1

1� rB0þ4
1

� a2
1� rB0þ2

2

1� rB0þ3
2

 !

� 1� rB0þ2
1

1� rB0þ3
1

 !�1
1� rB0þ3

1

1� rB0þ4
1

 !

¼ a2
1� rB0þ3

1

1� rB0þ4
1

 !
f (r1;B0)
f (r2;B0)

¼ Tp2 (B0 þ 1)
f (r1;B0)
f (r2;B0)

;
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where

f (r;B) ¼ (1� rBþ3)2

(1� rBþ2)(1� rBþ4)
:

It suffices to show that f is strictly increasing in 0 � r , 1. With some algebra, we
have

d

dr
f (r;B) ¼ r Bþ1(1� r Bþ3)(1� r)

(1� r Bþ2)2(1� r Bþ4)2

�
(Bþ 2)(1� rBþ4)� (Bþ 4)r(1� rBþ2)

�

¼ r Bþ1(1� r Bþ3)(1� r)2

(1� r Bþ2)2(1� r Bþ4)2 (Bþ 2)(1þ rBþ3)� 2
XBþ2

i¼1

ri

 !
:

Define g(x) ¼ rx for all x [ R. Clearly, g(x) is a strictly convex function for 0 ,

r , 1. Then for all i ¼ 1, . . . , B þ 2,

g(i) ,
Bþ 3� i

Bþ 3
g(0)þ i

Bþ 3
g(Bþ 3):

Hence,

d

dr
f (r;B) .

r Bþ1(1� r Bþ3)(1� r)2

(1� r Bþ2)2(1� r Bþ4)2 �
 

(Bþ 2)(g(0)þ g(Bþ 3))

� 2
XBþ2

i¼1

Bþ 3� i

Bþ 3
g(0)þ i

Bþ 3
g(Bþ 3)

� �!

¼ r Bþ1(1� r Bþ3)(1� r)2

(1� r Bþ2)2(1� r Bþ4)2 ((Bþ 2)(g(0)þ g(Bþ 3))

� (Bþ 2)g(0)� (Bþ 2)g(Bþ 3))

¼ 0; (8)

which completes the proof for the case r1 , 1. If r1 ¼ 1, then Tp1
(B0) � Tp2

(B0)
yields

Tp1 (B0 þ 1) ¼ a1
B0 þ 3
B0 þ 4

� a2
1� rB0þ2

2

1� rB0þ3
2

 !

� B0 þ 2
B0 þ 3

� ��1 B0 þ 3
B0 þ 4

� �

¼ Tp2 (B0 þ 1)
limr"1 f (r;B0)

f ( r2;B0)

The result now follows from (8). B
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The next proposition provides conditions that determine which of the through-
puts of the policies p1 and p2 is larger for all buffer sizes B.

PROPOSITION 3.2: Suppose that Assumption E holds and B , 1. If r2 , r1 and
a1 � a2, then Tp1

(B) , Tp2
(B) for all 0 � B �1.

PROOF: First assume that r2 , r1 and a1 ¼ a2. Then it suffices to show that

h(r) ¼ 1� r Bþ2

1� r Bþ3

is a strictly decreasing function of r. We have

d

dr
h(r) ¼ r Bþ1(�(Bþ 2)g(0)þ (Bþ 3)g(1)� g(Bþ 3))

(1� r Bþ3)2 ;

where the function g is as definedd in the proof of Proposition 3.1. Recall that g is a
strictly convex function. Hence,

g(1) ,
Bþ 2
Bþ 3

g(0)þ 1
Bþ 3

g(Bþ 3) and
d

dr
h(r) , 0:

Now assume that a1 , a2. Suppose that there exists a B0 such that Tp1
(B0) � Tp2

(B0).
Then it follows from Proposition 3.1 that Tp1

(B) . Tp2
(B) for all B . B0 and

a1 ¼ lim
B!1

Tp1 (B) � lim
B!1

Tp2 (B) ¼ a2;

which contradicts the fact that a1 , a2. B

Note that it follows from (7) that if r1 ¼ r2, then Tp1
(B) � Tp2

(B) for all B � 0 if
and only if a1 � a2. On the other hand, when r1 = r2, then Propositions 3.1 and 3.2
indicate that the policy with the larger ratio of the service rates (r) is only guaranteed
to have the larger throughput if it also has the larger minimum service rate and the
buffer size B is sufficiently large. Now consider a system with two servers and
service rates m11 ¼ 2.5, m12 ¼ 4, m21 ¼ 3, and m22 ¼ 7. Then, for B ¼ 0, the
policy that assigns server 1 to station 1 and server 2 to station 2 has a higher through-
put than the policy that assigns server 2 to station 1 and server 1 to station 2. This
example shows that it is not necessarily correct that one would always try to
balance the rates and that it is not necessarily correct that one would like to maximize
the minimum of the rates at the two stations.

Remark 3.1: Suppose that we want to assign M . 2 dedicated servers to the two
stations. Then one can consider all possible ways of grouping these servers into
two teams and use (7) to compare the throughputs of the resulting policies and
hence to determine the optimal assignment. Moreover, Propositions 3.1 and 3.2
provide structural results about how these teams should be assigned to the stations
in an optimal fashion.
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Now, suppose that mij ¼ migj . 0 for all i ¼ 1, 2 and j ¼ 1, 2. The next prop-
osition states that the faster server should be assigned to the slower station. Thus,
when the dedicated servers are generalists, one would like to balance the service
rates at the two stations (this is not correct in general, as was shown earlier).

PROPOSITION 3.3: Suppose that Assumption E holds and B , 1. If g1 � g2 and m1 �
m2, then Tp2

(B) � Tp1
(B) for all B � 0.

PROOF: Note that if g1 ¼ g2 and m1 ¼ m2, or g1 ¼ g2 and m1 , m2, or g1 , g2 and
m1 ¼ m2, then Tp1

(B) ¼ Tp2
(B) for all B � 0 because in these cases a1 ¼ a2 and

r1 ¼ r2 (see (7)). Thus, we assume that g1 , g2 and m1 , m2. Then

r1 ¼
g1m1

g2m2
and r2 ¼

minfg1m2; g2m1g
maxfg1m2; g2m1g

:

Since g1m1 , minfg1m2, g2m1g and g2m2 . maxfg1m2, g2m1g, we have that
r1 , r2. Then we know from Proposition 3.1 that it suffices to show that
Tp2

(0) . Tp1
(0). With some algebra, we have

Tp2 (0)� Tp1 (0) ¼ g1g2m1m2(g2 � g1)(m2 � m1)½g1g2(m2
1 þ m2

2)

þ m1m2(g1g2 þ g 2
1 þ g 2

2)�½(g 2
2m

2
2 þ g1m1g2m2 þ g 2

1m
2
1)

� (g 2
1m

2
2 þ g1m1g2m2 þ g 2

2m
2
1)��1

. 0;

regardless of whether r2 , 1 or r2 ¼ 1. This completes the proof. B

3.2. Systems with One Dedicated and One Flexible Server

In this subsection we assume that M ¼ 2 and l ¼ 1. First, we specify the optimal
policy when the dedicated and flexible servers are known. The following result
follows from Theorem 4.1 of Andradóttir et al. [6] by setting the rate of the dedicated
server at the station the server is not assigned to equal to zero.

PROPOSITION 3.4: Suppose that Assumption E holds and B , 1.

(i) If the dedicated server is at station 1, then the policy that assigns the flexible
server to station 2 unless station 2 is starved and assigns the flexible server to
station 1 when station 2 is starved is optimal. Moreover, this is the unique
optimal policy in the set of Markovian stationary deterministic policies if
the optimal throughput is positive.

(ii) If the dedicated server is at station 2, then the policy that assigns the flexible
server to station 1 unless station 1 is blocked and assigns the flexible server to
station 2 when station 1 is blocked is optimal. Moreover, this is the unique
optimal policy in the set of Markovian stationary deterministic policies if
the optimal throughput is positive.

S. Andradóttir, H. Ayhan, and D. G. Down510

https://doi.org/10.1017/S0269964807000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000290


With respect to the question of determining which server should be the dedicated
one and which server should be the flexible one, we know from Proposition 3.4 that
we need to consider only four policies. The throughput expression (g0) given in the
proof of Theorem 4.1 of [6] (with the rate of the dedicated server at the station the
server is not assigned to set equal to zero) can now be used to compare the through-
puts of the resulting four policies and to determine which one is optimal.

Now, assume that mij ¼ migj . 0, for all i [ f1, 2g, and j [ f1, 2g, and that
Assumption E holds. Then from Proposition 2.2, we know that the faster server
should be the flexible one. Thus, in order to specify the optimal policy, it suffices
to determine the station to which the dedicated (slower) server is assigned. The
next proposition, which completely characterizes the optimal policy when the
servers are generalists, states that the slower (dedicated) server should be assigned
to the slower station. Note that the optimal choice of the flexible server and the assign-
ment of the dedicated server are only unique when the rates m1 and m2 of the two
servers and the rates g1 and g2 of the two stations are both different. The intuition
behind the optimal policy described in Proposition 3.5 is to keep the faster server
busy at all times (which is obtained by having the faster server as the flexible one)
and to keep the slower server as busy as possible (which is obtained by assigning
the slower server to the slower station).

PROPOSITION 3.5: Suppose that Assumption E holds and B , 1. If mij ¼ migj for all
i [ f1, 2g and j [ f1, 2g, then the optimal policy is nonidling to the extent
possible, has server arg minfi : mig dedicated to station arg minf j : gjg, and the flex-
ible server arg maxfi : mig is assigned to work at station arg maxf j : gjg unless station
arg maxf j : gjg is blocked or starved, in which case the server works at station arg
minf j : gjg.

PROOF: We only consider the case with m1 � m2 and g1 � g2 since the proofs of
the other cases are similar. Let p1 (p2) be the policy that has server 2 as the
flexible one and server 1 dedicated to station 1 (station 2). Then it follows
from the throughput expression g0 given in the proof of Theorem 4.1 of [6]
that for all B � 0,

Tp1 (B)� Tp2 (B) ¼ G1

G2
� 0;

where

G1 ¼ m2m
Bþ2
1 g1g2(m1 þ m2)(g2 � g1)

XBþ1

k¼0

mBþ1�k
2 (m1g1g2)k

�
X2Bþ2�2k

j¼0

g
j

1g
B�j
2
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and

G2 ¼ m2g2

XBþ1

j¼0

(m1g1)j(m2g2)Bþ1�j þ
XBþ2

j¼0

(m1g1) j(m2g2)Bþ2�j

" #

� m2g2

XBþ1

j¼0

(m2g1)j(m1g2)Bþ1�j þ
XBþ2

j¼0

(m2g1)j(m1g2)Bþ2�j

" #
: B

3.3. Systems with Two Flexible Servers

In this subsection we assume that Assumption E holds, B , 1, M ¼ 2, and l ¼ 2.
The optimal policy in this case is given in Theorem 4.1 of [6], but we repeat it
here for the sake of completeness.

PROPOSITION 3.6:

(i) If m11m22 � m21m12 , then the policy that assigns server 1 to station 1 and
server 2 to station 2 unless station 1 is blocked or station 2 is starved and
assigns both servers to station 1 (station 2) when station 2 (station 1) is
starved (blocked) is optimal. Moreover, this is the unique optimal policy in
the set of Markovian stationary deterministic policies if the inequality is
strict.

(ii) If m21m12 � m11m22 , then the policy that assigns server 2 to station 1
and server 1 to station 2 unless station 1 is blocked or station 2 is starved
and assigns both servers to station 1 (station 2) when station 2 (station 1)
is starved (blocked) is optimal. Moreover, this is the unique optimal policy
in the set of Markovian stationary deterministic policies if the inequality is
strict.

If the servers are generalists, then Theorem 2.1 implies that any
nonidling policy is optimal, including both of the policies defined in
Proposition 3.6.

4. SYSTEMS WITH THREE SERVERS

In this section we focus on the assignment of M ¼ 3 servers to the two stations. In
particular, Section 4.1 focuses on systems in which two servers are dedicated and
one server is flexible. In Section 4.2 we study systems with two flexible servers
and one dedicated server. Finally, Section 4.3 presents the optimal server assignment
policy when all three servers are flexible. Note that the case when all three servers are
dedicated is covered by Remark 3.1.
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We will need the following preliminaries. For nonnegative scalars md1, md2, mm1,
mm2, mu1, and mu2 and for all i [ f0, 1, . . .g, define

f (i) ¼ mi�2
d2 (mm1md2 � md1mm2)(md2 þ mm2 þ mu2)

�
XB�iþ2

j¼0

m
j
u1(md2 þ mm2)B�i�jþ2 � mB�iþ2

u1 (mu1mm2 � mm1mu2)

� (md1 þ mm1 þ mu1)
Xi�2

j¼0

m
j
d2(mm1 þ mu1)i�j�2; (9)

with the convention that summation over an empty set equals zero. Note that for
i ¼ 1, . . . , B þ 2, f (i) is proportional to the difference between the throughputs
of two policies that have server m move to station 2 at state i and state i 2 1, respect-
ively. Let

S� ¼ fs [ S nf0g : f (s) � 0 and f (sþ 1) � 0g:

We know from Proposition 3.1 of Andradóttir and Ayhan [5] that S* = ;.

4.1. Systems with Two Dedicated Servers and One Flexible Server

We first assume that M ¼ 3 and l ¼ 1. Without loss of generality, we consider the
case in which the dedicated servers are assigned to different stations because other-
wise this would be a special case of the model with one dedicated and one flexible
server discussed in Section 3.2. The server who is dedicated to station 1 is called
the “upstream” server and will be denoted by u [ f1, 2, 3g, the server who is dedi-
cated to station 2 is called the “downstream” server and will be denoted by d [ f1, 2,
3gnfug, and the flexible server is called the “moving” server and will be denoted by
m [ f1, 2, 3gnfu, dg.

For B , 1, fixed d, m, u, and all i [ f0, 1, . . .g, (9) reduces to

f (i) ¼ mm1m
i�1
d2 (md2 þ mm2)

XB�iþ2

j¼0

m
j
u1(md2 þ mm2)B�iþ2�j

� mm2m
B�iþ3
u1 (mm1 þ mu1)

Xi�2

j¼0

m
j
d2(mm1 þ mu1)i�j�2

by setting mu2 ¼ md1 ¼ 0. The following proposition, which follows from Theorem
3.1 of Andradóttir and Ayhan [5], describes the optimal dynamic assignment of the
flexible server m when servers d, m, and u are known and B , 1.
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PROPOSITION 4.1: Suppose that Assumption E holds, B , 1, d, m, and u are fixed, and
s* [ S*. Let

d�(s) ¼

servers m and u work at station 1, server d works at station 2
for 0 � s � s� � 1

server u works at station 1, servers d and m work at station 2
for s� � s � Bþ 2:

8>><
>>:

Then (d*)1 (the policy corresponding to the decision rule d*) is optimal. Moreover,
this is the unique optimal policy in the class of Markovian stationary deterministic
policies if S* ¼ fs*g.

With respect to determining which server should be the upstream one, which
server should be the downstream one, and which server should be the flexible one,
we know from Proposition 4.1 that we need to consider only six policies. The
throughput expression g0 given in the proof of Theorem 3.1 of Andradóttir and
Ayhan [5] (with the rate of the upstream server at station 2 and the rate of the down-
stream server at station 1 set equal to zero) can now be used to compare the through-
puts of the resulting policies and to determine which one is optimal.

Next assume that mij ¼ migj . 0 for all i [ f1, 2, 3g and j [ f1, 2g. We
can assume that m1, m2, and m3 are all strictly positive because the problem
reduces to having two servers if any of these rates are equal to zero. We will
show that the optimal policy should have the fastest server as the flexible one. The
following lemma, whose proof is given in the Appendix, shows that if the upstream
server is known, among the remaining two servers the faster one should be the flexible
server.

LEMMA 4.1: Suppose that Assumption E holds and B , 1. If server 1 is dedicated to
the upstream station and m3 � m2, then in the class of policies with a dedicated server
at each station, (d*)1 is optimal where

d�(s) ¼

servers 1 and 3 work at station 1; server 2 works at station 2

for 0 � s � s� � 1

server 1 works at station 1; servers 2 and 3 work at station 2

for s� � s � Bþ 2;

8>>><
>>>:

and s* [ S* is defined as above with mu1 ¼ m1g1, mm1 ¼ m3g1, mm2 ¼ m3g2 , md2 ¼

m2g2 , and mu2 ¼ md1 ¼ 0.

The following proposition states that when mij ¼ migj for all i [ f1, 2, 3g and
j [ f1, 2g, the fastest server should be the flexible one.

PROPOSITION 4.2: Suppose that Assumption E holds and B , 1. If mij ¼ migj for all
i [ f1, 2, 3g and j [ f1, 2g, then the optimal policy should have the server arg
maxfi : mig as the flexible server.
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PROOF: The proof follows from Lemma 4.1 above and Proposition 5.1 of Andradóttir and
Ayhan [5] on the reversibility of tandem queues with two stations and flexible servers. B

Remark 4.1: Note that the result in Proposition 4.2 is correct even if there is more
than one dedicated server at stations 1 and 2 and a team of multiple flexible servers
who move together between the stations. Hence, if there are three teams of generalist
servers and one of these teams should be dedicated to each of stations 1 and 2, then it
is optimal to have the fastest team as the flexible one.

From Proposition 4.2, we know that m [ arg maxfi : mig, but the choice of the
servers u and d is not specified and in fact this choice can depend on the buffer
size B (see Section 6). However, Propositions 4.1 and 4.2 show that when the
servers are all generalists, there are only two policies that might be optimal.
Consequently, one can compute the throughput of both policies and determine
which one yields the higher throughput. However, we now consider a special
case in which we can specify the allocation of the dedicated servers.

Remark 4.2: Suppose that M ¼ 3, l ¼ 1, and g1 ¼ g2. Then we can characterize the
optimal policy completely because in this case as long as the fastest server is the flex-
ible one, the throughput does not depend on the allocation of the remaining two
servers. In order to see this, without loss of generality, assume that g1 ¼ g2 ¼ 1,
m3 � m1, m3 � m2, and B , 1. Let Tp1

(B) be the optimal throughput under a
policy p1 that has server 1 as the upstream server, server 2 as the downstream
server, and server 3 as the flexible server. Similarly, let Tp2

(B) be the optimal through-
put under a policy p2 that has server 2 as the upstream server, server 1 as the down-
stream server, and server 3 as the flexible server. It then follows from Proposition 5.1
of Andradóttir and Ayhan [5] that Tp1

(B) ¼ Tp2
(B) for all 0 � B , 1.

4.2. Systems with One Dedicated and Two Flexible Servers

In this subsection we assume that M ¼ 3 and l ¼ 2. First, assume that the server at
station 1 is dedicated and as before denote this server by u. Define

d [ arg min
i[f1; 2; 3gnfug

mi1

mi2

� 	

and m [ f1, 2, 3gnfd, ug. For all i [ f0, 1, . . .g, (9) now reduces to

f (i) ¼ mi�2
d2 (mm1md2 � md1mm2)(md2 þ mm2)

XB�iþ2

j¼0

m
j
u1(md2 þ mm2)B�i�jþ2

� mB�iþ3
u1 mm2(md1 þ mm1 þ mu1)

Xi�2

j¼0

m
j
d2(mm1 þ mu1)i�j�2 (10)

by setting mu2 ¼ 0. The following proposition, which describes the optimal dynamic
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assignment of servers d and m when server u is dedicated to station 1 and B , 1,
follows from Theorem 3.1 of Andradóttir and Ayhan [5].

PROPOSITION 4.3: Suppose that Assumption E holds, B , 1, server u is dedicated to
station 1, servers d and m are defined as above, and s* [ S*. Let

d�(s) ¼

servers d, m, and u work at station 1
for s ¼ 0

servers m and u work at station 1; server d works at station 2
for 1 � s � s� � 1

server u works at station 1; servers d and m work at station 2
for s� � s � Bþ 2:

8>>>>>><
>>>>>>:

Then (d*)1 is optimal. Moreover, this is the unique optimal policy in the class of
Markovian stationary deterministic policies if S* ¼ fs*g.

Next, assume that the server at station 2 is dedicated and denote this server by d.
Define

m [ arg min
i[f1; 2; 3gnfdg

mi1

mi 2

� 	
and u [ f1, 2, 3gnfm, dg. For all i [ f0, 1, . . .g, (9) now reduces to

f (i) ¼ mi�1
d2 mm1(md2 þ mm2 þ mu2)

XB�iþ2

j¼0

m
j
u1(md2 þ mm2)B�i�jþ2 � mB�iþ2

u1

� (mu1mm2 � mm1mu2)(mm1 þ mu1)
Xi�2

j¼0

m
j
d2(mm1 þ mu1)i�j�2 (11)

by setting md1 ¼ 0. The following proposition, which describes the optimal dynamic
assignment of servers u and m when server d is dedicated to station 2 and B , 1,
follows from Theorem 3.1 of Andradóttir and Ayhan [5].

PROPOSITION 4.4: Suppose that Assumption E holds, B , 1, server d is dedicated to
station 2, servers u and m are defined as above, and s* [ S*. Let

d�(s) ¼

servers m and u work at station 1, server d works at station 2
for 0 � s � s� � 1

server u works at station 1, servers m and d work at station 2
for s� � s � Bþ 1

servers d, m, and u work at station 2
for s ¼ Bþ 2

8>>>>>><
>>>>>>:

Then (d*)1 is optimal. Moreover, this is the unique optimal policy in the class of
Markovian stationary deterministic policies if S* ¼ fs*g.

The next proposition provides a complete characterization of the optimal policy
(which does not depend on B) when mij ¼ migj for all i [ f1, 2, 3g and j [ f1, 2g.
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The intuition behind the optimal policy described in Proposition 4.5 is to keep the
faster servers busy at all times (which is achieved by having the faster servers as
the flexible ones) and to keep the slower server as busy as possible (which is achieved
by assigning the slower server to the slower station).

PROPOSITION 4.5: Suppose that Assumption E holds and B , 1. If mij ¼migj for all
i [ f1, 2, 3g and j [ f1, 2g and l ¼ 2, then the optimal policy with one dedicated
server is nonidling to the extent possible, has server arg minfi : mig dedicated to
station arg minf j : gjg, and the flexible servers f1, 2, 3gnfarg minfi : migg work
at station arg maxf j : gjg unless station arg maxf j : gjg is blocked or starved, in
which case the servers work at station arg minf j : gjg.

PROOF: We only consider the case with m1 � minfm2, m3g and g1 � g2 since the proofs
of other cases are similar. Since m1 � minfm2, m3g, we know from Proposition 2.2 that
servers 2 and 3 are the flexible ones. Hence, it suffices to show that server 1 is dedicated to
station 1 and servers 2 and 3 work at station 2 unless station 2 is starved. It follows
from (10) that if server 1 is dedicated to station 1, then S* f1g. Similarly, we know
from (11) that if server 1 is dedicated to station 2, then S*¼ fB þ 2g. Let p1 (p2)
be the policy in which server 1 is dedicated to station 1 (station 2) and servers 2 and
3 work at station 2 (station 1) unless station 2 (station 1) is starved (blocked), in
which case servers 2 and 3 work at station 1 (station 2). From Propositions 4.2 and
4.3, it suffices to show that Tp1

(B) � Tp2
(B) for all B � 0. With some algebra we have

Tp1 (B)�Tp2 (B)¼ (m2þm3)g2

XBþ2

s¼1

pp1 (s)

� m1g2

XBþ1

s¼1

pp2 (s)þ (m1þm2þm3)g2pp2 (Bþ 2)

 !

¼Y1

Y2
� 0 (12)

for all B� 0, where

Y1 ¼ (m1 � m2 þ m3)(m2 þ m3)g1g2m
Bþ2
1 (g2 � g1)

�
XBþ1

k¼0

g k
1g

k
2m

k
1(m2 þ m3)Bþ1�k

X2Bþ2�2k

j¼0

g
j
1g

2Bþ2�2k�j
2

and

Y2 ¼ ((m2 þ m3)g2)Bþ2 þ (m1 þ m2 þ m3)g1

XBþ1

j¼0

(m1g1) j((m2 þ m3)g2)Bþ1�j

" #

� ((m2 þ m3)g1)Bþ2 þ (m1 þ m2 þ m3)g2

XBþ1

j¼0

(m1g2) j((m2 þ m3)g1)Bþ1�j

" #
:
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Note that the equality in (12) holds only when g1¼ g2, in which case the optimal
throughput does not depend on the allocation of the dedicated server (see also
Remark 4.2). B

4.3. Systems with Three Flexible Servers

In this subsection we assume that M ¼ 3 and l ¼ 3. The optimal policy is given in
Theorem 3.1 of Andradóttir and Ayhan [5], but we repeat it here for the sake of com-
pleteness. Let

d [ arg min
i[f1; 2; 3g

mi1

mi2

� 	
;

m [ arg min
i[f1; 2; 3gnfdg

mi1

mi2

� 	
;

and u [ f1, 2, 3gnfd, mg. Consider the following policy

di(s) ¼

servers d; m; and u work at station 1
for s ¼ 0

servers m and u work at station 1; server d works at station 2
for 1 � s � i� 1

server u works at station 1; servers d and m work at station 2
for i � s � Bþ 1

servers d; m; and u work at station 2
for s ¼ Bþ 2;

8>>>>>>>>>><
>>>>>>>>>>:

where i [ f1, . . . , B þ 2g. The following proposition characterizes the optimal
server assignment policy.

PROPOSITION 4.6: Suppose that Assumption E holds and B , 1. Define s* [ S*. Then
(d s*)1 is optimal. Moreover, this is the unique optimal policy in the class of
Markovian stationary deterministic policies if S* ¼ fs*g.

When the servers are generalists, then any nonidling policy is optimal by
Theorem 2.1, including all of the threshold policies (d i)1, where i ¼ 1, . . . , B þ 2.

5. SYSTEMS WITH LARGE BUFFERS

In this section we show that the throughput of the optimal policies for the finite-
buffered systems considered in Sections 3 and 4 converges to the throughput of the
optimal policy for the corresponding infinite-buffered systems as the (finite) buffer
size B becomes large. Consider a system with M � 1 flexible servers and N ¼ 2
stations. For i ¼ 1, . . . , M, define

ri ¼
mi1

mi2
;
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with the convention that a positive real number divided by zero is equal to 1

(recall that we have assumed throughout that
P

j¼1
N mij . 0 for i ¼ 1, . . . , M ).

Relabel the servers so that r1 � r2 � ... � rM. Let T*(1) be the throughput of the
optimal policy when B ¼1. We know from Andradóttir et al. [7] that T*(1) ¼
l*, where l* is the optimal objective function value of the following linear
program (P):

Maximize l

s.t. XM
i¼1

ai1mi1 � l;

XM
i¼1

ai2mi2 � l;

ai1 þ ai2 � 1 for all i ¼ 1; . . . ;M;
ai1 � 0;ai2 � 0; for all i ¼ 1; . . . ;M:

The parameters aij, i ¼ 1, . . . , M, j ¼ 1, 2, can be interpreted as the long-run
fraction of time that server i spends at station j. We have the following:

PROPOSITION 5.1: Let p* ¼ minfi [ f1, . . . , Mg :
P

k¼1
i mk2 �

P
k¼iþ1
M mk1g. Then

one optimal solution to (P) is given as

a�i1 ¼

0 for i ¼ 1; . . . ; p� � 1Xp�
i¼1

mi2 �
XM

i¼p�þ1

mi1

mp�1þmp�2
for i ¼ p�

1 for i ¼ p� þ 1; . . . ;M;

8>>>><
>>>>:

a�i 2 ¼ 1� a�i 1 for i ¼ 1; . . . ;M; and

l� ¼
mp�1

Xp�
i¼1

mi2 þ mp�2

XM
i¼p�þ1

mi1

mp�1 þ mp�2
:

PROOF: For j ¼ 1, 2, let Pj be the set of servers with mij ¼ 0 and let P ¼
f1, . . . , Mgnf(P1 < P2) be the set of servers with mi1 and mi2 positive. Without
loss of generality, we can let aij¼ 0 for j ¼ 1, 2 and all i [ Pj. For all i [ P and
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j ¼ 1, 2, let bij ¼ aijmi2. Then (P) is equivalent to

Maximize l

s.t. X
i[P

bi1ri � l�
X
i[P2

mi1;X
i[P

bi2 � l�
X
i[P1

mi2;

bi1 þ bi2 � mi2 for all i [ P;
bi1 � 0;bi2 � 0; for all i [ P:

It is now clear that we can restrict our attention to solutions bij, i [ P and j ¼ 1, 2, and
satisfying bi1 . 0 implies bk1 ¼ mk2 for all k . i and bi2 ¼ mi2 2 bi1 (because r1 �
r2 � ... � rM). This implies that there exists p [ f1, . . . , Mg and a solution to (P)
with ai1 ¼ 0 for i , p, ai1 ¼ 1 for i . p, and ai2 ¼ 12ai1 for all i [ P. It only
remains to show that p ¼ p* and that ap1 ¼ a*

p*1. Note that ap*1 [ [0, 1) by the defi-
nition of p* and that

XM
i¼1

a�i1mi1 ¼
mp�1

Xp�
i¼1

mi2 � mp�1

XM
i¼p�þ1

mi1

mp�1 þ mp�2
þ
XM

i¼p�þ1

mi1 ¼ l� (13)

and

XM
i¼1

a�i2mi2 ¼ mp�2 �
mp�2

Xp�
i¼1

mi2 � mp�2

XM
i¼p�þ1

mi1

mp�1 þ mp�2
þ
Xp��1

i¼1

mi2 ¼ l�: (14)

If p , p*, then we must have

l �
Xp�1

i¼1

mi2 þ (1� ap1)mp2 ¼
Xp

i¼1

mi2 � ap1mp2 �
Xp��1

i¼1

mi2 � l�:

Similarly, if p . p*, then

l � ap1mp1 þ
XM

i¼pþ1

mi1 �
XM

i¼p�þ1

mi1 � l�:

This shows that p ¼ p*. Finally, the optimality of the choice ap1 ¼ a*
p*1 now follows

from (13) and (14). B

Proposition 5.1 shows that the servers are ordered in the same manner for the
infinite-buffered system as for the finite-buffered system (i.e., according to the
magnitude of r1, . . . , rM ) and illustrates that when B ¼1, even though all M
servers are flexible, there is an optimal policy with only one server working at
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both stations (in other words, optimality can be achieved with only one flexible
server; see also Proposition 2 of Andradóttir et al. [7]). Note that this is different
from the finite-buffered case, where all servers work at both stations in the optimal
policy.

Corollaries 5.1 and 5.2 provide an optimal solution to (P) for systems with M ¼ 2
and M ¼ 3 flexible servers, respectively.

COROLLARY 5.1: For a two-station tandem queue with M¼ 2 flexible servers, relabel
the servers so that r1 � r2. Then an optimal solution to (P) is given as follows:

(i) If m12 � m21, then

a�11 ¼
m12 � m 21

m11 þ m12
,

a�21 ¼ 1,

a�12 ¼
m11 þ m 21

m11 þ m12
,

a�22 ¼ 0,

l� ¼ m12(m11 þ m21)
m11 þ m12

:

(ii) If m12 . m21, then

a�11 ¼ 0,

a�21 ¼
m12 þ m 22

m21 þ m 22
,

a�12 ¼ 1,

a�22 ¼
m 21 � m12

m 21 þ m22
,

l� ¼ m21(m12 þ m 22)
m21 þ m 22

:

COROLLARY 5.2: For a two-station tandem queue with M ¼ 3 flexible servers, define
d, m, and u as in Section 4.3. Then an optimal solution to (P) is given as:

(i) If md2 � mm1 þ mu1, then a*
u2 ¼ a*

m2 ¼ 0, a*
u1 ¼ a*

m1 ¼ 1,

a�d1 ¼
md2 � mm1 � mu1

md1 þ md2
,

a�d2 ¼
md1 þ mm1 þ mu1

md1 þ md2
,

l� ¼ md2(md1 þ mm1 þ mu1)
md1 þ md2

:

DYNAMIC ASSIGNMENT OF SERVERS 521

https://doi.org/10.1017/S0269964807000290 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000290


(ii) If md2 , mm1 þ mu1 and md2 þ mm2 � mu1, then au2
* ¼ ad1

* ¼ 0, au1
* ¼

ad2
* ¼ 1,

a�m1 ¼
md2 þ mm2 � mu1

mm1 þ mm2
,

a�m2 ¼
mm1 þ mu1 � md2

mm1 þ mm2
,

l� ¼ mu1mm2 þ mm1md2 þ mm1mm2

mm1 þ mm2
:

(iii) If md2 þ mm2 , mu1, then am1
* ¼ ad1

* ¼ 0, am2
* ¼ ad2

* ¼ 1,

a�u1 ¼
md2 þ mm2 þ mu2

mu1 þ mu2
,

a�u2 ¼
mu1 � mm2 � md2

mu1 þ mu2
,

l� ¼ mu1(mu2 þ mm2 þ md2)
mu1 þ mu2

:

We are now ready to show that the throughput of the optimal policy for the
finite-buffered systems considered in Sections 3 and 4 converges to the optimal
throughput given in Corollaries 5.1 and 5.2 as the buffer size gets large. In order
to prove this, it is sufficient to focus on the system with three flexible servers
discussed in Section 4.3 because the other systems can be obtained from this one by
setting appropriate service rates equal to zero. Let Ts(B) be the throughput of the
policy (ds)1 (see Section 4.3). Lemma 5.1 shows that Ts(B) approaches to T *(1) as
B and s get large.

LEMMA 5.1: Suppose that Assumption E holds and that servers d, m, and u are chosen
as in Section 4.3. Then

lim
s!1

lim
B!1

Ts(B) ¼ T�(1):

PROOF: It is shown in Eq. (13) of Andradóttir and Ayhan [5] that

Ts(B) ¼

Q1

Q2
if md2 = mu1 þ mm1 andmu1 = mm2 þ md2

Q3

Q4
if md2 ¼ mu1 þ mm1 andmu1 = mm2 þ md2

Q5

Q6
if md2 = mu1 þ mm1 andmu1 ¼ mm2 þ md2;

8>>>>><
>>>>>:
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where

Q1 ¼ (mu1 þ mm1 þ md1)

 
(ms

d2 � (mu1 þ mm1)s)

ms�1
d2 (md2 � (mu1 þ mm1))

þ (mu1 þ mm1)s�1mu1((mm2 þ md2)Bþ2�s � mBþ2�s
u1 )

(mm2 þ md2)Bþ2�sms�1
d2 ((mm2 þ md2)� mu1)

!
;

Q2 ¼ 1þ (mu1 þ mm1 þ md1)(ms�1
d2 � (mu1 þ mm1)s�1)

ms�1
d2 (md2 � (mu1 þ mm1))

þ (mu1 þ mm1 þ md1)(mu1 þ mm1)s�1

(mm2 þ md2)Bþ2�sms�1
d2

�
 

(mm2 þ md2)Bþ2�s � mBþ2�s
u1

(mm2 þ md2)� mu1
þ mBþ2�s

u1

mu2 þ mm2 þ md2

!
;

Q3 ¼ (mu1 þ mm1 þ md1)

 
sþ mu1((mm2 þ md2)Bþ2�s � mBþ2�s

u1 )

(mm2 þ md2)Bþ2�s((mm2 þ md2)� mu1)

!
;

Q4 ¼ 1þ (mu1 þ mm1 þ md1)(s� 1)
md2

þ (mu1 þ mm1 þ md1)

(mm2 þ md2)Bþ2�s

�
 

(mm2 þ md2)Bþ2�s � mBþ2�s
u1

(mm2 þ md2)� mu1
þ mBþ2�s

u1

mu2 þ mm2 þ md2

!
;

Q5 ¼ (mu1 þ mm1 þ md1)

 
(ms

d2 � (mu1 þ mm1)s)

ms�1
d2 (md2 � (mu1 þ mm1))

þ (mu1 þ mm1)s�1(Bþ 2� s)

ms�1
d2

!
;

and

Q6 ¼ 1þ (mu1 þ mm1 þ md1)(ms�1
d2 � (mu1 þ mm1)s�1)

ms�1
d2 (md2 � (mu1 þ mm1))

þ (mu1 þ mm1 þ md1)(mu1 þ mm1)s�1

(mm2 þ md2)ms�1
d2

 
Bþ 2� sþ (mm2 þ md2)

mu2 þ mm2 þ md2

!
:

Note that the case with md2 ¼ mm1 þ mu1 and mu1 ¼ md2 þ mm2 is not possible
because this implies that mm1 ¼ mm2 ¼ 0.

We will consider the three cases listed in Corollary 5.2. First, assume that md2 �
mu1 þ mm1. Consider the case when md2 . mu1 þ mm1 (if md2 ¼ mu1 þ mm1, then one
can carry out a similar analysis using the expression Ts(B) ¼ Q3/Q4). We have
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Ts(B) ¼ Q1/Q2 and

lim
s!1

lim
B!1

Ts(B)¼ lim
s!1

 
(mu1þmm1þmd1)

 
md2 1� mu1þmm1

md2

� �s� �
md2�mu1�mm1

þ mu1(mu1þmm1)s�1

ms�1
d2 (mm2þmd2�mu1)

!"
1þ (mu1þmm1þmd1)

�
 

1� mu1þmm1
md2

� �s�1

md2�mu1�mm1
þ mu1þmm1

md2

� �s�1 1
mm2þmd2�mu1

!#�1!

¼ md2(mu1þmm1þmd1)
md1þmd2

¼ T�(1):

Next, assume that md2 , mm1 þ mu1 and md2 þmm2 � mu1. Consider the case when
md2 þ mm2 . mu1 (if mu1 ¼ md2 þ mm2, then one can carry out a similar analysis
using the expression Ts(B) ¼ Q5/Q6). We have Ts(B) ¼ Q1/Q2 and

lim
s!1

lim
B!1

Ts(B) ¼ lim
s!1

 
(mu1 þ mm1 þ md1)

 
md2

md2
mu1þmm1

� �s�1
�(mu1 þ mm1)

md2 � mu1 � mm1

þ mu1

mm2 þ md2 � mu1

!"�
md2

mu1 þ mm1

�s�1

þ (mu1 þ mm1 þ md1)

�
 md2

mu1þmm1

� �s�1
�1

md2 � mu1 � mm1
þ 1
mm2 þ md2 � mu1

!#�1!

¼ mu1mm2 þ mm1md2 þ mm1mm2

mm1 þ mm2

¼ T�(1):

Finally, assume that md2 þ mm2 , mu1. Then Ts(B) ¼ Q1/Q2 and

lim
s!1

lim
B!1

Ts(B) ¼ lim
s!1

�mu1

mm2 þ md2 � mu1

�1
mm2 þ md2 � mu1

��

þ 1
mu2 þ mm2 þ md2

��1
#

¼ mu1(mu2 þ mm2 þ md2)
mu1 þ mu2

¼ T�(1)
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(note that s becomes irrelevant in this case as B!1 because the system is not
stable). B

Let T* (B) ¼ Ts*(B). We can now prove the following result.

PROPOSITION 5.2: Suppose that Assumption E holds and d, m, and u are chosen as in
Section 4.3. Then

lim
B!1

T�(B) ¼ T�(1):

PROOF: Let pB
* be an optimal policy when the buffer size is given by B � 0. Now con-

sider a system with buffer size B0, where B � B0 �1, and let pB0 be the policy that
chooses the same actions as pB

* in states 0, 1, . . . , B þ 2 and assigns all the servers to
station 2 in states B þ 3, B þ 4, . . . , B0 þ 2. Then

T�(B) ¼ Tp�B
(B) ¼ TpB0 (B

0) � T�(B0) for all B0 � B;

where the second equality follows since states B þ 3, . . . , B0 þ 2 are transient under
policy pB0. Consequently, we have that T*(B) � T*(B þ 1) and T*(B) � T*(1) for all
B � 0. This implies that limB!1 T*(B) exists and is bounded above by T*(1).
The result now follows from the fact that

T�(1) ¼ lim
s!1

lim
B!1

Ts(B) � lim
s!1

lim
B!1

T�(B) ¼ lim
B!1

T�(B);

where the first equality follows from Lemma 5.1. B

Note that the result in Proposition 5.2 also holds for systems with M ¼ 2 servers
(let mm1 ¼ mm2 ¼ 0 and select the switch point s arbitrarily in f1, . . . , B þ 2g). Thus,
Proposition 5.2 demonstrates that the throughput of the optimal policy for the finite-
buffered system with M ¼ 2 or M ¼ 3 servers converges to the throughput of the
optimal policy for the corresponding infinite-buffered system as the buffer size
becomes large. Moreover, Proposition 5.2 and Corollaries 5.1 and 5.2 show that
when the buffer size is large, the throughput of the best policy with a single
moving server is close to the throughput of the optimal policy where all servers are
flexible for systems with M ¼ 2 and 3 servers. (When M ¼ 1, the throughput of the
optimal policy is the same for all buffer sizes B � 0; see Theorem 2.1). Our numerical
examples in Section 7 indicate that this assertion also holds for systems with large
buffers and M . 3 servers who are generalists. One can now achieve near-optimal
throughput with just one flexible server by selecting the dedicated servers and the
stations to which they are assigned as in Proposition 5.1 and assigning the flexible
server appropriately to stations for systems with large (but finite) buffers. However,
when the buffer size is small, there could be a significant difference between the
throughput of the optimal policy and the throughput of the best policy with a
single moving server, as Figures 1 and 2 in Section 7 indicate.
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6. COUNTERINTUITIVE EXAMPLES

In this section we provide examples with a dedicated server at each station and also a
flexible server to illustrate the fact that both the selection of the downstream,
upstream, and flexible servers and the assignment of the dedicated servers to the
stations can depend on the buffer size B. Consequently, these examples suggest
that obtaining structural results beyond the ones provided in this article that specify
the optimal choice of the flexible server and to what stations the dedicated servers
should be assigned is difficult.

Consider the case with m11¼ 1.0, m12¼ 1.099, m21¼ 1.1, m22¼ 1.21, m31¼ 3.0,
and m33¼ 3.3. If B ¼ 0, then the policy that assigns server 1 to station 1 and server 2
to station 2 and has server 3 as the flexible server is optimal among all the policies
with only one flexible server (although the servers are not generalists in this example,
this is consistent with Proposition 4.2). The same policy is also optimal for systems
with B¼1. Then one might expect that this policy is also optimal for all 0 , B ,

1. However, this statement is not correct. It turns out that the optimal policy with one
flexible server for B ¼ 1 is the one that assigns server 2 to station 1, and server 1 to
station 2 and has server 3 as the flexible one. Even though the policy with server 1 at
station 1, server 2 at station 2, and server 3 moving is optimal for all B � 6, for B , 6
the optimal policy alternates between the two policies mentioned earlier. Note that the
counterintuitive behavior described in this paragraph can also occur when the servers
are all generalists. For example, similar results hold for a system with generalist
servers where g1¼ 1.0, g2 ¼ 1.1, m1¼ 1.0, m2¼ 1.1, and m3¼ 3.0.

The examples in the previous paragraph also show that if a policy is optimal for
two systems with buffer size B1 and B2, respectively, where B1 , B2 , 1, it is not
necessarily correct that it is optimal for all B1 � B � B2. Moreover, it indicates that
even if the optimal choice of which servers are dedicated does not depend on B,
the assignment of the dedicated servers to stations might nevertheless depend on
the buffer size.

With the next example we demonstrate that the choice of the flexible server can also
depend on the buffer size. Suppose that m11¼ 6.0, m12¼ 5.0, m21¼ 4.1, m22 ¼ 4.01,
and m31¼ m32¼ 5.0. For B ¼ 0, the policy that assigns server 1 to station 1 and
server 2 to station 2 and has server 3 as the flexible one is optimal. On the other
hand, when B ¼ 1, the optimal policy involves assigning server 2 to station 1 and
server 3 to station 2 and having server 1 as the flexible server. Finally, when the
buffer size is large, the optimal policy assigns server 1 to station 1 and server 3 to
station 2 and has server 2 as the flexible one. Hence, depending on the buffer size,
the optimal policy with one flexible server can have any one of the three servers as
the flexible one.

7. NUMERICAL RESULTS

In this section we provide numerical results for systems with two stations, 1 � M �
10 servers, and exponentially distributed service requirements. Our objective with
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these numerical experiments is to see the effects of server flexibility on system
throughput. Toward this end, we consider systems with a buffer of size B [ f0,
5, 10, 20g between the two stations and generalist servers (i.e., mij ¼ migj for all
i [ f1, . . . , Mg and j [ f1, 2g). We consider four different sets of numerical
experiments for each buffer size B. In the first set of experiments, mi ¼ 50 for all
i [f1, . . . , 10g and g1 ¼ g2 ¼ 1. In the second set of experiments, the service
rate mi of server i [ f1, . . . , Mg is drawn independently from a uniform distri-
bution with range [0, 100] and g1 ¼ g2 ¼ 1. In the third set of experiments,
mi ¼ 50 and g1 and g2 are drawn independently from a uniform distribution with
range [0, 2]. Finally, in the fourth set of experiments, mi, for i [ f1, . . . , Mg, is
drawn independently from a uniform distribution with range [0, 100] and g1 and g2

are drawn independently from a uniform distribution with range [0, 2]. Note that in
all four sets of numerical experiments, the mean of mi, for i ¼ 1,
. . . , M, is 50 and the common mean of g1 and g2 is 1, but the variance of mi,
for i ¼ 1, . . . , M, is either zero or 104/12, and, similarly, the common variance of
g1 and g2 is either zero or 1/3. Hence, the first set of numerical examples is con-
cerned with situations in which the servers are all identical and the line is balanced;
the second set focuses on situations with nonidentical servers and balanced lines;
the third set addresses situations where servers are all identical and the line is unba-
lanced; and the fourth set of numerical examples studies situations with nonidenti-
cal servers and unbalanced lines.

For all four sets of numerical experiments, we consider five different policies:

† an arbitrary stationary policy where server 1 and all even-numbered servers
except for server 2 work at station 1 and the remaining servers work at
station 2;

† the best stationary policy (i.e., the policy with the largest throughput among
those with l ¼ 0);

† an arbitrary policy with only one flexible server (so that l ¼ 1) assigned opti-
mally to stations, which is any nonidling policy for M ¼ 1, server 1 works at
station 1 and server 2 is flexible for M ¼ 2, and for M � 3, server 3 moves, all
remaining odd-numbered servers work at station 1, and all even-numbered
servers work at station 2;

† the best policy with one flexible server and dedicated servers at both stations
when M � 3 and a dedicated server at one station when M ¼ 2 (i.e., the
policy with the largest throughput among those with l ¼ 1 and dedicated
servers at both stations when M � 3 and a dedicated server optimally assigned
to one station when M ¼ 2);

† the optimal policy where all servers are allowed to move (l ¼ M ).

For each buffer size B, we compute the long-run average throughput of these five pol-
icies when the number of servers M varies from 1 to 10. Clearly, in the first set of
experiments, the long-run average throughput of all five policies can be computed
exactly. Moreover, in this case, since the throughputs of the arbitrary and best station-
ary policies are equal to each other and, similarly, the throughputs of the arbitrary and
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best policies with one flexible server are also equal to each other, we have only three
different policies to compare. However, in the remaining three sets of numerical
experiments, the long-run average throughputs of the five policies are estimated by
finding the average throughput values of 1,000,000 replications for systems with 0
or 5 buffers, 500,000 replications for systems with 10 buffers, and 100,000 replica-
tions for systems with 20 buffers and for all choices of M (where each replication
involves generating a different set of service rates mij, for i [ f1, . . . , Mg and j [
f1, 2g, and determining the throughput of the five policies under consideration for
these service rates). Figures 1 through 4 display the throughputs of these policies
for the four sets of numerical experiments as a function of the number of servers for
the four different choices of B.

As expected, Figures 1–4 show that the long-run average throughput of the five
policies increases as the number of servers increases. Moreover, the long-run
average throughput of the optimal policy is a linear function of the number of
servers (as predicted by Theorem 2.1). This assertion seems to hold for the
average throughput of the best policy with one flexible server except for the first
set of numerical experiments (depicted in plot (a) of Figs. 1–4). Similarly,

FIGURE 1. Throughput values as a function of the number of servers when B ¼ 0.
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it holds for the best stationary policy except for the first set of experiments when
M . 1 (when M ¼ 1, all policies with l ¼ 0 have throughput equal to zero). Note
that since all the servers are identical and the stations are balanced, an additional
server does not improve the performance as much in the first set of numerical
experiments if it leads to having an unequal number of servers dedicated to stations
1 and 2. Figures 1–4 also demonstrate that one can significantly improve the
throughput by allowing servers to move. As Proposition 5.2 suggests, the perform-
ance of the best policy with one flexible server approaches that of the optimal
policy as the buffer size increases. In fact, even for B ¼ 5, the throughput of the
best policy subject to one flexible server is close to the throughput of the
optimal policy. Also, in numerical results not presented here in the interest of
space, we found that when the optimal policy is considered as the baseline, the
difference between the throughputs of the best policy subject to one flexible
server and the optimal policy was always less than 17.2% for systems with B ¼
1 and less than 11.5% for systems with B ¼ 3 (for all four sets of numerical exper-
iments and all 1 � M � 10). This suggests that employing the best policy with one

FIGURE 2. Throughput values as a function of the number of servers when B ¼ 5.
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flexible server can yield near-optimal throughput even for systems with small to
moderate buffer sizes. On the other hand, even though an arbitrary policy with
one flexible server is better than an arbitrary stationary policy, one has to be
careful when using an arbitrary policy with only one flexible server. As Figures
2–4 illustrate, the best stationary policy starts outperforming the arbitrary policy
with one flexible server as the buffer size and the number of servers increase.

Finally, we comment on the improvement that we obtain by cross-training
another server versus the improvement obtained by adding a resource (i.e., a new
server or a buffer space). As Figures 1–4 illustrate, in all four sets of numerical exper-
iments, the arbitrary policy with one flexible server among M (for M ¼ 2, . . . , 9)
servers yields very similar throughput as the arbitrary stationary policy with M þ 1
servers (considering the arbitrary stationary policy with M þ 1 servers as the
baseline, the difference between throughputs is less than 6% except when M is odd
in the first set of numerical experiments in which case the difference is less than
22%). The same assertion holds when comparing the best policy with one flexible
server among M servers with the best stationary policy with M þ 1 servers (in this

FIGURE 3. Throughput values as a function of the number of servers when B ¼ 10.
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case, the difference between throughputs is at most 24.1% considering the best
stationary policy with M þ 1 servers as the baseline and this difference decreases
as the number of servers increases). This suggests that, on average, increasing flexi-
bility is almost as effective as increasing the number of servers in terms of improving
throughput.

On the other hand, having all the servers flexible and assigning them optimally to
the stations is more effective than adding buffer space. This is consistent with
Theorem 2.1, which shows that when the servers are generalists, the optimal through-
put (under the assumption that all servers are flexible) does not depend on the buffer
size. Hence, for a fixed number of servers M, the throughput of the optimal policy for
systems with B ¼ 0 is larger than the throughput of all other policies for systems with
B . 0. Similarly, in plots (b), (c), and (d) in Figures 1–4, for all M ¼ 1, . . . ,10, the
throughput of the best policy with one flexible server for systems with B ¼ 5
outperforms the throughput of the best stationary policy for systems with B ¼ 10
and the throughput of the best policy with one flexible server for systems with
B ¼ 10 outperforms the throughput of the best stationary policy for systems with

FIGURE 4. Throughput values as a function of the number of servers when B ¼ 20.
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B ¼ 20. The same assertion holds for plot (a) (the first set of numerical experiments)
when the number of servers is odd. When the number of servers is even, the through-
put performance of the two policies for the corresponding systems is very similar (the
throughput for the systems with one flexible server and the smaller buffer size is
slightly smaller). Even though the throughput of the best policy with one flexible
server for systems with B ¼ 0 is, in general, less than the throughput of the best
stationary policy for systems with B ¼ 5, the difference between the throughputs is
small in most cases. These observations suggest that, in general, it is more effective
to add server flexibility rather than buffer space in order to increase the long-run
average throughput.

8. CONCLUSIONS

For a tandem queuing network with N � 2 stations, M � 1 servers, an infinite supply
of jobs in front of station 1, infinite room for completed jobs after station N, and either
a finite or infinite buffer between consecutive stations, we studied the dynamic
allocation of servers to stations with the goal of maximizing the long-run average
throughput under the assumption that only a subset of the servers are flexible, with
the remaining servers being dedicated to particular stations. When N ¼ M ¼ 2 and
both servers are dedicated, we have specified which server should be assigned to
which station in order to maximize the throughput. When N ¼ 2, 1 � M � 3, and
only a subset of the servers are flexible, we have shown that the allocation of the
flexible servers is of threshold type and characterized the threshold values. However,
the optimal selection of the dedicated and flexible servers, assignment of dedicated
servers to stations, and the threshold(s) where the flexible server(s) switch from
station 1 to station 2 can depend on the buffer size.

When the servers are generalists, we were able to completely characterize the
optimal policy in almost all cases. In particular, when all servers are flexible, we
proved that any nonidling policy is optimal for systems with finite buffers. When
N ¼ 2, B , 1, service requirements are exponentially distributed, and all servers
are assigned to two dedicated teams, we have shown that it is optimal to assign the
faster team of servers to the slower station. Similarly, when N ¼ 2, B , 1, and the
service requirements are exponentially distributed, we proved that the optimal
policy should have the fastest l servers as the flexible ones if all of the dedicated
servers are at the same station or if there is at least one dedicated server at each
station and a single team of flexible servers and also that when all the dedicated
servers are at the same station, they should be assigned to the slower station.

Finally, we showed that the throughput of the optimal policy for two-station
Markovian tandem queues with M ¼ 2 or M ¼ 3 servers converges to the throughput
of the optimal policy for the corresponding infinite-buffered systems as the buffer size
becomes large. Moreover, we proved that for large buffer sizes, the throughput of the
best policy with a single flexible server for these systems is close to the throughput of
the optimal policy where all servers are flexible. Our numerical examples indicated
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that this assertion also holds for two-station tandem queues with M . 3 servers and
moderate buffer size B when the servers are generalists with exponentially distributed
service requirements. Furthermore, the numerical results illustrated that, in general,
adding flexibility is almost as effective as adding a new server and more effective
than adding a buffer space in improving the system throughput.
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APPENDIX

PROOF OF LEMMA 4.1: If Assumption E holds and p [ P, then it is clear that the stochastic
process fXp(t) : t � 0g defined in Section 2.2 is a continuous-time Markov chain and that
there exists a scalar qp �

P
i¼1
M max1�j�2mij , 1 such that the transition rates fqp(x, x 0)g

of fXp(t)g satisfy
P

x0[S,x=x0qp(x, x0) � qp for all x [ S. Hence, fXp(t)g is uniformizable
for all p [ P. Let fYp(k)g be the corresponding discrete-time Markov chain, so that
fYp(k)g has state space S and transition probabilities pp(x, x0) ¼ qp(x, x0)/qp if x = x0

and pp(x, x) ¼ 1 2
P

x0[S,x=x0qp(x, x0)/qp for all x [ S. It has been shown by Andradóttir
et al. [6] that the original optimization problem in (1) can be translated into an equivalent
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(discrete-time) Markov decision problem. More specifically, let

Rp(x) ¼ qp (x; x� 1) for x [ f1; . . . ;Bþ 2g
0 for x ¼ 0;

�

be the departure rate from state x under policy p, for all x [ S and p [ P. Then the optimiz-
ation problem (1) has the same solution as the Markov decision problem

max
p[P

lim
K!1

E
1
K

XK

k¼1

Rp(Yp(k � 1))

" #
: (A1)

In what follows, we solve a more general problem that determines the optimal allocation of
servers 2 and 3 subject to having at least one server at station 2 at all times (but this server
could depend on the state) and server 1 at station 1 at all times. Since (as we show below)
the optimal policy for this less restrictive problem has server 2 dedicated to station 2, server
1 dedicated to station 1, and server 3 flexible, we can conclude that the faster server should
be the flexible one when there is a dedicated server at each station.

It follows from Proposition 2.1 of Andradóttir and Ayhan [5] that it is sufficient to consider
actions that do not allow the flexible servers to idle. Then the set As of allowable actions in state
s [ S is given by As ¼ fd0, d1, d2g for s [ f0, . . . , B þ 1g and ABþ2 ¼ fd1g, where

d0 ¼ servers 1 and 3 work at station 1, server 2 works at station 2;

d1 ¼ server 1 works at station 1, servers 2 and 3 work at station 2;

d2 ¼ servers 1 and 2 work at station 1, server 3 works at station 2.

From our assumptions on the service rates, we have a recurrent Markov decision process and we
can use the policy iteration algorithm for unichain models (see Puterman [25, p. 378]) to prove
the optimality of the policy described in Lemma 4.1.

In the policy iteration algorithm, we start by choosing

d0(s) ¼ d�(s) ¼ d0 for 0 � s � s� � 1
d1 for s� � s � Bþ 2;

�

corresponding to the policy described in Proposition 4.1. Then the reward vector rd0
and the

probability transition matrix Pd0 corresponding to the decision rule d0 are given as

rd0 (s) ¼
0 for s ¼ 0
m2g2 for 1 � s � s� � 1
m2g2 þ m3g2 for s� � s � Bþ 2;

8<
:
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and

Pd0 (s; s0) ¼

(m1 þ m3)g1

q
for s ¼ 0; s0 ¼ 1

q� (m3 þ m1)g1

q
for s ¼ s0 ¼ 0

m2g2

q
for 1 � s � s� � 1; s0 ¼ s� 1

q� (m2g2 þ m1g1 þ m3g1)
q

for 1 � s � s� � 1; s0 ¼ s

(m1 þ m3)g1

q
for 1 � s � s� � 1; s0 ¼ sþ 1

(m2 þ m3)g2

q
for s� � s � Bþ 1; s0 ¼ s� 1

q� (m2g2 þ m3g2 þ m1g1)
q

for s� � s � Bþ 1; s0 ¼ s

m1g1

q
for s� � s � Bþ 1; s0 ¼ sþ 1

(m2 þ m3)g2

q
for s ¼ Bþ 2; s0 ¼ Bþ 1

q� (m2 þ m3)g2

q
for s ¼ s0 ¼ Bþ 2:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Since the Markov chain under the policy (d0)1 is irreducible, we can find a scalar g0 and a
vector h0 solving

rd0 � g0eþ (Pd0 � I)h0 ¼ 0; (A2)

subject to h0(0) ¼ 0. In (A2), e is a column vector of ones and I is the identity matrix. Define

F0 ¼ g1g2(m1 þ m3)(m2 þ m3)

� (m2g2 þ m3g2)Bþ2�s�
Xs��1

j¼0

(m1g1 þ m3g1)s��1�j(m2g2) j

 

þ (m1g1 þ m3g1)s��1
XBþ2�s�

j¼1

(m2g2 þ m3g2)Bþ2�s��j(m1g1) j

!

and

F1 ¼ (m2g2 þ m3g2)Bþ3�s�
Xs��1

j¼0

(m1g1 þ m3g1)s��1�j(m2g2) j

þ (m1g1 þ m3g1)s�
XBþ2�s�

j¼0

(m2g2 þ m3g2)Bþ2�s��j(m1g1) j:
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One can show that g0 ¼ F0/F1, h0(0) ¼ 0,

h0(s) ¼ q(g0 � m1g1 � m3g1)
(m1g2 þ m3g2)s

Xs�2

j¼0

( jþ 1)(m2g2)s�j�1(m1g1 þ m3g1) j þ qg0

m1g1 þ m3g1

for 1 � s � s*, and

h0(s) ¼ h0(s�)þ
q(m2g2 þ m3g2)

Ps��s�1

j¼0
(m1g1)s��s�j�1(m2g2 þ m3g2) j

(m1g1)s��s(m1g2 þ m3g2)s

�
 

g0(m1g1 þ m3g1)s��1 þ (g0 � m1g1 � m3g1)

�
Xs��2

j¼0

(m2g2)s��j�1(m1g1 þ m3g1) j

!

þ q(g0 � m2g2 � m3g2)

(m1g1)s��s

Xs��s�1

j¼0

( jþ 1)(m1g1)s��s�j�1(m2g2 þ m3g2) j

for s* þ 1 � s � B þ 2, constitute a solution to (A2). As is discussed in Puterman [25,
pp. 338–339], g0 represents the long-run average reward under policy (d0)1 (which is the
long-run average throughput under policy (d0)1) and h0(s), s ¼ 1, . . . , B þ 2, can be inter-
preted as the asymptotic relative difference in total reward that results from starting the
process in state s versus state 0.

As the next step of the policy iteration algorithm, we choose

d1(s) [ arg max
a[As

r (s; a)þ
X
j[S

p( jjs; a)h0( j)

( )
; 8s [ S;

setting d1(s) ¼ d0(s) if possible (here r(s, a) is the reward gained when action a is chosen in
state s and p( jjs, a) is the transition probability from state s to state j when action a is
chosen in state s). We now show that if s* [ S*, then d1(s) ¼ d0(s), for all s [ S. In particular,
for all s [ S and a [ As, we will show that the differences

r (s; a)þ
X
j[S

p( jjs; a)h0 ( j)� r (s; d0(s))þ
X
j[S

p( jjs; d0(s))h0( j)

 !

are nonpositive. Thus, we will prove that the decision rule corresponding to (d0)1 (which is the
policy described in Lemma 4.1) satisfies the optimality equations and, hence, it is gain
(long-run average reward) optimal.
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For 0 � s � s* 2 1, we have that d0(s) ¼ d0. Define

F2 ¼
Xs��s�2

j¼0

(m1g1 þ m3g1)s��s�2�j(m2g2)sþj

� ðm1g1)Bþ3�s� þ m3g1

XBþ2�s�

j¼0

(m2g2 þ m3g2)Bþ2�s��jm
j
1

 !

� (m1 þ m2 þ m3):

We have

r (s; d1)þ
X
j[S

p( jjs; d1)h0( j)� r(s; d0)þ
X
j[S

p( jjs; d0)h0( j)

 !

¼ �m3g1g2(F2 þ f (s�))
F1

� 0

and

r (s; d2)þ
X
j[S

p( jjs; d2)h0( j)� r (s; d0)þ
X
j[S

p( jjs; d0)h0( j)

 !

¼ � (m3 � m2)g1g2(F2 þ f (s�))
F1

� 0:

Similarly, for s* � s � B þ 1, we have that d0(s) ¼ d1. Define

F3 ¼
Xs�s��1

j¼0

(m2g2 þ m3g2)s�s��1�j(m1g1)B�sþ2þj

� (m2g2)s� þ m3g2

Xs��1

j¼0

(m1g1 þ m3g1)s��1�j(m2g2) j

 !

� (m1 þ m2 þ m3):

We have

r (s; d0)þ
X
j[S

p( jjs; d0)h0( j)� r (s; d1)þ
X
j[S

p( jjs; d1)h0( j)

 !

¼ �m3g1g2(F3 � f (s� þ 1))
F1

� 0

and

r (s; d2)þ
X
j[S

p( jjs; d2)h0( j)� r (s; d1)þ
X
j[S

p( jjs; d1)h0( j)

 !

¼ �m2g1g2(F3 � f (s� þ 1))
F1

� 0:

Since ABþ2 ¼ fd1g, we have shown that d1(s) ¼ d0(s) for all s [ S. By Theorem 8.6.2 of
Puterman [25], this proves that the policy described in Lemma 4.1 is optimal. B
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