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Abstract. We describe in this article the dynamics of a one-parameter family of affine
interval exchange transformations. This amounts to studying the directional foliations
of a particular dilatation surface introduced in Duryev et al [Affine surfaces and their
Veech groups. Preprint, 2016, arXiv:1609.02130], the Disco surface. We show that this
family displays various dynamical behaviours: it is generically dynamically trivial but
for a Cantor set of parameters the leaves of the foliations accumulate to a (transversely)
Cantor set. This study is achieved through analysis of the dynamics of the Veech group of
this surface combined with a modified version of Rauzy induction in the context of affine
interval exchange transformations.
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1. Introduction
An affine interval exchange transformation (or AIET) is a piecewise continuous bijection
of the interval [0, 1] which is affine restricted to its intervals of continuity. It has
been known since the work of Levitt [Lev82] that AIETs can display as complicated a
topological behaviour as dimension one allows: it can either be asymptotically periodic,
minimal or (and this is the surprising part) have an invariant quasiminimal Cantor set.
In the latter case, the AIET would still be semi-conjugated to a minimal linear interval
exchange transformation. In the spirit of generalizing the theory of circle diffeomorphisms
to piecewise continuous bijection of the interval, Camelier and Guttierez [CG97] began a
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FIGURE 1. The graph of F .

study of the regularity of the conjugacy between affine and linear IET, pursued by Cobo
[Cob02], Bressaud, Hubert and Maas [BHM10] and concluded by Marmi, Moussa and
Yoccoz [MMY10] who proved that almost every linear IET can be semi-conjugated to an
AIET with an invariant Cantor set, in sharp contrast with Denjoy theorem in the case of
sufficiently regular diffeomorphisms of the circle.

The goal of this article is to initiate a systematic study of the generic dynamical beha-
viour in parameter families of AIETs. The standard result in the theory of circle diffeomor-
phisms is a theorem by Herman (see [Her77]) predicting that, for any (sufficiently regular)
one-parameter family of circle diffeomorphisms, the set of minimal parameters has non-
zero Lebesgue measure. On the other hand, it has been known since the seminal work
of Peixoto (see [Pei59, Pei62]) that asymptotically periodic behaviour is topologically
generic for flows on closed surfaces†, and a refinement of this theorem was proved by
Liousse [Lio95] for transversally affine foliations in the case of higher genus surfaces. We
present in this article a one-parameter family of AIETs whose generic behaviour (in the
measure theoretic sense) contrasts with the case of circle diffeomorphisms and Herman’s
theorem.

We consider the map F : D −→ D, where D = [0, 1[, defined the following way:

if x ∈
[
0, 1

6

[
then F(x)= 2x + 1

6 ,

if x ∈
[ 1

6 ,
1
2

[
then F(x)= 1

2

(
x − 1

6

)
,

if x ∈
[ 1

2 ,
5
6

[
then F(x)= 1

2

(
x − 1

2

)
+

5
6 ,

if x ∈
[ 5

6 , 1
[

then F(x)= 2
(
x − 5

6

)
+

1
2 .

The map F is an affine interval exchange transformation (AIET) and one easily verifies
that, for all x ∈ D, F2(x)= x . Its dynamical behaviour is therefore as simple as can be.

† Generalized interval exchange transformations, whose AIETs are particular cases, should be thought of as first
return maps of flows on higher genus surfaces.
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FIGURE 2. The ω-limit of a random point for Ft , for 0.11≤ t ≤ 0.13. Parameters with periodic orbits are open
and dense, and can accumulate to seemingly minimal parameters.

Composing given maps by a family of linear rotations is a simple way to produce families
of maps of the interval. Thus we consider the family (Ft )t∈S1 , parameterized by S1

= R/Z
defined by

Ft = F ◦ rt

where rt : [0, 1[ −→ [0, 1[ is the translation by t modulo 1.
The following definition is of crucial importance for what follows. It was introduced by

Liousse in [Lio95] who proved that this dynamical behaviour is topologically generic for
transversally affine foliations on surfaces.

Recall that the orbit of a point x under a map f is the set O(x)= { f n(x) | n ∈ N} and
its ω-limit is the set of accumulation points of the sequence ( f n(x))n∈N.

Definition 1. We say that Ft is dynamically trivial if there exist two periodic points
x+, x− ∈ D of orders p, q ∈ N such that:
• (F p

t )
′(x+) < 1;

• (Fq
t )
′(x−) > 1;

• for all z ∈ D which is not in the orbit of x−, the ω-limit of z is equal to O(x+) the
orbit of x+.

It means that the map Ft has two periodic orbits, one of which attracts all the other
orbits but the other periodic orbit is repulsive. The following picture is the product of a
numerical experiment representing periodic orbits in the family (Ft ) and their bifurcations.

This article aims at highlighting that this one-parameter family of AIETs displays rich
and various dynamical behaviours. The analysis developed in it, using tools borrowed
from the theory of geometric structures on surfaces, leads to the following theorems.

THEOREM 1. For Lebesgue-almost all t ∈ S1, Ft is dynamically trivial.

Our theorem is somewhat a strengthening of Liousse’s theorem for this one-parameter
family of AIETs and a counterexample to Herman’s in higher genus. Indeed, we prove
that this genericity is also of measure theoretical nature and not only of topological nature
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as is the case in Liousse’s work. It is also worth pointing out that a lot of parameters in this
family correspond to attracting exceptional minimal sets (i.e. which are homeomorphic to
a Cantor set).

THEOREM 2. For all t in a Cantor set of parameters in S1 there exists a Cantor set Ct ⊂ D
such that, for all x ∈ D, the Ft ω-limit of x is equal to Ct .

The remaining parameters form a Cantor set denoted by 30 ⊂ S1. This notation is
borrowed from Fuchsian group theory as we will indeed see that this Cantor set is the limit
set of a subgroup 0 < PSL(2, R). For parameters in 30 , we have the following.

THEOREM 3. Let H be the set of points in 30 which are not fixed by a parabolic element
of 0. Then:
• for θ ∈H, the foliation is not dynamically trivial;
• for θ ∈30\H the foliation is totally periodic.

The foliations corresponding to directions in H are also not totally periodic. Extensive
computer experiments give evidence that these foliations are minimal.

1.1. Outline of the paper. Sections 2 and 3 are devoted to recalling geometric basics
about dilation surfaces and to the study of the hidden symmetries of the family (Ft ) using
this geometric perspective. Section 4 is mostly independent of the rest of the article.
Therein we explain how to generalize the reorganization procedure known as Rauzy–Veech
induction to the context of piecewise contracting maps of the interval. This analysis allows
the understanding of the dynamical behaviour of Ft for sufficiently many parameters so
that we can rely on the aforementioned symmetries to reach almost every parameter, as we
explain in §6.

1.1.1. The Disco surface. The first step of the proof consists of associating to the
family (Ft )t∈S1 a dilatation surface (see §2.1 for a precise definition) which we denote
by 6. As a dilatation surface, 6 is naturally endowed with a family of foliations which
we call directional foliations. Again for the definition of these foliations we refer to
§2.1. Our family of AIETs (Ft )t∈[0,1[ and these foliations are linked by the fact that the
directional foliation in direction θ admits Ft as their first return map on a cross-section,
for t = 6/ tan θ . In particular they share the same dynamical properties hence the study of
the family Ft reduces to the study of the directional foliations of 6.

1.1.2. The Veech group of 6. The major outcome of this change of point of view is the
appearance of hidden symmetries. Indeed, the surface 6 has a non-trivial group of affine
symmetries, i.e. a non-trivial group of diffeomorphisms given in charts as an element of
the affine group GL(2, R)oR2 of R2. All this material is defined in §2.2. Such a group of
affine diffeomorphisms admits a natural representation in SL(2, R); we call the image of
this representation the Veech group that we denote by V6 . This new group naturally acts
on the set of directions of R2. The directions θ which are SL(2, R)-equivalent through
V6 correspond to two foliations which are conjugated thus sharing the same dynamical
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behaviour. This remark will allow us to considerably reduce the number of parameters θ
(equivalently t) that we need to analyse.

Using a standard construction of affine diffeomorphisms using flat cylinder
decompositions recalled in §2.2.1, we show that the group V6 is discrete and contains
the following group:

0 =

〈(
1 6
0 1

)
,

(
1 0
3
2 1

)
,

(
−1 0
0 −1

)〉
.

The matrix −Id belonging to V6 it is natural to project 0 to PSL(2, R). We will
hereafter make the slight abuse of notation to denote the image of 0 by this projection
0 as well. This group is a Schottky group of rank 2. The study of this action is performed
in §3 and leads to the following.
• There is a Cantor set 30 ⊂ RP1 of measure zero on which 0 acts minimally (30 is

the limit set of 0). We will prove in the last section of this article that the foliations
corresponding to directions θ ∈30 are actually minimal.

• The action of 0 on �0 = RP1
\30 is properly discontinuous and the quotient is

homeomorphic to a circle (�0 is the discontinuity set of 0). It allows us to identify
a ‘small’ fundamental domain I ⊂ RP1 such that the description of the dynamics of
foliations in directions θ ∈ I implies the description for every parameter in�0 (which
is an open set of full measure).

Note that the Cantor set30 has nothing to do with the one described in Theorem 2. The
latter is a subset of �0 .

1.1.3. Affine Rauzy–Veech induction. The study of the directional foliations for θ ∈ I
reduces to the understanding of the dynamics of piecewise contracting affine 2-intervals
maps. To perform the dynamical study of these applications we adapt in this 2-contracting
intervals setting a well known reorganization procedure, the Rauzy–Veech induction. The
outcome of this method may be summarized as follows.
• There is a Cantor set of measure zero of parameters θ ∈�0 for which the associated

foliation accumulates to a set which is locally a product of a Cantor set with an interval.
• Other directions in �0 are dynamically trivial.

A remarkable corollary of the understanding of the dynamics of the directions in I is
the complete description of V6 .

THEOREM 4. The Veech group of 6 is exactly 0.

The proof is a rather straightforward corollary of the dynamical description. We prove
that the limit set of V6 is actually the same as the one of 0, and conclude using some
elementary geometric arguments to prove that these groups are equal.

2. Dilatation surfaces and their Veech groups
We introduce in this section geometric objects which will play a role in this paper. This
includes the definition of a dilatation surface, their associated foliations as well as their
Veech groups, and the construction of the Disco surface and how it is linked to our family
of AIETs. We also compute explicitly two elements of the Veech group of the Disco
surface.
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FIGURE 3. The surface 6. Each side of the same colour is identified with the corresponding one by the unique
complex affine map of the form z 7→ az + b with a > 0.

FIGURE 4. The surface 6 and a leaf of a directional foliation. c

2.1. Dilatation surfaces and their foliations.

Definition 2. A dilatation surface is a surface 6 together with a finite set S ⊂6 and an
atlas A= (Ui , ϕi )i∈I on 6\S whose charts ϕi take values in C such that:
• the transition maps are local restrictions of elements of AffR∗+(C)= {z 7→ az + b | a ∈

R, a > 0, b ∈ C};
• each point of S has a punctured neighbourhood which is affinely equivalent to a

punctured neighbourhood of the cone point of a Euclidean cone of angle an integer
multiple of 2π (i.e. the affine structure at a neighbourhood of a singular point p is the
pull-back of that of C by a map of the form z 7→ zk mapping p to 0 and the cone angle
is 2kπ ).

We call an element of the set S a singularity of the dilatation surface 6.

This definition is rather formal, and the picture one has to have in mind is that a
dilatation surface is what one gets when you take a union of Euclidean polygon and glue
together pairs of oriented parallel sides along the unique complex affine transformation
that sends one to the other.

2.1.1. The Disco surface. The surface we are about to define will be the main object of
interest of this text. It is the surface obtained after proceeding to the gluing below:

We call the resulting surface the ‘Disco’ surface. In the following 6 will denote this
particular surface. This is a genus 2 dilatation surface which has two singular points of
angle 4π . They correspond to the vertices of the polygon drawn in Figure 4. Green (light)
ones project onto one singular point and brown (dark) ones project onto the other.

2.1.2. Foliations and saddle connections. Together with a dilatation surface comes a
natural family of foliations. Fix an angle θ ∈ S1 and consider the trivial foliation of C by
straight lines directed by θ . This foliation being invariant by the action of AffR∗+(C), it is
well defined on 6\S and extends at points of S to a singular foliation on 6 such that its
singular type at a point of S is saddle-like. We denote this family of foliations by (Fθ )θ∈S1 .
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A saddle connection on 6 is a singular leaf that goes from a singular point to another.
The set of saddle connections of a dilatation surface is countable hence so is the set of
directions having saddle connections.

In the case of the Disco surface, one can easily draw these foliations on its polygonal
model: they correspond to the restriction of the directional foliations of R2 to the polygon.
Providing that θ 6= 0 is not horizontal one can check that the horizontal curve on the picture
below is actually a cross-section for every foliation Fθ with θ 6= 0.

The first return map ϕθ of the foliation Fθ with respect to this cross-section satisfies

ϕθ = Ft with t =
6

tan θ
where Ft is the map defined in the introduction.

2.2. The Veech group of a dilatation surface. Let 6 be a dilatation surface and g ∈
Diff+(6) an affine diffeomorphism of6, namely a diffeomorphism which reads in dilation
coordinates as an element of the affine group GL+(2, R)nR2 of R2 with the standard
identification C' R2 (more explicitly, a map of the form(

x
y

)
7→ A

(
x
y

)
+ B

where A ∈ GL+2 (R) and B is a vector of R2). We denote by Affine(6) the subgroup
of Diff+(6) of affine diffeomorphisms. The linear part in coordinates of an element of
Affine(6) is well defined up to multiplication by a constant λ ∈ R∗+. This gives rise to a
well-defined morphism:

ρ : Affine(6)−→ SL(2, R)

which to an affine diffeomorphism associates its normalized linear part. We call this
morphism the Fuchsian representation.

Remark 1. It is important to understand that the fact that the image of ρ lies in SL(2, R) is
somewhat artificial and that the space it naturally lies in is GL+(2, R)/R∗+. In particular,
when an element of the Veech group is looked at in charts, there is no reason the
determinant of its derivative should be equal to 1, however natural the charts are.

Definition 3. The image of the Fuchsian representation ρ(Affine(6)) is called the Veech
group of 6 and is denoted by V6 . The Veech group naturally acts on the circle S1, and we
will refer hereafter to this action as the projective action of the Veech group.

The key point is that such an affine diffeomorphism g maps the θ -directional foliation
onto the foliation associated with the direction ρ(g)(θ); in particular these two foliations
are conjugated and therefore have same dynamical behaviour. This allows us to reduce
the amount of directional foliations to study to the set of parameters corresponding to the
quotient of the circle S1 by the projective action of the Veech group.

2.2.1. About the Veech group of 6. This subsection is devoted to computing two
elements of the Veech group. We utilize a method which is standard for translation surface,
which consists of decomposing 6 into flat cylinders of commensurable moduli and to let
the multi-twist associated act affinely on each cylinder as a parabolic element.
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FIGURE 5. Cylinder decomposition in the horizontal direction.

Flat cylinders. A flat cylinder is the dilatation surface you get when gluing two opposite
sides of a rectangle. The height of the cylinder is the length of the sides glued together
and its width is the length of the non-glued sides, that is the boundary components of
the resulting cylinder. Of course, only the ratio of these two quantities is actually a well-
defined invariant of the flat cylinder, seen as a dilatation surface. More precisely, we define

m =
width
height

and call this quantity the modulus of the associated flat cylinder.
If C is a cylinder of modulus m, there is an element of f ∈ Affine(C) which has the

following properties.
• f is the identity on ∂C ;
• f acts as a unique Dehn twist of C ;
• the matrix associated with f is

(
1 m
0 1

)
, if ∂C is assumed to be in the horizontal direction.

Decomposition in flat cylinders and parabolic elements of the Veech group. We say
a dilatation surface 6 has a decomposition in flat cylinders in a given direction (say
the horizontal one) if there exist a finite number of saddle connections in this direction
whose complement in 6 is a union of flat cylinders. If additionally the flat cylinders have
commensurable moduli, the Veech group of 6 contains the matrix(

1 m′

0 1

)
where m′ is the smallest common multiple of all the moduli of the cylinders appearing
in the cylinder decomposition. If the decomposition is in another direction θ , the Veech
group actually contains the conjugate of this matrix by a rotation of angle θ . Moreover, an
affine diffeomorphism realizing this matrix is a Dehn twist along the multicurve made of
all the simple closed curves associated with each of the cylinders of the decomposition.

Calculation of elements of the Veech group of6. The above paragraph allows us to bring
to light two parabolic elements in V6 . Indeed, 6 has two cylinder decompositions in the
horizontal and vertical direction.
• The decomposition in the horizontal direction has one cylinder of modulus 6,

represented in Figure 5 below.
Applying the discussion of the last paragraph, we get that the matrix

(
1 6
0 1

)
belongs

to V6 .
• The decomposition in the vertical direction has two cylinders, both of modulus 3

2 ,
represented in Figure 6 below.

Again, we get that the matrix
(

1 0
3
2 1

)
belongs to V6 .

https://doi.org/10.1017/etds.2018.141 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.141


Cascades in the dynamics of AIETs 2081

FIGURE 6. Cylinder decomposition in the vertical direction.

Finally notice that both the polygon and the gluing pattern we used to build 6 are
invariant by the rotation of angle π , which implies that the matrix(

−1 0
0 −1

)
is realized by an involution in Affine(6). Putting all the pieces together we get the
following.

PROPOSITION 1. The group〈
A =

(
1 6
0 1

)
, B =

(
1 0
3
2 1

)
,−Id

〉
is a subgroup of V6 .

3. The hyperbolic geometry of 0
3.1. The subgroup 0. We computed in §2 three elements A, B and −Id of the Veech
group of 6. The presence of the matrix −Id in V6 indicates that directional foliations on
the surface 6 are invariant by reversing orientation. This motivates the study of the Veech
group action on RP1

:= S1/−Id instead of S1.
We will often identify RP1 with the interval [−π/2, π/2) by using projective

coordinates:

RP1
→

[
−
π

2
,
π

2

]
,[(

x
y

)]
7→ arctan

(
x
y

)
.

At the level of the Veech group it means projecting it to PSL2(R) by the canonical
projection π . Let us denote by 0 ⊂ π(V6)⊂ PSL2(R) the group generated by the
following two elements:

0 :=

〈
A =

(
1 6
0 1

)
, B =

(
1 0
3
2 1

)〉
.

We will study the group 0 as a Fuchsian group, that is a discrete group of isometries of
the real hyperbolic plane H2. For the action of a Fuchsian group 8 on RP1, there are two
invariant subsets which we will distinguish:
• one called its limit set on which 8 acts minimally and that we will denote by 38 ⊂

RP1;
• the complement of 38 which is called its discontinuity set, on which 8 acts properly

and discontinuously and which we will denote by �8.
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FIGURE 7. A fundamental domain for the action of the group 0 acting on the hyperbolic plane.

We will give precise definitions in §3.3. In restriction to the discontinuity set, one can
form the quotient by the action of the group. The topological space �8/8 is a manifold
of dimension one; a collection of real lines and circles.

We will show in Proposition 4 that for the group0 this set is a single circle, and therefore
a fundamental domain I for the action of the group 0 can be taken to be a single interval
(we will make it explicit: I = [arctan(1), arctan(4)] ⊂ [0, π [' RP1). The dynamics of the
directional foliations in the directions θ belonging to the interior of the interval I will be
studied in §4.

Remark 2. We will prove in §6 that the group 0 is actually equal to the full Veech group
of the surface 6.

3.2. The action of the group 0 on H. Two hyperbolic isometries A, B ∈ Isom+(H2)

are said to be in Schottky position if the following condition holds.

There exist four disjoints domains Di , 1≤ i ≤ 4 which satisfy

A(Dc
1)= D2 B(Dc

3)= D4

where Dc
i denotes the complementary set of Di .

A group generated by two elements in Schottky position is also called a Schottky group.
Figure 7 illustrates this situation.

PROPOSITION 2. The group 0 is Schottky. Moreover the surface M0 is a three-punctured
sphere with two cusps and one end of infinite volume.

Proof. Viewed in the upper half plane model of H2 the action is easily shown to be
Schottky. In fact the action of A (respectively B) becomes z 7→ z + 6 (respectively
z 7→ (z)/(3z/2)+ 1). The two matrices are parabolic and fix ∞ and 0 respectively.
Moreover, we observe that A(−3)= 3 and B(−1)= 2. Figure 7 below shows that the
two matrices A and B are in Schottky position with associated domains Di for 1≤ i ≤ 4.

The domain D of Figure 7 is a fundamental domain for the action of 0. The isometry
A identifies the two green (light) boundaries of D together and B the two red (dark) ones.
The quotient surface is homeomorphic to a three-punctured sphere. �
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3.3. The limit set and the discontinuity set. The following notion will play a key role in
our analysis of the affine dynamics of the surface 6.

Definition 4. The limit set 38 ⊂ S1 of a Fuchsian group 8 is the set of accumulation
points in D ∪ S1 of any orbit 8 · {z0}, z0 ∈ D2 where D⊂ C is the disk model for the
hyperbolic plane H2.

The complementary set of the limit set is a good tool to understand the infinite volume
part of such a surface.

Definition 5. The complementary set�8 := S1
\38 is by definition the set of discontinuity

of the action of 0 on the circle.

The group 8 acts properly and discontinuously on the set of discontinuity. One can
thus form the quotient space �8/8 which is a manifold of dimension one; a collection of
circles and real lines. These sets are very well understood for Schottky groups thanks to
the ping-pong lemma; for further details and developments see [Dal11, Ch. 4].

PROPOSITION 3. (Ping-pong lemma) A Schottky group is freely generated by any two
elements in Schottky position and its limit set is homeomorphic to a Cantor set.

The following theorem will be used in 6 to prove our main Theorem 1.

THEOREM 5. (Ahlfors, [Ahl66]) A finitely generated Fuchsian group satisfies the
following alternative:
(1) either its limit set is the full circle S1;
(2) or its limit set is of zero Lebesgue measure.

In our setting, it is clear that the limit set is not the full circle, thus the theorem implies
that the limit set of 0 is of zero Lebesgue measure.

3.4. The action on the discontinuity set and the fundamental interval. The following
proposition is the ultimate goal of this section.

PROPOSITION 4. The quotient space

�0/0

is a circle. A fundamental domain for the action of 0 on �0 corresponds to the interval of
slopes I = [arctan( 1

4 ), arctan(1)].

Foliations defined by slopes which belong to this precise interval will be studied in §4.
To prove this proposition we will use the associated hyperbolic surface M0 and link its
geometrical and topological properties to the action of the group 0 on the circle.

The definition of the limit set itself implies that it is invariant by the Fuchsian group.
One can therefore seek a geometric interpretation of such a set on the quotient surface.
We will consider the smallest convex set (for the hyperbolic metric) which contains all the
geodesics which start and end in the limit set 30 . We denote it by C(30). Because the
group 0 is a group of isometries it preserves C(30).
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FIGURE 8. The closed geodesic c cuts the surface M0 into two pieces. The coloured part is the only infinite
volume end and its complementary is the convex hull. The choice of a lift c̃ of the geodesic c made on the picture
allows us to describe the isometry which translate along c̃ in terms of the generators of the group 0. Indeed the
pairing of the edges of the fundamental domain given by the action of the group 0 shows that the geodesic c̃ is

the translation axes of the matrix A−1 B.

Definition 6. The convex hull of a hyperbolic surface M0 , denoted by C(M0) is defined
as follows.

C(M0) := C(30)/0.

As a quotient of a 0-invariant subset of H2, C(M0) is a subset of the surface M0 . The
convex hull of a Fuchsian group is a surface with geodesic boundary; moreover if the group
is finitely generated the convex hull has to be of finite volume. As a remark, a Fuchsian
group is a lattice if and only if we have the equality C(M0)= M0 . In the special case
of the Schottky group 0 the convex hull is a surface whose boundary is a single closed
geodesic as shown in Figure 8. For a finitely generated group we will see that we have a
one-to-one correspondence between connected components of the boundary of the convex
hull and connected components of the quotient of the discontinuity set by the group.

The following lemma is the precise formulation of what we discussed above.

LEMMA 1. Let 0 be a finitely generated Fuchsian group. Any connected component I0 of
the discontinuity set �0 is stabilized by a cyclic group generated by a hyperbolic isometry
γ0. Moreover ∂ I0 is composed of the two fixed points of the isometry γ0.

We will keep the notation introduced in Figure 8. We start by showing that for any
choice of a lift c̃ in the universal cover of a geodesic c in the boundary of the convex hull
one can associate an isometry verifying the properties of Lemma 1. Let c be a closed
geodesic consisting of a connected component of the boundary of the convex hull of M0 .
One can choose a lift c̃ of such a geodesic in the universal cover. The geodesic c̃ is the axis
of some hyperbolic isometry 8, whose fixed points are precisely the intersection of c̃ with
the circle. As an element of the boundary of C0 it cuts the surface M0 into two pieces: C0
and an end E . One can check that this isometry8 is exactly the stabilizer of the connected
component E0 of p−1(E) whose boundary is the geodesic c̃. Therefore such an isometry
stabilizes the connected component of the discontinuity set given by the endpoints of the
geodesic c̃. We have shown that given a boundary component of C0 one can associate an
element (in fact a conjugacy class) of the group 0 which stabilizes a connected component
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FIGURE 9. Attractive leaf on the left, repulsive on the right.

of �0 . We will not show how to associate a geodesic in the boundary of the convex hull
to a connected component of the discontinuity set.

Remark 3. We want to put the emphasis on the fact the assumption that the group is finitely
generated will be used here. The key point is the geometric finiteness theorem [Kat92,
Theorem 4.6.1] which asserts that any finitely generated group is also geometrically finite.
It means that the action of such a group admits a polygonal fundamental domain with
finitely many edges. It is not difficult to exhibit from such a fundamental domain the
desired geodesic by looking at the pairing induced by the group, as is done in Figure 8 for
our Schottky group.

COROLLARY 1. Connected components of �0/0 are in one-to-one correspondence with
the infinite volume end of the surface H2/0.

We now have all the materials needed to prove Proposition 4.

Proof of Proposition 4. Because the surface H2/0 has only one end of infinite volume
Corollary 1 gives immediately that �0/0 is a single circle. Proof of the second part
of Proposition 4 consists of a simple matrix computation. Figure 8 gives explicitly the
elements of the group 0 which stabilize a connected component of the discontinuity set.
We then have to prove the following:[

AB−1
(

1
1

)]
=

[(
4
1

)]
where [X ] is the projective class of the vector X . The computation is easy:

AB−1
(

1
1

)
=

(
−8 6
−

3
2 1

) (
1
1

)
=

(
−2
−

1
2

)
. �

4. Generic directions and Rauzy induction
The boundary of H is canonically identified with RP1 through the natural embedding H→
CP1. Recall that the action of PGL(2, C) by Möbius transformations on C is induced by
matrix multiplication on CP1 after identification with C by the dilatation chart z→ [z : 1].
Thus the action of matrices of the Veech group on the set of directions corresponds to the
action of these matrices as homographies on the boundary of H.

We notice straight away that, for directions [t : 1] with t between 1 and 2, there is an
obvious attractive leaf of dilatation parameter 1/2 (see Figure 9). There is also a repulsive
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FIGURE 10. The stable subsurface.

FIGURE 11. Geometric representation of an element of I(m, n).

closed leaf in this direction. This will always be the case since −Id is in the Veech group,
sending attractive closed leaves to repulsive closed leaves.

In the following we will describe dynamics of the directional foliation for t between 2
and 4. According to Section 2.2.1 the interval of direction [1, 4] is a fundamental domain
for the action of 0 on �0 its discontinuity set. Moreover this discontinuity set has full
Lebesgue measure in the set of directions thus understanding the dynamical behaviour of
a typical direction therefore amounts to understanding it for t ∈ [1, 4]. Further discussion
on what happens in other directions will be carried out in the next section.

4.1. Reduction to Affine injections. The directions for t ∈ [2, 4] have an appreciable
property; they correspond to the directions of a subsurface invariant under the (oriented)
foliation represented in Figure 10. Every leaf in the given angular set of directions that
enters the subsurface will stay trapped in it thereafter. We therefore seek attractive closed
leaves in this subset. To do so, take a horizontal interval joining the boundary components
of this invariant subsurface and consider the first return map on it. It has a specific form
(close to an affine interval exchange) which we will study in this section.

In the following, we use the notation AI to refer to a piecewise affine injection on an
interval. For any m, n ∈ N, let I(m, n) be the set of AIs defined on [0, 1]with two intervals
on which it is affine and such that the image of the left interval is an interval of its length
divided by 2n which rightmost point is 1, and that the image of its right interval is an
interval of its length divided by 2m which leftmost point is 0 (see Figure 11 for such an
AI defined on [0, 1]). When representing an AI, we will colour the intervals on which it is
affine in different colours, and represent a second interval on which we colour the image
of each interval with the corresponding colour; this will be sufficient to characterize the
map. The geometric representation motivates the fact that we call the former and latter set
of intervals the top and bottom intervals.

Note that the cross-sections defined on the subsurface of Figure 10 are in I(1, 1). We
will study the dynamical behaviour of this family of AI.
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4.2. Rauzy–Veech induction. Let T be an AI and D be its interval of definition. The
first return map on a subinterval D′ ⊂ D, T ′ : D′→ D′ is defined for every x ∈ D′ as
follows:

T ′(x)= T n0(x) where n0 = inf{n ≥ 1 |T (α)n(x) ∈ D′}.

Since we have no information on the recurrence properties of an AI this first return map
is a priori not defined on an arbitrary subinterval. Nonetheless generalizing a wonderful
algorithm of Rauzy [Rau79] for IETs, we get a family of subintervals on which this first
return map is well defined. Associating to an AI its first return map on this well-chosen
smaller interval will be called the Rauzy–Veech induction.

The general idea in the choice of this interval is to consider the smallest of the top and
bottom intervals at one end of D (left or right) the interval of definition. We then consider
the first return map on D minus this interval.

In the following we describe explicitly the induction for the simple family I(m, n). A
general and rigorous definition of Rauzy–Veech induction in the more general context of
both AIs and AIETs is certainly possible with a lot of interesting questions emerging but
is beyond the scope of this article.

Assume now that T is an element of I(m, n), let A, B ⊂ D be the left and right top
intervals of T , and λA, λB their length. Several distinct cases can happen.
(1) (a) B ⊂ T (A), i.e. λB ≤ 2−nλA.

(A) Example of such AI (B) Right Rauzy-Veech induction

We consider the first return map on D′ = D − B. T−1(B) of length 2nλB has
no direct image by T in D′ but T (B)⊂ D′. Thus for the first return map, this
interval will be sent directly to T (B) dividing its length by 2n+m . We call this
a right Rauzy–Veech induction of our AI. The new AI is in I(m + n, n), and
its length vector (λ′A, λ

′

B) satisfies

(
λ′A
λ′B

)
=

Rm,n︷ ︸︸ ︷(
1−2n

0 2n

) (
λA

λB

)
.

(b) If A ⊂ T (B), i.e. 2−mλB ≥ λA.

In this case, the right Rauzy–Veech induction is not well-defined so therefore
we consider the first return map on D′ = D − A which we call the left Rauzy–
Veech induction of our AI. We obtain a new AI in I(m, n + m) and its length
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vector (λ′A, λ
′

B) satisfies the following.

(
λ′A
λ′B

)
=

Lm,n︷ ︸︸ ︷(
2m 0
−2m 1

) (
λA

λB

)
.

Note that the two subcases presented above are mutually exclusive since the
considered maps are strictly contracting.

(2) T (A)⊂ B, i.e. λB ≥ 2−nλA and T (B)⊂ A, i.e. 2−mλB ≤ λA.
We consider the first return map on the subinterval D′ = D − T (A). Then A has no
direct image by T in D′ but T 2(A)⊂ T (B)⊂ D′. Thus in the first return map, this
interval will be sent directly to T 2(A) dividing its length by 2n+m .

Then T 2(A)⊂ A thus the induced map has an attractive fixed point of derivative
2−n−m .

Remark 4. The set of length for which we apply left or right Rauzy–Veech induction in
the above trichotomy is exactly the set on which lengths λ′A and λ′B implied by the above
formulas are both positive.

More precisely,

0≤ λB ≤ 2−nλA ⇐⇒ Rm,n ·

(
λA

λB

)
≥ 0,

and

0≤ 2−mλB ≤ λA ⇐⇒ Lm,n ·

(
λA

λB

)
≥ 0.

This will be useful later on to describe the set of parameters which correspond to the
sequence of induction moves we apply.

The algorithm. We define in what follows an algorithm based on Rauzy induction that
will allow us to determine if an element of I(1, 1) has an attractive periodic orbit; and if so
the length of its periodic orbit (or equivalently the dilatation coefficient of the associated
leaf in 6). The algorithm goes the following way.

The entry is an element of I(m, n).
(1) If the entry is in case (1), perform in case (a) the right Rauzy induction R or in case

(b) the left Rauzy induction L to obtain an element of I(m + n, n) or I(m, n + m)
respectively. Repeat the loop with this new element.

(2) If it is in case (2), it means that the first return map on a well-chosen interval has a
periodic attractive point of derivative 2−m−n . The algorithm stops.

Alongside the procedure comes a sequence of symbols R and L keeping track of
whether we have performed the Rauzy induction on the left or on the right at the nth stage.
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This sequence is finite if and only if the algorithm described above finishes. An interesting
phenomenon will happen for AI for which the induction never stops, and will be described
later.

4.3. Directions with attractive closed leaf. In the directions of Figure 10 corresponding
to parameters in [2, 4] in projective coordinates, we consider the first return map of the
directional foliation on the interval given by the two length 1 horizontal intervals at the
bottom of the rectangle. We have chosen directions such that the first return map is well
defined although it is not bijective, and it belongs to I(1, 1). The ratio of the two top
intervals lengths will vary smoothly between 0 and ∞ depending on the direction we
choose. We parameterize this family of AI by s ∈ I := [0, 1], where (s, 1− s) is the length
vector of the element of I(1, 1) we get. The purpose of this section is to characterize the
subspace H ⊂ I for which the above algorithm stops, in particular they correspond to AI
with a periodic orbit. The case of I − H will be settled in the next subsection.

We describe for any finite word in the alphabet {L , R}, w = w1 . . . wl−1, the subset of
parameters H(w)⊂ H ⊂ I for which the algorithm stops after the sequence w of Rauzy–
Veech induction moves.

We associate to w the sequences n1 = 1, . . . , nl , m1 = 1, . . . , ml and M1 =

Id, . . . , Ml defined by the following recursive properties:

mi+1 =

{
mi if wi = L ,

ni + mi if wi = R,
ni+1 =

{
ni + mi if wi = L ,

ni if wi = R,

Mi+1 =

{
Lmi ,ni · Mi if wi = L ,

Rmi ,ni · Mi if wi = R.

Let s ∈ I such that we can apply Rauzy–Veech inductions corresponding to w to the
element of I(1, 1) of lengths (s, 1− s). The induced AI after all the steps of the induction
is in I(ml , nl) and its length vector is

Ml ·

(
s

1− s

)
:=

(
a b
c d

)
·

(
s

1− s

)
=

(
(a − b)s + b
(c − d)s + d

)
.

Following Remark 4, the property of s being such that we can apply all the Rauzy–
Veech inductions corresponding to w to the initial AI in I(1, 1) is equivalent to (a −
b)s + b ≥ 0 and (c − d)s + d ≥ 0. An induction on Mi shows that it is an integer matrix
with a, d ≥ 0, b, c ≤ 0, hence s ∈ [−b/(a − b), d/(d − c)] =: I (w). H(w) will be the
central subinterval of I (w) for which the induced AI in I(ml , nl) is in case (2).

Consider the sets
Hk :=

⋃
|w|≤k

H(w) and H =
⋃

k

Hk .

Notice that H has the same construction as the complement of the Cantor triadic set; each
Hk is constructed from Hk−1 by adding an interval in the interior of each interval which is
a connected component of I −

⋃
j<k H j .

The rest of the subsection aims now at proving the following lemma.

LEMMA 2. H ⊂ I has full Lebesgue measure.
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As a preliminary we need the following lemma which will be used later on in the proof.

LEMMA 3. For any word w in {R, L}, if M(w)=
(

a b
c d

)
, we have

2−1
≤ x =

a − b
d − c

≤ 2.

Proof. The proof goes by induction on the length of w. Let us assume that 2−1
≤

(a − b)/(d − c)≤ 2 for some w. We denote by(
a′ b′

c′ d ′

)
= Rm,n ·

(
a b
c d

)
=

(
a − 2nc b − 2nd

2nc 2nd

)
.

Thus (a′ − b′)/(d ′ − c′)= 2−n(a − b)/(d − c)+ 1 from which the inequality follows:(
a′ b′

c′ d ′

)
= Lm,n ·

(
a b
c d

)
=

(
2ma 2mb

c − 2ma d − 2mb

)
.

The inequality is similar to the previous one. �

Proof of Lemma 2. We will prove in the following that, for any non-empty word w,

|H(w)|
|I (w)|

≥ δ (4.1)

for some δ > 0. Thus at each step k, Hk is at least a δ-proportion larger in Lebesgue
measure than Hk−1. This implies the lemma because

λ(H)≥ λ(Hk)≥ 1− δk for any k.

We now show inequality (4.1). Let w be any finite word in the alphabet {L , R}. For
convenience we normalize the interval I (w) for such that it is [0, 1]. We denote by
(λA(s), λB(s)) the length vector of the AI induced by the sequence w of Rauzy–Veech
inductions. These two lengths are linear functions of s, λA is zero at the left end of the
interval and λB is zero at the right end. As a consequence, these two functions have the
form λA(s)= αs and λB(s)= β(1− s) for s ∈ [0, 1], where α and β are the maximal
values of λA and λB respectively equal to according to the previous computations:

α = (a − b)
d

d − c
+ b =

ad − bd + bd − bc
d − c

=
det(Ml)

d − c

and
β = (c − d)

−b
a − b

+ d =
−bc + bd + da − db

a − b
=

det(Ml)

a − b
.

We see that λA(s)= 2−mλB(s) ⇐⇒ 2mαs = β(1− s) ⇐⇒ s = β/(2mα + β) and
similarly λB(s)= 2−nλA(s) ⇐⇒ 2nβ(1− s)= αs ⇐⇒ s = (2nβ)/(α + 2nβ). Hence

λA(s)≤ 2−mλB(s) ⇐⇒ s ∈
[

0,
β

2mα + β

]
and

λB(s)≤ 2−nλA(s) ⇐⇒ s ∈
[

β

2−nα + β
, 1
]
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thus

H(w)=
[

β

2mα + β
,

β

2−nα + β

]
.

If we denote by x = α/β = (a − b)/(d − c),

|H(w)|
|I (w)|

=
1

1+ 2−n x
−

1
1+ 2m x

.

Lemma 3 implies directly that

|H(w)|
|I (w)|

≥
1

1+ 2−n+1 −
1

1+ 2m−1 .

Hence for w not empty, either n ≥ 2 or m ≥ 2 thus either

|H(w)|
|I (w)|

≥
2
3
−

1
2
=

1
6

or
|H(w)|
|I (w)|

≥
1
2
−

1
3
=

1
6
. �

4.4. AI with infinite Rauzy–Veech induction. We focus in this subsection on what
happens for AIs on which we apply Rauzy–Veech induction infinitely many times. First,
notice that if we apply the induction on the same side infinitely many times, the length of
the top interval of the corresponding side on the induced AI is multiplied each time by a
positive power of 2, therefore it goes to infinity. Yet the total length of the subinterval is
bounded by 1, the length of the definition interval from which we started the induction.
Thus the length of the interval has to be zero; this corresponds to the case where there is a
saddle connection and it is included in the closed orbit case, since we chose to take H(w)
closed.

In consequence, for an AI T with parameter in I − H , we apply Rauzy–Veech induction
infinitely many times, and the sequence of inductions we apply is not constant after a finite
number of steps. Now let as above D be the interval of definition of the given AI, and
A, B ⊂ D be its two intervals of continuity. Remark that the induction keeps the right end
of T (B) and the left end of T (A) unchanged. Moreover the induction divides the length of
one of the bottom interval (depending on which Rauzy–Veech induction we apply) by at
least two because we iterate maps whose dilation factor is at most 1

2 . In turn if we consider
In to be the open subinterval of D on which we consider the first return map after the nth
induction, the limit of these nested intervals is

By definition, this interval is disjoint from T (D), and therefore

for all x ∈ D and n ∈ N, T n(x) /∈ I∞.
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Moreover, our definition of Rauzy–Veech induction implies that any point outside of the
subinterval on which we consider the first return will end up in this subinterval in finite
time. Thus

for all x ∈ D and n ∈ N, there exists k ∈ N such that T k(x) ∈ In .

This implies that the orbit of any point of D accumulates on ∂ I∞.
Let � be the complement of all the images of I∞, namely

� := D −
∞⋃

n=0

T n I∞.

The measure of I∞ is 1/2, taking the image by T divides the measure of any interval by
two and any iterated image of this set is disjoint, since its image is disjoint from itself
and T is injective. Hence the measure of � is 1/2 · (1+ 1/2+ 1/22

+ · · · )= 1. As we
remarked, the orbit of any point of D accumulates to ∂ I∞ and thus to any image of it,
hence to any point of ∂�. As

⋃
∞

n=0 T n I∞ has full measure,� has zero Lebesgue measure
and thus has empty interior. To conclude, � is the limit set of any orbit of T .

Now � is a closed set with empty interior. Moreover if we take a point in �, any
neighbourhood contains an interval and thus its boundary. Hence no point is isolated, and
� is a Cantor set. Which leads to the following proposition.

PROPOSITION 5. In the space of directions [1, 4] there is a set H (which is the union of
the set H constructed in this section union ]1, 2[) whose complement is a Cantor set of
zero measure which satisfies:
• for all θ ∈H the foliation Fθ is attracted by an attracting leaf;
• for all θ ∈ ∂H the foliation Fθ concentrates to a closed saddle connection;
• for all θ ∈ [1, 4]\H the foliation Fθ concentrates on a stable Cantor set of zero

measure in the foliation.

5. Topological type of the elements of the Veech group
5.1. Thurston’s theorem on multi-twists. We recall in this subsection a theorem of
Thurston allowing the understanding of the topological type of the elements of a subgroup
of MCG(6) generated by a couple of multi-twists. Let α and β be two multicurves on 6.
We say that:
• α and β are tight if they intersect transversally and if their intersection number is

minimal in their isotopy class;
• α and β fill up 6 if 6 \ (α ∪ β) is a union of cells.
Denote by α1, . . . , αk and β1, . . . , βl the components of α and β respectively. We form
the k × l matrix N = (i(αi , β j ))1≤i≤k, 1≤ j≤l . One easily checks that α ∪ β is connected if
and only if a power of N t N is positive. Under this assumption, N t N has a unique positive
eigenvector V of eigenvalue µ > 0. We also denote by Tα (respectively Tβ ) the Dehn twist
along α (respectively along β).

THEOREM 6. [Thu88, Theorem 7] Let α and β two multicurves which are tight and
which fill up 6, and assume that α ∪ β is connected. Denote by G(α, β) the subgroup of
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FIGURE 12. Definition of α and β.

MCG(6) generated by Tα and Tβ . There is a representation ρ : G(α, β)−→ PSL(2, R)
defined by

ρ(Tα)=
(

1µ1/2

0 1

)
and ρ(Tβ)=

(
1 0
−µ1/2 1

)
such that g is of finite order, reductive or pseudo-Anosov according to whether ρ(g) is
elliptic, parabolic or pseudo-Anosov.

5.2. The case of 6. We want to use Thurston’s theorem to prove the following.

THEOREM 7. For all f ∈ Affine(6), f is of finite order, reductive or pseudo-Anosov
according to whether its image by the Fuchsian representation in SL(2, R) is elliptic,
parabolic or hyperbolic.

In §2.2.1, we exhibited two elements of the Veech group V6 ,
(

1 6
0 1

)
and

(
1 0
3
2 1

)
, as

the images by the Fuchsian representation ρ1 corresponding to the Dehn twists along the
curves α and β drawn in Figure 12.

One checks that:
• α ∪ β is connected;
• α and β are tight since they can both be realized as geodesics of 6;
• α and β are filling up 6.
With an appropriate choice of orientation for α and β, we have that i(α, β1)= i(α, β2)=

2. The intersection matrix associated is therefore N = (2 2) and N t N = (8). The parameter
µ is then equal to 8 and

√
µ= 2

√
2. We are left with two representations

ρ1, ρ2 : G(α, β)−→ PSL(2, R).

(1) ρ1 is the restriction of the Fuchsian representation to G(α, β) < Affine(6) composed
with the projection onto PSL(2, R).

(2) ρ2 is the representation given by Thurston’s theorem.
By definition of these two representations, ρ1 maps Tα to

(
1 6
0 1

)
and ρ2 maps it to(

1 2
√

2
0 1

)
; and ρ1 maps Tβ to

(
1 0
3
2 1

)
and ρ2 maps it to

(
1 0
−2
√

2 1

)
.

PROPOSITION 6. For all g ∈ G(α, β), ρ1(g) and ρ2(g) have the same type.

Proof.
• ρ1 and ρ2 are faithful;
• ρ1 and ρ2 are Schottky subgroups of PSL(2, R) of infinite covolume;
• ρ1 and ρ2 send Tα and Tβ to two parabolic elements;
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As a consequence of these three facts, the quotients of H by the respective actions of
G(α, β) through ρ1 and ρ2 respectively are both a sphere S with two cusps and a funnel.
No element of ρ1(G(α, β)) or ρ2(G(α, β)) is elliptic, and the image of g ∈ G(α, β) is
parabolic in ρ1(G(α, β)) or ρ2(G(α, β)) if and only if the corresponding element in π1(S)
is in the free homotopy class of a simple closed curve circling a cusp. Which proves the
proposition. �

There is little needed to complete the topological description of the elements of the
Veech group of 6. Indeed, Proposition 6 above together with Thurston’s theorem ensures
that the topological type of g ∈ G(α, β)⊂ Affine(6) is determined by (the projection to
PSL(2, R) of) its image by the Fuchsian representation (namely g has finite order if ρ1(g)
is elliptic, g is reductive if ρ1(g) is parabolic and pseudo-Anosov if ρ1(g) is hyperbolic).
The group G(α, β) has index 2 in V6 . The involution i ∈ Affine(6) acting as

(
−1 0
0 −1

)
preserves the multicurves α and β and therefore commutes to the whole G(α, β). In
particular, any element of V6 writes g · i with g ∈ G(α, β). The type of g · i is the same
as the type of g and this completes the classification.

6. The global picture
Gathering all materials developed in the previous sections, we prove here the main
theorems announced in the introduction.

PROPOSITION 7. Assume that the foliation Fθ of 6 has a closed attracting leaf F+. Then
it has a unique repulsing leaf F− and any leaf which is different from F− and regular
accumulates on F+.

This proposition ensures that in all the cases where we have already found an attracting
leaf, the dynamics of the foliation is as simple as can be.

Proof. The image of F+ by the action of the diffeomorphism of Affine(6) whose image
by the Fuchsian representation is −Id is the repulsive leaf announced which we denote by
F−. Let L be a leaf of the oriented foliation that accumulates to F+. We consider the very
same leaf but with the reversed orientation. We also assume that L was not issued from
a singular point, in which case we consider its ω-limit in 6 which we denote by Q. We
want to prove that Q = F+. Assume by contradiction that Q 6= F+.
• Either Q is a closed leaf. In that case the image of Q by the involution of the Veech

group is another closed leaf and we get the existence of four different closed attracting
leaves. No pair of such curves can be made of homotopic curves. Indeed assume
that α and β are homotopic closed leaves then they bound a (topological) cylinder C
in 6. This cylinder has totally geodesic boundary. An Euler characteristic argument
implies that, since ∂C is totally geodesic, C has no singular point in its interior and the
existence of such contradicts the fact 6 has a totally geodesic triangulation (see the
appendix of [DFG]). We are left with these disjoint non-homotopic four curves which
contradict the fact that 6 has genus two.

• Or Q is not a single leaf. In that case, any subsurface of 6 containing Q is of genus at
least one (briefly the argument is the following; since Q is not reduced to a simple leaf
one can build a curve that is transverse to the foliation and which does not intersect
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any other quasiminimal and repeating this procedure with a longer leaf build a pair
of non-separating curves whose geometric intersection number is one). Since Q is
disjoint from F+ and F− it contradicts the fact that 6 has genus two. �

We say that a direction having such a dynamical behaviour is dynamically trivial.

COROLLARY 2. The directions in 30 are not dynamically trivial.

Proof. The set of directions fixed by a hyperbolic element of 0 is dense in 30 . Such a
direction cannot be dynamically trivial, for otherwise the associated collection of closed
leaves would be globally fixed by the corresponding element of Affine(6), which can not
occur since, according to Theorem 7, such an element is a pseudo-Anosov diffeomorphism.
On the other hand, Proposition 7 shows that the set of dynamically trivial directions is the
same as the set of directions admitting an attractive leaf; in particular both sets are open
since the last one is. We conclude using the density in 30 of the set of directions being
not dynamically trivial; fixed points of hyperbolic matrices of 0. �

THEOREM 8. The set of dynamically trivial directions in S1 is open and has full measure.

Proof. Recall that the definitions of 0 and V6 are given in §§ 2.2.1 and 3.1. Since −Id
belongs to the Veech group of 6, the foliations Fθ and F−θ have the same dynamical
behaviour. We will therefore consider parameters θ in RP1 instead of in S1. We denote
then by T ⊂ RP1 the set of dynamically trivial directions in T . We have proved in § 4 that
the intersection of T and J = {[1 : t] | t ∈ [1, 4]} ⊂ RP1 is the complement of a Cantor set
and that T ∩ J has full measure.

Also J is a fundamental domain (see Proposition 2) for the action of 0 on �0 the
discontinuity set of 0. Since 0 < V6 , two directions in RP1 in the same orbit for the action
of θ induce conjugated foliations on6 and therefore have same dynamical behaviour. This
implies that T ∩�0 is open and has full measure in �0 . Since �0 has itself full measure
in RP1, T has full measure in RP1. The fact that it is open is a consequence of the stability
of dynamically trivial foliations for the C∞ topology, see [Lio95] for instance. �

Relying on a similar argument exploiting in a straightforward manner the action of the
Veech group and the depiction of the dynamics made in §4, we get the following.

THEOREM 9. There exists a Cantor set K ⊂ S1 such that, for all θ ∈K, the foliation Fθ
accumulates to a set which is locally the product of a Cantor set with an interval. Since
sets always have zero Hausdorff measure.

We believe it is worth pointing out that the method we used to find these ‘Cantor
like’ directions is essentially different compared to the one used in [CG97], [BHM10]
and [MMY10]. Indeed they are proper attracting set in the sense that they have an open
neighbourhood in 6 which is pushed by the flow strictly within itself after a certain time.
These results allows us to give a complete description of 0.

THEOREM 10. The Veech group of 6 is exactly 0.
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Proof. We divide the proof into four steps:
(1) proving that any element in V6 preserves 30;
(2) proving that 0 has finite index in V6 ;
(3) proving that the group 0 is normal in V6 ;
(4) concluding.

(1) Let us prove the first point. Because of the description of the dynamics of the
directional foliations we have achieved, one can show the limit set of the Veech group is
the same than the limit set of 0. If not, there must be a point of 3V6 in the fundamental
interval I . But since the group V6 is non-elementary it implies that we have to find in I
infinitely many copies of a fundamental domain for the action of 0 on the discontinuity
set. In particular infinitely many disjoint intervals corresponding to directions where the
foliation has an attracting leaf of dilatation parameter 2. But by the study performed in the
above section the only subinterval of I having this property is ]1, 2[.

(2) The second point follows from the fact that the projection

0\H−→ V6\H

induces an isometric orbifold covering

C(0\H)−→ C(V6\H).

Since C(0\H) has finite volume since it is compact (see §3.2) and because [0 : V6] =
(vol(C(0\H)))/(vol(C(V6\H))), this ratio must be finite and hence 0 has finite index in
V6 .

(3) Note that 0 is generated by two parabolic elements A and B and that these define
the only two conjugacy classes in 0 of parabolic elements. We are going to prove that
any element g ∈ V6 normalizes both A and B. Since 0 has finite index in V6 , there
exists n ≥ 1 such that (g Ag−1)n ∈ 0. There are but two classes of conjugacy of parabolic
elements in 0 which are the ones of A and B. If n ≥ 2, this implies that V6 contains a
strict divisor of A, which would make the limit set of V6 larger that 30 (consider the
eigenvalues of the matrix AB−1 which determine points in the boundary on the limit set,
see Lemma 1). Therefore g Ag−1 belongs to 0. A similar argument shows that gBg−1

∈ 0

and since A and B generate 0, g normalizes 0. Hence 0 is normal in V6 .
(4) Any g ∈ V6 thus acts on the convex hull C(0\H) of the surface C(0\H). In

particular it has to preserve the boundary of C(0\H), which is a single geodesic by
Proposition 4. At the universal cover it means that g has to fix a lift of the geodesic
c, thus the isometry g permutes two fixed points of a hyperbolic element h of 0. Two
situations can occur.
• g is an elliptic element. Its action on 0\H cannot permute the two cusps because they

correspond to two essentially different cylinder decompositions on 6. It therefore
fixes the two cusps and hence must be trivial.

• g is hyperbolic and fixes the two fixed points of h. Moreover, by Lemma 1, it acts on
the fundamental interval I and as we discussed above such an action has to be trivial
because of our study of the associated directional foliations, the translation length of
g is then the same as h. But g is fully determined by its fixed points and its translation
length, which shows that g = h and thus g ∈ 0.

Any element of V6 therefore belongs to 0 and the theorem is proved. �
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Remark 5. This theorem implies that the completely periodic directions correspond to the
orbit by the Veech group of the horizontal and vertical directions, since any parabolic
element is conjugated to the Dehn twist in one of these two directions. This is the set we
denoted by H in Theorem 3.
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