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Abstract

The theory of influence and sharp threshold is a key tool in probability and probabilistic
combinatorics, with numerous applications. One significant aspect of the theory is
directed at identifying the level of generality of the product probability space that
accommodates the event under study. We derive the influence inequality for a completely
general product space, by establishing a relationship to the Lebesgue cube studied by
Bourgain, Kahn, Kalai, Katznelson and Linial (BKKKL) in 1992. This resolves one of
the assertions of BKKKL. Our conclusion is valid also in the setting of the generalized
influences of Keller.
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1. Introduction

A coin shows heads with probability p. We flip it n times, and we observe whether or not
some specified event A occurs. In studying the associated probability Pp(A), it is often useful
to gain information about the degrees of influence of the individual coin tosses. We make this
statement more precise as follows.

Let (Xe : e ∈ E) be independent Bernoulli variables with parameterp, where |E| = n <∞.
Let A ⊆ �, where � = {0, 1}E . For ω ∈ � and e ∈ E, we define the configurations ωe and
ωe by

ωe(f ) =
{
ω(f ) if f �= e,
1 if f = e, ωe(f ) =

{
ω(f ) if f �= e,
0 if f = e.

Thus, the configuration ωe (respectively, ωe) is derived from ω by ‘switching on’ (respectively,
‘switching off’) the variable indexed by e. The influence of e ∈ E on the event A is defined by

IA(e) = Pp(1A(ωe) �= 1A(ωe)),

where 1A denotes the indicator function of A, and Pp is the appropriate probability measure.
That is, the influence of e is the probability that the occurrence ofA depends on the value ofXe.

A systematic theory of influence seems to have been developed first by Kahn, Kalai and
Linial [12] in 1988, in response to an issue raised by Ben-Or and Linial [2]. There was a later
development by Talagrand [21] in 1994. On the other hand, estimates for influences have been
key to a number of important results in probability and probabilistic combinatorics that predate
these papers, sometimes by many years. Perhaps the most famous such result is the proof
by Kesten [16] that the critical probability of bond percolation on the square lattice equals 1

2 .
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There are now several known ways of proving this (see [8, Chapter 5] and [4]), but Kesten’s
first proof of 1980 used a bespoke theory of influence.

Kahn, Kalai and Linial [12] introduced an inequality for influences in the case p = 1
2 ,

working thus with uniform measure on the discrete cube {0, 1}n. This was extended by Bourgain
et al. [3] to an influence inequality for the continuous cube [0, 1]n endowed with Lebesgue
measure. Using a discretization argument, this implies an influence inequality for the Bernoulli
case with p ∈ (0, 1). This following formulation of this inequality is a minor perturbation of
that of [3] and [12], and is given here in a form suitable for applications (see [8, Theorem 4.29]).

Theorem 1.1. There exists a universal constant c > 0 such that, for any p ∈ (0, 1), any finite
set E, and any event A ⊆ {0, 1}E satisfying Pp(A) ∈ (0, 1),

∑
e∈E

IA(e) ≥ cPp(A)(1− Pp(A)) log

[
1

m

]
, (1.1)

where m = maxe IA(e).

It is immediate that (1.1) implies the existence of some e ∈ E with

IA(e) ≥ c′Pp(A)(1− Pp(A)) log n

n
, (1.2)

where n = |E| and c′ > 0 is an absolute constant.
There is a slightly extended version of inequality (1.1) due to Talagrand [21], which holds

under the further condition that the event in question is increasing. Since the set {0, 1} is
ordered, the product space {0, 1}E is partially ordered. An event A in this space is said to be
increasing if, whenever ω ∈ A, ω ≤ ω′, then ω′ ∈ A. It is proved in [21, Theorem 1.1] that
(1.1) may be replaced by

Pp(A)(1− Pp(A)) ≤ cp(1− p) log

[
2

p(1− p)
] ∑
e∈E

IA(e)

log[1/(p(1− p)IA(e))] (1.3)

for an increasing event A. Using the fact that IA(e) ≤ m := maxe IA(e), inequality (1.3)
implies that

∑
e∈E

IA(e) ≥
(

c−1

p(1− p) log[2/(p(1− p))]
)
Pp(A)(1− Pp(A)) log

[
1

m

]
. (1.4)

Since 0 < p < 1, it follows that

∑
e∈E

IA(e) ≥ c′Pp(A)(1− Pp(A)) log

[
1

m

]
, (1.5)

where c′ > 0 is an absolute constant, in agreement with (1.1) (and assuming A is increasing).
The connection between the influences IA(e) and the probability Pp(A) is provided by

Russo’s formula,
d

dp
Pp(A) =

∑
e∈E

IA(e) (1.6)

for any increasing event A. Russo [20] published his formula in 1978, though versions of this
natural equality were known earlier to Barlow and Proschan [1, p. 210] and Margulis [17].
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Russo’s formula (1.6) may be combined with (1.4) or (1.5) to obtain lower bounds for the
derivative of Pp(A) for an increasing event A. Numerous applications of this inequality have
been found in areas such as percolation and random graphs.

Since these three early papers [3], [12], [21] on influence, several strands of theory have
been developed. One is to seek influence theorems for nonproduct measures, for which we
refer the reader to [6] and [7]. Another is towards the question of whether there exists a useful
influence inequality for an event in an arbitrary product space, that is, whether an inequality of
the form (1.5) holds with the discrete product space {0, 1}E replaced by an arbitrary product
probability space. It was asserted in [3] that the latter is indeed true, but the explanation was
omitted (a natural argument uses the measure-space isomorphism theorem, which normally
requires separability; see Section 3.3). The purpose of the current note is to state and prove a
general form of this theorem not requiring separability (see Theorems 2.1 and 2.3).

See [13] for a review of influence and its ramifications, and also [5] and [8, Section 4.5].

2. Statement of results

Let X = (�,F , P ) be a probability space, and let E be a finite set with |E| = n. We write
XE = (�E,F E, P = PE) for the product space of n copies of X. For an index e ∈ E and a
vector ψ ∈ �E\{e}, we define the fibre

Fψ = {ω ∈ �E : ω(f ) = ψ(f ) for f �= e} 	 {ψ} ×�,

comprising all ω ∈ �E which agree with ψ off e.
Let A ∈ F E be an event. The influence of e on A is defined as

IA(e) = PE\{e}({ψ ∈ �E\{e} : 0 < P(A ∩ Fψ) < 1}). (2.1)

For economy of notation, the space X is not listed explicitly in IA(e).

Remark 2.1. Bourgain et al. [3] made use of a different definition of influence, which may be
expressed in the current context as

I ′A(e) = PE\{e}(1A is not constant on Fψ).

By comparison with (2.1), we have IA(e) ≤ I ′A(e). Therefore, lower bounds for IA(e) are
stronger than their equivalents for I ′A(e).

An unsatisfactory property of the influence I ′A(e) is that one may have I ′A(e) �= I ′A′(e) for
events A and A′ that differ by a null set. This observation provoked the revised definition (2.1)
introduced in [8]. More general notions of influence have been discussed in [10], [14], and
[15], to which we return at (2.2).

Let L denote the Lebesgue probability space comprising the unit interval [0, 1] endowed with
the Borel σ -field B[0, 1] and Lebesgue measure λ. Our main result for influences as defined
in (2.1) is the following. This will be extended to more general influences in Theorem 2.3.

Theorem 2.1. Let |E| <∞ and A ∈ F E . There exists a measurable event B in the Lebesgue
product space LE such that λE(B) = P(A), and IB(e) = IA(e) for e ∈ E.

It follows that the influences of an arbitrary event in the general product space satisfy an
inequality whenever such an inequality holds for a general event in the Lebesgue product
space. SinceX is not generally a partially ordered set, it would be inappropriate to seek results
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restricted to increasing events, and in addition the method of proof will not necessarily respect
an existing partial order.

We state one corollary of Theorem 2.1, which may be compared with Theorem 1.1. The
proof is presented at the end of Section 4.

Theorem 2.2. There exists a universal constant c > 0 such that, for any probability space
X = (�,F , P ), any finite set E, and any event A ∈ F E satisfying P(A) ∈ (0, 1),∑

e∈E
IA(e) ≥ cP(A)(1− P(A)) log

[
1

m

]
,

where m = maxe IA(e).

It is immediate, as at (1.2), that there exists e ∈ E with

IA(e) ≥ c′P(A)(1− P(A))
log n

n
,

where n = |E| and c′ > 0 is an absolute constant. By Remark 2.1, this is stronger than
Bourgain et al.’s [3, Theorem 1].

Our principal Theorem 2.1 may be extended without substantial extra work to a more general
notion of influence, introduced by Keller [14]. Let M be the set of measurable functions
h : [0, 1] → [0, 1]. For h ∈M, the h-influence of e ∈ E on the event A ∈ F E is defined as

IhA(e) = PE\{e}(h(P (A ∩ Fψ))), (2.2)

whereμ(f ) denotes the expectation of f under the probability measureμ. Thus, IhA(e) = IA(e)
when h is the indicator function 1(0,1). The function h(x) = x(1− x) has been considered in
[10], and other functions h in [14].

One might define the influence IA(e) via a conditional expectation rather than the ‘pointwise’
definitions (2.1) and (2.2). With F E

e the sub-σ -field of F E generated by {ω(f ) : f �= e}, (2.2)
can be written as

IhA(e) = PE\{e}(h(P(A | F E
e ))).

However, we retain the notation adopted in the prior literature.
Our main theorem for h-influences is as follows.

Theorem 2.3. Let h ∈ M and A ∈ F E . There exists a measurable event B in the Lebesgue
product space LE such that λE(B) = P(A), and IhB(e) = IhA(e) for e ∈ E.

This extends Theorem 2.1, and yields a positive answer to a question of Keller [14, Foot-
note 2], asking whether h-influence inequalities may be extended from Lebesgue to general
spaces. Theorem 2.3 includes Theorem 2.1, and its proof is presented in Section 4.

3. Discussion

Rather than include here a full discussion of influence and sharp threshold, we draw the
attention of the reader to three relevant points.

3.1. Borel or Lebesgue?

We have made no assumption above about the completeness (or not) of the probability space
XE = (�E,F E,P). For events A,B ∈ F E such that P(A�B) = 0, we have, from (2.1)
and Fubini’s theorem, IA(e) = IB(e) for e ∈ E. It follows that, when working with definition
(2.1), one may use either the product σ -field F E or its completion.
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3.2. Form of inequality

There exists a family of influence inequalities, from which one may select one according
to the situation under study. By Theorems 2.1 and 2.3, any inequality that is valid for the
Lebesgue space has a parallel inequality for a general product space. In these two theorems,
no assumption is made of monotonicity of the event in question, or about its invariance under
a group of actions on �E .

3.3. General probability spaces

The probability space of possibly greatest practical value for applications is the Lebesgue
space LE , since many spaces of importance, including the Bernoulli product spaces, may be
derived via mappings on LE . It was implied by Bourgain et al. [3] that influence inequalities
for an arbitrary product space may be derived from those for LE . A natural route to a proof of
such a statement would be to use the measure-space isomorphism theorem (see, for example, [9,
Section 40], [11, Appendix A], or [18, Theorem 4.7]). In its usual form, the last theorem places
a restriction of separability on the probability space after removal of atoms, and this limits its
naïve application in the current situation. The separable case is discussed in [8, Section 4.5].

Some probabilists tend to consider nonseparable probability spaces with only limited
enthusiasm. The current note was inspired by a desire to understand the assertion of [3],
and to resolve a slightly obscure corner of probability theory.

4. Proof of Theorem 2.3

The proof of Theorem 2.3 is achieved via the three lemmas that follow. For probability
spaces Xi = (�i,Fi , Pi), a mapping φ : �1 → �2 is said to be measure preserving (from
X1 to X2) if, for all B2 ∈ F2, the inverse image B1 = φ−1(B2) is measurable and satisfies
P1(B1) = P2(B2).

For a finite setE and a measure-preserving mapping φ, the function� = φE is the measure-
preserving mapping from XE1 to XE2 given by �((xe : e ∈ E)) = (φ(xe) : e ∈ E).
Lemma 4.1. Let Xi = (�i,Fi , Pi), i = 1, 2, be probability spaces, and let φ : �1 → �2
be measure preserving. Let E be a finite set, and write � = φE as above. If B2 ∈ F E

2 and
B1 = �−1(B2), then IhB1

(e) = IhB2
(e) for all e ∈ E and h ∈M.

Proof. Let e ∈ E, h ∈ M, B2 ∈ F2, and B1 = �−1(B2). For ψ ∈ �E\{e}i , let Fψ be the
fibre

Fψ = {ω ∈ �Ei : ω(f ) = ψ(f ) for f �= e} ∼= {ψ} ×�i.
Suppose that ν ∈ �E\{e}1 and ψ ∈ �E\{e}2 satisfy φE\{e}(ν) = ψ . Since φ is measure pre-

serving on each component,

P1({ν} × φ−1(B2 ∩ Fψ)) = P2(B2 ∩ Fψ).
Now {ν} × φ−1(B2 ∩ Fψ) = B1 ∩ Fν , so that, for u ∈ R,

P
E\{e}
1 (h(P1(B1 ∩ Fν)) > u) = PE\{e}2 (h(P2(B2 ∩ Fψ)) > u).

We integrate over u ∈ [0,∞) to complete the proof. �

A σ -field of subsets of a set� is called countably generated (or separable) if it is generated
by some finite or countably infinite collection of subsets of �.
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Lemma 4.2. Let X = (�,F , P ), |E| < ∞, and let A ∈ F E . There exists a countably
generated sub-σ -field G of F such that A ∈ GE .

Proof. Let {Gi : i ∈ I } be the set of all countably generated sub-σ -fields of the σ -field F , and
let H be the union of GEi as i ranges over I . It is easy to see that H is a σ -field. (To see closure
under countable unions, let Ai ∈ H for i = 1, 2, . . . . Then Ai ∈ GEj(i) for some j (i). Let Gj
be generated by the countable subset Bj of F , and let B =⋃

i Bj (i). Then B is countable,
and generates thus some Gk . Hence, Ai ∈ GEj(i) ⊆ GEk for each i, so that

⋃
i Ai ∈ GEk ⊆ H .)

Furthermore, H is the smallest σ -field containing every rectangle of the form
∏
e∈E Fe, as the

Fe range over F . Therefore, H = F E .
Let A ∈ F E . Since A ∈ H , then there exists a ∈ I such that A ∈ GEa . The proof is

complete. �

The remainder of the proof is based upon a concealed version of the measure-space isomor-
phism theorem. In general terms, this states that (subject to appropriate assumptions) a measure
space may be placed in correspondence with the Lebesgue space L. There are two forms of
the measure-space isomorphism theorem.

(a) There exists an isomorphism between the measure rings of the measure space and the
Lebesgue space (see, for example, [9, Section 40]).

(b) There exists a pointwise bijection between certain derived sample spaces (see, for exam-
ple, [18, Theorem 4.7]).

We will not appeal to any general theorem here, but instead will construct the required
mappings explicitly in a manner requiring no special consideration of the existence (or not) of
atoms. This may be achieved either by repeated decimation of subintervals of [0, 1] (see, for
example, [19, Section 2.2]), or by way of a mapping to the Cantor set. We choose to follow the
second route here. See [11, Appendix A] for a discussion of measure-space isomorphisms.

For T ⊆ R
d , we denote the Borel σ -field of T by B(T ). Let C be the Cantor set of all reals

of the form ∞∑
k=1

2

3k
ak, (ak : k ∈ N) ∈ {0, 1}N.

We shall make use of the fact that C is in one-to-one correspondence with {0, 1}N.

Lemma 4.3. Let A ∈ F E , and let G be a countably generated sub-σ -field of F such that
A ∈ GE (as in Lemma 4.2). There exists a probability space Z = (C,B(C), μ) comprising
the Cantor set C together with its Borel σ -field and a suitable probability measure μ, such that
the following assertions hold.

(a) There exists a measure-preserving mapping ψ from X to Z.

(b) There exists G ∈ B(CE) such that A = 
−1(G), where 
 = ψE .

(c) There exists a measure-preserving mapping γ from L to Z.

This lemma (together with part of the forthcoming proof of Theorem 2.3) may be summarized
in the diagrams

X
ψ−−−→ Z

γ←−−− L, A

−1←−−− G �−1−−−→ B, (4.1)

where � = γ E and B = �−1(G).
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Proof of Lemma 4.3. (a) The existence of G is implied by Lemma 4.2. Since G is finitely
generated, we may find subsets (Bk : k ∈ N) of � that generate G. Define ψ : �→ C by

ψ(x) =
∞∑
k=1

2

3k
1Bk (x),

where 1B is the indicator function of B, as usual.
Write G′ = {ψ−1(S) : S ∈ B(C)}. We claim that G = G′. Since Bk ∈ G′ for all k, we have

G ⊆ G′. Conversely, sinceψ is a sum of G-measurable functions, it is G-measurable, and hence
G′ ⊆ G.

Let μ be the probability measure on (C,B(C)) induced by ψ , that is, μ(S) = P(ψ−1(S))

for S ∈ B(C). By definition of μ, ψ is measure-preserving from X to Z = (C,B(C), μ).
(b) Let H be the σ -field {
−1(S) : S ∈ B(CE)} on �E . By the above, H = GE . Conse-

quently, A ∈ H , and hence A = 
−1(G) for some G ∈ B(CE).
(c) Define κ : C → [0, 1] by κ(c) = μ(C ∩ [0, c]). We may take as the inverse the function

γ (y) = inf{c : κ(c) ≥ y}, y ∈ [0, 1].
Since γ (y) ≤ c if and only if y ≤ κ(c), we have

γ−1(C ∩ [0, c]) = [0, κ(c)], c ∈ C,
so that

λ(γ−1(C ∩ [0, c])) = κ(c) = μ(C ∩ [0, c]).
The set {C ∩ [0, c] : c ∈ C} is a π -system that generates B(C), and hence γ is measure-
preserving from L to Z. �

Proof of Theorem 2.3. Let h ∈ M and A ∈ F E . We shall use the notation introduced in
Lemmas 4.2–4.3, and we refer the reader to diagram (4.1). By Lemmas 4.1 and 4.3(a), (b),
A and G have equal measure and h-influences. Write � = γ E , and take B = �−1(G) ⊆
[0, 1]E . Since � is measure-preserving, by Lemma 4.1, G and B have equal probability and
h-influences. �

Proof of Theorem 2.2. This is an immediate corollary of Theorem 2.3, on applying the
corresponding result for the Lebesgue space. The latter result is implied by the work of Bourgain
et al. [3], and is explicit at [8, Theorem 4.33] (the factor 2 present in the last reference is cosmetic
only). �
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