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SUMMARY

This paper presents a two-level control strategy for bipedal
walking mechanism that accounts for implicit control of
push-off on the between-step control level and tracking
of imposed holonomic constraints on kinematic variables
via feedback control on within-step control level. The
proposed control strategy was tested in a biologically
inspired model with minimal set of segments that allows
evolution of human-like push-off and power absorption. We
investigated controller’s stability characteristics by using
Poincaré return map analysis in eight simulation cases and
further evaluated the performance of the biped walking
model in terms of how variations in torso position and gait
velocity relate to push-off and power absorption. The results
show that the proposed control strategy, with the same set
of controller’s gains, enables stable walking in a variety of
chosen gait parameters and can accommodate to various
trunk inclinations and gait velocities in a similar way as seen
in humans.

KEYWORDS: Push-off; Power absorption; Feedback
control; Within-step control; Between-step control.

1. Introduction

Even though biomechanics of human locomotion is well
understood1,2 and human walk appears plain, we have been
confronted with many difficulties when attempting to mimic
human walking in bipedal robots as we do not yet have a
full understanding of control principles that underlie body
support and forward propulsion in legged locomotion. This
has motivated rapid progress in design of numerous biped
walking models3–10 and robots11–17 that allow us to examine
various control strategies.

The simplest bipedal machines are passive
dynamic9,12,13,17,18 and ballistic11,15,19 walking models that
have only few degrees of freedom. Passive dynamic walking
models are free from actuation and utilize inertial and
gravitational forces to develop stable walking down the slope.
A similar principle is applied in ballistic walking, where the
swing leg is actuated only at the beginning and the end of
the stance phase, with the inertial and gravitational forces
being utilized elsewhere. This class of bipedal mechanisms
is energy efficient, and generates stable limit cycles that
fully determine kinematics and require little effort to control
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but simultaneously lack the robustness and insensitivity to
disturbances making them of little practical use.

More sophisticated bipedal robots with many actuated
degrees of freedom follow trajectories that are predetermined
either through human gait analyses constructed templates7,8

or calculated through optimization of certain cost
criteria,6,20,21 while the stability is achieved by the zero-
moment point (ZMP) control.15,22,23 While such an approach
enables practical locomotion, the requirement for a priori
determination of specific kinematics imposes significant
limitations on the versatility of such bipedal machines.

An approach that does not require specification of
trajectories in advance was provided by Grizzle et al.3,5

who proposed a feedback control of a set of scalar-valued
functions of the states of the robot. These scalar-valued
functions encode certain walking premises like keeping
the trunk upright and symmetrical movement of both legs.
Grizzle et al.5 have developed a five degrees of freedom
model, where all scalar-valued functions are expressed as
a function of the stance leg inclination, which enables
derivation of a formal proof of asymptotic stability of the
derived controller for certain model parameters. The model
assumes some standard simplifications, the most important
being the instantaneous transition from the single support
to a swing phase. This simplification presents a serious
limitation for control of bipedal machines, because lack of
a double support phase means that restitution of lost energy
at the impact of swinging leg with the ground cannot be
accomplished in a similar way as in human locomotion.
Analysis of human walking shows that the majority of
power generation occurs at the end of stance phase when
a forceful extension of the trailing leg also termed as a
push-off takes place, followed by an eccentric flexion of the
leading leg performing majority of power absorption within
the double support phase.24–26 Incorporating such human-like
behavior into control of bipedal walking model represents
a considerable challenge and has not been extensively
addressed. There have been attempts where the energy
dissipated during contact was replaced by applying force
impulses to the stance leg just before heel strike.24,27

However, this was done on the assumption that the time
duration of the impulses was instantaneous, which is
not practical for application in real mechanisms. Miossec
et al.28 presented a model that included a finite time-
duration double support in a gait cycle but without preceding
push-off.

In this paper, we propose a novel control strategy that
implicitly incorporates control of a push-off of the trailing leg
in the second half of the singles-stance phase and succeeding
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Fig. 1. Schematic representation of the biped model.

power absorption of the leading leg within the double support
phase. This is achieved by a combination of the standard
feedback control principles throughout the gait cycle and
adaptive variation of the desired leg length at the end of
each cycle resulting in a time-variant zero dynamics. The
controller’s stability is evaluated in simulations by the use
of Poincaré return map analysis and the performance of
the biped walking model in different walking modes is
qualitatively compared to human walking in terms of ground
reaction forces.

2. Robot Model and Modeling Assumptions

The modeling approach presented in this paper is closely
related to the work of Grizzle et al.3,5 The robot is considered
bipedal and planar with five degrees of freedom. It is assumed
to have two telescopic legs that are connected at hip by ideal
revolute joints and are carrying the torso segment. There
is a mass at the center of each leg and two masses at the
hips and the end of a torso segment, respectively. Finally a
force actuator is applied at each leg and two torques between
the torso and each leg, but not at the contact point of the
leg with the ground. We consider the described model as a
minimal configuration that is capable of mimicking human
locomotion and reproducing human-like walking patterns
in terms of ground reaction forces. A representative model
structure is shown in Fig. 1.

We will adopt identical division of gait cycle as in human
walking. A complete human gait cycle may be divided into
phases of single support (one leg in contact with the ground)
and double support (both legs in contact with the ground).
The leg that throughout the single support phase remains
in contact with the ground will be referred to as the stance
leg. Likewise, the leg that in single support phase advances
toward the point of the next contact will be referred to as
the swing leg. When both legs remain in contact with the
ground during the double support, the legs will be referred
to according to their function in the preceding single support
phase, thus stance and swing leg.

The transition from the single support to double support
phase is referred to as the contact phase and is associated with
the swing leg touching the ground. Likewise, the transition
from double support to single support phase is referred to
as the take-off phase and is associated with the rear leg
lifting of the ground. Both transition phases are assumed
to be instantaneous. The dynamic equations are composed
of ordinary differential equations for the support phases and
algebraic equations for the transition phases.

2.1. Single support phase
Let q = (q1, q2, qT, L1, L2, xH, zH)T be the set of coordinates
describing the configuration of the robot with respect to a
world reference frame and u = (T1, T2, F1, F2)T the torques
between the torso and each leg and forces in each leg
respectively, as shown in Fig. 1. To account for switching
between the single and double support phases, we will further
denote qst = q1, qsw = q2, Lst = L1, Lsw = L2, Tst = T1,
Tsw = T2, Fst = F1, and Fsw = F2, when legs one and two
are considered as stance and swing leg, respectively, in
a current single support and succeeding double support
phase. Likewise, we will denote qst = q2, qsw = q1, Lst =
L2, Lsw = L1, Tst = T2, Tsw = T1, Fst = F2, and Fsw = F1,
when legs one and two are considered as swing and stance
leg, respectively, in a current single support and succeeding
double support phase.

The stance leg contacting the ground throughout the
single support phase adds two supplementary constraints in
the form xst = const, zst = 0, thereby reducing the feasible
space of motion to a constraint surface. The constraints are
organized in matrix form as �ss(q) = 0 and introduced into
dynamic equations via Lagrange multipliers. Hence, forming
the Euler–Lagrange equations of the constrained system, the
model is written in the form

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu + �T
ssλss

Tss,start < t < Tss,end (1)

�ssq̇ = ∂�ss

∂q
q̇ = 0

where M(q) is the inertia matrix, C(q, q̇) is the matrix of
centripetal and Coriolis terms, G(q) is the gravity vector,
and λss is a vector of Lagrange multipliers equal to negative
ground reaction forces during single support. Tss,start and
Tss,end denote the times of the start and end of single support
phase, respectively. The model is written in the state space
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form by

ẋss =
[

q̇

M−1(q)
[−C(q, q̇)q̇ − G(q) + Bu + �T

ssλss
] ]

= : fss(xss) + gss(xss)u. (2)

2.2. Contact phase
A standard rigid contact model is assumed.29 Basic
hypotheses of the contact model are:

• The impact is inelastic and without slipping.
• The impact is instantaneous.
• The external forces during the impact can be represented

by impulses and cannot be generated by actuators
• The impulse forces may result in velocity but not

position discontinuities.

Hence, the angular momentum is conserved, leading to

M(q̇+ − q̇−) = Fc,ext (3)

where q̇+ and q̇− are velocity vectors just before and just
after the impact, respectively, and Fc,ext the contact impulse
forces.

Four constraint equations in the form xst = const1, zst =
0, xsw = const2, and zsw = 0 completely characterize the
contacts of both legs with the ground after the impact and are
organized in matrix form �c(q) = 0. The following relation
determines the admissible set of velocities after the impact:

�cq̇
+ = ∂�c

∂q
q̇+ = 0. (4)

With an additional equation relating the impulse during
contact Fc,ext to the tangent and normal forces during contact
Fc at the tips of both legs

Fc,ext = �T
c (qc)[FT1 FN1 FT2 FN2]T = �T

c (qc)Fc, (5)

the following set of equations is solved for joint velocities
just after the impact q̇+

[
M −�T

c
�c 0

]
·
[

q̇+
Fc

]
=

[
Mq̇−

0

]
t = Tc = Tss,end = Tds,start

(6)

where Tc denotes the contact time and Eq. (6) illustrates the
instantaneous transition to double support.

Geometrically, the contact model can also be considered
as an M(q)-orthogonal projection of q̇− onto the feasible
space {q̇+ ∈ TqQ|�cq̇

+ = 0},9 i.e., a mapping from higher-
dimensional space of single support to a lower-dimensional
constraint surface of double support, hence resulting in
velocity discontinuities.

2.3. Double support phase
Both legs in contact with the ground throughout the double
support phase introduce four constraint equations, thereby
reducing the feasible space of motion to a constraint surface.

They are identical, as in previous section; however, for
consistency reasons, they are expressed as xst = const1, zst =
0, xsw = const2, zsw = 0 or in matrix form �ds(q) = 0 and
introduced into dynamic equations via Lagrange multipliers

M(q)q̈ + C(q, q̇)q̇ + G (q) = Bu + �T
dsλds

�dsq̇ = ∂�ds

∂q
q̇ = 0

Tds,start < t < Tds,end (7)

where λds is a vector of Lagrange multipliers equal to negative
ground reaction forces during double support. Tds,start and
Tds,end denote the times of the start and end of double support
phase, respectively. The model is written in the state space
form

ẋds =
[

q̇

M−1(q)
[−C(q, q̇)q̇ − G(q) + Bu + �T

dsλds
] ]

= : fds(xds) + gds(xds)u. (8)

2.4. Take-off phase
Considering that only one leg remains in contact with the
ground in succeeding single support phase, the take-off phase
transition model has to account for two constraint equations
in the form xst = const, yst = 0 or organized in matrix form
�top(q) = 0. Hence, by adjusting the transition model of
the contact phase in this sense, the model can be rewritten
to obtain the transition model of the take-off phase, thus
expressing the relation between velocities just before and
just after the take-off

[
M −�T

top
�top 0

]
·
[

q̇+
Ftop

]
=

[
Mq̇−

0

]

t = Ttop = Tds,end = Tss,start (9)

where �top = ∂�top

∂q
, q̇+ and q̇− are velocities just after and just

before the take-off, respectively, Ftop represents tangent and
normal forces at the tip of the leg, which remains in contact
with the ground in succeeding single support phase, Ttop

denotes the contact time, and Eq. (9) illustrates instantaneous
transition to single support phase.

Geometrically, the transition model of the take-off phase
may also be considered as an M(q)-orthogonal projection
of q̇− onto the feasible space {q̇+εTq|�topq̇

+ = 0}.9 It is
a mapping from lower-dimensional constrained space of
double support to a higher-dimensional space of single
support and solving (9) for q̇+, therefore, resulting in no
velocity discontinuities.

3. Control Strategy

This section develops a two-level control strategy that
accounts for explicit trajectory tracking via feedback control
on lower level and implicit control of propulsion, push-off,
and power absorption on a higher level. On lower level,
we adopt similar control principle as presented by Grizzle
et al.,3,5 i.e., to encode walking mechanisms in postural
terms that are expressed as a set of holonomic constraints
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of the kinematic variables and as outputs of a mechanical
model imposed on the robot via feedback control, henceforth
within-step control. Our proposal is to adaptively modify
these constraints after each gait cycle on higher, between-
step, control level in such a manner as to adjust forward
propulsion to achieve desired gait velocity and step-length
control. Within-step control further comprises a feedback
control in single support phase and a combination of forward
dynamics and feedback control in double support phase. As
both transition phases are assumed instantaneous, no control
is applied neither during contact nor during take-off phase.

3.1. Within-step control
3.1.1. Within-step control in single support phase. In human
walking, one observes that the torso is maintained at a
nearly vertical position, the swing leg behaves roughly as
a mirror image of the stance leg, the vertical hip movement
is minimized, and sufficient foot clearance is assured during
the swing phase. These observations have been used to build
a set of control objectives in the form of the following output
functions:

y1 = qT − r1

y2 = qst + qsw − r2

y3 = zsw − r3

y4 = Lst − r4

(10)

where ri, i = 1, . . . , 4 are reference trajectories to be
followed

r1 = qT|t=Tss,start
×(1 − w1) + qT,d×w2

r2 = (qst + qsw)|t=Tss,start
×w1

r3 = Lleg,nominal × (qst,d|t=Tss,end − sign(qst)×qst)/k

r4 = Lst,d(qst).

(11)

Tracing the reference trajectories r1 and r2 ensures a
constant angle of the torso with respect to the vertical,
say qT,d, and forward advancement of the swing leg as
mirror image of the stance leg. w1 and w2 are appropriately
chosen exponential functions with time constant sufficiently
smaller than the time duration of a single support. This
ensures that the reference trajectories r1 and r2 converge
in a smooth exponential manner from initial values at the
start of the single support phase toward desired values.
Such a definition of r2 implies that qst is a monotonically
increasing function during the single support phase: qst ∈
[qst|t=Tss,start, qst,d|t=Tss,end ].

The legs are assumed telescopic and its length moves
around nominal leg length Lleg,nominal. Telescopic movement
of the swing leg is determined to assure sufficient swing leg
clearance and is set by constant k, which is proportional to
Lleg,nominal and in the range of normal human foot clearance.
Tracing the reference trajectory r3 ensures the tip of the
swing leg to move away from the ground until the stance leg
passes the vertical and to approach the ground afterward until
qst = qst,d|t=Tss,end . It is assumed that when qst = qst,d|t=Tss,end ,
the tip of the swing leg touches the ground and the single
support phase terminates. qst,d|t=Tss,end is related to the desired
cadence cadgait,d, the desired gait velocity vgait,d, and the

desired step-length Lstep,d. These parameters are defined as

Lstep,d = 2vgait,d

cadgait,d
= d1 + d2

d1 = xst|t=Tss,start
− xsw|t=Tss,start

d2 = 2Lleg,nominal sin
(
qst,d|t=Tss,end

)
.

(12)

Lengthening and shortening as governed by reference
trajectory r4 determines a telescopic movement of the stance
leg. It is defined as a fifth-order polynomial of qst such that
(see Fig. 2 for a representation)

Lst(qst = qst|t=Tss,start ) = Lst|t=Tss,start

L̇st(qst = qst|t=Tss,start ) = L̇st|t=Tss,start

Lst

(
qst = qst|t=Tss,start + qst,d|t=Tss,end

2

)
= Lleg,nominal

Lst

(
qst = qst,d

∣∣
t=Tss,end

)
= Lleg,nominal

L̇st
(
qst = qst|t=Tss,end

) = L̇st,d

∣∣
t=Tss,end

(13)

where L̇st,d|t=Tss,end is the desired stance leg extension velocity
at the end of single support and is determined on higher
between-step control level to assure constant gait velocity.

The output vector reads as

yss = hss(q) =

⎡
⎢⎣

qT − r1

qst + qsw − r2

zsw − r3

Lst − r4

⎤
⎥⎦. (14)

3.1.2. Within-step control in double support phase. The
control strategy in the double support phase is composed
of feedback control for the torso position, thus calculating
the hip torques, and forward dynamics by directly applying
the forces to the legs.

Evolution of feedback control in the double support phase
is closely related to feedback control in the single support
phase. We will continue controlling the torso angle yet
suspend the mirrored-like behavior of stance and swing leg,
as such an objective is in contradiction with the concept
of double support. Namely, as both legs remain in contact
with the ground throughout the double support phase,
an increasing asymmetry between both legs is a natural
evolution of biped walking if the horizontal position of the hip
is to monotonically increase. Therefore, to assure invertibility
of the decoupling matrix, the objective to control the torso
angle will be encoded as

y1 = qT − r1

y2 = qT + ηqsw − r2
(15)

where

r1 = qT|t=Tds,start × (1 − w1) + qT,d × w2

r2 = (qT|t=Tds,start + ηqsw|t=Tds,start )

×(1−w1) + qT,d×w2

(16)
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Fig. 2. Fifth-order polynomial representing reference trajectory r4 = Lst,d(qst).

and choosing the constant η � 1 avoids singularity of the
decoupling matrix. w1 and w2 are appropriately chosen
exponential functions with time constant sufficiently smaller
than the time interval of a double support. This ensures that
the reference trajectories r1 and r2 converge in a smooth
exponential manner from initial values at the start of the
double-upport phase toward desired values.

The output vector reads as

yds = hds(q) =
[

qT − r1

qT + ηqsw − r2

]
. (17)

Forward dynamics assumes exponentially increasing Fsw

and appropriately chosen parabolic function for decreasing
Fst from Fst|t=Tss,end . The double support phase is considered
terminated when Fst reaches zero value

Fst|t=Tds,end = 0. (18)

3.1.3. Controller design. The control objective is to drive the
outputs of single and double support, yss = hss(q) and yds =
hds(q), respectively, to zero. Since the outputs only depend on
configuration variables and the dynamic model is of second
order, the relative degree of the output is two. Following the
standard Lie derivative notation,30 direct calculation yields

ÿ = L2
f h(q, q̇) + LgLfh (q) u (19)

and the overall feedback applied is given by

u = −(LgLfh)−1(L2
f h + KDLfh + KPh

)
(20)

where LgLfh(q) is the decoupling matrix and is assumed
invertible and KD and KP are positive-definite gain matrices.
We refer to Isidori29 for a detailed overview of feedback
control.

The internal dynamics of the system when the outputs
yss(q) and yds(q) are identically zero is referred to as the zero

dynamics. Thus,

Zss = {(q ′, q̇ ′) ∈ TQ|hss(q) = 0, Lfhss(q) = 0}
Zds = {(q ′, q̇ ′) ∈ TQ|hds(q) = 0, Lfhds(q) = 0} (21)

denote zero dynamics of single and double support,
respectively.

3.2. Between-step control
Between-step control introduces adaptive variation of the
desired stance leg lengthening velocity at the end of the single
support phase L̇st,d|t=Tss,end in a sense that greater L̇st,d|t=Tss,end

necessitates greater Fst|t=Tss,end , whereas greater Fst|t=Tss,end

implies more pronounced push-off and vice versa. Such a
control strategy allows us to influence forward propulsion to
assure constant gait velocity. In a condensed form, between-
step control can be expressed as

L̇k
st,d

∣∣
t=Tss,end

= L̇k−1
st,d

∣∣
t=Tss,end

+ kp
(
vk−1

gait − vgait,d
)

+ kd
(
vk−1

gait − vk−2
gait

)
(22)

where the superscript k indicates the gait-cycle number, kd

and kp are positive gains and

vk
gait =

xk
H

∣∣
t=Tds,end

− xk
H

∣∣
t=Tss,start

Tds,end − Tss,start
. (23)

Such a definition of between-step control implies adaptation
of hss(q) after each step in a sense to find stance leg
lengthening/shortening, which would lead to the desired
gait velocity. Furthermore, this makes single support zero
dynamics time variant

Zss = Zss(k) = {(q ′, q̇ ′) ∈ TQ|hss(q, k)

= 0, Lfhss(q, k) = 0} (24)

The overall control strategy is illustrated in Fig. 3.
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Fig. 3. Schematic representation of the overall control strategy.

4. Simulation Cases

Eight simulation cases, as listed in Table I, were selected to
test the performance and stability of the proposed control
strategy. A high diversity between simulation cases (Cases 1–
8) was selected to investigate the performance of the
control strategy in a wide range of walking modes. We
further investigated how power absorption and push-off

accommodate to account for changes in gait velocity
(Cases 3–6) and torso angle (Cases 7–8) and how our
findings relate to human walking, where greater gait velocity
is accompanied with an increase in power absorption and
push-off whereas the anteriorly inclined torso shifts the
center of mass forward, which contributes significantly to
forward progression and downward fall leading to more

Table I. Simulation cases: Desired kinematics and model parameters.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

vgait,d m/s 0.60 0.70 0.80 0.90 1.00 1.10 1.10 1.10
Lstep,d m 1.20 1.20 0.96 1.08 1.20 1.32 1.32 1.32
qT,d rad 0 0 0 0 0 0 0.1 0.20
cadgait,d steps/min 60 70 100 100 100 100 100 100

mL = 10 kg mH = 10 kg mT = 40 kg IL = 1.75 kgm2 IT = 3.50 kgm2

LT = 0.40 m Lleg,no min al = 1 m
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Fig. 4. State space orbits for all simulation cases. Each orbit is parameterized with respect to configuration variable (horizontal axis) and
its derivative (vertical axis). State space orbits in one column relate to the same configuration variable. State space orbits in one row refer
to the same simulation case.

pronounced power absorption and less pronounced push-off.
In a period of one cycle, we focused on the first peak in
vertical ground reaction forces as an indication of power
absorption and on second peak as an indication of push-off.
KD,ss, KP,ss,KD,ds, KD,ds, kp, and kd were experimentally
determined and remained unchanged in all simulation cases.

We used the MATLAB software and the MATLAB
Simulink toolbox to obtain a mathematical model of the

biped walker and to perform simulations, respectively. It took
approximately 15 min on a personal computer (Intel Pentium
4, 2.4 GHz, 2.0-GB RAM) to complete 60 gait cycles in each
simulation case.

5. Results

Figure 4 displays a set of state space orbits for each simulation
case. Each simulation case displays stable walking as only
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Fig. 5. Case 6: Controller’s performance in the first 60 walking cycles and a stick diagram visualizing walking of the model.

a few initial steps are necessary for the robot to settle in a
stable state space orbit. In this respect, we consider Case 6, by
far the most extreme example, as somewhat more dispersed
orbits indicate more steps being needed for a stable cyclic
walking. This is also evident in Fig. 5, which demonstrates the
performance of between-step control. We notice considerable
discrepancy between vk

gait and vgait,d as well as Lk
step and Lstep,d

in the first few steps until the adaptive control of L̇st,d|t=Tss,end

takes effect leading to a gradual convergence to a stable
walking at desired gait velocity and somewhat shorter step
length than desired afterwards.

The effect of L̇st,d|t=Tss,end between-step control is also
evident in hip torques and leg forces (Fig. 6) as well as in
ground reaction forces (Fig. 7). The control system responds
to an L̇st,d|t=Tss,end increase by increasing hip torques and
stance leg force at the end of the single support phase, which
leads to greater horizontal and vertical ground reaction forces
indicating more pronounced push-off. When comparing the
cycle duration, we notice that greater push-off is followed by
a shorter cycle duration.

Figure 8a shows that pronounced push-off, as indicated by
the second peak in vertical ground reaction force, as well as
power absorption, as indicated by the second peak in vertical
ground reaction force, are necessary if walking is to be faster.
On the other hand, when the torso is inclined anteriorly,
more power absorption and less pronounced push-off are
needed to maintain constant gait velocity, while hip actuators
have to generate more torque during the single support phase
(Fig. 8b).

We also tested how well the model can adapt to a
gait velocity change while walking. Figure 9 shows the
performance of the model when the desired gait velocity is

increased successively in steps of 0.1 m/s from 0.8 to 1.1 m/s.
Note that the controller followed the desired changes in gait
velocity indicating its feasibility in a wide range of walking
regimes.

6. Stability Analysis

Time-variant zero dynamics that results from between-step
control of stance leg lengthening velocity means that the
system’s states cannot be expressed as a time-invariant
function of a single selected state, which would enable
development of explicit, low-dimensional tests of stability
properties of the system that are based on a reduced one-
dimensional Poincaré return map.5, 28

Therefore, the stability of a developed biped walking
model can only be evaluated in simulations by analyzing
a complete Poincaré return map of the system. For an n-
dimensional dynamic system (2), a Poincaré section S is
defined as an n − 1 dimensional surface that the system
crosses exactly once during each period and the return map
is a mapping from one intersection to the next

xn+1 = r(xn). (25)

We quantified the stability of the biped walking model by
experimentally examining the eigenvalues of the linearized
return map through the hyperplane qst = 0, q̇st > 0 in eight
simulation cases as defined in Table I. For each trial, we
created a set of vectors xi , which represent the state of the
system on the ith crossing, and estimated the fixed point xf

as the average of the last five crossings, assuming the model
has settled in stable gait. Finally we performed a least-square
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Fig. 6. Case 6: Hip torques and leg forces in the first 50 walking cycles.

Fig. 7. Case 6: Horizontal and vertical ground reaction forces in the first 50 walking cycles. In a period of one cycle, the first and second
peak in vertical ground reaction forces indicate power absorption and push-off, respectively.
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Fig. 8. (a) Relation between gait velocity and power absorption and push-off (b) and relation between torso position and power absorption
and push-off. For comparison, the average human ground reaction forces are shown (adopted from Winter et al.20)

Fig. 9. Increasing desired gait velocity while walking in successive steps of 0.1 m/s from 0.8 to 1.1 m/s.

Table II. Stability analysis.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Maximal eigenvalue 0.92 0.64 0.76 0.84 0.78 0.79 0.74 0.72
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fit of the matrix A to satisfy

(xi+1 − xf) = A(xi − xf) (26)

The matrix A can, then, be expressed as

A = YXT(XXT )−1 (27)

where

X = [x1 − xf, x2 − xf . . . xn−1 − xf]
Y = [x2 − xf, x3 − xf . . . xn − xf]

(28)

and the eigenvalues of A are calculated. Maximal eigenvalues
for eight simulation cases are listed in Table II. All
eigenvalues are less than one indicating local stability in
all examined cases.

7. Conclusion

The main contribution of this paper is the introduction of
between-step control in a way that enables adaptive control
of gait velocity with the same set of controller’s gains. In
contrast to similar bipedal models, where the kinematically
based trajectory tracking has been predominantly used,
we placed the proposed two-level control strategy within
the kinetic framework. The robot’s gait may ultimately
be controlled through kinematics; however, the desired
kinematics is governed by the desired kinetics. The relation
between the kinematics and kinetics is determined on
between-step control level by setting the desired stance leg
lengthening velocity at the end of the single support phase to
achieve appropriate push-off for gait velocity control. The
proposed control strategy has proven to be feasible and
can generate human-like behavior in push-off and power
absorption pattern to account for the desired gait velocity
and torso position variations in a way similar to that seen
in human walking, where higher gait velocity necessitates
more pronounced push-off at the end of stance phase and
greater power absorption during the double support phase.
Also, consistent with the observations of human walking,
increased forward trunk inclination decreased the push-off
and increased power absorption at the same gait velocity.

Even though the model used in our study is simple, it can
be extended to have also the knees and ankles instead of
telescopic legs. By doing so, legs will have two actuators and
optimization criteria will be needed to determine relative
contribution of the knee and ankle actuators. Such an
optimization can be set up by applying the proposed control
strategy in a way to govern the desired kinetics while
controlling the desired virtual leg length (line connecting the
hip and the contact point). This will enable us to even further
match kinematics and kinetics of biped walking machines
with those in humans.
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