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Abstract

The signature representation shows that the reliability of the system is a mixture of the
reliability functions of the k-out-of-n systems. The first representation was obtained for
systems with independent and identically distributed (IID) components and after it was
extended to exchangeable (EXC) components. The purpose of the present paper is to
extend it to the class of systems with identically distributed (ID) components which
have a diagonal-dependent copula. We prove that this class is much larger than the
class with EXC components. This extension is used to compare systems with non-EXC
components.
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1. Introduction

Coherent systems are basic concepts in reliability theory; for their main properties we refer
the reader to the classic book [1] (for completeness some of them are presented in Section 2).
The signature representation obtained by Samaniego [22] (see also [23]) is a useful tool for
studying coherent systems. It proves that the reliability function of a coherent system with inde-
pendent and identically distributed (IID) components having a continuous reliability function
F̄ can be written as a mixture (linear combination) of the reliability functions of the k-out-of-n
systems (i.e. systems that fail when k of their n components fail). The vector formed by the
coefficients in that representation is called the signature of the system. The lifetimes of the
k-out-of-n systems coincide with the ordered component failure times, and they are equivalent
to the order statistics obtained from a sample of IID-F̄ random variables. So this representa-
tion can be used to compute the system reliability (see [23]) and to compare (under different
stochastic criteria) two systems with IID-F̄ components just by comparing their signatures
(see [7]).

The signature representation was extended to the case of exchangeable component life-
times in [13] and [16]. The coefficients are the same as that obtained in the IID case. The
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component lifetimes are exchangeable (EXC) if and only if they are identically distributed (ID)
and their copula is EXC (i.e. invariant under permutations). Example 5.1 in [16] proved that
this representation does not necessarily hold for systems with independent non-ID components.

In the present paper, this representation is extended to coherent systems whose compo-
nent lifetimes are ID and have a dependence represented by a wide family of copulas called
diagonal-dependent copulas. This family contains all the EXC copulas and also many non-
EXC copulas. This extension is used to compare systems (under different stochastic criteria)
with such dependent components.

The rest of the paper is organized as follows. The notation and some preliminary results
are given in Section 2. The main results are in Section 3, where we prove the new represen-
tation and obtain the corresponding comparison results. There we also prove that the class
of diagonal-dependent copulas is a really big class when it is compared (from a topologi-
cal viewpoint) with the class of EXC copulas. Section 4 contains some illustrative examples.
Conclusions and some open problems for future research can be found in Section 5.

Throughout the paper we say that a function G : Rn →R is increasing (resp. decreasing) if
G(x1, . . . , xn) ≤ G(y1, . . . , yn) (≥) when xj ≤ yj for all j.

2. Notation and preliminary results

From [1] a (two-state) system is a Boolean function ψ : {0, 1}n → {0, 1}, where ψ(x1, . . . ,

xn) represents the state of the system (1 means that it works and 0 that it does not work)
which is completely determined by the component states x1, . . . , xn ∈ {0, 1}. A system ψ is
semi-coherent if it is increasing, ψ(0, . . . , 0) = 0 and ψ(1, . . . , 1) = 1. We say that the jth
component is relevant for the system ψ if there exist x1, . . . , xj−1, xj+1, . . . , xn ∈ {0, 1} such
that

0 =ψ(x1, . . . , xj−1, 0, xj+1, . . . , xn)<ψ(x1, . . . , xj−1, 1, xj+1, . . . , xn) = 1.

A system ψ is coherent if it is increasing and all the components are relevant. Clearly, if ψ is
coherent, then ψ is semi-coherent. However, for example, ψ(x1, x2) = x1 is semi-coherent but
it is not coherent (since the second component is irrelevant for the system).

Let T be the lifetime of a coherent system with component lifetimes T1, . . . , Tn, and let
T1:n, . . . , Tn:n be the associated ordered component lifetimes. Here Tk:n represents the lifetime
of the k-out-of-n system. It is well known that the system lifetime T is equal to one of these
component lifetimes. Moreover, Samaniego [22] proved that, if T1, . . . , Tn are IID with a
continuous reliability (survival) function F̄(t) = P(Tj > t), then the system reliability function
F̄T (t) = P(T > t) can be represented as

F̄T (t) = s1F̄1:n(t) + · · · + snF̄n:n(t) (1)

for any time t, where F̄i:n(t) = P(Ti:n > t) and si = P(T = Ti:n) for i = 1, . . . , n. The vector
with these coefficients s = (s1, . . . , sn) depends only on the structure ψ of the system and it
is called the signature of the system (see [22] and [23]). From the theory of order statistics,
F̄1:n, . . . , F̄n:n can be calculated from F̄. So the signature-based mixture representation (1) is
a useful tool for computing the system reliability (see [23]). It can also be used to compare
stochastically systems with different structures (see [7], [16], [21], and [23]).

Representation (1) (with the same coefficients) was extended in [16] (see also [13]) to
the case in which the random vector (T1, . . . , Tn) of component lifetimes has an EXC joint
reliability function F̄(t1, . . . , tn) = P(T1 > t1, . . . , Tn > tn), that is,

F̄(t1, . . . , tn) = F̄(tσ (1), . . . , tσ (n))
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holds for any permutation σ . In this case, the same property holds for the joint distribution
function and (T1, . . . , Tn) is invariant in law under permutations.

From the copula theory (see e.g. [3, p. 33] or [17, p. 32]), we know that F̄ can be
written as

F̄(t1, . . . , tn) = Ĉ(F̄1(t1), . . . , F̄n(tn))

for an n-dimensional copula function Ĉ (called the survival copula) and for the marginal (com-
ponent) reliability functions F̄i(ti) = P(Ti > ti), i = 1, . . . , n. A copula is an n-dimensional
distribution function with uniform marginals over the interval (0,1).

It is easy to prove that F̄ is EXC if and only if Ĉ is EXC and the component lifetimes are
ID, i.e. F̄1 = · · · = F̄n. As above, in the ID case, the common component reliability function
will be represented simply as F̄.

Example 5.1 in [16] proves that representation (1) does not necessarily hold when the com-
ponent lifetimes are independent but not ID. Therefore the ID assumption (included in the EXC
case) cannot be relaxed if we want to get (1). However, in the following section we will prove
that the other assumption, ‘Ĉ is EXC’, can be relaxed.

For this purpose we need the following representation for the system reliability which is
valid in the general case, that is, for any joint reliability function F̄. From [1, p. 12], we know
that the system lifetime T can be written as

T = max
i=1,...,r

TPi ,

where TPi = minj∈Pi Tj is the lifetime of the series system with components in Pi for
i = 1, . . . , r, and P1, . . . , Pr are the minimal path sets of the system. A path set is a set
P ⊆ {1, . . . , n} of components such that the system works when all the components in P work
(i.e. ψ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P). A path set is a minimal path set if it does not
contain other path sets. Then, by using the inclusion–exclusion formula, the system reliability
can be written as

F̄T (t) = P(T > t)

= P
(

max
i=1,...,r

TPi > t
)

= P

(
r⋃

i=1

{TPi > t}
)

=
r∑

i=1

F̄Pi(t) −
r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj(t) + · · · + ( − 1)r+1F̄P1∪···∪Pr (t) (2)

for all t, where we use the notation F̄P(t) = P(TP > t) for the reliability function of the series
system with components in the set P. Expression (2) proves that the reliability function of the
system F̄T is a linear combination of the reliability functions of series systems. However, it is
not a mixture representation since it may contain some negative coefficients. Expression (2)
can also be used to compute the system reliability and to compare systems (see the review
in [11]).
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3. Main results

Let us start with a definition extracted from [18]. From now on we will use the following
notation. For any set I ⊆ {1, . . . , n}, uI := (u1, . . . , un) denotes the vector with ui = u for i ∈ I
and ui = 1 if i /∈ I. The cardinality of the set I is denoted by |I|.
Definition 1. An n-dimensional copula C is said to be diagonal-dependent (denoted by DD) if

C(uP) = C(uQ) for all P,Q ⊆ {1, . . . , n} with |P| = |Q|.
The function δ(u) = C(u, . . . , u) is called the diagonal section of the copula C. Hence note

that C is DD if and only if

C(uP) = δm(u) for all P ⊆ {1, . . . , n} with |P| = m (3)

for m = 1, . . . , n, where

δm(u) := C

⎛
⎝u, . . . , u︸ ︷︷ ︸

m-times

, 1, . . . , 1︸ ︷︷ ︸
(n − m)-times

⎞
⎠

is the diagonal section for the copula of the marginal distribution of the first m-variables.
Clearly, δn(u) = C(u, . . . , u) = δ(u) and δ1(u) = u for all u ∈ [0, 1] (since all the univariate
marginals have a uniform distribution over the interval (0,1)). So we just need to check (3)
for m = 2, . . . , n − 1.

In particular, a copula C is DD when all the marginals of dimension m have the same copula
for all 1<m< n. Of course, all the EXC copulas are, in particular, DD. The reverse is not true
(see Proposition 1 and Example 1 below).

Now we are ready to state the main result of the paper.

Theorem 1. If T is the lifetime of a coherent system and the component lifetimes are ID and
have a DD survival copula, then (1) holds for the same coefficients s1, . . . , sn obtained in the
IID continuous case.

Proof. From (2) we know that the system reliability function F̄T can be written as a linear
combination of the reliability functions of the series systems. If the component lifetimes are
ID with a reliability function F̄ and a DD survival copula Ĉ, then

F̄P(t) = P
(

min
j∈P

Tj > t
)

= ĈP(F̄(t), . . . , F̄(t)) = δ̂m(F̄(t)) (4)

holds for all t and all P ⊆ {1, . . . , n}, where ĈP(u1, . . . , un) := Ĉ(uP
1 , . . . , uP

n ) and uP
i = ui if

i ∈ P and uP
i = 1 if i /∈ P, m = |P| and δ̂m is defined as

δ̂m(u) := Ĉ

⎛
⎝u, . . . , u︸ ︷︷ ︸

m-times

, 1, . . . , 1︸ ︷︷ ︸
(n − m)-times

⎞
⎠

for all u ∈ [0, 1] and m = 1, . . . , n. Hence all the series systems with the same number of com-
ponents m have the same reliability function given by (4). Therefore the general representation
(2) can be reduced to

F̄T (t) = a1δ̂1(F̄(t)) + · · · + anδ̂n(F̄(t)), (5)

where a1, . . . , an are some coefficients that depend only on the system structure (i.e. the
minimal path sets).
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The preceding representation (5) holds for any coherent system structure (with the appro-
priate coefficients a1, . . . , an). For example, the series system with n components has just one
minimal path set P1 = {1, . . . , n} and lifetime T1:n = min (T1, . . . , Tn). Hence

F̄1:n(t) = P(T1 > t, . . . , Tn > t) = Ĉ(F̄(t), . . . , F̄(t)) = δ̂n(F̄(t)) (6)

for all t.
Analogously, the minimal path sets of T2:n are all the subsets with n − 1 elements. So there

are n = ( n
n−1

)
minimal path sets and, from (2),

F̄2:n(t) = nδ̂n−1(F̄(t)) − (n − 1)δ̂n(F̄(t)) (7)

holds for all t. The last coefficient in the preceding expression is n − 1 because the coefficients
in (5) sum up to 1 (take t → −∞).

In general, Ti:n has
( n

n−i+1

)
minimal path sets and, from (2), its reliability function can be

written as
F̄i:n(t) = ai,n−i+1δ̂n−i+1(F̄(t)) + · · · + ai,nδ̂n(F̄(t)) (8)

for some coefficients ai,n−i+1, . . . , ai,n such that ai,n−i+1 + · · · + ai,n = 1 and ai,n−i+1 =( n
n−i+1

)
for i = 1, . . . , n.

Thus, if we define the column vectors

r(t) = (F̄1:n(t), . . . , F̄n:n(t))′ and d(t) = (δ̂1(F̄(t)), . . . , δ̂n(F̄(t)))′,

(8) proves that r(t) = Ad(t) for a triangular real-valued matrix A = (ai,j) such that ai,n−i+1 =( n
n−i+1

)
and ai,j = 0 for i = 1, . . . , n and j = 1, . . . , n − i. Hence A is not singular and so we

can write d(t) = A−1r(t), where A−1 is the inverse matrix of A. Moreover, note that (5) can be
rewritten as

F̄T (t) = (a1, . . . , an)d(t).

Then

F̄T (t) = (a1, . . . , an)A−1r(t) = (c1, . . . , cn)r(t) = c1F̄1:n(t) + · · · + cnF̄n:n(t)

for all t, where (c1, . . . , cn) = (a1, . . . , an)A−1 are some coefficients which depend only on
the structure of the system. Therefore these coefficients should be the same as that obtained in
the IID continuous case, i.e. ci = si for i = 1, . . . , n. So (1) holds with the same coefficients
for systems with ID component lifetimes and DD survival copulas. �
Remark 1. The usual copula representation for the joint distribution function of
(T1, . . . , Tn) is

F(t1, . . . , tn) := P(T1 ≤ t1, . . . , Tn ≤ tn) = C(F1(t1), . . . , Fn(tn)),

where Fi(ti) = P(Ti ≤ ti), i = 1, . . . , n, are the univariate marginal distribution functions and
C is the distributional copula. Both copulas C and Ĉ determine the dependence structure of
(T1, . . . , Tn). So C determines Ĉ and vice versa. Moreover, it is easy to see that Ĉ is DD if and
only if C is DD. Hence we can obtain an alternative proof of Theorem 1 by using copula C and
the representation of the system lifetime in terms of its minimal cut sets (see [1, p. 12]).

https://doi.org/10.1017/jpr.2020.20 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.20


434 J. NAVARRO AND J. FERNÁNDEZ-SÁNCHEZ

Remark 2. If T1:j = min (T1, . . . , Tj), then F̄1:j(t) := P(T1:j > t) = δ̂j(F̄(t)) for all t and j =
1, . . . , n. Hence, under the assumptions of the preceding theorem, expression (5) can also
be written as

F̄T (t) = a1F̄1:1(t) + · · · + anF̄1:n(t).

The vector (a1, . . . , an) with these coefficients is called the minimal signature (or the domina-
tion coefficients) of the system (see e.g. [15] and [23, p. 77]). Hence the representation based
on minimal signatures obtained in [15] for systems with EXC component lifetimes can also
be extended to systems with ID component lifetimes and DD survival copulas. From the com-
ments given in the preceding remark, the same can be applied to the representation based on
parallel systems and the maximal signature (see [15]).

As an immediate consequence of the main theorem we obtain several properties that can
be used to compare stochastically systems with different structures. In the following theorem
we state the results for the (usual) stochastic order (≤st), the hazard rate order (≤hr), the mean
residual life order (≤mrl), and the likelihood ratio order (≤lr), extending the comparison results
obtained in [7] (IID case) and [16] (EXC case). Similar results can be obtained for the reversed
hazard rate and mean inactivity time orders extending that given in [12]. For the formal defi-
nitions of these orders, their basic properties, and their main applications, we refer the reader
to [8], [10], and [24]. We simply note here that the relationships between these orders are as
follows:

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤mrl Y
⇓ ⇓

X ≤st Y ⇒ E(X) ≤E(Y).

Because the signature vector s = (s1, . . . , sn) of a system can be seen as the probability
mass function of a discrete random variable with support contained in the set {1, . . . , n},
these stochastic orders can also be applied to compare two signature vectors (as discrete
distributions). Thus we can state the following theorem.

Theorem 2. Let T and T∗ be the lifetimes of two coherent systems with respective signatures
s = (s1, . . . , sn) and s∗ = (s∗

1, . . . , s∗
n). Let us assume that the component lifetimes of both

systems are ID with a reliability function F̄ and a common DD survival copula Ĉ.

(i) If s ≤st s∗, then T ≤st T∗ for all F̄.

(ii) If s ≤hr s∗ and
T1:n ≤hr · · · ≤hr Tn:n, (9)

then T ≤hr T∗ for all F̄.

(iii) If s ≤hr s∗ and
T1:n ≤mrl · · · ≤mrl Tn:n, (10)

then T ≤mrl T∗ for all F̄.

(iv) If s ≤lr s∗ and
T1:n ≤lr · · · ≤lr Tn:n, (11)

then T ≤lr T∗ for all absolutely continuous F̄.

The proof is immediate from (1), Theorem 1, and Theorems 1.A.6, 1.B.14, 2.A.15, and
1.C.17 in [24], respectively. Note that in (iii) we need the hr ordering between the signatures
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and the mrl ordering in (10), to get the mrl ordering between the system lifetimes. The mrl
ordering between the signatures is not enough. In the IID case, if we just assume s ≤mrl s∗,
then we need some extra conditions (see [9]).

Example 2 shows how to use the above theorem to obtain (distribution-free) comparisons
results for systems with different structures. The signature vectors and the ordering relation-
ships between all the systems (signatures) with 1–4 components are given in Table 1 and
Figures 1–3 of [16] (see also Figures 1–3 in [11]). These orderings can be extended to systems
satisfying the assumptions of Theorems 1 and 2. Note that Theorem 2 can also be applied to
mixed systems (i.e. mixtures of coherent systems) and, in particular, to semi-coherent systems
since they can be written as mixed systems (from Theorem 1).

Remark 3. Expression (8) can be used jointly with the results for distorted distributions
obtained in [14] (see also Theorem 4 in [11]) to check if (9), (10), and (11) hold for a given
DD survival copula Ĉ. We show this procedure in Example 2. These properties depend on the
survival copula. For example, from (6) and (7), T1:n ≤hr T2:n holds for all F̄ if and only if the
function

nδ̂n−1(u) − (n − 1)δ̂n(u)

δ̂n(u)

is decreasing in (0,1), that is, if and only if the function

δ̂n(u)

δ̂n−1(u)
= Ĉ(u, . . . , u, u)

Ĉ(u, . . . , u, 1)

is increasing in (0,1).

Now we introduce a new family of copulas which are DD but not EXC.

Proposition 1. Let D be the absolutely continuous n-dimensional copula which has the
following probability density function:

d(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n−1 − α for u ∈ I0 × · · · × I0,

2n−1 − α for u ∈ I1 × · · · × I1,

α

2n−1 − 1
for u ∈ Ii1 × · · · × Iin, ij = 0, 1, but i1 = · · · = in does not hold,

where

u = (u1, . . . , un), I0 = [0, 1/2), I1 = [1/2, 1], 1/2<α < 2n−1 − 1.

Let g1, . . . , gn : [0, 1] → [0, 1] be different absolutely continuous functions such that gi(0) =
gi(1) = 0 and −1 ≤ 2g′

i(u) ≤ 1 for all i = 1, . . . , n and all u ∈ [0, 1] such that this derivative
exists. Then

C(u1, . . . , un) = D(u1, . . . , un) + g1(u1) . . . gn(un) (12)

is a non-EXC DD copula with δm(u) 
= um for all m = 2, . . . , n − 1. Moreover, if for an i ∈
{1, . . . , n}, gi(1/2) = 0, then δn(u) 
= un.

Proof. First we note that D is an EXC n-dimensional absolutely continuous copula since
2n−1 − α > 0 and

2
2n−1 − α

2n
+ (2n − 2)

α

2n(2n−1 − 1)
= 2n − 2α

2n
+ 2α

2n
= 1.
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Moreover, its diagonal section satisfies

δD(1/2) = D(1/2, . . . , 1/2) = 2n−1 − α

2n
>

1

2n
(13)

(since α < 2n−1 − 1).
Secondly, let us prove that the function C defined by (12) is a copula. Its probability density

function c is given by

c(u1, . . . , un) = d(u1, . . . , un) + g′
1(u1) . . . g′

n(un).

As 1/2<α < 2n−1 − 1, then

2n−1 − α > 1>
α

2n−1 − 1

and

d(u1, . . . , un) ≥ α

2n−1 − 1
>

1

2n − 2
.

Hence, as −1 ≤ 2g′
i(u) ≤ 1 for i = 1, . . . , n, then

c(u1, . . . , un) ≥ α

2n−1 − 1
− 1

2n
>

1

2n − 2
− 1

2n
> 0

for all u1, . . . , un ∈ (0, 1). Therefore

C(x1, . . . , xn) =
∫

[0,x1]×···×[0,xn]
c(u1, . . . , un) du1 . . . dun

is a copula since gi(0) = gi(1) = 0 for i = 1, . . . , n and so

C(1, . . . , 1) = D(1, . . . , 1) + g1(1) . . . gn(1) = 1

and the other border conditions hold.
Clearly, C is not EXC (since we assume that the functions g1, . . . , gn are different

continuous functions). However, it is DD because D is EXC and

CP(u, . . . , u) = DP(u, . . . , u)

for all P ⊆ {1, . . . , n} with |P|< n (since gi(1) = 0).
Moreover, for n = 3, . . . and m = 2, . . . , n − 1, δm(u) 
= um since

δm(1/2) = C

⎛
⎝1/2, . . . , 1/2︸ ︷︷ ︸

m-times

, 1, . . . , 1︸ ︷︷ ︸
(n − m)-times

⎞
⎠

= 2n−1 − α

2n
+ 2n−m − 1

2n

α

2n−1 − 1

= 1

2
− α

2−1 − 2−m

2n−1 − 1

>
1

2m
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because α < 2n−1 − 1. Even more, if for an i, gi(1/2) = 0, then

δn(1/2) = C(1/2, . . . , 1/2) = D(1/2, . . . , 1/2) = 2n−1 − α

2n
>

1

2n

from (13). This concludes the proof. �

In order to characterize the relative size of the class CEXC of EXC copulas in the class CDD of
DD copulas, we will use a topological approach similar to that suggested in [20] working with
Baire’s categories (see e.g. [5], [6], and [19]). Let us recall some basic topological definitions.
A subset N of a metric space (�, d) is called nowhere dense if its closure has an empty interior.
A subset A ⊆� is of first category in (�, d) if it can be expressed as (or covered by) a countable
union of nowhere dense sets. The subset A is said to be of second category if it is not of first
category. Following [2], in complete metric spaces, first category sets are ‘small sets’ and
nowhere dense sets are ‘very small sets’.

The next property shows that, from a topological viewpoint, the set CEXC is very small (i.e.
it is nowhere dense) into the set CDD. Therefore Theorem 1 provides a relevant extension of
signature-based representations from EXC copulas to DD copulas. It is easy to see that CDD is
a closed set in the set of all the copulas C. Hence it is compact and complete (see [4]). Then,
from Baire’s theorem, it is a second category set in itself.

Proposition 2. CEXC is nowhere dense in CDD.

Proof. As CEXC is a closed subset of C, then so is in CDD. Hence we need to prove that CEXC
does not have interior points. Let us see that for any C∗ ∈ CEXC and any ε > 0, we have

B(C∗, ε) = {C ∈ CDD : d∞(C,C∗)< ε}� CEXC,

where d∞(C,C∗) := supu∈[0,1]n |C(u) − C∗(u)|. If C∗∗ ∈ CDD − CEXC and we define

Cn = 1

n
C∗∗ + n − 1

n
C∗,

then the sequence {Cn} converges to C∗ with Cn ∈ CDD − CEXC for all n. So, for any ε > 0, there
exists n0 (depending on ε) such that Cn ∈ B(C∗, ε) for all n ≥ n0. Therefore B(C∗, ε) � CEXC
and so CEXC is nowhere dense in CDD. �

4 Examples

The first example shows how to use Theorem 1 in a coherent system with ID component
lifetimes having a fixed non-EXC DD survival copula.

Example 1. Let us consider the system with lifetime T = min (T1,max (T2, T3)). The signa-
ture of this coherent system is (1/3, 2/3, 0) (see e.g. [23, p. 24]). Let us assume that the
component lifetimes T1, T2, T3 are ID with reliability function F̄ and survival copula

Ĉ(u1, u2, u3) = u1CFN(u2, u3), (14)

where

CFN(u2, u3) = min

(
u2, u3,

u2
2 + u2

3

2

)
is the Fredricks–Nelsen copula (see e.g. [3, p. 32]). Clearly the first component is indepen-
dent from the other components but the second and third components are dependent. So Ĉ is
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not EXC. Therefore the signature-based representations obtained in [22] (IID case) and [16]
(EXC case) cannot be applied to this system. However, Ĉ is DD since δ̂2(u) := Ĉ(u, u, 1) =
Ĉ(u, 1, u) = Ĉ(1, u, u) = u2 for all u ∈ [0, 1]. Note that δ̂1(u) := Ĉ(u, 1, 1) = Ĉ(1, u, 1) =
Ĉ(1, 1, u) = u (as expected, since the univariate marginal distributions of copulas are uniform)
and δ̂3(u) := Ĉ(u, u, u) = u3 for all u ∈ [0, 1].

Therefore we can apply Theorem 1, obtaining the following representation for the system
reliability function:

F̄T (t) = 1

3
F̄1:3(t) + 2

3
F̄2:3(t),

where, from (6) and (7), F̄1:3(t) = δ̂3(F̄(t)) = (F̄(t))3 and F̄2:3(t) = 3δ̂2(F̄(t)) − 2δ̂3(F̄(t)) =
3(F̄(t))2 − 2(F̄(t))3 for all t. Hence this system (with two dependent components) has the same
law (reliability) as the system with the same structure and three IID-F̄ components.

The second example shows that Theorem 2 allows us to compare two coherent systems with
different structures (signatures).

Example 2. Let us consider the systems with lifetimes T = min (T1,max (T2, T3)) (studied
in the preceding example) and T∗ = max (T1,min (T2, T3)). We assume that the component
lifetimes are ID with a reliability function F̄ and a survival copula Ĉ. The signatures of these
coherent systems are s = (1/3, 2/3, 0) and s∗ = (0, 2/3, 1/3), respectively (see e.g. [23, p.
24]). Therefore, as

0

1/3
= 0<

2/3

2/3
= 1<

1/3

0
= ∞,

we have s ≤lr s∗. As the likelihood ratio order is the strongest one, all the signature orderings
in Theorem 2 hold. Then T ≤st T∗ holds for any F̄ and any DD copula Ĉ.

Analogously, to get T ≤hr T∗, we need to check if (9) holds. If we choose the survival copula
of the preceding example, given in (14), then the distributions of T1:3, T2:3, T3:3 coincide with
that obtained in the IID case. Hence (9) holds and we get T ≤hr T∗ for all F̄. In fact (11) also
holds and we have T ≤lr T∗ for all absolutely continuous F̄. However, if we select the survival
copula from the family (12) given by

Ĉ(u1, u2, u3) = D(u1, u2, u3) + g1(u1)g2(u2)g3(u3),

where α ∈ (1/2, 3) and 2g1(u) = 3g2(u) = 3g3(u) = u(1 − u), then

δ̂2(u) = Ĉ(u, u, 1) = D(u, u, 1) =

⎧⎪⎨
⎪⎩

6 − α

3
u2 for u ∈ [0, 1/2],

h(u) for u ∈ (1/2, 1],

and δ̂3(u) = D(u, u, u) + g1(u)g2(u)g3(u), where

h(u) = 6 − α

12
+ α

3

(
u − 1

2

)
+
(

2 − α

3

)(
u − 1

2

)2

= 1 + 6 − α

3
u2 − 6 − 2α

3
u − α

3
,

D(u, u, u) =

⎧⎪⎨
⎪⎩

(4 − α)u3 for u ∈ [0, 1/2],

4 − α

8
+ (4 − α)

(
u − 1

2

)3

+ α

3

[
u3 − 1

8
−
(

u − 1

2

)3]
for u ∈ (1/2, 1],

and g1(u)g2(u)g3(u) = u3(1 − u)3/18. Therefore δ̂3(u) 
= u3.
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FIGURE 1: Plots of the ratio r = δ̂2/δ̂3 for the survival copula studied in Example 4 when α = 1 (a) and
α = 2 (b).

Note that the reliability functions of T1:3, T2:3, T3:3 are

q̄1:3(F̄(t)), q̄2:3(F̄(t)), q̄3:3(F̄(t)),

respectively, where

q̄1:3(u) = δ̂3(u), q̄2:3(u) = 3δ̂2(u) − 2δ̂3(u), q̄3:3(u) = 3u − 3δ̂2(u) + δ̂3(u)

for u ∈ [0, 1].
Therefore, as per the results given in [14] (or in Theorem 4(ii) of [11]), T1:3 ≤hr T2:3 holds

for all F̄ and that survival copula if and only if q̄2:3/q̄1:3 is decreasing in [0, 1], that is, the ratio
r = δ̂2/δ̂3 is decreasing in (0, 1). By plotting this ratio we see that the property is not always
true. For example, when α = 1, we obtain the plot given in Figure 1(a), which is not decreasing.
However, when α = 2, we obtain the plot given in Figure 1(b), which is decreasing in (0,1).
Hence T1:3 ≤hr T2:3 holds for all F̄ when α = 2. It can be proved analogously that T2:3 ≤hr T3:3
holds for all F̄ when α = 2. Therefore (9) holds and, from Theorem 2(ii), we get T ≤hr T∗ for
all F̄ and that survival copula with α= 2.

5 Conclusions

The signature-based representations can be extended to systems with ID non-EXC compo-
nent lifetimes. Specifically, they are extended here for the dependence models determined by
a DD copula. This extension is relevant since we have proved that the family of DD copu-
las is much larger (from a topological viewpoint) than the family of EXC copulas. Moreover,
some examples show that the new representation can be used to compare systems with these
dependence models.

The main problem for future research could be to determine if these representations can be
extended for other (bigger) families of copulas. We think that this extension is not possible
by using the approach used in the present paper. However, it could be possible if we use a
different technique. Another relevant problem is to determine when (9), (10), and (11) hold.
These conditions are needed in order to get the comparison results given in Theorem 1. The
distorted distributions may help in this task (as shown in Example 2).
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