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In this paper, we study some properties of the generalized Fokker–Planck equation
induced by the time-changed fractional Ornstein–Uhlenbeck process. First of all, we
exploit some sufficient conditions to show that a mild solution of such equation is
actually a classical solution. Then, we discuss an isolation result for mild solutions.
Finally, we prove the weak maximum principle for strong solutions of the
aforementioned equation and then a uniqueness result.
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1. Introduction

The Ornstein–Uhlenbeck (OU) process is a standard process in the application
context. However, its covariance with a fast decay and the fact that the strong
Markov property holds makes it to be unrealistic in situations in which memory
plays a crucial role. For this reason, in [11], the fractional OU (fOU) process has
been introduced as the solution of the fractional Brownian motion (fBm)-driven
equation

dUH(t) = −1
θ
UH(t) dt + σ dBH(t)
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where θ, σ > 0 and BH(t) is a fBm with Hurst parameter H ∈ (0, 1). Such kind of
process exhibits long or short memory depending on the value of the Hurst param-
eter (see [11, 21]). In the context of the applications, memory phenomena occur
for instance in the financial market, hence different kinds of noise have to be imple-
mented to describe them (see for instance [1]). Thus, in this direction, the study of
the fractional Cox–Ingersoll–Ross process, that can be expressed as the square of a
fOU process until it reaches zero, has to be carried on, in particular referring to the
hitting time of zero point, see [30, 31]. On the other hand, for instance in the field
of theoretical neuroscience, one can propose some different kind of noise to generate
some memory effects, that are typical of neurons of the prefrontal cortex (see [38]).
In particular, correlated inputs and noises have shown to be effective to reproduce
part of these memory effects (see [36] or [5] and references therein). Moreover,
other strong effects in correlation can be observed as one considers the leading
input stimuli to be stochastic. For these reasons, in [3] we studied an fOU process
with stochastic drift, considering how such drift comes into play in modifying the
behaviour of the covariance.

From another perspective, memory has been also introduced by changing the
time scale from a deterministic one to a stochastic one. This is for instance the
case of [24, 25], where the adjective fractional follows from the fact that the usual
Kolmogorov equations admit a fractional derivative in time if we apply a time-
change to the process, in the sense that one composes the process with the inverse
of a stable subordinator. In particular in [25], the object that we will call here an α-
stable time-changed OU process has been introduced and its Kolmogorov equations
have been studied. Moreover, in [24], the correlation structure is exposed, showing
that this approach leads to a long-range dependent process. A further generalization
has been achieved in [16], where a general subordinator is considered in place of a
stable one. However, considering applications in neuroscience, one has to recall that
another common issue linked to the role of memory is the rising of heavy-tailed
distribution for spiking times (see [18, 34]), that are not covered by a standard
Leaky Integrate-and-Fire model (see [9]). Under suitable assumptions on the inverse
subordinator, time-changed processes exhibit this heavy-tail property of first exit
time [6] and then time-changed OU processes revealed to be an easy-to-handle tool
to obtain such kind of spiking distribution (see [7]).

In [4] we introduced a time-changed fOU process, i.e. a process obtained by
considering the composition between the fOU process UH and the inverse of a
subordinator, and studied some of its properties, together with its generalized
Fokker–Planck equation. In particular, in [4], we highlighted the difficulties (as also
done in [20]) of time-changing a Fokker–Planck equation with explicit dependence
on time. However, we still have several open questions, in particular concerning the
generalized Fokker–Planck equation we introduced.

First of all, we would like to express a subordination principle for solutions of
the generalized Fokker–Planck equation. This means, in particular, that, given a
solution v of the Fokker–Planck equation associated with the fOU process with
some initial-boundary data, we would like to have the following relation for the
subordinated solution:

vΦ(t, x) =
∫ +∞

0

v(s, x)fΦ(s, t) ds
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for some fixed integral kernel fΦ(s, t). In particular, we show that this holds true
for mild solutions of the Fokker–Planck equation, i.e. some weaker form of the
solution defined by means of Laplace transforms. Moreover, we show that under
some assumptions on the regularity of the function v, the subordinated function
vΦ is actually a solution of the generalized Fokker–Planck equation, thus obtaining
a gain of regularity result. Such gain of regularity result gives an improvement of
[4, theorem 7.5], showing that the probability density function of the time-changed
fOU process is always a classical solution of the generalized Fokker–Planck equation.

Another open problem concerns uniqueness of the solutions. This is a natu-
ral question, since we are actually asking if, once we have solved the generalized
Fokker–Planck equation with a suitable initial datum, we actually find the probabil-
ity density function of the time-changed fOU. We are not able to show uniqueness
in the most weak case, i.e. the case of mild solutions, but we are still able to show
an isolation result, i.e. a non-comparability result on subordinated mild solutions.
However, under stronger regularity of the involved functions, we are actually able
to prove uniqueness of the solutions of initial-boundary value problems for the
generalized Fokker–Planck equation, by means of a weak maximum principle.

Finally, let us stress that a particular attention is given to the α-stable case, for
which we are able to show the differentiability (with respect to the time variable)
of the probability density function of the time-changed fOU. This differentiability
result will lead to fact that such probability density function is the unique solution
(under suitable initial-boundary data) of the respective generalized Fokker–Planck
equation.

The paper is structured as follows:

• In § 2 we give some preliminaries concerning the property of the inverse
subordinators and we recall some concepts from generalized fractional calculus.

• In § 3 we introduce the time-changed fOU process and recall some properties
that were achieved in [4].

• In § 4 we introduce the subordination and weighted subordination operators,
which will be the main tools of the paper. Moreover, we give a sufficient condi-
tion for differentiability of subordinated functions linked to the inverse α-stable
subordinator.

• In § 5 we consider the generalized Fokker–Planck equation associated with the
time-changed fOU process and we show both the subordination principle and
the gain-of-regularity result.

• Finally, in § 6 we address the problem of uniqueness of solutions, giving first an
isolation result for mild solutions of the generalized Fokker–Planck equation and
then a uniqueness result (and a weak maximum principle) for strong solutions.

Let us also remark that we work with the generalized fractional Caputo derivatives,
introduced for instance in [23, 39]. These are generalizations of the usual Caputo
derivative, and for this reason one refers to the calculus associated with them as gen-
eralized fractional calculus. Let us recall that, despite the name Caputo derivative
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is the most used in the literature, such kind of fractional derivatives were consid-
ered independently by Gerasimov in [17], by Dzhrbashyan (for instance in [15])
and then by Caputo in [10]. For some historical information on fractional calculus
we refer to [14, 35] and the first chapter of [13]. In any case, we will use the name
Caputo derivative through the paper, as it is the most well-known name for such
kind of operators.

2. Inverse subordinators and Bernstein functions

Let us recall the definition of subordinator, as given in [8, chapter 3]. A subordinator
σ(t) is, an increasing (and hence non-negative) Lévy process starting from zero. Let
us denote by Φ(λ) its Laplace exponent, i.e. a function Φ : [0,+∞) → R such that

E[e−λσ(t)] = e−tΦ(λ), t � 0, λ � 0.

In particular the function Φ belongs to the class of Bernstein functions (see [37])
and then can be represented as

Φ(λ) = a + bλ +
∫ +∞

0

(1 − e−sλ)νΦ(ds)

where νΦ(dt) is a measure such that
∫ +∞
0

(t ∧ 1)νΦ(dt) < +∞, called the Lévy mea-
sure of Φ. Here we will consider Φ to be such that a = b = 0 and νΦ(0,+∞) = +∞.
In particular, each Bernstein function Φ determines a unique subordinator σΦ(y).
Now let us define the inverse subordinator associated with Φ as

EΦ(t) := inf{y > 0 : σΦ(y) > t}.
As shown in [28], our hypotheses on Φ are enough to guarantee that EΦ(t) admits
a probability density function fΦ(s, t) for each t > 0. Moreover, it has been shown
that

Lt→λ[fΦ(s, t)] =
Φ(λ)

λ
e−sΦ(λ) (2.1)

where Lt→λ denotes the Laplace transform operator.
Following the lines of [23, 39], we can define the regularized Caputo-type non-

local derivatives (induced by Φ) as

∂Φu(t) =
d
dt

∫ t

0

ν̄Φ(t − τ)(u(τ) − u(0)) dτ (2.2)

for any sufficiently regular function u : [0,+∞) → R, where ν̄Φ(t) = νΦ(t,+∞). In
particular, if u belongs to C1(0,+∞), then it holds

∂Φu(t) =
∫ t

0

ν̄Φ(t − τ)u′(τ) dτ.

A particular case is given by the choice Φ(λ) = λα for α ∈ (0, 1). Indeed, in this
case, we get the α-stable subordinator σα(t). As shown in [29], σα(t) and Eα(t) are
absolutely continuous random variables for any t > 0 and, if we denote by gα(s) the
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probability density function of σα(1) and fα(s, t) the probability density function
of Eα(t), it has been shown that

fα(s, t) =
t

α
s−1−(1/α)gα(ts−(1/α)). (2.3)

The following lemma contains the result established in [4], and in this paper it is
proven in remarks 4.2 and 4.4, therefore now its proof is omitted.

Lemma 2.1. Let us fix H ∈ (1/2, 1). Then E[E−H
α (t)] < +∞ for any t > 0. More-

over, for any n > 1 it holds that E[E−nH
α (t)] = +∞.

On the other hand, let us show the following extremal point property of the
Caputo-type non-local derivative (recall that such property is already known in the
case Φ(λ) = λα, as shown in [26]).

Proposition 2.2. Let Φ be a Bernstein function regularly varying at infinity
of index α ∈ (0, 1). Suppose u : [0, T ] → R and there exists a maximum point t0
for u. If u ∈ W 1,1(0, t0) ∩ C1((0, t0]) (where W 1,1(0, t0) is the space of absolutely
continuous functions in [0, t0]), then ∂Φu(t0) � 0.

Proof. Let us consider the function g(τ) = u(t0) − u(τ) for τ ∈ [0, T ] and observe
that ∂Φg(t0) = −∂Φf(t0). Fix ε > 0 and write

∂Φf(t0) =
∫ ε

0

ν̄Φ(t0 − τ)g′(τ) dτ +
∫ t0

ε

ν̄Φ(t0 − τ)g′(τ) dτ := I1 + I2.

Let us first consider I2. By a change of variable we have

I2 =
∫ t0−ε

0

ν̄Φ(z)g′(t0 − z) dz.

Since we know that g ∈ C1([ε, t0]) for any ε > 0, we can use dominated convergence
theorem to write

I2 = − lim
a→0

∫ t0−ε

a

ν̄Φ(z) dg(t0 − z).

Let us observe that ν̄Φ is monotone and finite in [a, t0 − ε], hence, it is of bounded
variation and we can use integration by parts for functions of bounded variation to
obtain∫ t0−ε

a

ν̄Φ(z) dg(t0 − z) = ν̄Φ(t0 − ε)g(ε) − ν̄Φ(a)g(t0 − a) −
∫ t0

a

g(t0 − τ) dνΦ(τ).

However, since g(t0) = 0 and g ∈ C1([ε, t0]), we know, by Lipschitz property on
[ε, t0] for any ε > 0, being the derivative of g bounded in [ε, t0], that there exists a
constant K(ε) such that, for a ∈ (0, t0 − ε),

g(t0 − a) = g(t0 − a) − g(t0) � K(ε)|a|.
On the other hand, by Karamata’s Tauberian theorem, since the Laplace transform
of ν̄Φ is actually Φ(λ), that is regularly varying by hypotheses, we know that ν̄Φ(t) ∼
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(Φ(1/t))/(Γ(1 − α)) as t → 0+. Hence, we have that lima→0 ν̄Φ(a)g(t0 − a) = 0.
Moreover, g is non-negative, hence, by monotone convergence theorem, we have

I2 = −ν̄Φ(t0 − ε)g(ε) −
∫ t0−ε

0

g(t0 − τ) dνΦ(τ) � −
∫ t0−ε

0

g(t0 − τ) dνΦ(τ).

Now fix ε0 > 0 and suppose ε < ε0. Then t0 − ε > t0 − ε0 and, since the integrand
is non-negative,∫ t0−ε

0

g(t0 − τ) dνΦ(τ) �
∫ t0−ε0

0

g(t0 − τ) dνΦ(τ) =: C.

Thus, for any ε ∈ (0, ε0), it holds

I2 � −
∫ t0−ε

0

g(t0 − τ) dνΦ(τ) � −C.

Now let us focus on I1. We have

I1 � ν̄Φ(t0 − ε0)
∫ ε

0

|g′(τ)|dτ.

Since g′ ∈ L1(0, ε), we know there exists ε < ε0 such that I1 � C/2. Thus, choosing
ε > 0 as mentioned, we finally obtain ∂Φg(t0) � −(C/2) � 0 concluding the proof.

�

Remark 2.3. Let us observe that we do not actually need Φ to be regularly varying.
We can prove the same result if Φ is a complete Bernstein function (hence νΦ is
absolutely continuous) and there exist α ∈ (0, 1), C � 1 and 
 : [1,+∞) → [0,+∞)
a slowly varying functions at infinity such that for any λ � 1 it holds

1
C

� Φ(λ)
λα
(λ)

� C.

Indeed, by [22, theorem 2.10], we know that this is enough to achieve the needed
bound on ν̄Φ.

In general, for the previous proposition to hold, it is sufficient that
limt→0+ tν̄Φ(t) = 0.

Finally, let us recall that if u : [0,+∞) → R and ∂Φu are Laplace transformable,
then

L[∂Φu](λ) = Φ(λ)L[u](λ) − Φ(λ)
λ

u(0+)

for any λ such that the real part of λ is greater or equal than the maximum of the
abscissae of convergence of the Laplace transforms of u and ∂Φu.
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3. The time-changed fOU process

Let (Ω,F , P ) be a complete probability space supporting all the stochastic processes
that will be considered below. Let us fix Hurst index H ∈ (1/2, 1) and consider an
fBm BH = {BH(t), t � 0} with Hurst index H, i.e. a centred Gaussian process with
covariance function given by

E[BH(t)BH(s)] = 1/2(t2H + s2H − |t − s|2H), s, t ∈ R
+.

Let us also fix some number θ > 0 and introduce the fOU process (defined in [11])
as

UH(t) = e−(t/θ)

∫ t

0

es/θ dBH(s), t � 0.

Now, as done in [4] we can define the time-changed fOU process by considering an
fOU process UH(t), together with an independent inverse subordinator EΦ(t), and
defining

UH,Φ(t) := UH(EΦ(t)).

Since it will be useful in what follows, let us recall the expression of the variance of
UH(t):

V2,H(t) = e−2(t/θ)

∫ t

0

∫ t

0

e(v+u)/θ|u − v|2H−2 du dv, t � 0.

Moreover, let us state some properties of V2n,H,Φ(t) := E[|UH,Φ(t)|2n] (see
[4, lemma 3.1]).

Proposition 3.1.

(i) V2n,H,Φ(t) is finite for any t > 0 and n ∈ N.

(ii) It holds that

V2n,H,Φ(t) =
∫ +∞

0

V2n,H(s)fΦ(s, t) ds.

(iii) V2n,H,Φ(t) is increasing in t for any n ∈ N and

lim
t→+∞V2n,H,Φ(t) = V2n,H(∞) =

(
2θ2HHΓ(2H)

)n Γ
(

2n+1
2

)
√

π
.

Remark 3.2. The fact that in property (iii) the asymptotic value does not depend
on Φ is strictly connected to the nature of the time-change. Indeed, EΦ(t) acts
as a delay in the time-scale of UH(t), hence, we expect UH,Φ(t) to have the same
asymptotic behaviour, despite behaving quite differently on the whole trajectories.

We will also need the following limits for V2,H(t) and its derivative. They can be
obtained by [3, equation (29)] and [4, lemma 5.2].
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Lemma 3.3. Function V2,H satisfies the relations

lim
t→0+

V2,H(t)
t2H

= 1 and lim
t→+∞V2,H(t) = θ2HHΓ(2H).

Moreover, V2,H ∈ C1(0,+∞) and its derivative satisfies the relations

lim
t→0+

V ′
2,H(t)
t2H−1

= 2H and lim
t→+∞ et/θt2−2HV ′

2,H(t) = 2H(2H − 1)θ.

In [4] we introduced some other operators linked to the fOU process and its
time-change. First of all, we needed to introduce a weighted Laplace transform

LHu(λ) = Lt→λ[V ′
2,H(t)u(t)](λ), λ ∈ H,

where H = {λ ∈ C : 	(λ) > 0}. On the other hand, by using a mixed inversion
technique, we expressed LH in an alternative form and then defined the operator
L̂H as

L̂H,Φv(x, λ) =
1

4π2

∫ +∞

0

e−λαt lim
R→+∞

∫ +∞

−∞
e(c1+iw)t

×
∫ R

−R

Lt→λ[V ′
2,H(t)](c1 − c2 + i(w − z))

× Φ−1(c2 + iz)
c2 + iz

v(Φ−1(c2 + iz)) dz dw dt, (3.1)

where c1 < 0 < c2, c1 − c2 > −(1/θ), the inverse of Φ is well-defined on the vertical
line rc2 = {λ ∈ C : λ = c2 + iz, z ∈ R} and the function ((Φ−1(c2 + iz))/(c2 + iz))
v(x,Φ−1(c2 + iz)) does not depend on the choice of the local inverse of Φ on rc2 . Let
us remark that the fact that Φ is invertible on a vertical line of the form rc2 can be
ensured by the fact that any Bernstein function admits an holomorphic extension
Φ : H → H, hence, there exists at least a vertical line rc2 on which the derivative Φ′

of Φ does never touch 0. The operator L̂H,Φ takes into account, in a certain sense,
the action of the time-change in LH . Indeed, it has been shown in [4] that

L̂H,Φp̄H,Φ(λ, x) = LHpH(Φ(λ), x),

where pH(x, t) is the probability density function of UH(t) and pH,Φ(x, t) is the
probability density function of UH,Φ(t) (that exists by [4, proposition 4.1]). Finally,
we can define the following operator

FH,Φv(x, t) = L−1
λ→t

[
Φ(λ)

λ

∂2

∂x2
L̂H,Φ(Lt→λ[v(x, t)])

]
(t), (3.2)

which plays the role of the Fokker–Planck operator in this case. Indeed, denoting
by D(FH,Φ) the domain of the aforementioned operator, in [4] it has been shown
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that pH,Φ(x, t) belongs to D(FH,Φ) and solves

∂Φ
t pH,Φ(x, t) =

1
2
FH,ΦpH,Φ(x, t), t > 0, x ∈ R \ {0}. (3.3)

Here we want to study some further properties of the generalized Fokker–Planck
equation (3.3), focusing on uniqueness of solutions and gain of regularity.

4. Subordination and weighted subordination

Let us fix a Bernstein function Φ and let us introduce two operators that will be
useful.

Definition 4.1. Let X be a real Banach space and L∞(R+;X) the Banach space
of measurable functions v : [0,+∞) → X such that

‖v‖L∞(R+;X) = sup
t∈(0,+∞)

‖v(t)‖X < +∞,

where with sup we intend the essential supremum. Then we can define the
Φ-subordination operator SΦ : L∞(R+;X) �→ L∞(R+;X) as

SΦv(t) = E[v(EΦ(t))] =
∫ +∞

0

v(s)fΦ(s, t) ds,

where the integral has to be interpreted in Bochner’s sense.
Moreover, let us define the weighted Φ-subordination operator as

SΦ,Hv(t) = E[V ′
2,H(EΦ(t))v(EΦ(t))] =

∫ +∞

0

V ′
2,H(s)v(s)fΦ(s, t) ds.

First, let us establish some basic properties of SΦ and SΦ,H .

Lemma 4.2. The operators SΦ and SΦ,H are continuous from L∞(R;X) to itself.
In particular,

‖SΦ‖ � 1 and ‖SΦ,H‖ �
∥∥V ′

2,H

∥∥
L∞(R+)

.

Proof. Let us observe that SΦ,Hv = SΦ(V ′
2,Hv). Thus, we only have to prove the

property for SΦ, since SΦ,H is the composition of SΦ with a multiplication operator.
In particular, by Bochner’s theorem (see [2]), we have

‖SΦv(t)‖X �
∫ +∞

0

‖v(s)‖XfΦ(s, t) ds � ‖v‖L∞(R+;X).

Taking the supremum we conclude the proof. �

Now let us show how Laplace transform acts on subordinated functions. In
particular, we can prove the following result.
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Proposition 4.3. Let v ∈ L∞(R+;X). Then, for any λ ∈ H, it holds

L[SΦv](λ) =
Φ(λ)

λ
L[v](Φ(λ)).

Moreover, both SΦ and SΦ,H are injective.

Proof. Let us suppose, without loss of generality, that λ ∈ R
+. Then we have

L[SΦv](λ) =
∫ +∞

0

e−tλ

∫ +∞

0

v(s)fΦ(s, t) ds dt.

Now we want to use Fubini’s theorem. To do this, let us observe that∫ +∞

0

∫ +∞

0

e−tλ‖v(s)‖XfΦ(s, t) dt ds �
‖v‖L∞(R+;X)

λ
.

Thus, by using Fubini’s theorem and equation (2.1), we obtain

L[SΦv](λ) =
∫ +∞

0

e−tλ

∫ +∞

0

v(s)fΦ(s, t) ds dt

=
Φ(λ)

λ

∫ +∞

0

e−sΦ(λ)v(s) ds =
Φ(λ)

λ
L[v](Φ(λ)),

that is well defined since Φ : H → H.
Now let us show the injectivity of SΦ. Since SΦ is a linear operator, we have only

to show that Ker SΦ = {0}. Thus, let us suppose that SΦv = 0. Then we have

Φ(λ)
λ

L[v](Φ(λ)) = 0

that implies, since Φ(λ) > 0 for any λ > 0, L[v](Φ(λ)) = 0 for any λ > 0.
However, we have that Φ : R

+ → R
+ is C∞(0,+∞), invertible and such that

limλ→0+ Φ(λ) = 0 and limλ→+∞ Φ(λ) = +∞. Thus, if we choose λ = Φ−1(η), we
have that L[v](η) = 0 for any η > 0. By injectivity of the Laplace transform we
conclude that v ≡ 0.

Finally, let us show that SΦ,H is injective. Let us suppose, as before, that
SΦ,Hv ≡ 0. Then, since SΦ,Hv = SΦ(V ′

2,Hv), we have that V ′
2,Hv ≡ 0. However, since

V ′
2,H(t) > 0 for any t ∈ (0,+∞), this implies that v ≡ 0, concluding the proof. �

We can also easily exploit the link between the weighted Laplace transform and
the weighted subordination operator, by means of the following corollary.

Corollary 4.4. Let v ∈ L∞(R+;X). Then, for any λ ∈ H, it holds

L[SΦ,Hv](λ) =
Φ(λ)

λ
LHv(Φ(λ)).

Proof. It easily follows from proposition 4.3, the fact that SΦ,Hv = SΦ(V ′
2,Hv) and

the definition of LH . �

Let us stress out that we have proved in [4, proposition 4.1] that pH,Φ = SΦpH ,
where we can consider X = C2(I) for any compact interval I ⊆ R \ {0}.
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4.1. Subordinated functions and the operator L̂Φ,H

In this subsection we want to stress the link between subordinated functions and
the operator L̂Φ,H . To do that, we first need the following proposition.

Proposition 4.5. Fix c1 < 0< c2 with c1 − c2 > −(1/θ). Consider v ∈ L∞(R+;X)
and suppose one of the following properties holds:

(a) v is Lipschitz and x ∈ R �→ L[v](c2 + ix) belongs to L1(R);

(b) v belongs to L2(R+) and x ∈ R �→ L[v](c2 + ix) belongs to L2(R).

Then it holds

LHv(x, λ) =
1

4π2

∫ +∞

0

e−λαt lim
R→+∞

∫ +∞

−∞
e(c1+iw)t

×
∫ R

−R

Lt→λ[V ′
2,H(t)](c1 − c2 + i(w − z))

× L[v](c2 + iz) dz dw dt. (4.1)

We omit the proof since it is the same as [4, proposition 6.6]. By using this
alternative representation of the operator LH , we can stress out how it works on
subordinated functions.

Proposition 4.6. Let vΦ = SΦv where v ∈ L∞(R+;X) satisfies one of hypotheses
(a) or (b) of the previous proposition. Then for any λ ∈ H it holds

L̂Φ,H(L[vΦ])(λ) = LHv(Φ(λ)).

Proof. Let us observe that, by proposition 4.3, it holds

L[vΦ](λ) =
Φ(λ)

λ
L[v](Φ(λ))

for any λ ∈ H. In particular it holds for λ ∈ Φ−1(rc2) where Φ is invertible on rc2 ,
so that Φ(λ) = c2 + iz for some z ∈ R. Thus, we have

Φ−1(c2 + iz)
c2 + iz

L[vΦ](Φ−1(c2 + iz)) = L[v](c2 + iz).

Applying this relation to equation (3.1) we obtain (4.1), concluding the proof. �

Let us recall that we have shown in [4] that pH(t, x) is Lipschitz in t, thus, we
are under the hypotheses of the two previous propositions.

4.2. Derivative of α-subordinated functions

In general we have that SΦv(t) could be derivable or not regardless of the fact
that the function v belongs to C1(0,+∞). Indeed, the differentiability of SΦv(t)
with respect to t > 0 directly depends on the differentiability of the density fΦ(s, t)
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of the inverse subordinator. However, in the case of the α-stable subordinator, we
can exploit a sufficient condition for differentiability of Sαv(t).

Proposition 4.7. Let v ∈ C1(0,+∞). If there exist two constants C > 0 and β ∈
((α − 1)/α, 2) such that |v′(t)| � Ct−β for t > 0, then Sαv is in C1(0,+∞) and its
derivative equals

d
dt

Sαv(t) = αt−1Sα(zv′(z))(t), t > 0.

Proof. Applying equation (2.3) and changing variables ts−1/α = w, we arrive to
equality

Sαv(t) =
∫ +∞

0

v

((
t

w

)α)
gα(w) dw.

Let us check that we can differentiate under the sign of integral. In order to do this,
let us observe that

d
dt

v

((
t

w

)α)
= αtα−1w−αv′

((
t

w

)α)
.

In particular we obtain∣∣∣∣ d
dt

v

((
t

w

)α)∣∣∣∣ � Cαtα(1−β)−1wα(β−1).

Let us consider 0 < t1 < t2 and t ∈ [t1, t2]. Set t∗ =

{
t1 α(1 − β) − 1 < 0
t2 α(1 − β) − 1 � 0

and

C∗ = αCt
α(1−β)−1
∗ to obtain∣∣∣∣ d

dt
v

((
t

w

)α)∣∣∣∣ � C∗wα(β−1).

Finally, by definition of β ∈ (
α−1

α , 2
)
, we have that E[σα(1)α(β−1)] < +∞ and then

we can differentiate under the integral sign, concluding the proof. �

Remark 4.8. The previous proposition holds true even if there exists a point
T > 0 such that v ∈ C1(0, T ) ∩ C1(T,+∞) and limt→T± v′(t) ∈ R (still under the
hypothesis |v′(t)| � Ct−β).

It was established in [4] that for fixed x �= 0 function t �→ pH(x, t) is Lips-
chitz. Thus, we have that for fixed x �= 0 the function pH,α(x, t) = SαpH(x, t) is
C1(0,+∞) in t.

5. The generalized Fokker –Planck equation

We have introduced all the main tools and now we can consider the generalized
Fokker –Planck equation associated with the time-changed fOU process. First of
all, let us give definitions of different kinds of solutions for such equation. Here
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with classical solution we intend the equivalent of a strong solution of a partial
differential equation (see, for instance, [19]), while with strong solution we intend
a more regular classical solution. Moreover, we refer to [16, 27] for the definition of
mild solution. The form of this equation is dictated to us by the type of operators
(2.2) and (3.2).

Definition 5.1. We say that v : I × [0,+∞) → R (where I ⊆ R is an interval) is
a classical solution of

∂Φ
t v(x, t) =

1
2
FΦ,Hv(x, t), (x, t) ∈ I × (0,+∞) (5.1)

if

• v belongs to the domain of FΦ,H ;

• ∂Φ
t v(x, ·) is well-defined for any x ∈ I;

• Equation (5.1) holds pointwise for almost any t ∈ [0, T ] and any x ∈ I.

Moreover, we say that a classical solution v is a strong solution if, for any x ∈ I,
v(x, ·) ∈ C1(0,+∞) and there exists ε > 0 such that v(x, ·) ∈ W 1,1(0, ε).
We say that v is a mild solution of equation (5.1) if

• v(x, ·) is Laplace transformable for any x ∈ I;

• The Laplace transform v̄ of v belongs to the domain of D(L̂Φ,H) for any x ∈ I;

• For any λ ∈ H it holds v̄(·, λ) ∈ C(I), where C(I) is the space of continuous
functions in I;

• It holds

Φ(λ)v̄(x, λ) − Φ(λ)
λ

v(x, 0) =
Φ(λ)
2λ

L̂Φ,H v̄(x, λ), x ∈ I, λ ∈ H. (5.2)

Remark 5.2. Let us observe that the definition of classical solution recalls the
one of Caratheodory solution for an ordinary differential equation (see [12]), while
the definition of strong solution coincides with the usual one for partial differential
equations. Concerning mild solutions, let us observe that equation (5.2) arises as
we take the Laplace transform on both sides of equation (5.1). Thus, we have the
following chain of implications:

strong solution ⇒ classical solution ⇒ mild solution.

Our first aim is to exploit some sufficient conditions to revert some of these
implications. From now on we will only consider solutions vΦ such that there exists
a Lipschitz function v for which vΦ = SΦv. First of all, let us stress that, in the
α-stable case, we easily have

strong solution ⇐ classical solution + proposition 4.7.

In the next subsection we will consider some gain of regularity results to pass from
mild solutions to classical ones.
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5.1. Gain of regularity for subordinated mild solutions

To study the gain of regularity for subordinated mild solutions, we first need to
introduce the notion of mild solution for the usual Fokker –Planck equation.

Definition 5.3. We say that v : I × [0,+∞) → R is a classical solution of

∂tv(x, t) =
1
2
V ′

2,H(t)
∂2

∂x2
v(x, t), (x, t) ∈ I × (0,+∞) (5.3)

if

• v(t, ·) belongs to C2(I);

• ∂tv(x, ·) belongs to L1
loc(0,+∞);

• Equation (5.3) holds pointwise for almost all t > 0 and any x ∈ I.

Moreover, we say that a classical solution v is a strong solution if v(x, ·) ∈
C1(0,+∞).

We say that v is a mild solution of equation (5.3) if

• v(x, ·) is Laplace transformable for any x ∈ I with Laplace transform v̄;

• For any λ ∈ H it holds v̄(·, λ) ∈ C(I);

• It holds

λv̄(x, λ) − v(x, 0) =
1
2
LHv(x, λ), x ∈ I, λ ∈ H. (5.4)

Now let us show how the notion of subordinated mild solution for equation (5.1)
is linked to the one for equation (5.3).

Proposition 5.4. Let vΦ = SΦv with v satisfying the hypotheses of proposition 4.5.
Then the following properties are equivalent:

(i) vΦ is a mild solution of (5.1);

(ii) v is a mild solution of (5.3).

Proof. Let us first observe that by hypotheses v is Laplace transformable, so also
vΦ is Laplace transformable. Moreover, since v satisfies the hypotheses of propo-
sition 4.5, by proposition 4.6 we have that v̄Φ belongs to the domain of L̂Φ,H .
Moreover, by proposition 4.3 we know that v̄Φ is continuous in x if and only if v̄
is continuous in x. Thus, we only have to show the equivalence of equations (5.2)
and (5.4). Let us only show that (1) implies (2), since the converse is analogous.
To do this, just observe that, since vΦ is a subordinated mild solution of (5.1),
equation (5.2) holds, that is to say, by also using proposition 4.3 and the fact that,
by definition vΦ(x, 0) = v(x, 0), for any x ∈ I and λ ∈ H

Φ(λ)
λ

(Φ(λ)v(x,Φ(λ)) − v(x, 0)) =
Φ(λ)
2λ

∂2

∂x2
LHv(x,Φ(λ)),

where v(x, λ) is the Laplace transform of v(x, t).
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Without loss of generality, we can suppose λ > 0 is real. Then we can multiply
last relation by λ/Φ(λ) and write λ in place of Φ(λ) (since Φ : [0,+∞) → [0,+∞)
is invertible), obtaining

λv(x, λ) − v(x, 0) =
1
2

∂2

∂x2
LHv(x, λ)

that is equation (5.4) for v. �

To show the gain of regularity result, we first need to express the Fokker –Planck
operator FΦ,H in terms of the weighted subordination operator SΦ,H .

Lemma 5.5. Let v ∈ L∞(R+;C(I)) and vΦ = SΦv, with v satisfying the hypothe-
ses of proposition 4.5, be a mild solution of (5.1) such that vΦ ∈ D(FΦ,H , I) and
FΦ,HvΦ(·, t) ∈ C(I) for any fixed t > 0. Then it holds SΦ,Hv(·, t) ∈ C2(I) and, for
any x ∈ I and almost any t ∈ I,

FΦ,HvΦ(x, t) =
∂2

∂x2
SΦ,Hv(x, t).

Proof. Let us consider λ > 0 without loss of generality. Since vΦ is a mild solution of
(5.1), by using proposition 4.6, we obtain that (Φ(λ)/λ)LHv(·,Φ(λ)) ∈ C2(I). Since
vΦ belongs to the domain of FΦ,H , we have that ∂2

∂x2
Φ(λ)

λ LHv(x,Φ(λ)) is the Laplace
transform of some function. However, let us observe that SΦ,Hv ∈ L∞(R+;C(I))
and

L[SΦ,Hv(x, ·)] =
Φ(λ)

λ
LHv(x,Φ(λ)),

thus, being ∂2

∂x2 : C2(I) → C(I) a closed operator and SΦ,H : L∞(R+;C2(I)) →
L∞(R+;C2(I)) well defined, we have, by [2, proposition 1.7.6], that SΦ,Hv(·, t) ∈
C2(I) for any t > 0 and

∂2

∂x2
SΦ,Hv(x, t) = L−1

λ→t

[
∂2

∂x2

Φ(λ)
λ

LHv(x,Φ(λ))
]

(t) = FΦ,HvΦ(x, t),

concluding the proof. �

Remark 5.6. With the same argument as in the previous lemma, we can prove
that if v ∈ L∞(R+;C(I)) is a mild solution of equation (5.3), then v(·, t) ∈ C2(I).

Now we are ready to prove the main result of this section.

Theorem 5.7. Let v ∈ L∞(R+;C(I)) and vΦ = SΦv, with v satisfying the hypothe-
ses of proposition 4.5, be a mild solution of equation (5.1). Suppose for fixed t > 0
it holds v(·, t) ∈ C2(I). Moreover, suppose that

V ′
2,H(·) ∂2

∂x2
v(x, ·) ∈ L∞(0,+∞)

for any fixed x ∈ I. Then vΦ is a classical solution of (5.1).
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Proof. By proposition 5.4 and remark 5.6 we know that v(·, t) ∈ C2(I).
Now let us observe that, since we know that v is mild solution of (5.3), it holds

L[v(x, ·)](λ) =
1
λ

v(x, 0) +
1
2λ

∂2

∂x2
LHv(x, λ).

Since v(·, t) ∈ C2(I) and ∂2

∂x2 : C2(I) → C(I) is a closed operator, we have, by
[2, proposition 1.7.6],

∂2

∂x2
LHv(x, λ) = LH

(
∂2

∂x2
v(x, ·)

)
(λ).

Now, according to theorem’s condition, V ′
2,H(·) ∂2

∂x2 v(x, ·) ∈ L∞(0,+∞), therefore
we can define

F (x, t) =
1
2

∫ t

0

V ′
2,H(s)

∂2

∂x2
v(x, s) ds

and take the Laplace transform to obtain

L[F (x, ·)](λ) =
1
2λ

LH

[
∂2

∂x2
v(x, ·)

]
(λ).

Hence, we get

L[v(x, ·)](λ) = L[v(x, 0) + F (x, ·)](λ)

and then

v(x, t) = v(x, 0) +
1
2

∫ t

0

V ′
2,H(s)

∂2

∂x2
v(x, s) ds.

In particular, v(x, ·) is absolutely continuous and, taking almost everywhere the
derivative in t, v is a classical solution of (5.3).

Now let us consider the function vΦ(x, t) − v(x, 0) and, observing that ν̄Φ is
Laplace transformable with Laplace transform Φ(λ)/λ, we have that

L[ν̄Φ ∗ (vΦ(x, ·) − v(x, 0))] =
Φ(λ)

λ
L[vΦ(x, ·)](λ) − Φ(λ)

λ2
v(x, 0).

Now, since ∂tv(x, t) = 1
2FHv(x, t) and FHv(x, ·) ∈ L∞(0,+∞), also ∂tv(x, ·) ∈

L∞(0,+∞) and we can apply SΦ to it. By proposition 4.3 and [2, corollary 1.6.5]
we have

Lt→λ

[∫ t

0

SΦ∂tv(x, s) ds

]
=

Φ2(λ)
λ2

L[v(x, ·)](Φ(λ)) − Φ(λ)
λ2

v(x, 0)

=
Φ(λ)

λ
L[vΦ(x, ·)](λ) − Φ(λ)

λ2
v(x, 0),

and then it holds

ν̄Φ ∗ (vΦ(x, ·) − v(x, 0))(t) =
∫ t

0

SΦ∂tv(x, s) ds.
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Thus, we can differentiate on both sides to achieve, for almost any t > 0,

∂Φ
t vΦ(x, t) = SΦ∂tv(x, t).

However, we also have, being vΦ a mild solution of (5.1),

L [SΦ∂tv(x, ·)] (λ) = Φ(λ)L[vΦ(x, ·)](λ) − Φ(λ)
λ

v(x, 0) =
Φ(λ)
2λ

∂2

∂x2
L̂HL[vΦ](x, λ).

Hence, we have that Φ(λ)
2λ

∂2

∂x2 L̂HL[vΦ](x, λ) is the Laplace transform of something
and then we can take the inverse Laplace transform to obtain

SΦ∂tvΦ(x, t) =
1
2
FΦ,HvΦ(x, t).

Finally we get

∂Φ
t vΦ(x, t) =

1
2
FΦ,HvΦ(x, t),

concluding the proof. �

As a direct consequence, we can formulate the following statement concerning
the function pΦ,H .

Corollary 5.8. pΦ,H is a classical solution of (5.1) for I = R
∗. Moreover, pα,H

is a strong solution of (5.1).

Remark 5.9. Let us observe that if v satisfies hypothesis (a) of proposition 4.5,
then the hypotheses of theorem 5.7 also imply that vα = Sαv is a strong solution
of equation (5.1).

6. Uniqueness issues

In this section we will discuss some uniqueness issues concerning mild and strong
solutions. Let us stress, as we will observe later, that the uniqueness results con-
cerning strong solutions can be adapted to the classical ones by extending the
extremal point property in proposition 2.2 to less regular functions via a mollifying
procedure.

6.1. Isolation of mild solutions

For mild solutions, we are not able to show uniqueness. However, we can still
prove a form of isolation result for mild solutions, i.e. the fact that mild solutions
cannot be compared with respect to a suitable partial order.

Definition 6.1. Let us define SΦ the range of the operator SΦ : L∞(R+;C(I)) →
L∞(R+;C(I)) where I = [a, b]. Let vΦ, wΦ ∈ L∞(R+;C(I)) with vΦ = SΦv and
wΦ = SΦw. We say that vΦ � wΦ if and only if:

• v � w in I × R
+;
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• There exist two constants 0 < ε � M such that for any x ∈ I the function
(w − v)(x, ·) is increasing in [0, ε] and decreasing in [M,+∞).

In particular � is a partial order on SΦ, that is well defined by injectivity of the
operator SΦ.

Now let us observe that we can recognize (5.2) as a second-order parametric
ordinary differential equation. Therefore, we can consider the Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Φ(λ)v̄Φ(x, λ) − Φ(λ)
λ

vΦ(x, 0) =
Φ(λ)
2λ

∂2

∂x2
L̂Φ,H v̄Φ(x, λ) (x, λ) ∈ I × (0,+∞)

vΦ(x, 0) = f(x) x ∈ I

L̂Φ,H v̄Φ(a, λ) = g1(λ) λ > 0
∂

∂x
L̂Φ,H v̄Φ(a, λ) = g2(λ) λ > 0,

(6.1)

which is the natural Cauchy problem associated with mild solutions of equation
(5.1). What we want to show is that two different mild solutions of equation (5.1)
with the same boundary data cannot be compared with �. This is actually the aim
of the following theorem.

Theorem 6.2. Let I = [a, b], v, w ∈ L∞(R+;C(I)) and consider vΦ = SΦv and
wΦ = SΦw such that, denoting v̄Φ = L[vΦ] and w̄Φ = L[wΦ], these are solutions
of the Cauchy problem (6.1). If wΦ � vΦ, then wΦ = vΦ.

Proof. First of all, let us observe that, since all the operators involved are linear,
(vΦ − wΦ) is still a mild solution of (5.1). Let us set hΦ(x, t) = (vΦ(x, t) − wΦ(x, t)).
By the initial datum on v and w, it holds hΦ(x, 0) = 0 and then

Φ(λ)h̄Φ(x, λ) =
Φ(λ)
2λ

∂2

∂x2
L̂Φ,H h̄Φ(x, λ),

where h̄Φ(x, λ) := L[hΦ(x, ·)](λ). Moreover, since SΦ is linear, we can define
h(x, t) = v(x, t) − w(x, t) to obtain that h ∈ SΦ with hΦ = SΦh. Setting h̄(x, λ) :=
L[h(x, ·)](λ), we have

2Φ(λ)h̄(x,Φ(λ)) =
∂2

∂x2
LHh(x,Φ(λ)), (6.2)

that is a second-order differential equation. Now we want to transform the previous
second-order differential equation in a system of first order ones and then write it
in vector form. Let us define

f(x, λ) =
∂

∂x
LHh(x,Φ(λ)) and g(x, λ) = (LHh(x,Φ(λ)), f(x, λ))

to rewrite (6.2) in the equivalent form

∂

∂x
g(x, λ) = (f(x, λ), 2Φ(λ)h̄(x,Φ(λ))).
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We want to show that actually h ≡ 0 by using Gronwall inequality. To do this, let
us observe that f(a, λ) = 0 and LHh(a,Φ(λ)) = 0, thus, we have

g(x, λ) =
∫ x

a

∂

∂x
g(y, λ) dy and then |g(x, λ)| �

∫ x

a

∣∣∣∣ ∂

∂x
g(y, λ)

∣∣∣∣ dy. (6.3)

Let us first estimate LHh(x,Φ(λ)). We have

LHh(x,Φ(λ)) =
∫ ε

0

e−Φ(λ)th(x, t)V ′
2,H(t) dt +

∫ M

ε

e−Φ(λ)th(x, t)V ′
2,H(t) dt

+
∫ +∞

M

e−Φ(λ)th(x, t)V ′
2,H(t) dt := I1 + I2 + I3.

We want to achieve a lower bound for LHh(x,Φ(λ)), which is non-negative since h
is non-negative. Let us observe that mint∈[ε,M ] V

′
2,H(t) = m > 0, thus, there exists

a constant C1 > 0 such that

I2 � C1

∫ M

ε

e−Φ(λ)th(x, t) dt.

For I1 and I3 we need to use Chebyshev’s integral inequality (see [32]). Concerning
I1, we get

I1 =
1 − e−Φ(λ)ε

Φ(λ)

∫ ε

0

V ′
2,H(t)h(x, t) d

(
1 − e−Φ(λ)t

1 − e−Φ(λ)ε

)
where d( 1−e−Φ(λ)t

1−e−Φ(λ)ε ) is a probability measure on [0, ε]. Thus, we can use Chebyshev’s
integral inequality, since we can suppose V ′

2,H and h(x, ·) to be comonotone in [0, ε].
Setting

C2 =
Φ(λ)

1 − e−Φ(λ)ε

∫ ε

0

e−Φ(λ)tV ′
2,H(t) dt > 0,

we obtain

I1 � C2

∫ ε

0

e−Φ(λ)th(x, t) dt.

Arguing in the same way for I3, we have that there exists a constant C3 > 0 such
that

I3 � C3

∫ +∞

M

e−Φ(λ)th(x, t) dt.

Setting C4 = mini=1,2,3 Ci > 0, we obtain

LHh(x,Φ(λ)) � C4h̄(x,Φ(λ)).

Now let us define k(x, λ) =
∣∣ ∂
∂xg(x, λ)

∣∣ and observe that

k(x, λ) =
√

4Φ2(λ)h̄2(x,Φ(λ)) + f2(x, λ).
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Moreover, by using the previously obtained lower bound, setting C5 =
min{ C2

4
4Φ2(λ) , 1} > 0, we have

|g(x, λ)| =
√

(LHh(x,Φ(λ)))2 + f2(x, λ) � C5k(x, λ).

Plugging this inequality in equation (6.3) and setting C6 = C−1
5 , we finally achieve

k(x, λ) � C6

∫ x

a

k(y, λ) dy.

Now we can use Gronwall’s inequality (see [33]) to conclude that k(x, λ) = 0. This
implies that h̄(x,Φ(λ)) = 0. Now, considering λ > 0, we have that Φ is invertible on
the real line, thus, we conclude that h̄(x, λ) = 0 for any λ > 0. Finally, by injectivity
of the Laplace transform, we obtain h(x, t) = 0 for any t > 0 and x ∈ I, that is what
we wanted to prove. �

6.2. Uniqueness of strong solutions

In this subsection we want to address the problem of uniqueness of strong solu-
tions. Concerning strong solutions, we can use the extremal point property given
in proposition 2.2 to prove a weak maximum principle. To do this, we first need to
show the following technical lemma.

Lemma 6.3. Let v ∈ L∞(R+;C(I)), vΦ = SΦv and vΦ,H = SΦ,Hv. Then the follow-
ing assertions are equivalent:

(i) (x0, t0) ∈ I × R
+ is a maximum point of vΦ;

(ii) (x0, t0) ∈ I × R
+ is a maximum point of vΦ,H .

Proof. Let us show ii ⇒ i. Set M = supt>0 V ′
2,H(t) > 0 and suppose (x0, t0) is a

maximum point of vΦ,H . Then we have, for any (x, t) ∈ I × R
+,

vΦ,H(x0, t0) − vΦ,H(x, t) =
∫ +∞

0

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds � 0.

On the other hand, it holds

∫ +∞

0

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds � M(vΦ(x0, t0) − vΦ,H(x, t)),

thus, we have M(vΦ(x0, t0) − vΦ,H(x, t)) � 0 concluding the proof.
Now let us show i ⇒ ii. Fix (x, t) ∈ I × R

+. First of all, let us suppose that there
exists an increasing sequence Rn → +∞ and a decreasing sequence δn → 0 such
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that ∫ Rn

δn

(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds � 0.

Since mint∈[δn,Rn] V
′
2,H(t) > 0, we achieve

vΦ,H(x0, t0) − vΦ,H(x, t) �
∫ δn

0

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds

+
∫ +∞

Rn

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds.

Taking the limit as n → +∞ we obtain vΦ,H(x0, t0) − vΦ,H(x, t) � 0.
Now let us suppose such sequences do not exist. Then, since (x0, t0) is a maximum

point of vΦ, this can happen only if∫ +∞

0

(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds = 0,

since
∫ +∞
0

(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds > 0 goes in contradiction with the
fact that the two aforementioned sequences do not exist. Moreover, there exist
δ0, R0 such that for any δ < δ0 and R > R0 it holds∫ R

δ

(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds < 0.

Since inft∈(0,+∞) V ′
2,H(t) = 0, we can consider δ0 so small and R0 so big to obtain

inft∈(δ0,R0) V ′
2,H(t) < 1. Consider any decreasing sequence δn → 0 such that δn < δ0

and any increasing sequence Rn → +∞ such that Rn > R0. Arguing as we did
before, by using the fact that inft∈(δn,Rn) V ′

2,H(t) < 1, we achieve

vΦ,H(x0, t0) − vΦ,H(x, t) �
∫ δn

0

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds

+
∫ Rn

δn

(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds

+
∫ +∞

Rn

V ′
2,H(s)(v(x0, s)fΦ(s, t0) − v(x, s)fΦ(s, t)) ds.

Taking the limit as n → ∞ we conclude the proof. �

Now we are ready to show the weak maximum principle for our equation.

Theorem 6.4 (Weak maximum principle). Let Φ be a Bernstein function that is
regularly varying at ∞ of index α ∈ (0, 1) and consider vΦ = SΦv a strong solution
of (5.1) in [a, b] × R

+. Fix T > 0 and define O = [a, b] × [0, T ]. Moreover, sup-
pose that SΦ(T−t

T χ[0,T ](t)) is C1((0, T ]) and W 1,1(0, T ). Let ∂pO be the parabolic
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boundary of O, i.e.

∂pO = ([a, b] × {0}) ∪ ({a, b} × [0, T ]).

Then it holds

max
(x,t)∈O

vΦ(x, t) = max
(x,t)∈∂pO

vΦ(x, t)

Proof. First of all, let us observe that for any constant C ∈ R it holds vΦ + C =
SΦ(v + C), FΦ,H(vΦ + C) = FΦ,HvΦ and ∂Φ(vΦ + C) = ∂ΦvΦ. Thus, if vΦ is an
inverse-subordinated strong solution of (5.1), so it is also vΦ + C. In conclusion, we
can suppose, without loss of generality, that vΦ � 0.

Let us also recall that, by lemma 5.5, we have

FΦ,HvΦ =
∂2

∂x2
SΦ,Hv.

Now let us suppose by contradiction vΦ admits a maximum point (x0, t0) belong-
ing to O̊ ∪ ((a, b) × {T}) and that M = max(x,t)∈∂pO vΦ(x, t) < vΦ(x0, t0). Fix δ =
vΦ(x0, t0) − M > 0 and define for any (x, t) ∈ O the auxiliary function

wΦ(x, t) = vΦ(x, t) +
δ

2
SΦ

(
T − τ

T
χ[0,T ](τ)

)
(t)

where χ[0,T ](τ) is the indicator function of the interval [0, T ]. Since T−t
T ∈ [0, 1] as

t ∈ [0, T ], it holds

vΦ(x, t) � wΦ(x, t) � vΦ(x, t) +
δ

2

for any (x, t) ∈ O.
Moreover, for any (x, t) ∈ ∂pO it holds

wΦ(x0, t0) � vΦ(x0, t0) = δ + M � δ + vΦ(x, t) � δ

2
+ wΦ(x, t)

and then, since (x0, t0) �∈ ∂pO and wΦ is continuous in [a, b] × [0, T ], wΦ admits a
maximum point (x1, t1) ∈ O̊ ∪ ((a, b) × {T}).

Now let us also recall that

vΦ(x, t) = wΦ(x, t) − δ

2
SΦ

(
T − τ

T
χ[0,T ](τ)

)
(t). (6.4)

Now we need to exploit ∂Φ
t vΦ in terms of ∂Φ

t wΦ. To do this, we need to find the non-
local derivative of SΦ(T−τ

T χ[0,T ](τ))(t). Set g(t) = T−t
T χ[0,T ](t) and gΦ(t) = SΦg(t).

First of all, since wΦ = vΦ + gΦ and both ∂Φ
t vΦ(x, t) and ∂ΦgΦ(t) exist (where the

latter exists since gΦ(t) ∈ W 1,1(0, T )), then also ∂Φ
t wΦ is well defined.
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Now we want to determine ∂ΦgΦ(t). Let us suppose a priori that ∂ΦgΦ(t) is
Laplace transformable. Then we have, since gΦ(0) = 1,

L[∂ΦgΦ] = Φ(λ)L[gΦ] − Φ(λ)
λ

= −Φ(λ)(1 − e−Φ(λ)T )
TλΦ(λ)

.

On the other hand, it holds

L[SΦχ[0,T ]] =
Φ(λ)(1 − e−Φ(λ)T )

λΦ(λ)
,

thus, we have

∂ΦgΦ(t) = − 1
T

∫ T

0

fΦ(s, t) ds.

Using last equality, together with identity (6.4), we get

∂ΦvΦ(x, t) = ∂ΦwΦ(x, t) +
δ

2T

∫ T

0

fΦ(s, t) ds. (6.5)

Now let us show that wΦ belongs to the range of SΦ. Indeed, if we define w(x, t) =
v(x, t) + g(t), we obtain that wΦ = SΦw.

Now we want to express the action of the Fokker–Planck operator on vΦ in terms
of wΦ. To do this, since g does not depend on x, just observe that

∂2

∂x2
SΦ,Hw(x, t) =

∂2

∂x2
SΦ,Hv(x, t).

Thus, thanks to lemma 5.5, we can rewrite equation (5.1) as

∂ΦwΦ(x, t) +
δ

2T

∫ T

0

fΦ(s, t) ds − 1
2

∂2

∂x2
SΦ,Hw(x, t) = 0.

Now let us observe that by hypotheses wΦ belongs to C1 in (0, T ] and (x1, t1) is a
maximum point for wΦ belonging to O̊ ∪ ((a, b) × {T}), hence, by proposition 2.2,
we know that ∂ΦwΦ(x1, t1) � 0. Moreover, (x1, t1) is also a maximum point for
SΦ,Hw(x, t), hence, ∂2

∂x2 SΦ,Hw(x1, t1) � 0. Thus, we have

∂ΦwΦ(x1, t1) +
δ

2T

∫ T

0

fΦ(s, t1) ds − 1
2

∂2

∂x2
SΦ,Hw(x1, t1)

� δ

2T

∫ T

0

fΦ(s, t1) ds > 0,

which is a contradiction. �

Remark 6.5. Let us observe that, if Φ(λ) = λα, the fact that T−t
T χ[0,T ](t) is Lip-

schitz implies that Sα(T−t
T χ[0,T ](t)) belongs to C1 by proposition 4.7. It holds∣∣ d

dtSα(T−t
T χ[0,T ](t))

∣∣ ∼ C(α, T )t−1+α as t → 0+, thus, Sα(T−t
T χ[0,T ](t)) it belongs

to W 1,1(0, T ).
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As for classical parabolic equations, the weak maximum principle easily implies
the following uniqueness result.

Corollary 6.6. Let vΦ = SΦv and wΦ = SΦw be strong solutions of equation
(5.1) in O = (a, b) × R

+. Suppose that for any T > 0 the function SΦ(T−t
T χ[0,T ](t))

belongs to C1((0, T ]). Then, if vΦ(x, t) = wΦ(x, t) for any (x, t) ∈ ∂pO, it holds
vΦ ≡ wΦ.

Proof. Set OT = (a, b) × (0, T ) and h = v − w. Since all the involved operators are
linear, the function hΦ = vΦ − wΦ is still a strong solution of equation (5.1). More-
over, hΦ(x, t) = 0 for any (x, t) ∈ ∂pOT . Thus, by weak maximum principle, we
have hΦ ≡ 0 on OT . Since T > 0 is arbitrary, we conclude the proof. �

In particular, this implies the following result.

Corollary 6.7. The probability density function pH,α is the unique strong solu-
tion of equation (5.1) in (R \ {0}) × (0,+∞) such that, for any fixed t > 0,
limx→±∞ pH,α(x, t) = 0, pH,α(0, t) =

∫ +∞
0

pH(0, s)fα(s, t) ds and pH,α(x, 0) = 0.

Remark 6.8. Let us observe that all we stated in this section for strong solutions
can be extended to the case of classical solutions. Indeed, by using Friedrich’s
mollifiers, one can extend proposition 2.2 to the case in which u �∈ C1. Thus,
the weak maximum principle holds also for classical solutions without asking for
SΦ(T−t

T χ[0,T ](t)) to be in C1.
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