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Cross-Unit Causation and the Identity
of Groups
Bruce Glymour*y

In this article I explore some statistical difficulties confronting going conceptions of
‘group’ as understood in accounts of group selection. Most such theories require real
groups but define the reality of groups in ways that make it impossible to test for their
reality. There are alternatives, but they either require or invite a nominalism about groups
that many theorists abjure.
1. Introduction. In this article I recount some empirical and associated sta-
tistical difficulties confronting going accounts of group selection in respect
of the conceptions of ‘group’ employed by them. In brief, most such theories
require real groups but define the reality of groups in ways that make it im-
possible to test for the reality of the groups employed by a population model.
If those definitions are to be taken seriously, no group selection model can
ever be employed on real observational data in any reliable fashion; even the
diagnosis of the presence or absence of group selection is statistical nonsense
given these accounts. There are alternatives, but they require a nominalism
about groups that most theorists (although rather fewer practitioners) abjure.

Models of group selection require groups: some mapping of individuals
to collections of individuals. On some theories of group selection, those col-
lections comprise merely nominal groups; that is, any mapping will do, so
long as every member of the population is mapped to some collection. Con-
sider, for example, models employing neighborhood variables. Each unit,
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each oak tree on a hillside perhaps, is mapped to the collection of oak trees
that are within, say, 10 meters of the focal unit. Each oak tree has its own
neighborhood, so every member of the population is mapped to some (pos-
sibly empty) collection. But no oak tree is in its own neighborhood, and any
given oak tree might be in the neighborhood of several others. Further, the
neighborhoods—the collections of oak trees—need not themselves be in
any interesting sense biologically united, need not comprise a ‘real’ group,
apart from the fact that they happen to be all the oak trees within 10meters of
some other oak tree. The group is formed by appeal to a mere Cambridge
property, as it were.

Some (e.g., Glymour and French 2009) are content with neighborhoods
or other merely nominal groups, and I will call these positions ‘nominalist’.
But I do not mean by nominalism to require that groups are not real in any
biological sense; nominalism merely says that reality, and so reality in any
particular sense, is irrelevant to questions about whether group selection is
operating. Neighborhood and contextual analysis, for example, are nominal-
ist methods because they do not require that group members be united by
physical, social, or biological relations. But neither do these methods exclude
such real, unified, groups. Thus for nominalists, as I mean the term, the mem-
bers of the groupsmay, but need not, be united by some set of physical, social,
or biological relations, and, if they are united, the relevant relations may, but
need not, be known to obtain.

At least some biologists, especially those engagedwith actually modeling
wild populations (see sec. 4) adopt practices that are consistent with nomi-
nalism. But many orthodox accounts of group selection are less permissive:
it is thought that the collections to which individuals are mapped ought not
be mere neighborhoods but rather groups that are real in the sense that mem-
bers’ evolutionary fates must be tied to one another in some interesting and
important way. There are roughly three strategies for defining groups so as to
induce such partitions: appeal to expert knowledge, appeal some observable
social or biological relation among individuals, or appeal to fitness-affecting
interactions among individuals. The last is by far the most common strategy,
and accordingly we will begin with it.

2. Fitness-Defined Groups. On this method of inducing groups, two in-
dividuals are held to be members of a common group (if and) only if they
affect one another’s fitness. As Sober and Wilson put it, “a group is defined
as a set of individuals that influence each other’s fitness with respect to a cer-
tain trait but not the fitness of those outside the group” (1999, 92), which def-
inition they take, plausibly, to summarize the essential feature of groups as
understood byDarwin (1871), Haldane (1932),Wright (1945),Williams and
Williams (1957), and Hamilton (1975). Godfrey-Smith (2008) endorses a
similar requirement in at least some circumstances and cites in supportUyeno-
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yama and Feldman (1980),Wilson (1980), Michod (1982), andWade (1985).
Others endorse some version of the requirement but add further restrictions
or allow exceptions of one kind or another. Okasha (2006), for example, dis-
tinguishes between ecological and genealogical groups and requires only the
former to satisfy the requirement; he also requires that ecological groups be
capable of “free living.” Sterelny (1996), Maynard Smith (1998), and Nun-
ney (1998) arguably endorse some version of the requirement and also, as
Okasha notes, require a richer functional organization among the elements
of the group. Thus, for many theorists, symmetric, fitness-affecting causal in-
teractions between (nearly all) members of the group and the absence of such
interactions between (nearly all) members of different groups is a necessary
feature of group structure: given a mappingG from the domain of individuals
to subsets thereof, if the ‘groups’ identified by the mapping systematically
include individuals that do not influence one another’s fitness, then the map-
ping does not identify real groups, and there is no group selection acting on
that population with respect to those collections of individuals. I say that the-
ories including this kind of constraint on group structure employ fitness-
defined groups.

Fitness-defined groups introduce a decidedly intractable discovery prob-
lem for those who would model populations using real data. If group selec-
tion occurs only over real rather than nominal groups, we can diagnose the
occurrence of group selection only given a prior diagnosis of which parti-
tions of the population yield real groups. And to do that one must specify
a test for the existence of the group-defining relations, here fitness-affecting
interactions. Such tests are complicated by a necessary vagary. Godfrey-Smith
(2008) points out, correctly, that often no partition of the population will yield
collections of organisms, cells in the partition, each of which strictly satis-
fies the constraints on fitness-defined groups. But he and others suppose, as
will I, that often enough there are partitions on which the resulting collec-
tions approximately satisfy the relevant constraints, hence the ‘nearly all’ in the
above framing. I will gloss ‘approximately satisfy’ thusly: we require a par-
tition of the population such that the network of fitness-affecting interactions
is relatively dense within groups and relatively sparse between groups. This
is vague in respect of what counts as ‘dense’ and ‘sparse’, and there is clearly
a disputable boundary: there will be cases in which it is unclear whether there
are fitness-defined groups because there are only a few fitness-affecting in-
teractions and such as do occur are only slightly more frequent within than
between groups. But also I assume that there are clear limiting cases, that is,
cases in which fitness-affecting interactions occur but are so sparse even within
groups that on any reasonable interpretation of those who require fitness-
defined groups no such groups are present.

Developing tests for the satisfaction of vague boundary conditions is of
course problematic. But as it turns out precision here is not to the point. Min-
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imally, we want a procedure that, when given a partition, reliably determines
whether the collections generated by that partition do or do not satisfy the
(now vague) constraints on fitness-defined groups. No procedure of this sort
is now possible, exactly because there are no reliable methods for determin-
ing the existence of fitness-affecting interactions between individuals.1 Such
interactions involve cross-unit causal dependencies, which turn out to be em-
pirically inaccessible. More precisely, on any reasonable precisification of
‘dense’ and ‘sparse’, available methods are not appropriately sensitive to
the frequency or distribution of cross-unit fitness-affecting interactions. In
fact, there is in the literature just one general strategy for identifying the pres-
ence of the relevant fitness-affecting interactions.2 Before elaborating the
challenges it faces, it will be useful to have a clear view of what makes it
so difficult to discover cross-unit causal dependencies.

2.1. Inferring Cross-Unit Causation. The fitness-affecting interactions
employed to define real biological groups are a species of cross-unit causa-
tion. Cross-unit causation occurs whenever the traits of one individual, or
unit, causally influence the traits of another. It is simple enough to define
such cross-unit causal dependencies. For instance, on an interventionist con-
ception of causation (Pearl 2000; Spirtes, Glymour, and Scheines 2000;
Woodward 2003) it is perfectly reasonable to say than Anya’s income caus-
ally influences Boris’s education and that this is so if and only if there is some
intervention on Anya’s income that changes the probability density over
Boris’s education. But discovering the truth about such causal hypotheses
is not so simple at all.

The reason for this is that causal dependencies are evidenced by the sta-
tistical associations they generate in the data, and (more important) the ab-
sence of those causal dependencies is evidenced by the absence of asso-
ciations in the data. But to find associations in the data, or their absences,
variable values must be paired. Sample covariance, for example, is defined
as the mean product of paired deviations from the mean. Consider Boris and
Anya again. If one wanted to test the theory that income causes education,
one might look to see whether there is a sample covariance between the var-
1. More exactly: there are tests that, on representative data from a population, determine
whether there exists at least one fitness-affecting interaction; there are however no tests
that reliably determine for each pair ha,bi in the population whether some trait of a’s in-
fluences b’s fitness.

2. Although see, e.g., Hudgens and Halloran (2012), Aronow and Samii (2013), Ugander
et al. (2013), and Gui et al. (2015) for discussions of novel methods for estimating the
strength of cross-unit dependencies (so-called interference or indirect effects) in net-
works, which methods may hold some promise for cross-unit causal inference using ex-
perimental data.
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iables: where i indexes individuals and n is the number of individuals in the
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nonzero? If so, Income and Education are associated and so potentially caus-
ally related; if not, then neither causes the other, and, more, they share no
common cause. But calculating the covariance requires that observations
of income and education be paired, which is what the index i is doing. Nor-
mally, i just indexes subjects, so we pair the observation of Anya’s income
with the observation of Anya’s education and the observation of Boris’s in-
come with the observation of Boris’s education, and so on. But clearly that
will not do to test for cross-unit causation: that Anya’s income influences
Anya’s education and Boris’s income influences Boris’s education implies
nothing about whether Anya’s income influences Boris’s education. Hence,
any test of cross-unit causation requires some other way of pairing observa-
tions.

Nor will it do to simply pair Anya’s income with Boris’s education, for
that gives us a sample of one, from which nothing can be inferred with
any reliability (e.g., the sample covariance is not even defined on a sample
of one). One could simply consider every possible pair, but it is not clear
what a nonzero sample statistic from such a data set would mean, and, not
unrelatedly, for samples of any size at all, the signal generated by the causal
dependency would be swamped. The problem is really twofold. First, obser-
vations must be paired or otherwise grouped, unit a with unit b, unit c with d,
and so on (a matching problem). Second, within the resulting groups the obser-
vationsmust be ordered, potential cause–potential effect, a’s educationwith b’s
income, c’s education with d’s income, and so on (an ordering problem).

There are methods for avoiding the ordering problem, for example, the
use of intraclass correlations or demographic variables, but their values pro-
vide at best deeply ambiguous evidence for the existence of pairwise causal
dependencies.3 Some of the relevant problems are simply endemic to causal
inference. For example, we could match observations of Education and In-
come by pairing off our population into families; thus, if Anya and Boris are
related as spouse to spouse, they would share a common value for an index
variable Family. We do not actually need to arbitrarily order spouses to de-
termine whether units within a given family are likely to share similar edu-
cation values, and we can test for that using intraclass correlations. If the
units with a given family are especially likely to have similar Education val-
ues, then Family is associated with Education. If so, then either Family in-
3. I thank an anonymous referee for pointing out the need to treat intraclass correlations
explicitly.
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fluences Education, or they share some common cause, for example, Income
or City of Residence. Similarly, if we map units to groups with a function G
and the intraclass correlation of unit fitnesses within a group is nonzero, we
have reason to think either the units influence one another’s fitness or there is
some common cause of their fitnesses. The latter possibility is worrisome if
we are committed to fitness-defined groups, but the risk of confounder bias
is ever present and unavoidable if we wish to learn from observational data.
If this were the only worry, we could proceed apace. Unfortunately, it is not.
The substantive worry is best illustrated as it arises in the use of demographic
variables, which method is by far the most common in discussions of group
selection.

2.2. Demographic Variables. A demographic variable, as I will use the
term here, is a variable that records the value of a group variable in the group
to which an individual belongs. Thus, for example, if we pair Anya and
Boris as a group, and Anya has 12 years of education and Boris 10, they each
belong to a group characterized by a mean education of 11 years. We can
then define E(i) as the years of education had by unit i, and D(i) as the mean
of E among all units belonging to the same group as i (i.e., �E(g), where g is
the group to which i belongs). Each unit is then characterized by a pair of
variable values: one value for E and another for D.4 It is important to hold
clearly in mind that any given demographic variable D is individuated from
others by two things: the trait variable it aggregates, here E, and the mapping
function that collects units into groups. If either is changed, one has a distinct
demographic variable.

The sometimes explicit but often implicit strategy is this: to determine
whether the trait value of unit a influences the fitness of unit b, test whether
the mean of trait values of units a and b influences the fitness of b. For ex-
ample, Sober and Wilson write, just after offering the above quoted defini-
tion of ‘group’, that “mathematically the groups are represented by a fre-
quency of a certain trait, and fitnesses are a function of this frequency.
Any group that satisfies this criterion qualifies as a group in multilevel selec-
tion theory” (1999, 92–93). This kind of test, it turns out, is a disaster for
proponents of group selection. To see why, care must be taken here to dis-
ambiguate subtly different ideas.
4. Formally, if E(i) is measured on units in a set P of units, andG(i) is a mapping of units
to subsets g of P, andM(g) is some moment of the distribution of E in the subset g, then
D(i) 5 M (G(i)) 5 m is a demographic variable measured on units in P but recording
the property of being mapped by G to a subset of P characterized by a distribution over
E with momentM 5 m. I here assume that G will partition P, although the extension to
neighborhood variables is obvious.
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First, note that the same test—a test for the causal influence of a demo-
graphic variable on reproductive success—is being used to establish both
the reality of groups and the reality of group selection with respect to those
groups (at least, if group selection is understood as MLS1 sensu Heisler and
Damuth [1987], Damuth and Heisler [1988], and Goodnight, Schwartz, and
Stevens [1992]). The double use is described by Okasha (2004) and illus-
trated by Stevens, Goodnight, and Kalisz (1995), who defend the choice
of group boundaries by appeal to the fact that smaller neighborhoods (.5 me-
ters) generate signification regression coefficients (so selection is occurring),
but the use of larger neighborhoods does not increase the variance explained
by the regression model (so the smaller neighborhoods are correctly sized).5

But although the two inferences are grounded in the same data and evi-
denced by the same test statistics (regression coefficients and R2 values),
they are different inferences, and they are differently reliable. As I explain
below, it is possible for the demographic variable to cause individual fitness
even when most members of the group do not influence each other’s repro-
ductive success.

Second, the quoted passage from Sober and Wilson invites two different
readings.Wemight simply hold that what it is for cross-unit fitness-affecting
interactions to occur within a set of organisms g just is for D(i) to cause fit-
ness W(i). Differently, we might take the existence of a causal dependency
between D(i) and W(i) as evidence for, as a signal of, a fitness-affecting in-
teraction between units a and b, when D(b) is calculated with respect to a
group containing a and conversely. I will call the first the ‘identity assump-
tion’ and the second the ‘evidential assumption’. Somewhat different prob-
lems arise on the alternative understandings.

Given either assumption, the standard test for fitness-influencing interac-
tions imposes pairings by employing demographic variables defined over
some set of collections, which are otherwise generated. If the units in each
group exhibit a trait T that affects the fitness of others in the group, then a
demographic variable aggregating T in the groups will causally influence in-
dividual fitness. Thus, to test whether there is group selection, one tests for
such a dependence. To do that one maps individuals to collections (which
will be counted as groups if the test is passed) and computes the mean of
the frequency distribution of the relevant trait variable in each such collec-
tion. That value is then recorded as the value of a demographic variable mea-
sured on the unit. When groups are real such a value represents the property
of belonging to a group characterized by such and such a mean (or variance
or whatever) value of the trait in question. Members of the same group will
5. It is unclear whether Stevens et al. should be understood as committed to fitness-
defined groups. The use of neighborhood variables suggests they are not; the use of R2

to justify the choice of neighborhood size suggests they are.
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share the same value for such variables, but because the variables are mea-
sured on units, covariances and other measures of association can be calcu-
lated with paired values induced by the standard index over units in the sam-
ple.6 So the causal dependence betweenD(b) andW(b) will be signaled by a
conditional association between D(i) andW(i), controlling for T(i). And the
causal dependence between D(b) andW(b) either entails (on the identity as-
sumption) or is a reliable signal of (on the evidential assumption) a cross-
unit causal dependence between a’s trait value and b’s fitness.

This is the procedure employed in contextual analysis (cf. Mason, Wong,
and Entwisle 1983; Heisler and Damuth 1987), and it has much to recom-
mend it. The manner in which pairings are induced is straightforward, and
it is statistically fairly easy to accommodate. Alternative statistical methods
for hierarchical modeling exist (see, e.g., Raudenbush and Bryk 2002;
Gelman et al. 2004). But, importantly, all such methods will depend, directly
or indirectly, on fitness-affecting interactions, if they exist, inducing an as-
sociation between the relevant demographic variable and fitness. However,
the signal is decidedly imperfect. Apart from the above noted possibility of
unmeasured confounders, it is possible for the demographic variable D(i) to
cause W(i) for some but not all units, that is, for D(i) to cause W(i) when
some, but not all, groups are real.7 That would be bad enough, but worse
problems loom.

Assume the interventionist conception of causation (e.g., Pearl 2000;
Spirtes et al. 2000) or one of the related conceptions (e.g., Rubin 2005) that
permits systematic causal inference from observational data. Consider a
population P of units indexed by i and including units a and b, and let G(i)
be a function from P to subsets g of P that partition P so that if G( j) 5 g then
j ∈ g. Suppose that a trait of individual a, T(a), causally influences reproduc-
tive success for b, W(b); that is, there is some intervention on T(a) that
changes the probability density over W(b). Units a and b should then be
put in the same group. Define �T (g) as the mean value of T in the set g,
and define the corresponding demographic variable D(i) 5 �T (G(i)). Then
given that T(a) causesW(b),D(b) causesW(b): the interventions on T(a) that
change the probability density over W(b), which must exist because T(a)
causes W(b), also change �T (fa, bg) and thus D(b). Assuming the Causal
Markov and Faithfulness conditions (cf. Spirtes et al. 2000), these causal de-
6. When groups are not real, the value of a demographic variable represents the property
of being mapped to such a collection rather than belonging to the collection. Godfrey-
Smith (2008) thinks such variables represent properties of the organism’s environment,
and for this reason, among others, neighborhood variables should not be used in models
of group selection. Others disagree (cf. Glymour and French 2009).

7. That is, it might be that some, but not all, members of the population belong to fitness-
defined groups. Aspects of this untoward possibility are explored by Basl (2011) and
McLoone (2015).
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pendencies will be signaled in relevant data by appropriate associations.8

Thus, in any representative sample data D(i) and W(i) will be associated,
and our test for cross-unit fitness-affecting interactions will, appropriately,
return a positive result.

But now consider the set {a,b,c} for any other unit c in the population, and
the mapping G0 that yields this set as the image of each of the units a, b, and c.
The interventions on T(a) that modify the density over W(b) are no less inter-
ventions on �T (fa, b, cg) than on �T (fa, bg). Hence, the former causes W(b)
if the latter does.9 So given the demographic variable D0(i) 5 �T (G0(i)), D0(b)
causes W(b), and more generally D0(i) causes W(i). Our test will, now in-
appropriately, return a positive result for the existence of cross-unit fitness-
affecting interactions among a, b, and c, even when no trait of c causally influ-
ences the fitness of either a or b.

Interestingly, while the causal dependence betweenD(i) andW(i) will only
be evidenced by an association when G partitions the population into mul-
tiple groups, it exists even when G maps all individuals in the population to
just one group. Let D(i) be defined with respect to mapping G and be such
that D(i) andW(i) are associated in virtue of a cross-unit dependency in one
or more of the groups generated by G. Let D0(i) be defined with respect to the
same trait variable and a mapping G0 that maps every member of the popula-
tion to just one group. It follows from the fact that D(i) causesW(i) that D0(i)
causes W(i): the existence of the causal dependency rests only on the avail-
ability of interventions, and any intervention on D defined with respect to
G is an intervention on D0 defined with respect to G0. Hence, if the presence
of a causal relation between D(i) and W(i) is taken to be a reliable signal of
fitness-affecting interactions, then conditional associations between D(i) and
W(i) controlling for T(i), on any mapping G, are sufficient to infer to the ex-
istence of one, but only one, fitness-defined group. On any view that defines
group membership by fitness-affecting interactions and makes the identity as-
sumption, group selection really does, literally, reduce to frequency-dependent
selection.

In practice, biologists do not make the relevant inferences. Those who
employ contextual analysis are generally happy enough with any mapping
G on which there is a significant association between D(i) andW(i) explain-
8. For example, a nonzero partial regression coefficient forW(i) when regressed on D(i)
conditional on T(i).

9. The causal dependency is implied unless by adding c to the group we intervene on or
otherwise perfectly compensate for the T (a)→W (b) dependency. So, e.g., perhaps T(a)
influences W(b) when, but only when, c is not a member of the group, so that an inter-
vention on �T (fa, bg) changes the density over W(b), but an intervention on �T (fa, b, cg)
does not. But in that case there really are fitness-affecting interactions among a, b, and c,
and they really do belong in the same group.

86/693873 Published online by Cambridge University Press

https://doi.org/10.1086/693873


726 BRUCE GLYMOUR

https://doi.org/10.1086/69387
ing any appreciable fraction of the variance inW(i), and (as in Stevens et al.
1995) associations weaken as group size increases.10 This suggests that the
evidential assumption is the more charitable reading of Sober and Wilson.
But in thus avoiding universal groups, practice becomes flatly inconsistent
with the requirement that groups be fitness defined. Fitness-defined groups
require dense pairwise fitness-affecting interactions within groups, but the
existence of causal connections betweenD(i) andW(i) is really bad evidence
for such dense within-group interactions. To see this, simply consider map-
pings that include several units in each of the groups but include in each
group just one pair with a cross-unit dependence between them, and let that
interaction be very strong. Then, although by assumption most units in most
groups do not influence one another’s fitness, D(i) will both cause and, as-
suming the Causal Markov and Faithfulness conditions, be associated with
W(i).

One might attempt alternative methods. For example, one could engage
in pairwise testing of every ordered pair hi, ji of individuals in the population
and then infer the group structure by employing one or another clustering
algorithm (see, e.g., White and Reitz [1983] for early efforts, Clauset, New-
man, andMoore [2004] or Newman and Girvan [2004] for modularity based
methods, Ding et al. [2001] for normalized cut methods, among other alter-
natives) on the resulting network to construct an approximate partition. The
problems here are twofold. First, with n units one has n observations to test
n2 2 n hypotheses (�T (fi, jg)→W ( j) for each ordered pair hi, ji of units in
the population, i ≠ j), and so for n > 2 we will need to perform more tests
than we have data points. And second, as noted above, for each particular
pairing {i, j} we have exactly one observation (for the pair hi, ji the observed
pair of �T (fi, jg) andW( j)). That strategy commits to statistical nonsense twice
over.11

2.3. How Serious Is the Problem?. Recapitulating the argument so far:
to test for the presence of group selection or to model the selection pressures
acting on a population in ways that distinguish multilevel selection processes
from individual level selection processes we require a mapping of units to
groups. A (perhaps the) standard theoretical presupposition is that these groups
must be real and that real groups are fitness defined; that is, real groups are
characterized by a network of cross-unit fitness-affecting interactions that is
dense within groups and sparse between groups. Because it is not possible
10. I thank an anonymous referee for pointing out the need to make this point explicitly.

11. I note in passing that the above problems are equally applicable to any bit of con-
ceptual analysis, of which there are many in philosophy of biology, that analyzes some
concept in terms of cross-unit causation. The propriety of any application to data of the
resulting concept is epistemically inaccessible.
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to reliably test for pairwise causal dependencies between each (or any) pair
of units, the presence of fitness-affecting interactions is understood to be sig-
naled by the casual influence of demographic variables on unit fitnesses. That
identification can be definitional or evidential.

On the definitional assumption, the causal dependence between T(a) and
W(b) is said to be identical to the dependence betweenD(b) andW(b), where
D is defined relative to a function G that maps a and b to the same group.
Hence, tests for the latter are tests for the former. This turns out to yield the
disastrous consequence that if there is any unit u such that T(u) causes W(b),
then for any unit i, T(i) causesW(b). In consequence, there is either one group
in the population or none. On the (more plausible) evidential assumption that
T(a) causesW(b) is not identical toD(b) causingW(b), the latter causal depen-
dency is taken to be a reliable signal of the former, and hence tests for the lat-
ter are tests for the former. But, absent a definitional identification of the two
dependencies, the causal dependency betweenD(b) andW(b) is in fact not a
reliable signal of the causal dependency between T(a) andD(b) in that it will
yield false positive verdicts. In particular, when there are strong but sparse
within-group fitness-affecting interactions and no (or weak and rare) between-
group interactions, available methods will wrongly diagnose the reality of
groups. Thus, in precisely the limiting cases described in section 2 in which
we are most in need of a reliable method, none are to be had.

One might seek to defend the evidential reading by noting that data are
rarely perfect, and when confronted with large groups with sparse within-
group networks of interactions, the associations between D(i) andW(i) will
often be undetectable, while small groups will tend to have dense networks
of within-group interactions. And it is true that the performance of contex-
tual analysis as a method for identifying fitness-defined groups depends es-
sentially on the causal system governing fitness, and in particular on the struc-
ture of the causal dependencies and their relative strengths and signs. For some
systems, the method will work well, although for others it will not. But it is
at best unduly optimistic to assume that most of the time the systems of in-
terest are such as to permit contextual analysis to work well. There is some-
thing decidedly untoward about diagnosing a condition (dense within-group
fitness-affecting interactions) by adopting a test (associations between D(i)
and W(i)) for an unreliable indicator (causal dependencies betweenD(i) and
W(i)) of the condition, when one knows the test is sensitive to unrepresen-
tative data, and then justifying the choice on the hope that the data will be
unrepresentative in just the way required for the unreliability in the test to
mitigate the unreliability of the indicator.12
12. I thank an anonymous referee for pointing out the need to make this argument ex-
plicitly.
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Differently, one might defend the evidential understanding on the grounds
that the imputed unreliability is no different from that affecting any diagnosis
of selection. Suppose one tests for selection on trait variable T(i) by estimating
the relevant selection gradient, which estimate turns out not to be significantly
different from zero. One is then entitled to infer that there is no selection on T(i)
but not that there is no selection on the population. Just so, it might be thought,
if one tests for group selection by estimating a selection gradient on D(i), de-
fined with respect to mapping G(i), which estimate turns out not to be signif-
icantly different from zero, then one is entitled to infer that there is no group
selection on D(i) but not that there is no group selection at all.13

This objection has some initial plausibility. Certainly, we do not test for
selection per se by estimating selection gradients; rather, one calculates pop-
ulation genetic parameters whose values, singly or in comparison, indicate
the operation of selection: is the population in Hardy-Weinberg equilibrium,
what is Tajima’s D, what is the ratio of effective population size to neutral
mutation rate, and so on. But, when the regression of W(i) on D(i) yields a
coefficient not different from zero, the inference we make is sometimes that
group selection is not acting on the population: the assumption is that group
selection does not act, and it stands as the ‘null’ hypothesis unless conclu-
sively refuted.

Moreover, there may be no selection on D(i) either because G(i) yields
the wrong grouping or because aggregations of T(i) are causally irrelevant
toW(i). If we infer the absence of group selection on D(i) from a failure of
G(i) to yield fitness-defined groups, it is important not to also infer that no
aggregation of T(i) is relevant to fitness. Putting the point somewhat differ-
ently, for those modeling selection using multilevel models for predictive
or explanatory ends, the question is not so much whether group selection
is acting but whether the measured advantage for some values of T(i) over
others is in part due to, or is in part counteracted by, the mean of T(i) in
some collection, that is, whether a good model of the population’s behavior
in respect of T(i) and W(i) over evolutionary time will need to be hierarchi-
cal, and if so how best to specify such a model. And to answer these ques-
tions it will not do to infer from the absence of fitness-defined groups to the
conclusion that hierarchical models are unnecessary. Such inferences are not
uncommon among critics of group selection. To take just one recent exam-
ple, Grinsted, Bilde, and Gilbert (2015) challenge a study by Pruitt and Good-
night (2014) claiming to show group selection in a social spider. Grinsted
et al. argue, inter alia, that there are no groups because there is no evidence
of within-group fitness-affecting interactions, writing: “The chosen species,
Anelosimus studiosus, is solitary, rarely forms groups, and shows no evidence
13. A version of this objection was advanced by an anonymous referee.
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of reproductive restraint or skew within groups” (2015, E1). They then im-
mediately infer that no hierarchical modeling is required, writing: “Both pre-
dictions of Pruitt and Goodnight could follow equally well from individual-
level selection as from group selection. . . . Merely demonstrating differential
survival of groups does not allow the authors to distinguish successful groups
from groups of successful organisms” (E1). The latter claim is true and it is
relevant if group selection, and thus the need for multilevel models, depends
on the existence of fitness-defined groups. But the point is also irrelevant to
the question of whether hierarchical (e.g., group selection) models are re-
quired for optimal prediction: a model in which both T(i) and D(i) are used
to predict fitness may perform better than a model in which T(i) alone is used,
and it may do so exactly because D(i) causes fitness; this is possible even
when D(i) is defined with respect to a mappingG(i) that does not yield fitness-
defined groups, as, for example, when fitness-affecting interactions are strong
but obtain between only a sufficiently small minority of group members.

Here then is the most important reason of all to be clear about the limits
of inferences from the fact that demographic variables cause fitness to the
reality of fitness-defined groups. If those who wish to seriously entertain the
possibility of group selection agree that group selection requires fitness-
defined groups but can in any study provide as evidence of such groups only
a measured association between D(i) and W(i) or the equivalent, they open
themselves to legitimate objections. Such associations are sometimes strong
evidence that D(i) causes W(i). But they are simply not good evidence that
members of the groups generated by the mappingG(i) with respect to which
D(i) is defined are characterized by a high density of pairwise fitness-affecting
interactions. Work that commits to fitness-defined groups but employs stan-
dard techniques to test for their existence rests on bad method.

3. Groups Otherwise Defined. Groups need not be fitness defined. One
might instead define groups by some other real physical, biological, or social
relation and so without explicit reference to fitness at all. In particular, if one
has some prior commitment to some particular mapping, the worries about
proper specification may reduce to worries about whether demographic var-
iables defined on that mapping are causally relevant to the effect of interest.
Suppose, for example, that Anya is Boris’s mother, and one is in particular
interested in whether one’s mother’s income or one’s father’s income has a
greater influence on education. Then one might simply define the variable
Mother’s Income, measured on individuals. If one can for each individual
identify a mother and her income, one can proceed again by using the index i
over units to pair observations in order to calculate relevant sample statistics.

This method has several advantages. Since groups are no longer fitness
defined, we need not employ tests for an association between demographic
variables and fitness as (unreliable) tests for fitness-affecting interactions
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but rather as (at least sometimes reliable) tests for existence of a causal con-
nection between the demographic variable and fitness (i.e., as tests for group
selection). Further, the range of methods by which to identify groups is con-
siderably expanded. For example, some causal interactions, generally social
but sometimes biological, are directly observable: grooming, mating, feed-
ing, and so on are pairwise interactions that can be seen. Even thoughwhether
the interaction in turn effects fitness cannot simply be observed, the fact of
the interaction can be. Collections of such interactions constitute a social or
biological network with various structural features that can be used to par-
tition a population into groups. Differently, one might, as with mothers or
more generally with families, identify groups simply by adverting to reason-
ably well understood features of social life. One could with equal ease appeal
to more narrowly held expert knowledge of particular collections—for ex-
ample, one could identify baboon troops or lion prides by appeal to the ex-
pert knowledge of field biologists observing the baboons or lions; certainly
the identification of nests, colonies, clutches, and like quite often proceeds
by appeal to such expert knowledge. Differently again, one could represent
observations of mating, feeding, grooming, or the like with a graphical model
and then deploy some clustering algorithm on that model to produce a parti-
tion of the population. Herbers and Banschbach (1999), for example, employ
several of these strategies when they individuate ‘nests’ and ‘colonies’ by ap-
peal to pairwise behavioral tests, spatial location, and genetic data.

On any of these ways of partitioning a population into groups, one can
then sensibly seek to test whether demographic variables defined on that
partition causally influence reproductive success, although it should be said
that the statistics here are seriously nontrivial and clustering is more a mat-
ter of art than science. We should recognize that even setting aside statis-
tical concerns this strategy has certain disadvantages. First, the resulting
groups are not fitness defined. Groups are rather defined by whatever phys-
ical, social, or biological relation is employed individuating them, which
relations will themselves often be unknown when one appeals to expert
knowledge. Second, while there is nothing essentially wrong with an ap-
peal either to expert knowledge or widely shared common knowledge, the
best defense of such everyday or expert identification of groups invites a nom-
inalism about groups.

4. Nominalism Again. Suppose we defend a particular partition of ba-
boons into troops by appeal to the fact that the experts, the field biologists
who spend time actually observing the baboons, recognize just those groups.
Even if we did not bother to build a graphical model of the grooming, mat-
ing, display, and so on, behaviors or bother to use a clustering algorithm to
induce a partition of the population into troops, we could reasonably rest con-
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tent with the resulting partition of the population. This is because we can be
reasonably sure that any good clustering algorithm applied to such a model
would generate the same groups as the field-workers recognize. And that is
so because if a clustering algorithm did not routinely return just the clusters
recognized by the experts, we would reject the clustering algorithm as bad
news: whatever it is that such algorithms are identifying, it is not the groups
of interest to us, however objective or real they might be. But if this is the
proper defense of an appeal to expert knowledge, and that appeal is legitimate,
nominalism about groups seems entirely appropriate. The right groups to con-
sider are whatever groups happen to interest us at the moment.

This of course implies that diagnoses of the presence or absence of group
selection are necessarily relative to an arbitrary, although not unmotivated,
partition of the population into groups. But at least this aspect of nominalism
seems not only harmless but correct: if there are in fact cross-unit fitness-
affecting causal dependencies, it will be true that on some partitions of the
population demographic variables influence fitness; this will be true, for ex-
ample, for those partitions that yield collections satisfying the constraints
of fitness-defined groups. But there often will be other partitions on which
demographic variables do not cause fitnesses; this will be true when the col-
lections generated by the partition never include individuals that affect one
another’s fitness. Insofar as MLS1 versions of group selection are, at least in
part, a matter of demographic variables causally influencing individual re-
productive success, judgments about whether group selection is actually oc-
curring really ought be relative to the partition of the population employed.
That the implicit relativization is made explicit by nominalism then looks to
be a feature rather than a bug.

Nominalism, as I am here using the term, is anathema to many, perhaps
most, of the standard classical discussions of group selection and much of
the theoretically motivated commentary thereon. In that tradition, groups
must be real, and reality is a matter of fitness-affecting interactions. Individ-
uals come as units of a group, it is thought, when, and only when, to some
appreciable extent the evolutionary fate of each individual is bound up with
that of the others. But experimental and observational work, especially that
in the traditions following Heisler and Damuth on the one hand or Wade on
the other, is often less demanding. Some discussions seem to presuppose the
importance of fitness-affecting interactions. For example, Pruitt and Good-
night, writing in defense of an earlier paper (Pruitt and Goodnight 2014) in
which they claim to have demonstrated group selection in a social spider,
seem to think it is important that individuals in a colony succeed or fail to-
gether, that is, that the behavioral or social interactions used to identify groups
also constitute fitness-affecting interactions. They write, “Our case study is
clear because both the target and agent of selection are above the level of the
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individual: the target of selection (group composition) is a trait that an indi-
vidual cannot have, and the agent of selection (extinction) is the textbook ex-
ample of strong group selection. We showed that A. studiosus colonies live
or die as a unit” (Pruitt and Goodnight 2015, E4).

But many other studies seem to employ partitions in which groups are
defined by appeal to expert knowledge. Moorad (2013), for example, em-
ploys a variable measuring the number of mates for an individual’s father,
which father is in turn identified from birth records rather than genetic data;
thus, an individual’s male parent is identified by appeal to records of common-
knowledge identifications. Tsuji (1995), for another example, identifies ant
colonies (Pristomyrmex pungens) with single nest sites, claiming that colo-
nies were monodomous (i.e., had but one nest site), but offers no data in sup-
port of that claim (i.e., colonies have been individuated on the basis of Tsuji’s
expert knowledge). Similarly, Breden and Wade (1989) consider egg clutches,
which clutches are distinguished one from another not by data on which an
analysis is performed but by expert knowledge. This use of expert knowl-
edge need not be epistemically fraught, but neither are the resulting groups
constructed on the basis of fitness-affecting interactions.

Yet other studies are based on physical or biological relations other than
fitness (e.g., Herbers and Banschbach 1999; Laiolo and Obeso 2012). Laiolo
and Obeso partition a metapopulation of Dupont’s lark into local popu-
lations following Vögeli et al. (2010), who divide the study location into
patches on the basis of bird movement, census data, and habitat. Still other
studies individuate groups in apparently arbitrary ways. Aspi and coauthors,
studying selection on patches of Tatar catchfly, identify a patch with “a group
of individuals within a maximum (arbitrary) distance between individuals
of five meters” (2003, 510). Eldakar et al. (2010), in a study of water strid-
ers, identify pools and pool regions on an ephemeral stream bed, the latter
being a major pool with its “immediately connected” minor pools. No cri-
teria are given for distinguishing ‘immediately connected’ pools; whatever
criteria were used were apparently unmotivated to details of water strider
behavior or biology. Weinig and coauthors (2007) designed experimental
‘patches’ of A. thaliana by planting seeds in pots; within each pot seeds were
planted on a 3 � 3 grid, with 1 centimeter between grid locations. Pots are
treated as patches, but no test for within-pot interactions of any kind are of-
fered in justification of the choice of 1 centimeter distances between seeds.
Again, this is not problematic, unless we require that groups be fitness de-
fined.

Discussions in empirical papers often underdetermine the authors’ con-
sidered views about the nature of the groups required for group selection.
On the one hand, all of these studies, excepting Pruitt and Goodnight (2015),
are consistent with nominalism; in none of them is group identification ex-
plicitly made definitionally dependent on fitness-affecting interactions. Per-
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haps, then, the authors are perfectly satisfied with groups defined by real
physical, social, or biological relations, even if those relations are not pair-
wise fitness-affecting interactions. Or perhaps the authors simply care about
the groups they use, whether or not they have some underlying biological
reality. On the other hand, it might be that the authors are laboring under
the mistaken assumption that a causal connection between demographic var-
iables and fitness suffices to establish that the groups on which the variable
is measured are unified by dense networks of fitness-affecting interactions.
Indeed, even pieces like Pruitt and Goodnight (2015) are open to alternative
interpretations. Perhaps Pruitt and Goodnight are committed to fitness-
affecting interactions. But perhaps they are not and are instead simply re-
sponding to a critic who is. But at least this much can be said. The methods
employed in these studies do not in fact demonstrate that the studied groups
satisfy the conditions on fitness-defined groups. To the extent that the fitness-
defined groups are a necessary condition of group selection, the studies sim-
ply do not demonstrate group selection. Hence, to the extent that the ob-
servational, experimental, and inferential practices therein are acceptable,
fitness-defined groups are not necessary conditions of group selection, and,
what is more, nominalism about groups looks to be perfectly acceptable.

I make one last observation. Insofar as one is willing to be nominalist
about groups (i.e., to hold that the groups identified in a MLS1 model of a
population need be no more real than that the individuals assigned to groups
really do exist), much of the motivation for preferring group to neighborhood
variables vanishes, and there is rather less reason to object to the use of demo-
graphic variables defined over neighborhoods rather than groups. Of course,
for some that will be sufficient reason to reject nominalism. But those who
do owe a fuller, more careful story about just how real groups are to be iden-
tified and why reality, so understood, is essential.

5. Implications. The situation then appears to be this. If we reject nomi-
nalism, we require real groups. The standard account of such groups is that
any two individuals in a population belong to the same group if and only
if there are fitness-affecting causal dependencies between them; that is, for
some trait T, either T(a) causes W(b) or T(b) causes W(a). Such dependen-
cies, it turns out, can be tested for, given current methods, only by testing
for a causal dependence between individual fitness and a demographic var-
iable D(i) 5 �T (G(i)), where G maps individuals to groups. That method is
seriously unreliable. Causal dependencies between demographic variables and
fitness can, indeed will, hold even when most members of most groups do
not influence one another’s fitness, and the associations that are evidence for
the causal dependence between demographic variables and fitness can hold
even when the mapping G(i) generates groups that are not characterized by
a high density of pairwise fitness-affecting interactions.
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There are alternatives that preserve something of the flavor of the initial
proposal.Wemight define groups bymeans of causal dependencies between
variables other than reproductive success and then ask whether these real
groups are such that demographic variables defined over those groups caus-
ally influence the reproductive success of the members. When the relevant
interactions are themselves directly observable, methods for using the net-
work of such relations to partition the population are available, and, depend-
ing on the way in which group structure is induced, raise only manageable
statistical problems. But in adopting these methods we must relinquish the
two most important features of groups used to argue against nominalism
about groups. First, the idea that groups should include only individuals
that affect one another’s fitness must go, for even when it is true that demo-
graphic variables influence the reproductive success of individuals, it will
not in general be true that the trait value of any one groupmember influences
the reproductive success of any other; indeed it may well be the case that for
most groups most members do not influence one another’s fitness. Second,
although in some sense the group structure is understood to be generated by
some underlying network of biological or social relations, we will often not
infer a group structure from some representation of the underlying social or
biological relations. Indeed, we will often neither represent the relations nor
infer them from data but instead directly induce the group structure by ap-
peal to either expert (e.g., baboon troops) or common (e.g., families) knowl-
edge. But the best justification for such appeals invites nominalism insofar
as it relativizes judgments about group selection to partitions of the popula-
tion into groups and justifies the use of one rather than another partition by
appeal to our interest in the resulting groups.

Finally, there remains nominalism, which offers a ready justification both
for appeal to expert knowledge in inducing group structure and for the use
of social or biological causal relations apart from those in which fitness enters
as an effect variable. Groups are where you find them, and if your interest is
in just these groups, either because those are the groups you care about after
having watched Anya and Boris or the baboons or the oak trees, for many
years, or because the observed patterns of social interaction generate just
those clusters, or for whatever other reason, then the group selection hypoth-
eses of interest will be hypotheses about the influence of demographic or
aggregate variables measured on just those groups. As a nominalist who pre-
fers neighborhoods to groups, I recommend this strategy, although the read-
er’s tastes may differ. But whatever one’s tastes, if we are to take inference
seriously then neither definitions of nor tests for group selection may re-
quire that groups be defined by fitness-affecting causal dependencies among
group members: to do so places the reality of groups, and hence the reality
of group selection, beyond the reach of even our best methods and so also be-
yond the epistemic pale.
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