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Abstract In the first part of the paper, we use states on C∗-algebras in order to establish some
equivalent statements to equality in the triangle inequality, as well as to the parallelogram identity for
elements of a pre-Hilbert C∗-module. We also characterize the equality case in the triangle inequality for
adjointable operators on a Hilbert C∗-module. Then we give certain necessary and sufficient conditions
to the Pythagoras identity for two vectors in a pre-Hilbert C∗-module under the assumption that their
inner product has a negative real part. We introduce the concept of Pythagoras orthogonality and discuss
its properties. We describe this notion for Hilbert space operators in terms of the parallelogram law and
some limit conditions. We present several examples in order to illustrate the relationship between the
Birkhoff–James, Roberts, and Pythagoras orthogonalities, and the usual orthogonality in the framework
of Hilbert C∗-modules.
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1. Introduction

Let S(A) be the set of all states of a given C∗-algebra A. The numerical range of an
element a ∈ A is defined by

V (a) = {ϕ(a) : ϕ ∈ S(A)}.
If a is a normal element of A then there exists a state ϕ on A such that |ϕ(a)| = ‖a‖
(cf. [17, Theorem 3.3.6]). The set

Sa(A) = {ϕ ∈ S(A) : |ϕ(a)| = ‖a‖}
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is nonempty and closed. This set is also convex if a is positive.
A (right) pre-Hilbert C∗- module E over a C∗-algebra A is a (complex) linear space

which is also a right A-module, having a compatible structure (i.e., λ(xa) = (λx)a =
x(λa), λ ∈ C, a ∈ A, x ∈ E ), equipped with an A-valued inner product on E , i.e., a
sesquilinear map 〈·, ·〉 : E × E → A with the properties:

(a) 〈x, x〉 ≥ 0, x ∈ E ; 〈x, x〉 = 0 if and only if x = 0.

(b) 〈x, y〉∗ = 〈y, x〉, x, y ∈ E .

(c) 〈x, ya〉 = 〈x, y〉a, x, y ∈ E , a ∈ A.

The formula

E � x 	→ ‖x‖ := ‖|x|‖A ∈ R+

defines a norm on E (for x ∈ E , the notation |x| := 〈x, x〉1/2 will be used in the subsequent
part of the paper). A pre-Hilbert A-module which is complete with respect to this norm
is called a Hilbert C∗-module over A, or a Hilbert A-module. Every C∗-algebra A can
be regarded as a Hilbert module over itself, the inner product being defined as 〈a, b〉 :=
a∗b, a, b ∈ A.

Suppose that E and F are Hilbert C∗-modules. Let L(E ,F ) be the set of all maps
T : E → F for which there is an application T ∗ : F → E such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ E , y ∈ F . (1)

An operator T ∈ L(E ,F ), called adjointable, is A-linear and bounded, while T ∗ (the
adjoint of T ) is uniquely determined by (1). The map T 	→ T ∗ has the properties of an
isometric involution. Moreover, L(E ) := L(E ,E ) is a C∗-algebra.

Thus, Hilbert C∗-modules are generalization of Hilbert spaces by allowing inner
products to take values in a C∗-algebra rather than in the field of complex numbers.
Unfortunately, certain basic properties of Hilbert spaces are not valid in general Hilbert
C∗-modules. For example, it is not true that any bounded linear operator on a Hilbert
C∗-module is adjointable or any closed submodule is orthogonally complemented. There-
fore, not only any investigation in the context of Hilbert C∗-modules is non-trivial, but
also it is an interesting question to ask under which conditions the results analogous to
those for Hilbert spaces can still remain true for Hilbert C∗-modules.

It is known that the equality ‖x + y‖ = ‖x‖ + ‖y‖ holds in a Hilbert space H if and
only if x and y are linearly dependent by positive scalars. Being a starting point in
our discussion on Pythagoras identities, one of our goals is to investigate the valid-
ity of this equality in the setting of Hilbert C∗- modules. Maybe the first result in
this direction is a characterization of Arambašić and Rajić [2] which shows that, for
two elements x and y in a pre-Hilbert A-module E , ‖x + y‖ = ‖x‖ + ‖y‖ if and only if
‖x‖‖y‖ ∈ V (〈x, y〉). The particular situations of Hilbert space operators or of elements in
a C∗-algebra have been emphasized earlier by Barraa and Boumazgour [6], respectively
by Nakamoto and Takahasi [18]. We show, among others, that the following statements
are equivalent: ‖|x|2 + |y|2‖ = ‖x‖2 + ‖y‖2; ‖|x||y|‖ = ‖x‖‖y‖; S|x|2(A) ∩ S|y|2(A) �= ∅;
‖x‖2‖y‖2 ∈ V (|x|2|y|2); ‖x‖2 + ‖y‖2 ∈ V (|x|2 + |y|2). We also discuss the ‘triangle equal-
ity’ for two adjointable operators s and t on E . By contrast with the earlier approach,
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our result relies on the states of A and not on the states of the C∗-algebra L(E ). More
precisely, we prove that ‖s + t‖ = ‖s‖ + ‖t‖ if and only if there exist sequences (ϕn)n≥0

(of states on A) and (xn)n≥0 (of elements in E ) such that ϕn(|xn|2) = 1, n ≥ 0 and
ϕn(〈sxn, txn〉) n→∞−−−−→ ‖s‖‖t‖.

A norm ‖ · ‖ on a vector space X is induced by a scalar product if and only if the
parallelogram identity ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) holds for every x, y ∈ X .
This parallelogram identity is not valid in the general framework of Hilbert C∗-modules.
In our attempt to characterize this notion using the language of states, we show that any
two of the following statements imply the third one: x and y verify the parallelogram
identity; S|x|2(A) ∩ S|y|2(A) �= ∅; S|x+y|2(A) ∩ S|x−y|2(A) �= ∅.

Our next aim was to characterize an equality of the form ‖x + y‖2 = ‖x‖2 + ‖y‖2

(Pythagoras identity). This identity has been studied by many authors, in various
contexts, starting with James [11]. We prove, under the assumption that the inner
product 〈x, y〉 has negative real part, that the following statements are equivalent:
‖x + y‖2 = ‖x‖2 + ‖y‖2; ‖x‖2 + ‖y‖2 ∈ V (|x + y|2); there exists ϕ ∈ S|x|2(A) ∩ S|y|2(A)
such that ϕ(
(〈x, y〉)) = 0.

In the general context of (complex) normed linear spaces X , there were several
attempts to extend the notion of orthogonality for two vectors x and y. More exactly,
x and y are orthogonal in the Roberts sense (in notation, x ⊥R y; cf. [20, p. 56]) if
‖x + λy‖ = ‖x − λy‖, λ ∈ C. The concept of Birkhoff–James orthogonality (in notation,
x ⊥B y), has been suggested by G. Birkhoff [9] and R.C. James [12] as ‖x + λy‖ ≥
‖x‖, λ ∈ C. In the framework of pre-Hilbert C∗-modules, these notions have been studied,
for example, in [3, 4, 8, 16].

The main part of this paper is devoted to the study of another concept of orthogonality,
namely the Pythagoras orthogonality. A vector x is said to be orthogonal in the Pythagoras
sense to a vector y (in notation, x ⊥P y) if

‖x + λy‖2 = ‖x‖2 + |λ|2‖y‖2, λ ∈ C.

If x ⊥P y then, clearly, x and y satisfy the parallelogram law, that is

‖x + λy‖2 + ‖x − λy‖2 = 2(‖x‖2 + |λ|2‖y‖2), λ ∈ C.

We start by presenting the main properties of Pythagoras orthogonality and discuss its
relationship with the parallelogram law, Roberts orthogonality, Birkhoff–James orthog-
onality and inner product orthogonality. Pythagoras orthogonality implies both the
parallelogram law and Birkhoff–James orthogonality. We show that, for two elements
x and y in E (a pre-Hilbert module over a unital C∗-algebra) such that |y|2 is a positive
multiple of the identity, the converse is also true. We finally characterize the Pythagoras
orthogonality for two operators A and B in L(H ) (regarded as a Hilbert module over
itself) as follows. Under the assumptions that rank(A + α1B) > 1 and 
(α2A

∗B) ≥ 0
for certain α1, α2 ∈ C, α2 �= 0, A and B are orthogonal in the Pythagoras sense if and
only if A and B verify the parallelogram law and there exists a sequence (ξn)n≥0 of unit
vectors in H such that ‖Aξn‖ n→∞−−−−→ ‖A‖, ‖Bξn‖ n→∞−−−−→ ‖B‖ and 〈Aξn, Bξn〉 n→∞−−−−→ 0 if
and only if A and B verify the parallelogram law and there exists a sequence (ξn)n≥0

of unit vectors in H such that ‖(A + λB)ξn‖2 n→∞−−−−→ ‖A‖2 + |λ|2‖B‖2 for every λ ∈ C.
Several examples are given for illustrative purposes.
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2. “Triangle equalities”

We start our work by the observation that the equality case in the triangle inequality for
two elements x and y in a normed linear space X is preserved for their positive multiples
αx (α ≥ 0) and βy (β ≥ 0).

Lemma 2.1 (Abramovich et al. [1, Lemma 2.1]). Let x and y be two vectors in a
normed linear space X such that ‖x + y‖ = ‖x‖ + ‖y‖. Then ‖αx + βy‖ = α‖x‖ + β‖y‖
for every α, β ≥ 0.

An equality of the form ‖αx + βy‖ = |α|‖x‖ + |β|‖y‖ (α, β ∈ C, α, β �= 0) can be refor-
mulated for scalars α, β belonging to the unit circle T. More precisely, the following
holds.

Proposition 2.2. Let x and y be two vectors of a normed linear space X . The
following statements are equivalent:

(i) ‖αx + βy‖ = |α|‖x‖ + |β|‖y‖ for some nonzero scalars α, β ∈ C.

(ii) ‖αx + βy‖ = ‖x‖ + ‖y‖ for some α, β ∈ T.

Proof. We only have to prove the implication (i) ⇒ (ii), the other one is obvious. Let
x′ = αx and y′ = βy. Then (i) takes the form ‖x′ + y′‖ = ‖x′‖ + ‖y′‖ so, by Lemma 2.1,
‖1/|α|x′ + (1/|β|)y′‖ = 1/|α|‖x′‖ + 1/|β|‖y′‖. In other words,∥∥∥∥ α

|α|x +
β

|β|y
∥∥∥∥ = ‖x‖ + ‖y‖.

�

The following result, characterizing the equality case in the triangle inequality for two
elements of a pre-Hilbert A-module has been formulated in [19, Proposition 3] using a
representation of A on a Hilbert space. It will be presented here using the terminology of
states. We would also like to mention that the equivalence (i) ⇔ (iii) has been obtained
in [2, Theorem 2.1].

Proposition 2.3 (Popovici [19, Proposition 3]). Let x, y be two elements in a
pre-Hilbert module over a C∗-algebra A. The following statements are equivalent:

(i) ‖x + y‖ = ‖x‖ + ‖y‖.
(ii) (‖x‖ + ‖y‖)2 ∈ V (|x + y|2).
(iii) ‖x‖‖y‖ ∈ V (〈x, y〉).

If ϕ is a given state on A, then ϕ(|x + y|2) = (‖x‖ + ‖y‖)2 if and only if ϕ(〈x, y〉) =
‖x‖‖y‖. In this case, ϕ ∈ S|x|2(A) ∩ S|y|2(A) and ϕ(〈x, y〉∗〈x, y〉) = ‖x‖2‖y‖2.

We now describe a triangle ‘equality’ in the context of pre-Hilbert C∗-modules.
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Proposition 2.4. Let x and y be two elements of a pre-Hilbert A-module. The
following statements are equivalent:

(i) ‖|x|2 + |y|2‖ = ‖x‖2 + ‖y‖2.

(ii) ‖|x||y|‖ = ‖x‖‖y‖.
(iii) S|x|2(A) ∩ S|y|2(A) �= ∅.
(iv) ‖x‖2‖y‖2 ∈ V (|x|2|y|2).
(v) ‖x‖2 + ‖y‖2 ∈ V (|x|2 + |y|2).
Proof. We only prove (v) ⇒ (i), the rest can be concluded from [13, Proposition 3.3],

[2, Theorem 2.1], and [18, Theorem 1]). To this end, it is enough to show that if a and
b are two positive elements of a C∗-algebra A, and ‖a‖ + ‖b‖ ∈ V (a + b), then ‖a + b‖ =
‖a‖ + ‖b‖:

Let ϕ ∈ S(A) be such that ϕ(a + b) = ‖a‖ + ‖b‖. Then

‖a‖ + ‖b‖ = ϕ(a + b) ≤ ‖a + b‖.
We deduce immediately that ‖a + b‖ = ‖a‖ + ‖b‖, as required. �

We need the next result, which is an immediate consequence of the above proposition.

Corollary 2.5. Let a and b be two elements of A. The following statements are
equivalent:

(i) ‖a∗a + b∗b‖ = ‖a‖2 + ‖b‖2.

(ii) ‖ab∗‖ = ‖a‖‖b‖.
Corollary 2.6. Let x and y be two elements of a pre-Hilbert A-module. Then any

two of the following statements imply the third one:

(i) x and y verify the parallelogram law:

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

(ii) S|x|2(A) ∩ S|y|2(A) �= ∅.
(iii) S|x+y|2(A) ∩ S|x−y|2(A) �= ∅.
Proof. By Proposition 2.4, condition (ii) is equivalent to ‖|x|2 + |y|2‖ = ‖x‖2 + ‖y‖2.

Similarly, condition (iii) can be replaced by:

2‖|x|2 + |y|2‖ = ‖|x + y|2 + |x − y|2‖ = ‖x + y‖2 + ‖x − y‖2.

The conclusion then follows easily. �

Our next aim is to describe the equality case in the triangle inequality for two
adjointable operators in a Hilbert C∗-module.
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Theorem 2.7. Let E be a Hilbert module over the C∗-algebra A, and let s, t ∈ L(E ).
The following conditions are equivalent:

(i) ‖s + t‖ = ‖s‖ + ‖t‖.
(ii) There exist sequences (ϕn)n≥0 (of states on A) and (xn)n≥0 (of elements in E ) such

that ϕn(|xn|2) = 1, n ≥ 0 and

ϕn(〈sxn, txn〉) n→∞−−−−→ ‖s‖‖t‖.
(iii) There exist sequences (ϕn)n≥0 (of states on A) and (xn)n≥0 (of elements in E ) such

that ϕn(|xn|2) ≤ 1, n ≥ 0 and

ϕn(〈sxn, txn〉) n→∞−−−−→ ‖s‖‖t‖.
Proof. It has been indicated in [14, p. 37] that, for any given state ϕ of A and

x ∈ E with ϕ(|x|2) = 1, the map s 	→ ϕ(〈x, sx〉) is a state of L(E ). In addition, for any
adjointable operator s on E ,

‖s‖2 = sup
φ(|x|2)=1

ϕ(|sx|2). (2)

(i) ⇒ (ii). Let us consider, in view of (2), a sequence (ϕn)n≥0 of states on A and a
sequence (xn)n≥0 of elements in E such that ϕn(|xn|2) = 1, n ≥ 0 and

ϕn(|(s + t)xn|2) n→∞−−−−→ ‖s + t‖2.

We note that, for any n ≥ 0,

ϕn(|(s + t)xn|2) = ϕn(|sxn|2) + ϕn(|txn|2) + ϕn(〈sxn, txn〉) + ϕn(〈txn, sxn〉)
≤ ‖s‖2 + ‖t‖2 + ‖s∗t‖ + ‖t∗s‖
≤ (‖s‖ + ‖t‖)2.

We pass to limit (as n → ∞) to deduce, by (i), that

ϕn(〈sxn, txn〉) n→∞−−−−→ ‖s‖‖t‖,
which proves (ii).

The implication (ii) ⇒ (iii) is obvious.
(iii) ⇒ (i). Let (ϕn)n≥0, and let (xn)n≥0 be sequences as in (iii). By passing to limit

(as n → ∞) in the inequalities

|ϕn(〈sxn, txn〉)| ≤ ϕn(|sxn|2)1/2ϕn(|txn|2)1/2 ≤ ‖s‖‖t‖ϕn(|xn|2) ≤ ‖s‖‖t‖, n ≥ 0,

we obtain that

ϕn(|sxn|2) n→∞−−−−→ ‖s‖2 and ϕn(|txn|2) n→∞−−−−→ ‖t‖2.

Hence,

ϕn(|(s + t)xn|2) = ϕn(|sxn|2) + ϕn(|txn|2) + 2
ϕn(〈sxn, txn〉) n→∞−−−−→ (‖s‖ + ‖t‖)2.
Letting again n → ∞ in the inequalities ϕn(|(s + t)xn|2) ≤ ‖s + t‖2 ≤ (‖s‖ + ‖t‖)2, n ≥
0 we finally get the triangle ‘equality’ in (i). �
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3. Pythagoras identities

We characterize the Pythagoras identity for two vectors in a pre-Hilbert C∗-modules
under the assumption that their inner product has a negative real part.

Proposition 3.1. Let x and y be two elements in a pre-Hilbert C∗-module E such
that 
(〈x, y〉) ≤ 0. The following conditions are equivalent:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(ii) ‖|x|2 + 2
(〈x, y〉) + |y|2‖ = ‖|x|2 + |y|2‖ and ‖|x||y|‖ = ‖x‖‖y‖.
Proof. Let us firstly note that

‖x + y‖2 = ‖|x|2 + 2
(〈x, y〉) + |y|2‖
≤ ‖|x|2 + |y|2‖ ≤ ‖x‖2 + ‖y‖2.

(3)

If (i) holds true, then the inequalities in (3) become equalities. Also, by [13, Proposi-
tion 3.3], the triangle equality ‖|x|2 + |y|2‖ = ‖x‖2 + ‖y‖2 can be written in the form
‖|x||y|‖ = ‖x‖‖y‖, which is exactly the last condition of (ii). The converse follows the
same path. �

Theorem 3.2. Let x and y be two elements in a pre-Hilbert C∗-module E such that

(〈x, y〉) ≤ 0. The following conditions are equivalent:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(ii) ‖x‖2 + ‖y‖2 ∈ V (|x + y|2).
(iii) There exists ϕ ∈ S|x|2(A) ∩ S|y|2(A) such that ϕ(
(〈x, y〉)) = 0.

Proof. The implication (i) ⇒ (ii) follows by [17, Theorem 3.3.6].
(ii) ⇒ (i). Conversely, if ϕ is a state on A as in (ii), then, by (3),

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2 = ϕ(|x + y|2) ≤ ‖|x + y|2‖ = ‖x + y‖2.

Consequently, (i) holds true.
(iii) ⇒ (ii). Let ϕ be a state on A such that

ϕ(|x|2) = ‖x‖2, ϕ(|y|2) = ‖y‖2 and ϕ(
(〈x, y〉)) = 0.

Then
ϕ(|x + y|2) = ϕ(|x|2) + 2ϕ(
(〈x, y〉)) + ϕ(|y|2) = ‖x‖2 + ‖y‖2.

(ii) ⇒ (iii). Conversely, let ϕ ∈ S(A) be a state which satisfies condition (ii). Then

‖x‖2 + ‖y‖2 = ϕ(|x|2) + 2ϕ(
(〈x, y〉)) + ϕ(|y|2)
≤ ‖x‖2 + 2ϕ(
(〈x, y〉)) + ϕ(|y|2)
≤ ‖x‖2 + ϕ(|y|2)
≤ ‖x‖2 + ‖y‖2.
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Thus, ϕ(|x|2) = ‖x‖2, ϕ(|y|2) = ‖y‖2 and ϕ(
(〈x, y〉)) = 0. The statement (iii) is
proved. �

Corollary 3.3. Let x and y be two elements in a pre-Hilbert C∗-module E such that

(〈x, y〉) ≤ 0. The following conditions are equivalent:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(ii) ‖αx + βy‖2 = |α|2‖x‖2 + |β|2‖y‖2 for certain (equivalently, for every) α, β ∈ C

with ᾱβ > 0.

Remark 3.4. If 
(〈x, y〉) ≤ 0, then, by the Pythagoras identity ‖x + y‖2 = ‖x‖2 +
‖y‖2, one can also obtain the following inequality:

‖αx + βy‖2 ≥ |α|2‖x‖2 + |β|2‖y‖2

for every complex numbers α, β such that ᾱβ is real.
Indeed, if ϕ is a state on A satisfying condition (iii) of Theorem 3.2, then, for every

α, β ∈ C with ᾱβ ∈ R, it holds

‖αx + βy‖2 ≥ ϕ(|αx + βy|2)
= |α|2ϕ(|x|2) + 2αβ̄ϕ(
(〈x, y〉)) + |β|2ϕ(|y|2)
= |α|2‖x‖2 + |β|2‖y‖2.

Under the stronger assumption 
(〈x, y〉) = 0, the Pythagoras identities associated with
the pairs (x, y) and, respectively, (αx, βy) (for ᾱβ ∈ R∗) are actually equivalent.

Corollary 3.5. Let x and y be two elements in a pre-Hilbert C∗-module E such that

(〈x, y〉) = 0. The following statements are equivalent:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(ii) ‖αx + βy‖2 = |α|2‖x‖2 + |β|2‖y‖2 for certain (equivalently, for every) non-null
complex numbers α and β with ᾱβ ∈ R.

(iii) ‖|x||y|‖ = ‖x‖‖y‖.
(iv) S|x+y|2(A) = S|x|2(A) ∩ S|y|2(A).

Proof. Under the assumption 
(〈x, y〉) = 0, condition (i) takes the form ‖|x|2 +
|y|2‖ = ‖x‖2 + ‖y‖2. The equivalences between (i), (ii), and (iii) are deduced from Propo-
sition 2.4. By the same result, the statements are also equivalent to S|x|2(A) ∩ S|y|2(A) �=
∅. So (iv) implies (i). Finally, if ‖x + y‖2 = ‖x‖2 + ‖y‖2 (condition (i) holds true), then,
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for any ϕ ∈ S|x+y|2(A),

‖x + y‖2 = ϕ(|x + y|2)
= ϕ(|x|2) + ϕ(|y|2)
≤ ‖x‖2 + ‖y‖2.

Hence, ϕ ∈ S|x|2(A) ∩ S|y|2(A). In other words, S|x+y|2(A) ⊆ S|x|2(A) ∩ S|y|2(A). The
converse inclusion is obvious, so the statement (iv) is verified. �

Corollary 3.6. Let x and y be two elements in a pre-Hilbert C∗-module E such that
〈x, y〉 = 0. The following statements are equivalent:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(ii) ‖αx + βy‖2 = |α|2‖x‖2 + |β|2‖y‖2 for certain (equivalently, for every) nonzero
complex numbers α and β.

4. Pythagoras orthogonality

It is our aim in this section to investigate the Pythagoras orthogonality in the context of
Hilbert C∗-modules. We list some properties of this notion, as follows:

(a) If x and y are linearly dependent, then x ⊥P y if and only if x = 0 or y = 0. Due
to this simple remark one may suppose, when trying to describe the concept of
Pythagoras orthogonality, that the two vectors x and y are linearly independent. If
not stated otherwise, we will make this assumption for the rest of the paper.

(b) In inner product spaces, x ⊥P y if and only if 〈x, y〉 = 0.

(c) In pre-Hilbert C∗-modules, if 〈x, y〉 = 0, then x ⊥P y if and only if ‖x + αy‖2 =
‖x‖2 + |α|2‖y‖2 for a certain non-null α ∈ C if and only if ‖|x||y|‖ = ‖x‖‖y‖ (see
Corollaries 3.5 and 3.6).

(d) In normed ∗-algebras, x ⊥P y if and only if x∗ ⊥P y∗.

(e) x ⊥P x if and only if x = 0 (nondegenerate).

(f) x ⊥P y if and only if y ⊥P x (symmetric).

(g) If x ⊥P y, then (αx) ⊥P (βy), α, β ∈ C (homogeneous).

(h) If x ⊥P y, then x ⊥R y, x ⊥B y and y ⊥B x.

(i) If x ⊥P y, then x and y satisfy the parallelogram law.

(j) If x ⊥R y, then x ⊥P y if and only if x and y satisfy the parallelogram law.

We describe, in a few examples, for elements x, y in a pre-Hilbert C∗-module, the
relationship between the Birkhoff–James, Roberts and Pythagoras orthogonality, the
parallelogram law and the equality 〈x, y〉 = 0.
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Example 4.1. Let us consider the C∗-algebra L(H ) of bounded linear operators on
a separable Hilbert space H (L(H ) is regarded as a Hilbert module over itself). For a
given orthonormal basis (en)n≥1 in H , we define A,B ∈ L(H ) by

Aen =

⎧⎪⎨
⎪⎩

1
2e1 if n = 1,

1√
2k

e2 if n = 2k, k ≥ 1,

0 otherwise

and Ben =

⎧⎪⎨
⎪⎩

1
2e1 if n = 1,

1√
2k

e2 if n = 2k + 1, k ≥ 1,

0 otherwise.

Then ‖A‖ = ‖B‖ = 1 and, for any λ ∈ C, we have

‖A + λB‖2 = 1 + |λ|2 = ‖A‖2 + |λ|2‖B‖2.

Hence, A and B are orthogonal in the Pythagoras sense. Moreover, since e1 ∈ ran A ∩
ran B, 〈A,B〉 �= 0 (ranA denotes the range of A).

Example 4.2. Suppose that A is the C∗-algebra C[0, 1] of all complex valued continu-
ous functions on the closed interval [0, 1] (considered as a Hilbert C∗-module over itself).
Let f, g ∈ A be defined by

f(x) =

{
1
2 − x if 0 ≤ x ≤ 1

2 ,

0 if 1
2 < x ≤ 1

and g(x) =

{
0 if 0 ≤ x ≤ 1

2 ,

x − 1
2 if 1

2 < x ≤ 1.

Then ‖f‖ = ‖g‖ = 1
2 and, for λ ∈ C,

‖f + λg‖ = max
{

1
2
,
|λ|
2

}
.

It follows that f ⊥B g, g ⊥B f and f ⊥R g. Although 〈f, g〉 = 0, f and g are not orthog-
onal in the Pythagoras sense, since ‖f + λg‖2 = ‖f‖2 + |λ|2‖g‖2 if and only if λ = 0.
Equivalently, as f ⊥R g, f and g do not satisfy the parallelogram law, either.

Example 4.3. Let S and T be bounded linear operators on H . If

A =
(

S 0
0 0

)
and B =

(
0 T
0 0

)

are elements of the C∗-algebra A = L(H ⊕ H ), then ‖A‖ = ‖S‖, ‖B‖ = ‖T‖ and

‖A + λB‖2 = ‖SS∗ + |λ|2TT ∗‖, λ ∈ C.

One can immediately verify that A ⊥B B, B ⊥B A and A ⊥R B. Also, by Corollary 2.5,
A and B are orthogonal in the Pythagoras sense if and only if ‖S∗T‖ = ‖S‖‖T‖. In par-
ticular, this orthogonality condition is satisfied, for example, when S is a scalar multiple
of a coisometric operator or of an orthogonal projection P with ran(P ) ⊇ ran(T ).

In addition, one can immediately verify that, A and B satisfy the parallelogram law
if and only if they are orthogonal in the Pythagoras sense. On the other hand, 〈A,B〉 =
A∗B = 0 if and only if ran S ⊥ ran T .
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Example 4.4. For given X ∈ L(H ) \ {0} and complex numbers a, b, c, d we define
(on the Hilbert space H ⊕ H ) the matrix operator

MX(a, b, c, d) =
(

aI bX
cX∗ dI

)
.

Its norm has been computed by Feldman, Krupnik, and Markus in [10, Lemma 1.6] as

‖MX(a, b, c, d)‖ =
√

r − s +
√

r + s

2
,

where r = |a|2 + |d|2 + (|b|2 + |c|2)‖X‖2 and s = 2|ad − bc‖X‖|.
Let A = MX(a, 0, 0, d) and B = MX(0, b, c, 0). After direct calculations, one may check

that, regardless of the values of a, b, c and d, A ⊥B B and A ⊥R B. On the other hand,
B ⊥B A if and only if bc = 0. We can also verify that the following conditions are
equivalent:

(i) A and B are orthogonal in the Pythagoras sense;

(ii) A and B satisfy the parallelogram law;

(iii) ad = bc = 0.

Finally, 〈A,B〉 = 0 if and only if ab = cd = 0.

Example 4.5. We study the concepts of orthogonality presented above for rank one
operators, i.e., for operators of the form

H � z 	→ (x ⊗ y)(z) := 〈z, y〉x ∈ H ,

where x and y are given vectors in H .
Let x, y, u, v ∈ H , and consider the operators A = x ⊗ y and B = u ⊗ v. Then ‖A‖ =

‖x‖‖y‖ and ‖B‖ = ‖u‖‖v‖. In this case we have

‖A + λB‖2 =
1
2

⎛
⎝‖x‖2‖y‖2 + |λ|2‖u‖2‖v‖2 + λ〈u, x〉〈y, v〉 + λ̄〈x, u〉〈v, y〉

+

√√√√√√√
(‖x‖2‖y‖2 + |λ|2‖u‖2‖v‖2 + λ〈u, x〉〈y, v〉 + λ̄〈x, u〉〈v, y〉)2

− 4|λ|2‖x‖2‖y‖2‖u‖2‖v‖2 − 4|λ|2|〈u, x〉〈y, v〉|2

+ 4|λ|2‖x‖2‖u‖2|〈y, v〉|2 + 4|λ|2‖y‖2‖v‖2|〈u, x〉|2

⎞
⎠ .

With the notation a = ‖u‖2‖v‖2, b = 〈u, x〉〈y, v〉, c = ‖x‖2‖y‖2 and d = ‖x‖2‖u‖2|〈y, v〉|2 +
‖y‖2‖v‖2|〈u, x〉|2, we observe that the Birkhoff–James orthogonality between A and B
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takes the form:√
(c + a|λ|2 + 2
(λb))2 − 4|λ|2(ac + |b|2 − d) ≥ c − a|λ|2 − 2
(λb), λ ∈ C. (4)

Clearly, for λ in a ‘small’ disk D(0, ε), a|λ|2 + 2
(λb) ≤ c. Then, taking squares, formula
(4) becomes:

|λ|2(d − |b|2) + 2c
(λb) ≥ 0.

In particular, for μ = ε/2 and, successively, λ = μ, λ = −μ, λ = −iμ and λ = iμ and by
taking the limit when ε → 0, one can deduce that 
b ≥ 0,
b ≤ 0,�b ≥ 0 and, respectively,
�b ≤ 0. This forces b = 0.

By symmetry, a similar condition holds true for the Birkhoff–James orthogonality
between B and A.

We can write the orthogonality, in the Roberts sense, between A and B as:

4
(λb) +
√

(c + a|λ|2 + 2
(λb))2 + 4|λ|2e
=

√
(c + a|λ|2 − 2
(λb))2 + 4|λ|2e, λ ∈ C,

where e = d − ac − |b|2. By squaring the equation, we get:


(λb)
(
2
(λb) + c + a|λ|2 +

√
(c + a|λ|2 + 2
(λb))2 + 4|λ|2e

)
= 0, λ ∈ C.

For |λ| small enough, the quantity in the parenthesis becomes strictly positive (as c
is strictly positive). Hence, 
(λb) = 0. So, by taking λ ∈ R+, respectively λ ∈ iR+, we
necessarily have b = 0.

It is obvious that b = 0 implies the orthogonalities A ⊥B B,B ⊥B A and A ⊥R B.
We showed that the following conditions are equivalent:

(i) A ⊥B B.

(ii) B ⊥B A.

(iii) A ⊥R B.

(iv) 〈x, u〉 = 0 or 〈y, v〉 = 0.

Also, A and B are orthogonal in the Pythagoras sense if and only if one of the following
conditions holds true:

(a) {x, u} are linearly dependent and 〈y, v〉 = 0.

(b) {y, v} are linearly dependent and 〈x, u〉 = 0.

Indeed, after some computations for the case b = 0 (Roberts and Birkhoff–James
orthogonalities are necessary conditions), the orthogonality A ⊥P B becomes:√

(c + a|λ|2)2 − 4|λ|2ac + 4|λ|2d = c + a|λ|2, λ ∈ C.

We obtain that d = ac, which, in the case 〈y, v〉 = 0, leads us to the equality case in the
Cauchy–Schwarz inequality, namely |〈x, u〉| = ‖x‖‖u‖ (i.e., {x, u} are linearly dependent).
The situation when 〈x, u〉 = 0 is treated similarly.
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Moreover, one can easily see that the parallelogram law:√
(c + a|λ|2 + 2
(λb))2 + 4|λ|2e +

√
(c + a|λ|2 − 2
(λb))2 + 4|λ|2e

= 2(c + a|λ|2), λ ∈ C

can be simplified as e = 0, which takes the form:(‖x‖2‖u‖2 − |〈u, x〉|2) (‖y‖2‖v‖2 − |〈y, v〉|2) = 0.

We deduce that A and B satisfy the parallelogram law if and only if {x, u} or {y, v} are
linearly dependent. Finally, 〈A,B〉 = 0 if and only if 〈x, u〉 = 0.

Let A be a C∗-algebra. For an element a ∈ A we denote by m(a) the minimum modulus
of |a|, i.e.,

m(a) := inf{ϕ(|a|) : ϕ ∈ S(A)}.
Evidently, for a positive element a ∈ A, m(a) > 0 if and only if a is invertible. The
following theorem, which relates Birkhoff–James orthogonality with a weaker version of
Pythagoras orthogonality, has been formulated in the context of Hilbert spaces by Barraa
and Boumazgour in [5, Theorem 3] (see also [16, Theorem 2.9]).

Theorem 4.6. Let x and y be elements of a pre-Hilbert A-module. The following
conditions are equivalent:

(i) There exists ϕ ∈ S|x|2(A) such that ϕ(〈x, y〉) = 0.

(ii) x ⊥B y.

(iii) ‖x + λy‖2 ≥ ‖x‖2 + |λ|2m(|y|2), λ ∈ C.

Proof. The equivalence (i) ⇔ (ii) has been obtained by Arambašić and Rajić in [3,
Theorem 2.7] (see also [8, Theorem 4.4]).

Clearly, (ii) is a consequence of (iii). Conversely, if ϕ is a state of A which verifies
ϕ(|x|2) = ‖x‖2 and ϕ(〈x, y〉) = 0 (by (i)), then, for every λ ∈ C,

‖x + λy‖2 ≥ ϕ(|x + λy|2)
= ϕ(|x|2) + λ̄ϕ(〈x, y〉) + λϕ(〈y, x〉) + |λ|2ϕ(|y|2)
= ‖x‖2 + |λ|2ϕ(|y|2)
≥ ‖x‖2 + |λ|2m(|y|2).

Condition (iii) is proved. �

It was noted by James [12, Corollary 2.2] that, for any two elements x and y of a normed
linear space X there exists a number α such that y ⊥B (x + αy). Such a condition is not
valid, in full generality, for Pythagoras orthogonality. However, a weaker version might
still be formulated. Its operator version can be found in [5, Corollary 4] (see also [16,
Corollary 2.11]).
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Corollary 4.7. Let x and y be elements of a pre-Hilbert module over A such that
m(|y|2) > 0. Then there exists a unique α0 ∈ C such that

‖x + α0y + λy‖2 ≥ ‖x + α0y‖2 + |λ|2m(|y|2), λ ∈ C. (5)

Moreover, one can find ϕ ∈ S|x+αy|2(A) such that ϕ(〈x + αy, y〉) = 0 if and only if α = α0.

Proof. We firstly observe that, since lim|α|→∞ ‖x + αy‖ = ∞,

inf{‖x + αy‖ : α ∈ C} = inf{‖x + αy‖ : |α| ≤ δ}

for a certain δ > 0. In addition, as the map α 	→ ‖x + αy‖ is continuous on the compact
set {|α| ≤ δ}, it attains its minimum at some point α0 ∈ C, that is, ‖x + α0y + λy‖ ≥
‖x + α0y‖ for every λ ∈ C. Formula (5) then follows by Theorem 4.6 (iii). If, for some
α1 ∈ C,

‖x + α1y + λy‖2 ≥ ‖x + α1y‖2 + |λ|2m(|y|2), λ ∈ C

then, by taking λ = α0 − α1, we obtain

m(|y|2)|α1 − α0|2 ≤ ‖x + α0y‖2 − ‖x + α1y‖2 ≤ 0,

so, α1 = α0. The final statement is a consequence, in view of the uniqueness of α0, of
Theorem 4.6 ((i) ⇔ (iii)). �

As seen earlier, the Pythagoras orthogonality implies both the parallelogram law and
Birkhoff–James orthogonality. In certain particular situations, the converse is also true.

Theorem 4.8. Let A be a unital C∗-algebra with unit e. If x and y are elements in a
pre-Hilbert A-module such that |y|2 = αe (α > 0 is given), then the following conditions
are equivalent:

(i) x and y are orthogonal in the Pythagoras sense.

(ii) x and y satisfy the parallelogram law and are Birkhoff–James orthogonal.

Proof. The direct implication is obvious. Conversely, if (ii) holds true, then, by
Theorem 4.6 (iii),

‖x + λy‖2 ≥ ‖x‖2 + |λ|2m(|y|2)
= ‖x‖2 + α|λ|2

= ‖x‖2 + |λ|2‖y‖2, λ ∈ C.

In view of the parallelogram law, the inequalities above become equalities. Hence x ⊥P y,
as required. �

The operator version of Theorem 4.6 ((i) ⇔ (ii)) has been obtained by B. Magajna in
[15, Lemma 2.2] (see also [7, Remark 3.1]). It states that two bounded linear operators

https://doi.org/10.1017/S0013091521000341 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000341


608 R. Eskandari, M.S. Moslehian, D. Popovici

A and B on H are orthogonal in the Birkhoff–James sense if and only if there exists a
sequence (ξn)n≥0 of unit vectors in H such that

‖Aξn‖ n→∞−−−−→ ‖A‖ and 〈Aξn, Bξn〉 n→∞−−−−→ 0.

For Pythagoras orthogonality (a concept which is stronger than Birkhoff–James orthog-
onality), we must include certain additional conditions. One of the main tools in our
developments is the following expression of the minλ∈C ‖A + λB‖.

Theorem 4.9 (Arambašić and Rajić [3, Proposition 2.1]). Let A and B be
bounded linear operators on H . Then

min
λ∈C

‖A + λB‖2 = sup
‖ξ‖=1

MA,B(ξ),

where

MA,B(ξ) =

{
‖Aξ‖2 − |〈Aξ,Bξ〉|2

‖Bξ‖2 if Bξ �= 0,

‖Aξ‖2 if Bξ = 0.

The following limit characterization provides a step forward in our desired description
of Pythagoras orthogonality.

Lemma 4.10. Let A and B be bounded linear operators acting on H such that

‖(1 + λ0)A + λ0αB‖2 = (1 + λ0)2‖A‖2 + λ2
0|α|2‖B‖2

for a certain λ0 ∈ R \ {−1, 0}, α ∈ C \ {0} and (ξn)n≥0 a sequence of unit vectors in H .

1 If (A + αB)ξn �= 0, n ≥ 0 and

MA,A+αB(ξn) n→∞−−−−→ (1 + λ0)2‖A‖2 + λ2
0|α|2‖B‖2, (6)

and (xn) is a subsequence of (ξn) such that the limits

a = lim
n→∞ ‖Axn‖, b = lim

n→∞ ‖Bxn‖ and c = lim
n→∞〈Axn, Bxn〉 (7)

exist, then a, b, and c satisfy the conditions

a2(λ0 + 1) + cᾱλ0 = −b2|α|2λ0 − cᾱ(λ0 + 1) = (1 + λ0)2‖A‖2 + λ2
0|α|2‖B‖2. (8)

Moreover,

‖(1 + λ0)A + λ0αB‖ = min
λ∈C

‖(1 + λ)A + λαB‖

and

‖A + λB‖2 ≥
[(1 + λ0)2‖A‖2 + λ2

0|α|2‖B‖2][λ0|α|2 − (λ0 + 1)|λ|2]
−ᾱc|λ0α − (λ0 + 1)λ|2

|α|2λ0(λ0 + 1)
, λ ∈ C. (9)
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2 Conversely, if the limits (7) exist, satisfy conditions (8) and a2 �= (1 + λ0)2‖A‖2 +
λ2

0|α|2‖B‖2, then (6) holds true.

Proof. We may assume, without loss of generality, that α = 1 (B can be replaced by
(1/α) B, if necessary).

Let us now observe that, for every n ≥ 0, the following inequalities hold true:

MA,A+B(ξn) = ‖[(1 + λ0)A + λ0B]ξn‖2 − |〈[(1 + λ0)A + λ0B]ξn, (A + B)ξn〉|2
‖(A + B)ξn‖2

≤ ‖[(1 + λ0)A + λ0B]ξn‖2 − |〈[(1 + λ0)A + λ0B]ξn, (A + B)ξn〉|2
‖A + B‖2

≤ ‖[(1 + λ0)A + λ0B]ξn‖2

≤ ‖[(1 + λ0)A + λ0B]‖2 = (1 + λ0)2‖A‖2 + λ2
0‖B‖2.

Letting n → ∞ we conclude that (6) is equivalent with the following limit conditions:

〈[(1 + λ0)A + λ0B]ξn, (A + B)ξn〉
‖(A + B)ξn‖

n→∞−−−−→ 0, (10)

〈[(1 + λ0)A + λ0B]ξn, (A + B)ξn〉 n→∞−−−−→ 0 (11)

and
‖[(1 + λ0)A + λ0B]ξn‖2 n→∞−−−−→ (1 + λ0)2‖A‖2 + λ2

0‖B‖2. (12)

Following the notation of (7), one can write (11) as

(1 + λ0)a2 + λ0b
2 + (1 + λ0)c + λ0c̄ = 0.

Similarly, (12) takes the form

(1 + λ0)2a2 + λ2
0b

2 + 2λ0(λ0 + 1)
c = (1 + λ0)2‖A‖2 + λ2
0‖B‖2.

Easy computations then show that (11) and (12) are actually equivalent with (8).
According to these remarks, in order to prove (a), it only remains to let n → ∞ into

the formulas

MA,A+B(ξn) ≤ min
λ∈C

‖(1 + λ)A + λB‖2 ≤ ‖(1 + λ0)A + λ0B‖2, n ≥ 0

and
‖A + λB‖2 ≥ ‖(A + λB)ξn‖2

= ‖Aξn‖2 + 2
λ〈Aξn, Bξn〉 + |λ|2‖Bξn‖2, λ ∈ C, n ≥ 0.
(13)

(b) As seen above, (11) and (12) are a consequence of (8). In addition,

‖(A + B)ξn‖2 n→∞−−−−→ a2 − [(1 + λ0)2‖A‖2 + λ2
0‖B‖2]

λ2
0

.

Hence, limn→∞ ‖(A + B)ξn‖ > 0, which shows that (10) also holds true. The proof is
completed. �
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Lemma 4.11. Let A and B be bounded linear operators on H such that rank(A +
αiB) = 1 for pairwise distinct complex numbers αi ∈ C, i = 1, 2, 3. Then rank(A + αB) =
1 for every α ∈ C.

Proof. Let x1, x2, y1, y2 be non-null vectors in H such that A + α1B = x1 ⊗ y1 and
A + α2B = x2 ⊗ y2. Then

A + λB =
λ − α2

α1 − α2
x1 ⊗ y1 +

α1 − λ

α1 − α2
x2 ⊗ y2, λ ∈ C.

We distinguish two cases:
(i) {x1, x2} are linearly independent. Since rank(A + α3B) = 1, one can find β1, β2 ∈ C

(at least one of them is non-null) such that .. Then, for every z ∈ H , there exists μ ∈ C

such that
α3 − α2

α1 − α2
〈z, y1〉 = μβ1 and

α1 − α3

α1 − α2
〈z, y2〉 = μβ2.

Therefore, β1, β2 are both non-null and β̄2(ᾱ3 − ᾱ2)/ᾱ1 − ᾱ2y1 − β̄1(ᾱ1 − ᾱ3)/ᾱ1 − ᾱ2y2 =
0, so {y1, y2} are linearly dependent. In other words,

A + λB =
[

λ − α2

α1 − α2
x1 +

β2(α3 − α2)(α1 − λ)
β1(α1 − α2)(α1 − α3)

x2

]
⊗ y1, λ ∈ C.

(ii) {x1, x2} are linearly dependent. In this case, there exists a complex number β �= 0
such that x2 = βx1. We conclude that

A + λB = x1 ⊗
[

λ̄ − ᾱ2

ᾱ1 − ᾱ2
y1 +

β̄(ᾱ1 − λ̄)
ᾱ1 − ᾱ2

y2

]
, λ ∈ C.

Since {A,B} are linearly independent (as assumed earlier; this also implies that {y1, y2}
are linearly independent), we deduce that A + λB has rank one for every λ ∈ C. �

We are now ready to present the announced characterization of Pythagoras orthogo-
nality.

Theorem 4.12. Let A and B be bounded linear operators acting on H such that
rank(A + α1B) > 1 and 
(α2A

∗B) ≥ 0 for certain α1, α2 ∈ C, α2 �= 0. The following
conditions are equivalent:

(i) A and B are orthogonal in the Pythagoras sense.

(ii) A and B verify the parallelogram law and there exists a sequence (ξn)n≥0 of unit
vectors in H such that

‖Aξn‖ n→∞−−−−→ ‖A‖, ‖Bξn‖ n→∞−−−−→ ‖B‖ and 〈Aξn, Bξn〉 n→∞−−−−→ 0.

(iii) A and B verify the parallelogram law and there exists a sequence (ξn)n≥0 of unit
vectors in H such that

‖(A + λB)ξn‖2 n→∞−−−−→ ‖A‖2 + |λ|2‖B‖2 for every λ ∈ C.
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Proof. (i) ⇒ (ii). The parallelogram law is obviously weaker than (or, at most
equivalent to) Pythagoras orthogonality.

Our next aim is to prove the limit conditions of (ii). Since 
(2α2A
∗B) ≥ 0 and


(3α2A
∗B) ≥ 0 and, by Lemma 4.11, at least one of the operators A + α2B, A + 2α2B

and A + 3α2B has rank strictly greater than one, so we can assume that α1 = α2 = α. As
we have previously done, we can also assume that α = 1. We firstly observe that, by (i),

‖(1 + λ)A + λB‖2 = |1 + λ|2‖A‖2 + |λ|2‖B‖2, λ ∈ C.

An easy computation then shows that

min
λ∈C

‖(1 + λ)A + λB‖2 =
‖A‖2‖B‖2

‖A‖2 + ‖B‖2
, (14)

which is attained for λ0 = −‖A‖2/
(‖A‖2 + ‖B‖2

)
. It follows from Theorem 4.9 and (14)

that there exists a sequence (ξn)n≥0 of unit vectors in H such that

MA,A+B(ξn) n→∞−−−−→ ‖A‖2‖B‖2

‖A‖2 + ‖B‖2
. (15)

We may suppose, eventually on a subsequence, that (A + B)ξn �= 0 for every n ≥ 0.
Indeed, if, otherwise, (A + B)ξn = 0 for every n ≥ n0 and for a certain n0 ≥ 0, then (15)
takes the form

‖Aξn‖2 = ‖Bξn‖2 n→∞−−−−→ ‖A‖2‖B‖2

‖A‖2 + ‖B‖2
(16)

by the definition of MA,A+B. As (Aξn)n≥0 is a bounded sequence in H , it contains
a weakly convergent subsequence (denoted also by (Aξn)n≥0) to a vector w ∈ H .
Obviously, span{(A + B)∗w} � ran(A + B)∗ as the rank of (A + B)∗ is strictly greater
than 1. Consequently, one can find a unit vector e ∈ ran(A + B)∗, which is orthogonal to
(A + B)∗w. Then, by setting un =

√
n/(n + 1)ξn +

(
1/
√

n + 1
)
e, n ≥ 0, we have

(A + B)un =
√

n

n + 1
(A + B)ξn +

1√
n + 1

(A + B)e =
1√

n + 1
(A + B)e �= 0, n ≥ n0,

since e ⊥ ker(A + B). Moreover, for n ≥ 0,

MA,A+B(un) = ‖Aun‖2 − |〈Aun, (A + B)un〉|2
‖(A + B)un‖2

=
n

n + 1
‖Aξn‖2 +

1
n + 1

‖Ae‖2 + 2
√

n

n + 1

〈Aξn, Ae〉

−

∣∣∣〈√
n

n+1Aξn + 1√
n+1

Ae, 1√
n+1

(A + B)e
〉∣∣∣2∥∥∥ 1√

n+1
(A + B)e

∥∥∥2
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=
n

n + 1
‖Aξn‖2 +

1
n + 1

‖Ae‖2 + 2
√

n

n + 1

〈Aξn, Ae〉

−

∣∣∣√ n
n+1 〈Aξn, (A + B)e〉 + 1√

n+1
〈Ae, (A + B)e〉

∣∣∣2
‖(A + B)e‖2

. (17)

In view of (16) and the observation that

〈Aξn, (A + B)e〉 n→∞−−−−→ 〈w, (A + B)e〉 = 〈(A + B)∗w, e〉 = 0,

we deduce, by passing to limit in (17), that

MA,A+B(un) n→∞−−−−→ ‖A‖2‖B‖2

‖A‖2 + ‖B‖2
.

One may consider, in this particular situation, the sequence (un+n0)n≥0 which will be
also denoted by (ξn)n≥0.

The assumptions of Lemma 4.10 (a) are verified. So, the limits (7) satisfy the conditions
(equivalent with (8))

c =
‖A‖2(b2 − ‖B‖2)

‖B‖2
=

‖B‖2(a2 − ‖A‖2)
‖A‖2

. (18)

We deduce that c ≤ 0. Also, by hypothesis (i.e., 
(A∗B) ≥ 0),

c = 
c = lim
n→∞
〈ξn, A∗Bξn〉 = lim

n→∞〈ξn,
(A∗B)ξn〉 ≥ 0.

This forces c = 0 and, by (18), a = ‖A‖ and b = ‖B‖.
(ii) ⇒ (iii). Clearly, if a sequence (ξn)n≥0 of unit vectors in H verifies (ii), then

‖(A + λB)ξn‖2

= ‖Aξn‖2 + 2
λ̄〈Aξn, Bξn〉 + |λ|2‖Bξn‖2 n→∞−−−−→ ‖A‖2 + |λ|2‖B‖2, λ ∈ C.

Hence (ξn)n≥0 also verifies (iii).
(iii) ⇒ (i). Let (ξn)n≥0 be a sequence of unit vectors in H such that (iii) holds true.

Then
‖A + λB‖2 ≥ ‖(A + λB)ξn‖2 n→∞−−−−→ ‖A‖2 + |λ|2‖B‖2.

The proof is finished, as before, by the use of the parallelogram law. �

Remark 4.13. (a) The necessity of the rank condition. Let A and B be bounded linear
operators on H such that, for every α ∈ C, A + αB is a rank one operator. Then, as
seen in the proof of Lemma 4.11, one of the following two situations can occur:

(i) (A,B) = (x ⊗ yA, x ⊗ yB), with x, yA, yB ∈ H , x �= 0 and {yA, yB} linearly inde-
pendent. Then, by Example 4.5, (A,B) satisfies the parallelogram law. Moreover, A ⊥P B
if and only if 〈yA, yB〉 = 0. Condition (ii) of Theorem 4.12 takes, for a given sequence
(ξn)n≥0 of unit vectors in H , the form:

|〈ξn, yA〉| n→∞−−−−→ ‖yA‖, |〈ξn, yB〉| n→∞−−−−→ ‖yB‖ and 〈ξn, yA〉〈ξn, yB〉 n→∞−−−−→ 0.

This is, however, impossible.
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(ii) (A,B) = (xA ⊗ y, xB ⊗ y), with xA, xB , y ∈ H , {xA, xB} linearly independent and
y �= 0. Again by Example 4.5, (A,B) satisfies the parallelogram law. We also observe that
a sequence (ξn)n≥0 of unit vectors in H with |〈ξn, y〉| n→∞−−−−→ ‖y‖ satisfies condition (ii)
of Theorem 4.12 if and only if 〈xA, xB〉 = 0 or, equivalently, A ⊥P B. On the other hand,
A ⊥P B if and only if A∗ ⊥P B∗, but condition (ii) of Theorem 4.12 is not verified for
the pair (A∗, B∗) (as seen in case (i) above).

(b) The necessity of the parallelogram law. Let us consider, as in Example 4.4, A =
MI(1, 0, 0, 1), B = MI(0, 1, 1, 0) and h ∈ H a vector of unit norm. Then A and B do not
satisfy the parallelogram law while, for ξ = (h, 0), ‖Aξ‖ = ‖A‖ = 1, ‖Bξ‖ = ‖B‖ = 1 and
〈Aξ,Bξ〉 = 〈(h, 0), (0, h)〉 = 0.

(c) The importance of the condition 
(αA∗B) ≥ 0 for certain nonzero α ∈ C. Let x
and y be unit vectors in H such that 〈x, y〉 = 0 (it is assumed that dimH ≥ 2). If S =
x ⊗ x + y ⊗ y and T = x ⊗ y, then the operators A = ( S 0

0 0 ) and B = ( 0 T
0 0 ) are orthogonal

in the Pythagoras sense (according to Example 4.3) and rank(A + αB) = 2 for every
α ∈ C. Moreover, for h1, h2 ∈ H and α ∈ C, α �= 0, it holds

〈
(αA∗B)(h1, h2), (h1, h2)〉 = 
〈Sh1, αTh2〉 = 
(ᾱ〈h1, x〉)〈h2, y〉).
Hence,

〈
(αA∗B)(αx, y), (αx, y)〉 = −〈
(αA∗B)(−αx, y), (−αx, y)〉 = |α|2 > 0.

Also, condition (ii) of Theorem 4.12 can be expressed by the existence of sequences
(ξn)n≥0 and (ηn)n≥0 of vectors in H with ‖ξn‖2 + ‖ηn‖2 = 1, n ≥ 0 such that

|〈ξn, x〉|2 + |〈ξn, y〉|2 n→∞−−−−→ 1, |〈ηn, y〉| n→∞−−−−→ 1 and 〈ξn, x〉〈ηn, y〉 n→∞−−−−→ 0.

Equivalently,

〈ξn, x〉 n→∞−−−−→ 0, |〈ξn, y〉| n→∞−−−−→ 1 and |〈ηn, y〉| n→∞−−−−→ 1.

Letting n → ∞ in the Cauchy–Schwarz inequalities |〈ξn, y〉| ≤ ‖ξn‖ and |〈ηn, y〉| ≤ ‖ηn‖
(n ≥ 0), we deduce that the limits limn→∞ ‖ξn‖ and limn→∞ ‖ηn‖ exist and they are
both equal to 1. This contradicts, however, the equality ‖ξn‖2 + ‖ηn‖2 = 1, n ≥ 0.
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