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Abstract. Graded epistemic logic is a logic for reasoning about uncertainties. Graded epistemic
logic is interpreted on graded models. These models are generalizations of Kripke models. We obtain
completeness of some graded epistemic logics. We further develop dynamic extensions of graded
epistemic logics, along the framework of dynamic epistemic logic. We give an extension with public
announcements, i.e., public events, and an extension with graded event models, a generalization also
including nonpublic events. We present complete axiomatizations for both logics.

§1. Introduction. Graded modal logic was introduced in Fine (1972) and Goble
(1970), further developed, in, e.g., de Caro (1988) and Fattorosi-Barnaba & de Caro (1985),
and employed in van der Hoek (1992) and van der Hoek & Meyer (1992) as a quantitative
approach to deal with the problem of expressing an agent’s confidence in her beliefs.
Consider the following example:

Consider an agent getting input from three sources w1, w2, and w3.
Suppose furthermore, that two types of information are relevant for this
agent, say p and q. All the sources agree on p: the agent is confident that
p is true. On the other hand, in w1 and w2, q is true, whereas in w3, it is
false: the agent is more confident that q is true than that q is false.

Using the standard multimodal logic S5, one cannot express that the agent has more
confidence in q than in ¬q. For expressing such a difference, van der Hoek (1992) and van
der Hoek & Meyer (1992) use graded modalities and the resulting logic is graded epistemic
logic. Intuitively, for an agent a, the graded modality 〈a〉nϕ represents agent a’s confidence
in the truth of ϕ by a natural number n. Similarly, 〈a〉n¬ϕ represents agent a’s confidence
in the truth of ¬ϕ. The agent can compare his beliefs with his disbeliefs by comparing
these figures.

Graded modalities are interpreted in Kripke models as counting the number of accessible
states of the current state. The logic of graded modalities is an extension of the standard
modal logic. There are many applications of those modalities in the literature. For example,
in van der Hoek & de Rijke (1995), graded modalities are used in knowledge representation
theory to count objects.
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A distinction is generally made between logics with graded modalities such as the
abovementioned Fine (1972) and van der Hoek & Meyer (1992) and logics with modalities
for degrees of belief. Logics of degrees of belief go back to Grove (1988) and Spohn (1988),
although these could more properly be said to be semantic frameworks to model degrees
of belief. Logics of degrees of belief have seen some popularity in artificial intelligence
and AGM style belief revision, see, e.g., Laverny (2006) and van der Hoek (1993). Belief
revision based on degrees of belief has been investigated in Andersen, Bolander, van
Ditmarsch, & Jensen (2017), Aucher (2003), and van Ditmarsch (2005).

The current movement of epistemic logic is towards the description of the logical dy-
namics of information and interaction. Various so-called dynamic epistemic logics, in,
e.g., van Ditmarsch, van der Hoek, & Kooi (2007) and van Ditmarsch, Halpern, van der
Hoek, & Kooi (editors) (2015), have been developed for this purpose. However, to the best
knowledge of the authors, dynamic extensions of logics with graded modalities have not
been developed. The aim of this article is to study dynamic graded epistemic logics.

This article is divided into two parts. In the first part, we generalize Kripke models
to graded models, and prove the completeness results for some graded epistemic logics.
These logics are static logics for reasoning about gradations of epistemic uncertainty. In
the second part, we introduce dynamic extensions of graded epistemic logics.

§2. Graded epistemic logic. Let A be a finite set of agents. The language of graded
epistemic logic (as we present various semantics focussing on knowledge and belief, we
use this term rather than ‘graded modal logic’) consists of a denumerable set of propo-
sitional variables Prop, propositional connectives ¬ and ∨, and graded modalities 〈a〉n,
where n ∈ N is a natural number and a ∈ A. The number n in a graded modality 〈a〉n

represents the grade of the modality. The set of all graded epistemic formulae Lg
EL is

defined inductively by the following rule:

Lg
EL � ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | 〈a〉nϕ,

where p ∈ Prop, n ∈ N, and a ∈ A. The complexity of a formula ϕ ∈ Lg
EL is the number

of connectives occurring in ϕ.
Other propositional connectives ⊥,	,∧,→, and ↔ are defined as usual. The dual of

〈a〉n is defined as [a]nϕ := ¬〈a〉n¬ϕ. In particular, define 〈a〉ϕ := 〈a〉1ϕ and [a]ϕ :=
[a]1ϕ. Define 〈a〉!nϕ := 〈a〉nϕ ∧ ¬〈a〉n+1ϕ.

2.1. Semantics of graded epistemic logic. In this work, sum and product operations
and the greater than relation are defined over natural numbers N plus ω, the number greater
than any natural number. For N∪{ω} we may write Nω. Variables n,m etc. vary over natural
numbers, not over Nω. We note that for all n ∈ N: n < ω, if n �= 0 then n · ω = ω and
0 · ω = 0, and n + ω = ω.

DEFINITION 2.1. A graded frame is a pair F = (W, {σa}a∈A), where W �= ∅ is a set of
epistemic states, and σa : W → (W → N

ω) is a function which assigns a natural number
or ω to each pair of states.

A graded model is a tuple M = (W, {σa}a∈A,V) where (W, {σa}a∈A) is a graded frame,
and V : Prop → P(W) is a valuation from Prop to the powerset of W.

For X ⊆ W and w ∈ W, define σa(w)(X) as
∑

u∈X σa(w)(u) (possibly ω, and where
σa(w)(∅) = 0). The notation X ⊆<ω W represents that X is a finite subset of W. Let
P+(W) be the set of all nonempty finite subsets of W. For any subset Y ⊆ W and n ∈ N, it
is obvious that the following conditions are equivalent:
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— σa(w)(Y) ≥ n
— There is X ⊆<ω Y such that σa(w)(X) ≥ n.
— There is X ∈ P+(Y) such that σa(w)(X) ≥ n.

Henceforth, these conditions are used without mention of their equivalence.

DEFINITION 2.2. The truth of a formula ϕ ∈ Lg
EL at a state w in a graded model M =

(W, {σa}a∈A,V), notation M,w �g ϕ, is defined recursively as below:

M,w �g p iff w ∈ V(p), for each p ∈ Prop.
M,w �g ¬ϕ iff M,w �g ϕ.
M,w �g ϕ ∨ ψ iff M,w �g ϕ or M,w �g ψ .
M,w �g 〈a〉nϕ iff ∃X ⊆<ω W(σa(w)(X) ≥ n & X ⊆ �ϕ�M).

For the dual modality, we have the following derived semantic clause:

M,w �g [a]nϕ iff ∀X ⊆<ω W(σa(w)(X) ≥ n ⇒ ∃u ∈ X(u ∈ �ϕ�M)).

The notation �ϕ�M stands for the truth set of ϕ in M, i.e., �ϕ�M = {u ∈ W | M, u �g ϕ}.
For any set of formulae �, define ���M = ⋂{�ϕ�M | ϕ ∈ �}.

A formula ϕ is true in M, notation M �g ϕ, if �ϕ�M = W. A formula ϕ is valid at a
state w in a graded frame F = (W, {σa}a∈A), notation F,w �g ϕ, if F,V,w �g ϕ for any
valuation V in F. A formula ϕ is valid in F, notation F �g ϕ, if F,w �g ϕ for any state
w ∈ W.

Obviously, the following formulae are valid in any graded frame: 〈a〉0ϕ ↔ 	; [a]0ϕ ↔
⊥; 〈a〉!ϕ ↔ [a]¬ϕ.

2.2. Comparison between graded models and Kripke models. A Kripke frame is a
pair F = (W, {Ra}a∈A), where W is a nonempty set of states, and each Ra ⊆ W × W.
Similarly, a Kripke model is a tuple M = (W, {Ra}a∈A,V), where V : Prop → P(W) is
a valuation and where (W, {Ra}a∈A) is a Kripke frame. For any w ∈ W, define Ra(w) =
{u ∈ W | wRau}. For any X ⊆ W, let |X| denote the cardinality of X.

DEFINITION 2.3. The satisfiability relation M,w �K ϕ in a Kripke model M = (W,
{Ra}a∈A,V) is defined recursively as follows:

M,w �K p iff w ∈ V(p), for each p ∈ Prop.
M,w �K ¬ϕ iff M,w ��K ϕ.
M,w �K ϕ ∨ ψ iff M,w �K ϕ or M,w �K ψ .
M,w �K 〈a〉nϕ iff |Ra(w) ∩ �ϕ�M| ≥ n.

Truth in a model and validity are defined as usual.

There is a strong connection between graded frames and Kripke frames. Now we will
show that each Kripke frame can be transformed into a graded frame, and vice versa.

DEFINITION 2.4. Given a Kripke frame F = (W, {Ra}a∈A), define the graded frame F◦ =
(W, {σR

a }a∈A) by setting

σR
a (w)(u) =

{
1, if wRau.

0, otherwise.

For a Kripke model M = (F,V), let M◦ = (F◦,V).
Given a graded frame F = (W, {σa}a∈A), define the Kripke frame F◦ = (W◦, {Rσa }a∈A)

by setting
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W◦ = {(w, i) | w ∈ W & i ∈ N
ω};

(w, i)Rσa (u, j) iff σa(w)(u) ≥ j > 0.

For a graded model M = (F,V), define M◦ = (F◦,V◦) where V◦(p) = {(w, i) ∈ W◦ |
w ∈ V(p)} for each p ∈ Prop.

PROPOSITION 2.5. Given a Kripke model M = (W, {Ra}a∈A,V) where F = (W,
{Ra}a∈A) is a Kripke frame, for any w ∈ W and formula ϕ ∈ Lg

EL, (1) M,w �K ϕ iff
M◦,w �g ϕ; (2)M �K ϕ iff M◦ �g ϕ; (3) F,w �K ϕ iff F◦,w �g ϕ; (4) F �K ϕ iff
F◦ �g ϕ.

Proof. The items (2)–(4) follow from (1). One can verify (1) by induction on the
complexity of ϕ. We sketch only the proof of the modal case ϕ := 〈a〉nψ for n > 0.
Assume M,w �K 〈a〉nψ . Then, there is a nonempty finite set X = {u1, . . . , un} such that
wRaui and M, ui �K ψ for 1 ≤ i ≤ n. By the construction, σR

a (w)(X) = n. By induction
hypothesis, M◦, ui �g ψ for 1 ≤ i ≤ n. Hence M◦,w �g 〈a〉nψ . Conversely, assume
M◦,w �g 〈a〉nψ . Then, there is X ∈ P+(W) such that σR

a (w)(X) ≥ n and M◦, u �g ψ
for all u ∈ X. By the construction, X ⊆ Ra(w) and |X| ≥ n. By induction hypothesis,
M, u �K ψ for all u ∈ X. Hence M,w �K 〈a〉nψ . �

PROPOSITION 2.6. Given a graded model M = (F,V) with a underlying graded frame
F = (W, {σa}a∈A), for any state w ∈ W and formula ϕ ∈ Lg

EL, (1) M,w �g ϕ iff
M◦, (w, 0) �K ϕ; (2)M �g ϕ iff M◦ �K ϕ; (3) if F◦, (w, 0) �K ϕ, then F,w �g ϕ; (4)
if F◦ �K ϕ, then F �g ϕ.

Proof. The items (2)–(4) follow from (1). It suffices to show (1) by induction on the
complexity of ϕ. We sketch only the proof of the modal case ϕ := 〈a〉kψ for k > 0.
Assume M,w �g 〈a〉kψ . We have the following cases:

Case 1. ∃u ∈ W(σa(w)(u) = ω & M, u �g ψ). Then (w, 0)Rσa (u,m) for all m ∈ N. By
induction hypothesis, M, (w,m) �K ψ for all m ∈ N. Then we have M, (w, 0) �K 〈a〉nψ .

Case 2. ∀u ∈ W(M, u �g ψ ⇒ σa(w)(u) < ω). Then there are states u0, . . . , um−1 for
some m > 0 such that σa(w)(ui) = ni > 0 and M, ui �g ψ (i < m) and n1 +· · ·+ nm ≥ k.
There are at least k copies of ψ-states in the model M◦ which are successors of (w, n).
Then M◦, (w, 0) �K 〈a〉kψ .

Conversely, assume M◦, (w, 0) �K 〈a〉kψ . There are k-pairs (u0, n0), . . ., (uk−1, nk−1)
such that σa(w)(ui) ≥ ni > 0 and M◦, (ui, ni) �K ψ for i < k. By inductive hypothesis,
M, ui �g ψ for i < k. Let Y = {v0, . . . , vh} where v0, . . . , vh are the states that occur
in the pairs (u0, n0), . . ., (uk−1, nk−1). Then (u0, n0), . . . , (uk−1, nk−1) are classified into
Y1, . . . , Yh where, for 1 ≤ j ≤ h, Yj consists of pairs which have the same first-order
coordinate vj. Clearly σa(w)(vj) ≥ |Yj| > 0.

•w

. . .v0 vhY0 Yh

Then σa(w)(Y) ≥ �1≤j≤h|Yj| = k. Hence M, x �g 〈a〉kψ . �

COROLLARY 2.7. For any graded model M = (F,V) with domain W, w ∈ W and
formula ϕ ∈ Lg

EL, M,w �g ϕ iff (M◦)◦, (w, 0) �g ϕ.

Proof. Directly from Propositions 2.6(1) and 2.5(1). �
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2.3. Graded bisimulation. Bisimulation is a powerful tool for understanding the ex-
pressive power of a modal language. A concept of graded bisimulation between Kripke
models was introduced by de Rijke (2000). He proved that graded modal logic is the graded
bisimulation invariant fragment of first-order logic with identity. Clearly, the standard
notion of bisimulation would have been unsuitable. The example given in de Rijke (2000)
is illuminating.

EXAMPLE 2.8. Consider Kripke models M and N below, with p true everywhere, and
let Z be the dashed relation. Relation Z is a standard bisimulation. Although (w1, v1) ∈ Z,
M,w1 �g 〈a〉2p but N, v1 ��g 〈a〉2p. Standard bisimulation therefore does not guarantee
logical equivalence in graded epistemic logic.

•
w0M

• w2•w1

•
v0 N

• v2•v1

The graded bisimulation defined in de Rijke (2000) is based on Kripke models. His defini-
tion consists of seven different clauses. It is therefore rather involved. Aceto, Ingólfsdóttir,
& Sack (2010) showed a perfect correspondence between De Rijke’s notion and a different
notion called resource bisimulation, proposed by Corradini, De Nicola, & Labella (1999),
that is rather elegant. Corradini et al.,’s notion is what we will now define as graded
bisimulation, although with a minor difference: in Aceto et al., (2010) and Corradini et al.,
(1999) agreement of propositional variables is not part of the definition.

Given a relation Z ⊆ W ×W ′, the lifting of Z is the relation Ẑ ⊆ P(W)×P(W ′) defined
as: XẐX′ iff ∀x ∈ X∃x′ ∈ X′(xZx′) and ∀x′ ∈ X′∃x ∈ X(xZx′).

DEFINITION 2.9 (Graded bisimulation). Let M = (W, {σa}a∈A,V) and M′ = (W ′,
{σ ′

a}a∈A,V ′) be graded models. A nonempty relation Z ⊆ W×W ′ is called a g-bisimulation
between M and M′ (notation: Z : M �g M′), if the following conditions hold for all
(w,w′) ∈ Z and (n ∈ N with) n > 0:

(Atomic) w and w′ satisfy the same proposition variables.
(Forth) if σa(w)(X) ≥ n and ∀v ∈ X, σa(w)(v) > 0, then there exists X′ ∈ P(W ′)
with σ ′

a(w
′)(X′) ≥ n, ∀v′ ∈ X′, σ ′

a(w
′)(v′) > 0, and XẐX′.

(Back) if σ ′
a(w

′)(X′) ≥ n and ∀v′ ∈ X′, σ ′
a(w

′)(v′) > 0, then there exists X ∈ P(W)
with σa(w)(X) ≥ n, ∀v ∈ X, σa(w)(v) > 0, and XẐX′.

If there is a g-bisimulation Z : M �g M′ with wZw′, then w and w′ are called g-bisimilar
(notation: M,w �g M′,w′). If ∀w ∈ W∃w′ ∈ W ′(wZw′), then Z is called surjective. Z is
called global if both Z and Z−1 are surjective.

We note that a graded bisimulation on a graded model where all weights are 0 or 1 is
a standard bisimulation. The graded modal equivalence relation between graded models
(M,w) and (M′,w′), notation M,w ≡g M′,w′, is defined by

M,w ≡g M′,w′ iff ∀ϕ ∈ Lg
EL(M,w �g ϕ ⇔ M′,w′ �g ϕ).

A graded model M = (W, {σa}a∈A,V) is image finite if for all w ∈ W and a ∈ A,
|{u ∈ W | σa(w)(u) > 0}| < ω. The following result, which is also known as the
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Hennessy–Milner property, can now be obtained for graded bisimulation. The direction
that bisimilarity implies modal equivalence also holds for models that are not image finite.
We refer to Aceto et al., (2010) for proof details.

THEOREM 2.10 (Aceto et al., 2010, Prop. 4.11). Let image-finite graded models (M,w)
and (M′,w′) be given. Then M,w �g M′,w′ iff M,w ≡g M′,w′.

As in de Rijke (2000), we can obtain a similar result for modally saturated models. A
graded model M = (W, {σa}a∈A,V) is graded modally saturated if for any � ⊆ Lg

EL,
w ∈ W, n > 0, and a ∈ A:

if σa(w)(���M) ≥ n for any � ∈ P+(�), then σa(w)(���M) ≥ n.

THEOREM 2.11. Let graded modally saturated models (M,w) and (M′,w′) be given.
Then M,w �g M′,w′ iff M,w ≡g M′,w′.

Proof. The direction from bisimilarity to modal equivalence is elementary, and as in
the previous theorem. For the other direction, it suffices to show that the graded modal
equivalence relation ≡g is a graded bisimulation. We only show the forth condition. The
back condition can be shown similarly.

Assume that M,w ≡g M′,w′, σa(w)(X) ≥ n and ∀z ∈ X, σa(w)(z) > 0. Let nx =
�{σa(w)(z) | M, x ≡g M, z}. Then �x∈Xnx ≥ n. Let now �x = {ϕ ∈ Lg

EL : M, x �g ϕ}.
For each � ⊆<ω �x, M,w �g 〈a〉nx

∧
�, and with M,w ≡g M′,w′ we get M′,w′ �g

〈a〉nx

∧
�. Hence σ ′

a(w
′)(���M′) ≥ nx. From graded modal saturation now follows that

σ ′
a(w

′)(��x�M′) ≥ nx. Clearly, whenever M, x �≡g M, y, we have ��x�M′ ∩ ��y�M′ = ∅.
Therefore, for X′ = ⋃

x∈X��x�M′ , we must have σ ′
a(w

′)(X′) ≥ n. Moreover, for every
x ∈ X, there exists x′ ∈ ��x�M′ . For that x′ we obviously that M, x ≡g M′, x′. Conversely,
for any x′ ∈ X′, x′ ∈ ��x�M′ for some x ∈ X. Hence, we again establish M, x ≡g M′, x′.
Therefore M,X≡̂gM

′,X′. �
We close this subsection with an obvious sanity requirement for our translations into and

from Kripke models.

PROPOSITION 2.12. Let graded model M be given. Then M �g (M◦)◦.

Proof. Let M = (W, {σa}a∈A,V). Applying Definition 2.4, we get that (M◦)◦ =
(W◦, {σ ′

a}a∈A,V◦), where W◦ = W × N
ω, σ ′

a(w, i)(u, j) = 1 if σa(w)(u) ≥ j > 0 and
σ ′

a(w, i)(u, j) = 0 if σa(w)(u) = 0, and V◦(p) = V(p) × N
ω. Define relation Z ⊆

W × (W × N
ω) as below:

Z = {(w, (w, i)) | w ∈ W & i ∈ N
ω}.

We show that Z is a graded bisimulation. The atomic condition is obvious as w ∈ V(p) iff
(w, i) ∈ V◦(p).

(Forth) Let σa(w)(X) ≥ n and ∀v ∈ X(σa(w)(v) > 0). Consider X′ = {(v, j) | v ∈
X, σa(w)(v) ≥ j > 0}. If there is a v ∈ X with σa(w)(v) = ω, then |X′| = ω and so
σ ′

a(w, i)(X′) = ω ≥ n. Otherwise, σ ′
a(w, i)(v, j) = 1 for all (v, j) with σa(w)(v) ≥ j > 0,

so that �σa(w)(v)
j=1 σ ′

a(w, i)(v, j) = σa(w)(v) and thus

σa(w, i)(X′) = �v∈X�
σa(w)(v)
j=1 σ ′

a(w, i)(v, j)

= �v∈Xσa(w)(v)

= σa(w)(X) ≥ n.
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(Back) Let X′ ⊆ W ×N
ω be such that σ ′

a(w, i)(X′) ≥ n and ∀(v, j) ∈ X′, σ ′
a(w, i)(v, j) >

0. Consider X = {v ∈ W | ∃j(v, j) ∈ X′}. If X′ contains a member (v, ω), then σa(w)(v) =
ω, so σa(w)(X) ≥ σa(w)(v) ≥ n. Otherwise, σa(w)(X) = σ ′

a(w, i)(X′′) ≥ σ ′
a(w, i)(X′) ≥ n,

where X′′ = {(v, j) | σa(w)(v) ≥ j > 0}. (Set X′ may be a strict subset of X′′.) �

2.4. Axiomatization and completeness. In this section, we consider the axiomatiza-
tion of graded epistemic logic. In the next section, we present graded epistemic logic
versions for the standard logics of knowledge and belief. The axiomatization Kg presented
in Definition 2.13 is equivalent to the Hilbert-style axiomatic system given in de Caro
(1988) and Fattorosi-Barnaba & de Caro (1985). It is known as minimal graded modal
logic.

DEFINITION 2.13. The minimal graded modal logic Kg consists of the following axiom
schemata and inference rules:

(Ax1) all instances of propositional tautologies
(Ax2) 〈a〉0ϕ ↔ 	
(Ax3) 〈a〉n⊥ ↔ ⊥ (n > 0)
(Ax4) 〈a〉n+1ϕ → 〈a〉nϕ
(Ax5) [a](ϕ → ψ) → (〈a〉nϕ → 〈a〉nψ)
(Ax6) ¬〈a〉(ϕ ∧ ψ) ∧ 〈a〉!mϕ ∧ 〈a〉!nψ → 〈a〉!(m+n)(ϕ ∨ ψ)
(MP) from ϕ and ϕ → ψ infer ψ
(Gen) from ϕ infer [a]ϕ.

Let Thm(Kg) denote the set of all theorems in the system Kg.

REMARK 2.14. Let n > 0. The operator 〈a〉n is normal, i.e., it admits the axiom (Ax3).
It is also clear that 〈a〉n is monotone: from ϕ → ψ one can get 〈a〉nϕ → 〈a〉nψ . Similarly,
the dual operator [a]n is monotone. However, 〈a〉n is not additive because 〈a〉n(ϕ ∨ ψ) →
(〈a〉nϕ ∨ 〈a〉nψ) is not valid. Moreover, one can easily verify that the (multi)modal logic K
is a sublogic of Kg. Note that the formulae 〈a〉(ϕ ∨ψ) ↔ 〈a〉ϕ ∨ 〈a〉ψ and [a](ϕ ∧ψ) ↔
[a]ϕ ∧ [a]ψ are theorems of Kg.

A graded epistemic logic is a set	 of Lg
EL-formulae such that (i) Thm(Kg) ⊆ 	 and (ii)

	 is closed under the rules (MP) and (Gen). By �	 ϕ we mean that ϕ is a theorem of 	.
The completeness of Kg for the Kripke semantics has been shown in de Caro (1988) and
Fattorosi-Barnaba & de Caro (1985).

THEOREM 2.15 (Completeness of Kg for Kripke models, de Caro (1988)). For any ϕ ∈
Lg

EL, �Kg ϕ if and only if F �K ϕ for any Kripke frame F .

The completeness for the semantics on graded models is a straightforward corollary.

THEOREM 2.16 (Completeness of Kg for graded models). For any ϕ ∈ Lg
EL, �Kg ϕ if and

only if F �g ϕ for any graded frame F.

Proof. The soundness is shown easily. To prove the completeness, assume ��Kg ϕ.
Then FKg ��K ϕ where FKg is the canonical model for Kg defined in de Caro (1988)
and Fattorosi-Barnaba & de Caro (1985). By Proposition 2.5(4), F◦

Kg ��g ϕ. �
The completeness can also be directly shown by a canonical model construction using

the semantics on graded models. This construction will be used in the next section to
prove completeness for extensions of graded epistemic logic on frame classes satisfying
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particular frame properties. We therefore give the construction in detail. The alternative
completeness proof is found in the appendix §7. The result that is relevant to show com-
pleteness for particular frame classes is Proposition 7.7, page 682.

§3. Graded logics of knowledge and of belief. In this section, we first consider a
scala of extensions of the minimal graded modal logic Kg, including their corresponding
frame properties, after which we explain how the most relevant cases S5g and KD45g
can be seen as graded versions of, respectively, the standard logics of S5 knowledge and
KD45 belief (also known as consistent/introspective belief). Additionally we illustrate, just
as in the motivating example in the introductory setting, how in those settings belief in a
proposition can be modelled as higher confidence in its truth than in its falsity, a rather
different usage of graded modalities than the abovementioned KD45 belief.

Table 1 shows the axioms and their correspondents in the weak second-order language.
For any graded frame F = (W, {σa}a∈A), we use lower letters x, y, z etc. to denote variables
ranging over W, and capital letters X, Y, Z etc. to denote variables ranging over P+(W).
The quantifiers can bind first-order and second-order variables.

PROPOSITION 3.1. Let F = (W, {σa}a∈A), a ∈ A and m, n > 0. Then:

— F �g Dn iff F |� ∀x∃Y(σa(x)(Y) ≥ n).
— F �g Tn iff F |� ∀x(σa(x)(x) ≥ n).
— F �g 4mn iff F |� ∀xyZ(σa(x)(y) ≥ 1 & σa(y)(Z) ≥ m → σa(x)(Z) ≥ n).
— F �g Bmn iff F |� ∀xy(σa(x)(y) ≥ m → σa(y)(x) ≥ n).
— F �g 5mn iff F |� ∀xYz(σa(x)(Y) ≥ m & σa(x)(z) ≥ 1 → σa(z)(Y) ≥ n).

Proof. By straightforward verification. �
For any subset � ⊆ {Dn,Tn, 4mn, 5mn | m, n > 0}, let Kg� be the graded epistemic logic

generated by �, i.e., the system obtained from Kg by adding all substitution instances of
formulae in � as new axioms.

THEOREM 3.2. For any � ⊆ {Dn, Tn, 4mn, 5mn | m, n > 0}, the graded epistemic logic
Kg� is sound and complete with respect to the class of all graded frames satisfying all
frame conditions corresponding to axioms in �.

Proof. It suffices to show that the canonical frame for 	 = Kg� is a graded frame for
Kg�. In each of the following cases, assume the axiom belongs to 	.

— (Dn) By 〈a〉n	 ∈ u ∈ W	, we have M	, u �g 〈a〉n	. Hence there exists Y ⊆ W	

such that σ	a (x)(Y) ≥ n.
— (Tn) Let u ∈ W	 and ϕ ∈ u. Then 〈a〉nϕ ∈ u. Then σ	a (u)(u) ≥ n.
— (4mn) Assume σ	a (u)(v) ≥ 1 and σ	a (v)(Z) ≥ m. Assume ϕ ∈ ⋂

Z. Then
〈a〉mϕ ∈ v. Then 〈a〉〈a〉mϕ ∈ u. By axiom 4mn, 〈a〉nϕ ∈ u. By Proposition 7.7,
σ	a (u)(Z) ≥ n.

Table 1. Axioms and their names, and corresponding frame properties (m, n > 0)

Dn 〈a〉n	 ∀x∃Y(σa(x)(Y) ≥ n)
Tn ϕ → 〈a〉nϕ ∀x(σa(x)(x) ≥ n)
4mn 〈a〉〈a〉mϕ → 〈a〉nϕ ∀xyZ(σa(x)(y) ≥ 1 & σa(y)(Z) ≥ m → σa(x)(Z) ≥ n)
Bmn ϕ → [a]m〈a〉nϕ ∀xy(σa(x)(y) ≥ m → σa(y)(x) ≥ n)
5mn 〈a〉mϕ → [a]〈a〉nϕ ∀xYz(σa(x)(Y) ≥ m & σa(x)(z) ≥ 1 → σa(z)(Y) ≥ n)
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— (5mn) Assume σ	a (u)(Y) ≥ m and σ	a (u)(z) ≥ 1. Suppose σ	a (z)(Y) < n. By
Proposition 7.7, there exists ϕ ∈ ⋂

Y such that 〈a〉nϕ �∈ v. By the assumption,
〈a〉mϕ ∈ u. Hence [a]〈a〉nϕ ∈ u. By σ	a (u)(z) ≥ 1, 〈a〉nϕ ∈ v, a contradiction. �

The graded epistemic logics KD45g and S5g, that will continue to play an important
role in this article, are defined as follows:

KD45g = Kg{D1, 4nn, 5nn | n > 0}
S5g = Kg{T1, 4nn, 5nn | n > 0}.

As a matter of minor interest, we note that axiom Bn1 is derivable from T1 and 5nn in S5g,
and that dually, 5nn is derivable from 4nn and B11 in the axiomatization consisting of S5g
plus B11 and minus 5nn. We therefore did not include B11 as a case in Theorem 3.2. The
logic KD45g can be viewed as the graded version of the standard logic of belief KD45, and
the logic S5g can be viewed as the graded version of the standard logic of knowledge S5.
We can make this correspondence clear in different ways. Firstly, consider graded models
where all grades are either 0 or 1. Then D1 = D, T1 = T , 411 = 4, B11 = B, and 511 = 5
are the standard modal logical axioms characterizing the frame properties of, respectively,
seriality, reflexivity, transitivity, symmetry, and euclidicity. Secondly, consider truth in all
accessible worlds. This is definable as ¬〈a〉1¬ϕ. We can thus define knowledge in S5g as

Kaϕ := ¬〈a〉1¬ϕ.
Clearly, this also defines belief as conviction in KD45, in the irrevocable sense of Lenzen
(1978) and Segerberg (1998). We resist the temptation to write Baϕ for that, and simply
write (as Segerberg) Kaϕ for both Knowledge and Konviction.

To see why this temptation must be resisted, let us return to our original motivation that
we can measure the certainty in a proposition ϕ as the number of worlds in which it is true.
A way to define belief in ϕ in a graded model is when the certainty of ϕ is (strictly) larger
than the certainty in ¬ϕ. This can be a primitive binary operator in a logical language. An
infinitary way to define belief by abbreviation in our language is

Baϕ :=
∨
n∈N
(〈a〉nϕ ∧ ¬〈a〉n¬ϕ).

This may not be a formula. But on finite models, a finite subset of N will suffice and this
finite disjunction will then be a formula in the language. We recall that the idea of belief as
a majority of ϕ worlds was mentioned in the introduction as motivating our investigation
(van der Hoek, 1992). Similar ideas have been pursued for a long time by, for example,
Ghosh & de Jongh (2013), Lenzen (2003), Pacuit & Salame (2004), and Segerberg (1971).
It also relates to probabilistic approaches. Pacuit & Salame (2004) is an interesting case
as it proposes ‘majority spaces’ to allow for the definition of belief on infinite domains,
and gives a complete axiomatization for a graded modal logic in that setting (although
otherwise very different from ours).

In graded models for the logics KD45g and S5g, instead of associating a degree n with
a pair of worlds (w, v) such that σa(w)(v) = n, we can associate that degree with the
second world v of that pair. It is easy to see that the frame axioms enforce that, in case
σa(w)(v) = n, then for any x and m with σa(x)(v) = m, m = n (all arrows pointing to a
world have the same weight). In such cases, a simpler visualization suffices than for graded
models in general.

For example, the ‘S5-like’ graded model on the left can be pictured as the one on the
right, wherein worlds in the same epistemic equivalence class are linked (and reflexivity,
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symmetry, and transitivity are thus assumed). In the continuation, we will use this visual-
ization.

v w
2

1
1 2 v w

1 2

§4. Graded public announcement logic. In this section and in the next section, we
consider dynamic extensions of graded epistemic logics. In this section, we first discuss
the public announcement extension, followed by a motivating example. In the next section,
we present the extension with graded event models and their corresponding modalities, and
subsequently examples of such complex dynamics.

The language of the public announcement logic Lg
PA is an extension of Lg

EL by adding
a clause for public announcement formulae of the form 〈ϕ〉ψ to the inductive language
definition, and where [ϕ]ψ is defined by abbreviation as ¬〈ϕ〉¬ψ .

DEFINITION 4.1. Given a graded model M = (W, {σa}a∈A,V) and a formula ϕ ∈ Lg
PA

such that �ϕ�M �= ∅, define the updated model of M by ϕ as Mϕ = (Wϕ, {σϕa }a∈A,Vϕ)
where

Wϕ = �ϕ�M;
for all w, u ∈ Wϕ , σϕa (w)(u) = σa(w)(u);
Vϕ(p) = V(p) ∩ Wϕ , for each p ∈ Prop.

The truth of a public announcement formula 〈ϕ〉ψ is defined as follows:

M,w �g 〈ϕ〉ψ iff M,w �g ϕ and Mϕ,w �g ψ .

The public announcements respect graded bisimulation over graded models, namely, we
have the following model-theoretic result:

PROPOSITION 4.2. Let M = (W, {σa}a∈A,V) and M′ = (W ′, {σ ′
a}a∈A,V ′) be graded

models. For every formula ϕ ∈ Lg
PA such that �ϕ�M �= ∅, if Z : M �g M′, then Zϕ :

Mϕ �g M′ϕ , where Zϕ = Z ∩ (�ϕ�M × �ϕ�M′).

Proof. Assume Z : M �g M′. Let wZϕw′. Then wZw′. Hence the atomic condition is
satisfied. For the forth condition, assume that σϕa (w)(X) = i > 0 and σϕa (w)(u) > 0 for
all u ∈ X. Then σa(w)(X) = i > 0 and σa(w)(u) > 0 for all u ∈ X. Then there exists
X′ ∈ P(W ′) such that σ ′

a(w
′)(X′) = i > 0 and XZX′. Since X ⊆ Wϕ , one can easily show

that X′ ⊆ W ′ϕ . Hence σ ′ϕ
a (w′)(X′) ≥ n and XZϕX′. The back condition is similar. �

Let PALg be the proof system consisting of Kg plus the set of reduction axioms RAPAL
listed in Table 2. We call this graded public announcement logic.

THEOREM 4.3. Graded public announcement logic PALg is sound and complete with
respect to the class of graded models.

Table 2. Reduction axioms RAPAL
(RAt) 〈ϕ〉p ↔ (ϕ ∧ p)
(R¬) 〈ϕ〉¬ψ ↔ ϕ ∧ ¬〈ϕ〉ψ
(R∧) 〈ϕ〉(ψ ∧ χ) ↔ 〈ϕ〉ψ ∧ 〈ϕ〉χ
(R�) 〈ϕ〉〈a〉nψ ↔ (ϕ ∧ 〈a〉n〈ϕ〉ψ)
(RComp) 〈ϕ〉〈ψ〉χ ↔ 〈〈ϕ〉ψ〉χ
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Proof. The completeness is reduced to the completeness of Kg by reduction axioms. The
soundness can be checked routinely. Here we check only the validity of (R〈a〉n). If n = 0,
it is valid obviously. Suppose n > 0. Assume M,w �g 〈ϕ〉〈a〉nψ . Therefore, M,w �g ϕ
and Mϕ,w �g 〈a〉nψ . Then there is a finite subset X ⊆ Wϕ such that σϕa (w)(X) ≥ n
and Mϕ, u �g ψ for every u ∈ X. Therefore, also σa(w)(X) ≥ n. Let u ∈ X. Clearly,
M, u �g ϕ. Therefore, M, u �g 〈ϕ〉ψ . Hence, M,w �g 〈a〉n〈ϕ〉ψ . Conversely, assume
M,w �g ϕ ∧ 〈a〉n〈ϕ〉ψ . Then there is a finite subset X ⊆ W such that σa(w)(X) ≥ n and
M, u �g 〈ϕ〉ψ for all u ∈ X. Let u be any state in X. Then M, u �g ϕ and Mϕ, u �g ψ .
We still have that σϕa (w)(X) ≥ n. Hence, Mϕ,w �g 〈a〉nψ . Therefore we can conclude
that M,w �g 〈ϕ〉〈a〉nψ . �

For any graded epistemic logic 	, a graded model M is called a graded model for 	 if
M |� ϕ for all ϕ ∈ 	. The class of all graded models for 	 is denoted by Mod(	). We
say that 	 respects public announcement if Mod(	) is closed under the model operation
(.)ϕ , i.e., M ∈ Mod(	) implies Mϕ ∈ Mod(	), for any formula ϕ ∈ Lg

PA. The public
announcement extension of 	 is defined as the logic PALg	 obtained from 	 by adding
all reduction axioms RAPAL listed in Table 2.

THEOREM 4.4. If a graded epistemic logic 	 respects public announcement, then the
public announcement logic PALg	 is sound and complete with respect to Mod(	).

Proof. Directly from Theorem 4.3. �
The following rule (RE) of the replacement of equivalents is derivable in PALg	 (use

the method in van Ditmarsch et al., (2007)):

ϕ ↔ ψ

χ ↔ χ [ϕ/ψ]
(RE),

where χ [ϕ/ψ] is obtained from χ by replacing one or more occurrences of ϕ in χ by ψ .
An alternative complete axiomatization consists of PALg	 \ RComp ∪ RE, along the lines
spelled out in detail by Wang and Cao (2013).

For PAgKg� with � = {T1, 4nn, 5nn | n > 0} we write PAgS5g. This is the graded
modal equivalent of the public announcement logic by Plaza (1989).

COROLLARY 4.5. PAgS5g is sound and complete with respect to Mod(PAgS5g).

Proof. We use that the weak second-order conditions for the characteristic axioms in
PAgS5g, by Proposition 3.1, are universal (i.e., without existential quantifiers); hence they
are preserved under taking subframes. Therefore S5g respects public announcement. �

It should be noted the logic KD45g does not respect public announcements, as the D1
axiom is an existential condition. It is well known that consistency of belief (i.e., in our
setting, whether 〈a〉1	 is true) may not be preserved after truthful announcement (Balbiani,
van Ditmarsch, Herzig, & de Lima, 2012; van Ditmarsch et al., 2007).

EXAMPLE 4.6. Consider a single-agent S5 model M consisting of five worlds:

pqr—pqr—pqr—pqr—pqr.

We assume the agent is anonymous, so the links have not been labelled. We name worlds
by their valuations, where for example pqr stands for a world where p is false, q is true,
and r is false. We can see this as a graded ‘S5-like’ model where the grades of all worlds
are 1 (as explained in the previous section). We note that the two pqr worlds are graded
bisimilar, but that they cannot be identified (unless we were to increase the grade of that
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single world to 2). We have that M �g Bap, as p is true in three and false in two worlds.
(And this is indeed a model validity.)

The announcement of q will make the agent lose her belief in p, as Mq consists of three
worlds only of which one satisfies p and two satisfy ¬p:

pqr—pqr—pqr.

Therefore, we have that M �g Bap ∧ [q]¬Bap.
On the other hand, the announcement of r in M will strengthen the agent’s belief in p as

there are now no longer ¬p worlds, even up to it becoming knowledge:

pqr—pqr—pqr.

We now have that M �g ¬Kap ∧ [r]Kap.

§5. Graded event model logic. Graded public announcement logic is a straightfor-
ward extension of graded epistemic logic. For the dynamics of nonpublic events, action
models, also known as event models, are very appropriate (Baltag, Moss, & Solecki, 1998).
An event model is a structure like a Kripke model, but with preconditions instead of valua-
tions per domain object. Executing an action corresponds to computing a modal product of
a Kripke model and an event model, thus producing a new Kripke model. The peculiarity
of event model logic is that such event models also figure as syntactic primitives, i.e.,
as parameters of dynamic modalities. In graded modal logic, we can entirely copy this
approach, with the obvious difference that the actions are now based on graded frames
instead of Kripke frames.

We will first give essential definitions, the semantics, a complete axiomatization, and
after that some extended examples. The axiomatization is not as straightforward as that of
graded public announcement logic. The interaction between graded modalities and graded
events is surprisingly straightforward, and the comparison with standard event model logic
rather surprising.

DEFINITION 5.1. A graded event model is a tuple E = (E, {σa}a∈A,Pre) where E is the
domain of events or actions, (E, {σa}a∈A) is a graded frame, and Pre : E → L, where L
is a logical language, is a precondition function.

In Definition 5.1, L can be any logical language. In this contribution, we only consider
the following logical language. The logical language Lg

DEL is defined as the extension
of Lg

EL with an inductive clause 〈E, e〉ϕ, where e is in the domain E of E, and with the
restriction that E is finite. The formulas in the language Lg

DEL and the finite graded event
models should be simultaneously defined. (This means that given a formula ψ = 〈E, e〉ϕ,
all precondition formulas of events in E are less complex than ψ .)

A public announcement is a singleton (graded) event model, with as precondition the
announcement formula, and with that event graded 1 for all agents.

DEFINITION 5.2. Given a graded model M = (W, {σa}a∈A,V) and a graded event model
E = (E, {σa}a∈A,Pre) we define the product update of M by E as the graded model
M ⊗ E = (WE, {σE

a }a∈A,VE) where

— WE = {(w, e) : M,w �g Pre(e)}.
— σE

a (w, e)(v, f ) = σa(w)(v) · σa(e)(f ).
— VE(p) = {(w, e) : w ∈ V(p)}, for each p ∈ Prop.
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Table 3. Reduction axioms RADEL for graded event models
(DRAt) 〈E, e〉p ↔ Pre(e) ∧ p
(DR¬) 〈E, e〉¬ϕ ↔ Pre(e) ∧ ¬〈E, e〉ϕ
(DR∧) 〈E, e〉(ϕ ∧ ψ) ↔ 〈E, e〉ϕ ∧ 〈E, e〉ψ
(DRComp) 〈E, e〉〈E′, e′〉ϕ ↔ 〈E ◦ E′, (e, e′)〉ϕ
(DR⊗) 〈E, e〉〈a〉mϕ ↔ Pre(e) ∧ ∨

S
∧

f∈E〈a〉nf 〈E, f 〉ϕ
where m = �f∈E(nf · σa(e)(f )) and S = {�nf : m = �f∈E(nf · σa(e)(f ))}

The truth of 〈E, e〉ϕ at a state in a graded model is defined as follows:

M,w �g 〈E, e〉ϕ iff M,w �g Pre(e) and M ⊗ E, (w, e) �g ϕ.

Given graded model M and graded event model E, it is easy to see that M ⊗ E is a
graded model.

DEFINITION 5.3. Given graded event models E = (E, {σa}a∈A,Pre) and E′ = (E′,
{σ ′

a}a∈A,Pre′), their composition E′′ = E ◦ E′ is defined as the graded event model
E′′ = (E′′, {σ ′′

a }a∈A,Pre′′) where

— E′′ = E × E′.
— σ ′′

a (e, e′)(f , f ′) = σa(e)(f ) · σ ′
a(e

′)(f ′).
— Pre′′(e, e′) = Pre(e) ∧ 〈E, e〉Pre′(e′).

PROPOSITION 5.4. Schema 〈E ◦ E′, (e, e′)〉ϕ ↔ 〈E, e〉〈E′, e′〉ϕ is valid.

Proof. Obvious. �

PROPOSITION 5.5. Let M = (W, {σa}a∈A,V) and M′ = (W ′, {σ ′
a}a∈A,V ′) be graded

models. For any graded event model E = (E, {σa}a∈A,Pre), if Z : M �g M′, then
ZE : M ⊗ E �g M′ ⊗ E, where ZE = Z ∩ (WE × W ′E).

Proof. Similar to Theorem 4.2. �
The reduction axioms RADEL are listed in Table 3.1 Let KgRADEL be the axiomatic system

obtained from Kg by adding the reduction axioms in RADEL.

THEOREM 5.6. The dynamic graded epistemic logic KgRADEL is sound and complete with
respect to the class of all graded models.

Proof. As in the case for the public announcement logic PALg, the completeness of
KgRADEL is reduced to the completeness of Kg by reduction axioms. The soundness can be
checked routinely, with the exception of the axiom DR⊗.

We now prove that DR⊗ is valid. Let M = (W, {σa}a∈A,V) and w ∈ W be given.
(⇒) Let M,w �g 〈E, e〉〈a〉mϕ. By definition, M,w �g Pre(e) and M ⊗ E, (w, e) �g

〈a〉mϕ, i.e., there is X such that σa(w, e)(X) ≥ m and for all (v, f ) ∈ X, M⊗E, (v, f ) �g ϕ.
If m = 0, take X = ∅ and all nf = 0 and we are done. So let m > 0.

Let F = {f ∈ E : ∃v ∈ W, (v, f ) ∈ X}, let for all f ∈ F, Vf = {v ∈ W : (v, f ) ∈ X}
and maxf := σa(w)(Vf ), and for all f �∈ F, maxf := 0. The set Vf consists of all worlds
(occurring in pairs of X) wherein f can be executed. First observe that:

1 The (correct version of) axiom (DR⊗) was suggested by an anonymous reviewer of the journal.
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σa(w, e)(X) = �(v,f )∈Xσa(w, e)(v, f )
= �(v,f )∈X(σa(w)(v) · σa(e)(f ))
= �f∈F(�v∈Vf (σa(w)(v) · σa(e)(f )))
= �f∈F(σa(w)(Vf ) · σa(e)(f ))
= �f∈F(maxf · σa(e)(f ))
= �f∈F(maxf · σa(e)(f ))+�f �∈F(0 · σa(e)(f ))
= �f∈E(maxf · σa(e)(f )).

For all f ∈ F, choose nf ≤ maxf such that m = �f∈E(nf · σa(e)(f )). This choice can
be made, because �f∈E(nf · σa(e)(f )) ≤ �f∈E(maxf ·σa(e)(f )) = σa(w, e)(X), and our
assumption was that m ≤ σa(w, e)(X).

We can now prove our claim that for all f ∈ E, M,w �g 〈a〉nf 〈E, f 〉ϕ. By the semantic
definition this is equivalent to: there is a Y such that σa(w, Y) ≥ nf and M, v �g 〈E, f 〉ϕ
for all v ∈ Y . For f �∈ F, nf ≤ maxf = 0, so this is satisfied for choice Y = ∅ (we
recall that 〈a〉0ψ is a validity for any ψ). For f ∈ E, Choose Y = Vf . We now use the
assumption that σa(w, e)(X) ≥ m, from which, given our choice of nf as above, it follows
that σa(w, Y) = σa(w,Vf ) = maxf ≥ nf . We further need to establish M, v �g 〈E, f 〉ϕ,
i.e., M, v �g Pre(f ) and M ⊗ E, (v, f ) �g ϕ. Both follow from the observation that
(v, f ) ∈ X: we recall for all (v, f ) ∈ X, M ⊗ E, (v, f ) �g ϕ.

(⇐)
The other direction follows more directly, by taking the nf given in the assumption.
Given that soundness is established, the completeness of KgRADEL is reduced to the

completeness of Kg by showing that all formulae are provably equivalent to formulae
without graded event models. �

Also, as for public announcement (graded) modal logic PALg, we can extend the logic
with axioms for frame properties, and thus (e.g.,) show that graded dynamic epistemic
logic with additionally axioms {Tn, 4mn, 5mn | m, n > 0} is sound and complete on
class S5g. Furthermore, we similarly have the choice in the axiomatization between the
composition of event models axiom DRComp or the derivation rule RE of the replacement
of equivalents “From ϕ ↔ ψ , infer χ ↔ χ [ϕ/ψ].” Both axiomatizations are complete.

Let us explain the shapes of the axioms to reduce a graded modality after an announce-
ment, and to reduce a graded modality after a graded event, in relation to each other and
to their classical counterparts for Kripke semantics R�K (Plaza, 1989) and DR⊗K (Baltag
et al., 1998). We recall that they are as follows, where in DR⊗ set S consists of all lists of
grades nf for which m = �f∈E(nf · σa(e)(f )).

R�K 〈ψ〉〈a〉ϕ ↔ ψ ∧ 〈a〉〈ψ〉ϕ
DR⊗K 〈E, e〉〈a〉ϕ ↔ Pre(e) ∧ ∨

f∈Ra(e)〈a〉〈E, f 〉ϕ
R� 〈ψ〉〈a〉nϕ ↔ ψ ∧ 〈a〉n〈ψ〉ϕ
DR⊗ 〈E, e〉〈a〉mϕ ↔ Pre(e) ∧ ∨

S
∧

f∈E〈a〉nf 〈E, f 〉ϕ.

To see why R� is a special case of DR⊗, consider the following rephrasings of the axiom
DR⊗ for the case of a graded event model for public announcement.

(i) 〈E, e〉〈a〉mϕ ↔ Pre(e) ∧ ∨
S
∧

f∈E〈a〉nf 〈E, f 〉ϕ
(ii) 〈E, e〉〈a〉mϕ ↔ Pre(e) ∧ ∨

S〈a〉ne〈E, e〉ϕ
(iii) 〈E, e〉〈a〉neϕ ↔ Pre(e) ∧ 〈a〉ne〈E, e〉ϕ
(iv) 〈ψ〉〈a〉neϕ ↔ ψ ∧ 〈a〉ne〈ψ〉ϕ
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We can identify (i) and (ii) because the graded event model for a public announcement is a
singleton E = {e}. We can identify (ii) and (iii) because the set S consists of the one-item
list ne only, so that m = ne · σa(e)(e) = ne · 1 = ne. We can identify (iii) and (iv) because
Pre(e) = ψ . This is straightforward.

How to see DR⊗K as a special case of DR⊗ is, we think, rather interesting. First, note
that in the summation m = �f∈E(nf · σa(e)(f )) we can restrict the set E of all events to
the set F = {f ∈ E : σa(e)(f ) > 0} of all events with positive grade from e’s perspective
for agent a. This set F is of course the same as the set Ra(e) = {f ∈ E : (e, f ) ∈ Ra} in
Kripke semantics, of events f that are accessible from e by a. Therefore, m = �f∈Ra(e)(nf ·
σa(e)(f )).

Next, note that what only counts in Kripke semantics is that the disjunction over all
S is such that their grades add up in some way: it only matters that m > 0. So from
the set S consisting of all lists of grades nf for which m = �f∈Ra(e)(nf · σa(e)(f )) we
can choose any member that makes m positive. For this it suffices that for any of the
f ∈ Ra(e), nf is positive. In other words, we can equate

∨
S
∧

f∈Ra(e)〈a〉nf 〈E, f 〉ϕ with∨
f∈Ra(e)〈a〉nf 〈E, f 〉ϕ. There is no need to count as long as we have 1. The last identification

we need is
〈E, e〉〈a〉mϕ ↔ Pre(e) ∧ ∨

f∈Ra(e)〈a〉nf 〈E, f 〉ϕ
〈E, e〉〈a〉ϕ ↔ Pre(e) ∧ ∨

f∈Ra(e)〈a〉〈E, f 〉ϕ.
Here again, we use that it only matters that m and nf are positive natural numbers, as in
the standard modal language 〈a〉 replaces 〈a〉n for any positive n. This observation also
explains the relation between R�K and R�.

We demonstrate the execution of graded event models and their usage in modelling
multiagent system dynamics with a number of examples. We illustrate change of knowl-
edge, namely where both the graded (static) model and the graded event model satisfy
the properties characterized by T1, 4nn, and 5nn for all n > 0, the principles of the logic
S5g. We further recall that a simpler visualization then suffices than for graded models in
general, where we only need to give weights to worlds. As an example of graded event
model execution, including the simpler visualization2 consider the following.

v w
¬p p

2

1

1 2

⊗ e f
¬p p

1

3

3 1

= (v, e) (w, f )
¬p p

2

3

3 2

p p
1 2

⊗ ¬p p
3 1

= p p
3 2

Observe that the execution is according to the semantics of event model execution. For
example, we have that σa(w, f )(v, e) = σa(w)(v) · σa(f )(e) = 1 · 3 = 3.

The initial model represents that the agent considers p twice as likely as ¬p (so is
inclined to believe that p; for example, to believe that she is running a fever), the event
model represents an update that is three times more likely to be with ¬p than with p
(for example, a partial observation of the value of p that is strongly inclined to be the
observation of ¬p; let us say the reading of a badly visible thermometer in a nearly dark

2 With some further simplifying assumptions already used before, such as writing p for the
valuation where p is false. Still, we write ¬p for the precondition formula, not valuation, of
an event.
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sickroom by a therefore conservative estimate, strongly favouring low readings), and as a
result of executing that event she changed her belief into that of ¬p (she now believes that
she is not running a fever).

Some other examples of graded event model execution are depicted in Figure 1. Let us
explain them informally. To keep things simple, let in all cases the graded model be called
M, where an initial p world is w and an initial ¬p world is v, and let the graded event model
be called E, where the left event is called e and the right event is called f (and in case v
the top event is called g). We recall the definitions of knowledge and belief from §3: An
agent believes ϕ if the ϕ worlds exceed the ¬ϕ words, and an agent knows ϕ if the degree
of ¬ϕ-accessible worlds is 0 (i.e., no ¬ϕ worlds are accessible).

(i) We have that M,w �g 〈E, f 〉〈a〉2p but M,w �g 〈a〉1〈E, f 〉p. Executing E in M
duplicates the model. Differently said: all weights double.

(ii) But it is not always the case that executing a two-event model duplicates the graded
model. The typical example is when one of the events can never be executed, as
here (precondition ⊥). So we now have M,w �g 〈E, f 〉〈a〉1p and also M,w �g

〈a〉1〈E, f 〉p. The degrees correspond before and after.

(iii) A different way to achieve the effect of (i) is to execute a singleton event with grade
2. It is tempting to consider a notion of ‘event emulation,’ along the lines of van
Eijck, Ruan, & Sadzik (2012), under which the events under (i) and (iii) are ‘the
same’ (i.e., have the same update effect).

(iv) This executes a classic scenario in dynamic epistemic logic: given a situation
wherein two agents a and b are uncertain about p, and where this is common
knowledge, agent b receives information about p and such that agent a observes
that b is informed about p without getting that information (for example, b re-
ceives a letter containing the truth about p and opens and reads the letter in the

p p
1

⊗ 	 	
1 1

= p p
2

(i)

p p
1

⊗ 	 ⊥
1 1

= p p
1

(ii)

p p
1

⊗ 	 	
2

= p p
2

(iii)

p p
1 1

ab ⊗ ¬p p
1 1

a = p p
1 1

a (iv)

p p
1 2

ab ⊗ ¬p p

	

1 1

4

a

a a

= p p
1 2

p p
4 8

a

aa

ab

aa

(v)

Fig. 1. Examples of graded event execution. For nonlabelled edges assume an agent a. Label ab
means that the worlds are indistinguishable for a and for b (there are two edges). The depicted
grades are only those for agent a. We further only assume that b has positive grade in any member of
any of his equivalence classes.
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presence of a). (In the graded event model (and in the resulting graded model), the
equivalence classes for b are singleton. Therefore, there is only an a link between
the events/worlds.)

(v) As a more complex variation on (iv), now consider a and b being uncertain about
p but with a certain bias towards p (they both believe p, because the degree of
the p world is larger than the degree of the ¬p world). Again, b receives a letter
containing the truth about p and opens and reads the letter in the presence of a.
However, a was temporarily absent (ordering cups of coffee at the counter) and
considers it possible that b has not yet read the letter. She even considers that much
more likely than that b read the letter (weight 4). In the resulting model M⊗ E, in
(bottom right) state (w, f ), agent a believes p (which is true but unjustified belief)
and agent b knows p; and a incorrectly believes that b is ignorant about p: we have
that M ⊗ E, (w, f ) �g 〈a〉10p ∧ 〈a〉5¬p. Therefore Bap. Also, M ⊗ E, (w, f ) �g

¬〈b〉1¬p, i.e., Kbp. Whereas, without further complicating matters with notation:
the grade of worlds where b knows whether p is 3 and the grade of worlds where b
is ignorant about p is 12, so that we have Kbp∧Ba¬(Kbp∨Kb¬p), for a incorrectly
believes that b is still uncertain about p.

§6. Conclusion. We proposed graded epistemic logics, interpreted on graded models
that are generalizations of Kripke models. We provided axiomatizations for such logics,
also with additional frame properties. Our main contribution is that we defined dynamic
extensions of graded epistemic logics, namely, graded public announcements logic and
graded event model logic, where we also presented complete axiomatizations for these
logics. The interaction between the dynamics and the graded modality is quite different
from the usual interaction in dynamic epistemic logics. We illustrate our logics with derived
belief and knowledge operators.

§7. Appendix: Completeness revisited. We first recall some standard terminology. A
graded epistemic logic 	 is said to be consistent, if ⊥ �∈ 	. A formula ϕ is a consequence
of a set of formulae � in 	, notation � �	 ϕ, if there is a finite subset � ⊆<ω � with∧
� → ϕ ∈ 	. We understand

∧ ∅ = 	 and
∨ ∅ = ⊥. A set of formulae � ⊆ Lg

EL is said
to be 	-consistent, if � ��	 ⊥. A 	-consistent set � is called maximal 	-consistent, if �
has no proper superset which is	-consistent. We use u, v etc. to denote maximal consistent
sets. It is easy to check that the Lindenbaum lemma holds, i.e., every 	-consistent set of
formulae can be extended to be a maximal one.

LEMMA 7.1. Let 	 be a consistent graded epistemic logic, and u be a maximal 	-
consistent set. The following hold:

(1) 	 ⊆ u and ⊥ �∈ u.

(2) ¬ϕ ∈ u iff ϕ �∈ u.

(3) ϕ ∨ ψ ∈ u iff ϕ ∈ � or ψ ∈ u.

(4) ϕ ∧ ψ ∈ u iff ϕ ∈ u and ψ ∈ u.

(5) if 〈a〉!nϕ ∈ u, then 〈a〉!mϕ �∈ u for any m �= n.

(6) either ∀n ∈ N(〈a〉nϕ ∈ u), or ∃n ∈ N(〈a〉!nϕ ∈ u).

(7) if ϕ → ψ ∈ 	 and 〈a〉!nψ ∈ u, there exists unique m ≤ n with 〈a〉!mϕ ∈ u.

Proof. Items (1)–(4) are properties that hold for every maximal consistent set.
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(5) Assume 〈a〉!nϕ ∈ u and 〈a〉!mϕ ∈ u. Assume m < n without loss of generality. Then
m + 1 ≤ n. By 〈a〉!nϕ ∈ u, we have 〈a〉nϕ ∈ u. Because 〈a〉nϕ → 〈a〉m+1ϕ ∈ 	, we have
〈a〉m+1ϕ ∈ u, a contradiction. Then m = n.

(6) Assume 〈a〉nϕ �∈ u for some n ∈ N. Then n �= 0. Let m be the least number such that
〈a〉mϕ �∈ u. Then 〈a〉m−1ϕ ∈ u. Hence 〈a〉!(m−1)ϕ ∈ u.

(7) Assume ϕ → ψ ∈ 	 and 〈a〉!nψ ∈ u. Then 〈a〉nψ ∈ u and 〈a〉n+1ψ �∈ u. Since
ϕ → ψ ∈ 	, we have 〈a〉n+1ϕ → 〈a〉n+1ψ ∈ 	. Hence 〈a〉n+1ϕ �∈ u. By (6), there exists
m ∈ N with 〈a〉!mϕ ∈ u. By (5), m is unique. Assume n < m. Then n + 1 ≤ m. Hence
〈a〉mϕ → 〈a〉n+1ϕ ∈ 	. By 〈a〉mϕ ∈ u, we have 〈a〉n+1ϕ ∈ u, a contradiction. �

DEFINITION 7.2. For any graded epistemic logic 	, the canonical model M	 = (W	,
{σ	a }a∈A,V	) is defined as follows:

(1) W	 = {u | u is a maximal 	-consistent set of Lg
EL-formulae}.

(2) Define σ	a as follows:

σ	a (u)(v) =
{
ω, if ∀ϕ ∈ v∀n ∈ N(〈a〉nϕ ∈ u).

min{n ∈ N | 〈a〉!nϕ ∈ u & ϕ ∈ v}, otherwise.

(3) V	(p) = {u ∈ W	 | p ∈ u} for each p ∈ Prop.

Note that the definition of the function σ	 is sound by Lemma 7.1(6). We say that F	 =
(W	, {σ	a }a∈A) is the canonical frame for 	.

LEMMA 7.3. For pairwise different maximal	-consistent sets u0, . . . , un (n > 0), there
exist formulae ϕ0, . . . , ϕn such that ϕi ∈ ui and ϕi ∧ ϕj ↔ ⊥ ∈ 	 for all i �= j ≤ n.

Proof. By induction on n > 0. For n = 1, let u0 �= u1. Then there is a formula ϕ0 ∈ u0
such that ϕ0 �∈ u1. Then ¬ϕ0 ∈ u1, and ϕ0 ∧ ¬ϕ0 ↔ ⊥ ∈ 	. For the inductive step,
let u0, . . . , un, un+1 be pairwise different. By induction hypothesis, ϕ0 ∈ u0, . . . , ϕn ∈ un

such that ϕi ∧ ϕj ↔ ⊥ ∈ 	 for i �= j ≤ n. Let ψ0, . . . , ψn ∈ un+1 and ψi �∈ ui for i ≤ n.
Let ψ = ψ0 ∧ · · · ∧ ψn. Then ψ �∈ ui and hence ¬ψ ∈ ui for i ≤ u. Let θi = ϕi ∧ ¬ψ for
i ≤ n and θn+1 = ψ . Obviously θi ∈ ui and θi ∧ θj ↔ ⊥ ∈ 	 for i �= j ≤ n + 1. �

LEMMA 7.4. Let u be a maximal 	-consistent set, and ϕ0, . . . , ϕk (k ≥ 0) be formulae
such that 〈a〉!niϕi ∈ u and ϕi ∧ ϕj ↔ ⊥ ∈ 	 for all i �= j ≤ k. Let ϕ = ϕ0 ∨ · · · ∨ ϕk and
n = n0 + · · · + nk. Then 〈a〉!nϕ ∈ u.

Proof. By induction on k. We separately distinguish k = 0, that is a trivial case, and
k = 1. For k = 1, let 〈a〉!n0ϕ0 ∈ u, 〈a〉!n1ϕ1 ∈ u, ϕ = ϕ0 ∨ ϕ1, n = n0 + n1 and
ϕ0 ∧ϕ1 ↔ ⊥ ∈ 	. Then we have ¬(ϕ0 ∧ϕ1) ∈ 	. By (Gen), we have [a]¬(ϕ0 ∧ϕ1) ∈ 	.
Then ¬〈a〉(ϕ0 ∧ϕ1) ∈ 	. Since ¬〈a〉(ϕ0 ∧ϕ1) → (〈a〉!n0ϕ0 → (〈a〉!n1ϕ1 → 〈a〉!nϕ)) ∈ 	
by (Ax6), 〈a〉!n0ϕ0 ∈ u and 〈a〉!n1ϕ1 ∈ u, we have 〈a〉!nϕ ∈ u. For the inductive step,
let 〈a〉!niϕi ∈ u and ϕi ∧ ϕj ↔ ⊥ ∈ 	 for all i �= j ≤ k + 1. Let ϕ = ϕ0 ∨ · · · ∨ ϕk,
and n = n0 + · · · + nk. By induction hypothesis, we have 〈a〉!nϕ ∈ u. Clearly ¬〈a〉(ϕ ∧
ϕk+1) ∈ 	 and 〈a〉!nk+1ϕk+1 ∈ u. By a similar argument as for the case k = 1, we have
〈a〉!(n+nk+1)(ϕ ∨ ϕk+1) ∈ u. �

LEMMA 7.5. Let u, v be maximal 	-consistent sets. Then

(1) σ	a (u)(v) ≥ n iff 〈a〉nϕ ∈ u for all ϕ ∈ v.

(2) if 〈a〉ϕ ∈ u, there exists v ∈ W	 such that σ	a (u)(v) ≥ 1 and ϕ ∈ v.
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Proof. (1) The case for n = 0 is obvious. Let n > 0. Assume σ	a (u)(v) ≥ n and ϕ ∈ v
but 〈a〉nϕ �∈ u. By Lemma 7.1(6), there exists m ∈ N such that 〈a〉!mϕ ∈ u. Clearly, m < n.
Hence σ	a (u)(v) ≤ m < n, a contradiction. Conversely, assume 〈a〉nϕ ∈ u for all ϕ ∈ v, but
σ	a (u)(v) = k < n. Then ψ ∈ v and 〈a〉!kψ ∈ u for some formula ψ . Hence 〈a〉k+1ψ �∈ u.
By the assumption, for ψ ∈ v, we have 〈a〉nψ ∈ u. Since k < n, we have k + 1 ≤ n and so
〈a〉nψ → 〈a〉k+1ψ ∈ 	. Then 〈a〉k+1ψ ∈ u, a contradiction.

(2) Assume 〈a〉ϕ ∈ u. Consider the set � = {ϕ} ∪ {ψ | [a]ψ ∈ u}. Now, we show
that � is 	-consistent. Suppose not. There exist ψ1, . . . , ψn such that [a]ψi ∈ u for i ∈
{1, . . . , n} and ϕ1 ∧ · · · ∧ ψn → ¬ϕ ∈ 	. By (Gen) and the distributivity of [a] over
conjunction, [a]ϕ1 ∧ · · · ∧ [a]ψn → ¬〈a〉ϕ ∈ 	. Hence ¬〈a〉ϕ ∈ u, i.e., 〈a〉ϕ �∈ u, a
contradiction. �

LEMMA 7.6 (Truth). For every formula ϕ ∈ Lg
EL, M	, u �g ϕ iff ϕ ∈ u.

Proof. By induction on the complexity of ϕ. The atomic and Boolean cases are easy.
Let ϕ := 〈a〉nψ . For n = 0, the lemma holds obviously. For n = 1, the lemma holds by
Lemma 7.5(2). Assume n > 1.

(1) Assume M	, u �g 〈a〉nψ . There is X = {v0, . . . , vm} ⊆ W	 with σ	a (u)(X) ≥ n
and vi �g ψ for all i ≤ m. Let σ	a (u)(vi) = ni for i ≤ m. We may assume that each ni > 0,
and that states in X are pairwise different. There are two cases:

(1.1) ni ≥ n for some i ≤ m. By induction hypothesis and the assumption vi �g ψ , we
have ψ ∈ vi. Since ni ≥ n, by Lemma 7.5(1), 〈a〉nψ ∈ u.

(1.2) 0 < ni < n for every i ≤ m. Let k = n0 + · · · + nm ≥ n. Obviously, m > 0,
otherwise, σ	a (u)(X) = n0 < n. Since σ	a (u)(vi) = ni for each i ≤ m, there exists χi ∈ vi

such that 〈a〉!niχi ∈ u for i ≤ m. Since states in X are pairwise different, ξi ∈ vi and
ξi ∧ ξj ↔ ⊥ ∈ 	 for i �= j ≤ m. Let θi = χi ∧ ξi ∧ ψ for i ≤ m, and θ = θ0 ∨ · · · ∨ θm.
Then θi ∈ vi and θi ∧ θj ↔ ⊥ ∈ 	 for i �= j ≤ m.

Now we show 〈a〉!niθi ∈ u. Suppose 〈a〉niθi �∈ u. Then there is r < ni such that 〈a〉!rθi ∈
u, a contradiction to σ	(u)(vi) = ni. Suppose 〈a〉ni+1θi ∈ u. Clearly, θi → χi ∈ 	. Hence
〈a〉ni+1χi ∈ u, a contradiction.

Therefore, 〈a〉!niθi ∈ u for all i ≤ m. Finally, by Lemma 7.4, we have 〈a〉!kθ ∈ u. Since
k ≥ n, 〈a〉nθ ∈ u. Since θ → ψ ∈ 	, 〈a〉nψ ∈ u.

(2) Assume 〈a〉nψ ∈ u. Since n > 1, we have 〈a〉nψ → 〈a〉ψ and so 〈a〉ψ ∈ u. By
Lemma 7.5, there exists v ∈ W	 such that σ	a (u)(v) ≥ 1 and ψ ∈ v. We distinguish the
following three cases.

If there are infinitely many such v, then by induction and the semantic definition of
〈a〉nψ we have M	, u �g 〈a〉nψ .

If there exists v ∈ W	 such that σ	a (u)(v) ≥ n and ψ ∈ v, then again by induction and
the semantic definition of 〈a〉nψ we have M	, u �g 〈a〉nψ .

Finally, assume that there are only finitely many pairwise different v0, . . . , vm ∈ W	

such that for each i ≤ m, 0 < σ	a (u)(vi) and ψ ∈ vi, and suppose for each i ≤ m that
0 < σ	a (u)(vi) = ni < n. Clearly, 〈a〉ni+1ψ ∈ u since 〈a〉nψ ∈ u and n ≥ ni + 1
(Axiom 4). Let χi ∈ vi, 〈a〉!niχi ∈ u, and ξi ∈ vi, ξi ∧ ξj ↔ ⊥ ∈ 	 for i �= j ≤ m.
Let k = n0 + · · · + nm. It suffices to show k ≥ n. Let θi = χi ∧ ξi ∧ ψ for i ≤ m, and
θ = θ0 ∨ · · · ∨ θm. By the argument in (1), 〈a〉!kθ ∈ u. Let θ ′ = ¬ ∨

i≤m(χi ∧ ξi). Then
θ ∧ θ ′ ↔ ⊥ ∈ 	 and ψ ↔ θ ∨ (θ ′ ∧ ψ) ∈ 	.

Now we show 〈a〉(θ ′ ∧ ψ) �∈ u. Suppose not. There is w ∈ W	 such that σ	a (u)(w) ≥ 1
and θ ′ ∧ψ ∈ w. Then ψ ∈ w. Hence w = vj for some j ≤ m. Then θ ′ ∈ vj, a contradiction.
Therefore, ¬〈a〉(θ ′ ∧ ψ) ∈ u, i.e., 〈a〉!0(θ

′ ∧ ψ) ∈ u. From that and 〈a〉!kθ ∈ u follows by
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(Axiom 6) that 〈a〉!k(θ ∨ (θ ′ ∧ ψ)) ∈ u, i.e., 〈a〉!kψ ∈ u. Suppose k < n. Since 〈a〉nψ ∈ u,
〈a〉k+1ψ ∈ u, a contradiction. Therefore, k ≥ n. By induction hypothesis, similarly to
above, again it follows that M	, u �g 〈a〉nψ . �

By Truth Lemma 7.6, one easily obtains strong completeness of Kg with respect to the
class of all graded frames. This completes the alternative proof of Theorem 2.16.

The final result in the appendix is used to prove completeness of extensions 	 of Kg for
frame classes with additional properties.

PROPOSITION 7.7. For every graded epistemic logic 	, u ∈ W	 and X ∈ P+(W	),
σ	a (u)(X) ≥ n iff 〈a〉nϕ ∈ u for all ϕ ∈ ⋂

X.

Proof. For the ‘only if’ part, assume that σ	a (u)(X) ≥ n and ϕ ∈ ⋂
X. If ∃v ∈

X(σ	a (u)(v) = ω), then obviously 〈a〉nϕ ∈ u. Assume ∀v ∈ X(σ	a (u)(v) < ω). Let
X = {v0, . . . , vm} and σ	a (u)(vi) = ni < ω for i ≤ m. For all vi ∈ X, from ϕ ∈ vi and
Truth Lemma 7.6 it follows that M	, vi �g ϕ. From that and n0 + · · · + nm ≥ n one gets
M	, u �g 〈a〉nϕ. By Lemma 7.6, one gets 〈a〉nϕ ∈ u.

For the ‘if’ part, assume 〈a〉nϕ ∈ u for all ϕ ∈ ⋂
X. For a contradiction, assume

σ	a (u)(X) < n. Let X = {v0, . . . , vm} and σ	a (u)(vi) = ni for i ≤ m. Then n0 + · · ·+ nm =
k < n. Let χi ∈ vi, 〈a〉!niχi ∈ u, and ξi ∈ vi, ξi ∧ξj ↔ ⊥ ∈ 	 for i �= j ≤ m. Let θi = χi ∧ξi

for i ≤ m, and θ = θ0 ∨ · · · ∨ θm. Then θi ∈ vi and θi ∧ θj ↔ ⊥ ∈ 	 for i �= j ≤ m. It is
easy to see that 〈a〉!niθi ∈ u. Hence 〈a〉!niθi ∈ u for all i ≤ m. By Lemma 7.4, 〈a〉!kθ ∈ u.
Note that θ ∈ ⋂

X and 〈a〉k+1θ �∈ u. By k + 1 ≤ n, 〈a〉nθ �∈ u, a contradiction. �
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