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Σ1(κ)-DEFINABLE SUBSETS OF H(κ+)

PHILIPP LÜCKE, RALF SCHINDLER, AND PHILIPP SCHLICHT

Abstract. We study Σ1(�1)-definable sets (i.e., sets that are equal to the collection of all sets satisfying a
certain Σ1-formula with parameter�1) in the presence of large cardinals. Our results show that the existence
of a Woodin cardinal and a measurable cardinal above it imply that no well-ordering of the reals is Σ1(�1)-
definable, the set of all stationary subsets of �1 is not Σ1(�1)-definable and the complement of every
Σ1(�1)-definable Bernstein subset of

�1�1 is not Σ1(�1)-definable. In contrast, we show that the existence
of a Woodin cardinal is compatible with the existence of a Σ1(�1)-definable well-ordering of H(�2) and
the existence of a Δ1(�1)-definable Bernstein subset of

�1�1. We also show that, if there are infinitely many
Woodin cardinals and a measurable cardinal above them, then there is no Σ1(�1)-definable uniformization
of the club filter on �1. Moreover, we prove a perfect set theorem for Σ1(�1)-definable subsets of

�1�1,
assuming that there is a measurable cardinal and the nonstationary ideal on �1 is saturated. The proofs of
these results use iterated generic ultrapowers and Woodin’s Pmax-forcing. Finally, we also prove variants of
some of these results for Σ1(κ)-definable subsets of

κκ, in the case where κ itself has certain large cardinal
properties.

§1. Introduction. Given an uncountable regular cardinal κ, we study subsets of
the collection H(κ+) of all sets of hereditary cardinality at most κ that are definable
over H(κ+) by simple formulas.

Definition 1.1. LetM be a nonempty class, let R0, . . . , Rn−1 be relations onM
and let a0, . . . , am−1 be elements ofM . SetM = 〈M,∈, R0 , . . . , Rn−1〉.
(i) A subsetX ofM is Σ1(a0, . . . , am−1)-definable overM if there is a Σ1-formula
ϕ(v0, . . . , vm) in the language of set theory extended by predicate symbols
Ṗ0, . . . , Ṗn−1 such that X = {x ∈M | M |= ϕ(a0, . . . , am−1, x)}.

(ii) A subset Y of M is Π1(a0, . . . , am−1)-definable over M if M\Y is
Σ1(a0, . . . , am−1)-definable overM.

(iii) A subset of M is Δ1(a0, . . . , am−1)-definable over M if the subset is both
Σ1(a0, . . . , am−1)- and Π1(a0, . . . , am−1)-definable overM.

Since Σ1-formulas are absolute between V and H(κ+), we will not mention the
models 〈V,∈〉 and 〈H(κ+),∈〉 in our statements about Σ1-definability.
In this paper, we will focus on the following subjects: Σ1(κ)-definable well-
orderings of H(κ+), Δ1(κ)-definitions of the club filter on κ and Δ1(κ)-definable
Bernstein subsets of κκ (see Definition 1.3 below). In the case of formulas
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containing arbitrary parameters from H(κ+), it was shown that the existence of
such objects is independent from ZFC together with large cardinal axioms (see [9],
[18], and [21]). Moreover, it is known that such Σ1(κ)-definitions exists in certain
models of set theory that do not contain larger large cardinals (see [5] and [10]).
This leaves open the question whether such Σ1(κ)-definitions are compatible with
larger large cardinals. Themain results of this paper show that large cardinal axioms
imply the nonexistence of such definitions for κ = �1.
Using results of Woodin on the Π2-maximality of the Pmax-extension of L(R)
(see [16] and [35]), it is easy to show that the assumptions that there are infinitely
many Woodin cardinals with a measurable cardinal above them all implies that no
well-ordering of the reals is Σ1(�1)-definable. We will derive this conclusion from a
much weaker assumption that is in some sense optimal (see remarks below).

Theorem 1.2. Assume that there is a Woodin cardinal and a measurable cardinal
above it. Then no well-ordering of the reals is Σ1(�1)-definable.

In contrast, we will show that the existence of a Σ1(�1)-definable well-ordering
of H(�2) is compatible with the existence of a Woodin cardinal (see Theorem 5.2).
Together with the above theorem, this answers [10, Question 1.9].
Given a regular cardinal κ, the generalized Baire space for κ consists of the set κκ
of all functions from κ to κ equipped with the topology whose basic open sets are
of the form Ns = {x ∈ κκ | s ⊆ x} for some s : α −→ κ with α < κ.

Definition 1.3. Let κ be a regular cardinal.

(i) A perfect subset of κκ is the set of branches [T ] of a perfect subtree of <κκ,
i.e., a <κ-closed tree with branching nodes above all nodes.

(ii) A subset A of κκ has the perfect set property if either A has cardinality at
most κ or A contains a perfect subset.

(iii) A Bernstein set is a subset of κκ with the property that neither A nor its
complement contains a perfect subset.

Theorem 1.4. Assume that there is a Woodin cardinal and a measurable cardinal
above it. Then no Bernstein subset of �1�1 is Δ1(�1)-definable over 〈H(�2),∈〉.
We will also show that the large cardinal assumption of the above result is close
to optimal by showing that the existence of such a Bernstein subset is compatible
with the existence of a Woodin cardinal (see Lemma 5.6).
Next, we consider Δ1(�1)-definitions of the club filter C�1 and the nonstationary
ideal NS�1 on �1. In [4], Friedman and Wu showed that the existence of a proper
class of Woodin cardinals implies that NS�1 is not Δ1(�1)-definable. We will derive
a stronger conclusion from a weaker hypothesis. In the following, we say that a
subset of P(�1) separates the club filter from the nonstationary ideal if X contains
C�1 as a subset and is disjoint from NS�1 .

Theorem 1.5. Assume that there is a Woodin cardinal and a measurable cardinal
above it. Then no subset of P(�1) that separates the club filter from the nonstationary
ideal is Δ1(�1)-definable over 〈H(�2),∈〉.
We will in fact prove more general versions of the above theorems. First, we
will derive the above conclusions from the assumption thatM#1 (A) exists for every
subsetA of�1 (see [25, p. 1738] and [31, p. 1660]). This assumption follows from the
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existence of aWoodin cardinal and ameasurable cardinal above it (see [22] and [30]).
In Section 2, we will show that it also follows from BMM (Bounded Martin’s
Maximum) together with the assumption that the nonstationary ideal NS�1 on �1
is precipitous. Second,wewill allowas parameters subsets of�1 that areΣ12-definable
in the codes. We will also prove this for all subsets of �1 which are universally Baire
in the codes, assuming that there is a proper class of Woodin cardinals. Finally, we
will prove results on perfect subsets of Σ1(�1)-subsets of �1�1 (see Section 4.3), the
nonexistence of Σ1(�1)-definable uniformizations of the club filter (see Section 4.5)
and the absoluteness of Σ1(�1)-statements (see Section 4.6).
The above results raise the question whether large cardinals have a similar influ-
ence on Σ1(κ)-definability for regular cardinals κ > �1. Variations of the techniques
used in the proofs of the above results will allow us to prove analogous statements
hold for Σ1(κ)-definable subsets of H(κ+) in the case where κ itself has certain large
cardinal properties.

Theorem 1.6. If κ is either a measurable cardinal above a Woodin cardinal or
a Woodin cardinal below a measurable cardinal, then there is no Σ1(κ)-definable
well-ordering of the reals.

Theorem 1.7. If κ is a measurable cardinal with the property that there are two
distinct normal ultrafilters on κ, then no Bernstein subset of κκ is Δ1(κ)-definable over
〈H(κ+),∈〉.
In contrast, we will show that consistently there can be a measurable cardinal κ
and a Bernstein subset of κκ that is Δ1(κ)-definable over 〈H(κ+),∈〉.
Next, we consider the Δ1(κ)-definability of sets separating the club filter from the
nonstationary ideal at �1-iterable cardinals (see Definition 6.1).

Theorem 1.8. If κ is an �1-iterable cardinal and X is a subset of P(κ) that
separates the club filter from the nonstationary ideal, then X is not Δ1(κ)-definable
over 〈H(κ+),∈〉.
Friedman and Wu showed that the club filter on κ is not Π1(κ)-definable over

〈H(κ+),∈〉 if κ is a weakly compact cardinal (see [4, Proposition 2.1]). We will
show that this conclusion also holds for stationary limits of �1-iterable cardinals.
Note that these cardinal need not be weakly compact and Woodin cardinals are
stationary limits of �1-iterable cardinals. Moreover, [29, Lemma 5.2] shows that
�1-Erdős cardinals are stationary limits of �1-iterable cardinals.

Theorem 1.9. If κ is a regular cardinal that is a stationary limit of �1-iterable
cardinals, then the club filter on κ is notΠ1(κ)-definable over 〈H(κ+),∈〉.
We outline the content of this paper. In Section 2 we will show that the condition
thatM#1 (A) exists for all subsets A of �1 follows from BMM and the assumption
that the nonstationary ideal NS�1 on �1 is precipitous. In Section 3 we characterize
Σ1(�1)-definable sets of reals and extend this characterization to formulas with uni-
versally Baire parameters, assuming that there is a proper class ofWoodin cardinals.
In Section 4 we prove the main results about Σ1(�1)-definable subsets of H (κ+).
In Section 5 we show that the assumptions of some of the previous results are opti-
mal by showing that some of these conclusions fail in M1. In Section 6 we prove
version of some of the previous results for Σ1(κ)-definable subsets ofH (κ+), where
κ is a large cardinal, for instance a measurable cardinal or an �1-iterable cardinal.
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We close this paper by listing several open questions motivated by the above results
in Section 7.

§2. Forcing axioms andM#1 (A). We will frequently make use of the hypothesis
thatM#1 (A) exists for every subset A of �1. We show that this follows from BMM
togetherwith the assumption that the nonstationary idealNS�1 on�1 is precipitous,
by varying arguments from [2].

Theorem 2.1. Assume BMM and thatNS�1 is precipitous. ThenM
#
1 (A) exists for

every A ⊆ �1.
Proof. Let us first assume that there is no inner model with a Woodin cardinal,
and let K denote the core model (see for example [13]). By [2, Theorem 0.3], the
fact that NS�1 is precipitous (or just the fact that there is a normal precipitous ideal
on �1) yields (�V1 )

+K = �V2 , whereas by [2, Lemma 7.1], BMM (or just BPFA) gives
that (�V1 )

+K < �V2 . This is a plain contradiction, so that there must be an inner
model with a Woodin cardinal.
By [26, Theorem 1.3], BMM yields that V is closed under X �→ X #. By a theorem
of Woodin, the facts that there is an inner model with a Woodin cardinal and V
is closed under the sharp operation imply that M#1 exists and is fully iterable.

1

This argument relativizes to show that for any real x, M#1 (x) exists and is fully
iterable.
Let us now fix A ⊆ �1 and prove that M#1 (A) exists and is countably iterable.
Let j : V −→ M ⊆ V[G ], where G is NS�1 -generic over V and j is the induced
generic elementary embedding such thatM is transitive. By elementarity, M#1 (A)
exists inM and is fully iterable inM . We aim to see that (M#1 (A))

M ∈ V and it is
fully iterable in V.
As V is closed under the sharp operation, F = {〈x, x#〉 | x ∈ R} is universally
Baire. Suppose that T and U are (class sized) trees such that F = p[T ] in V and
p[U ] = R2\p[T ] in every generic extension of V. By well-known arguments, we
must have p[j(T )] = p[T ] in V[G ] and in fact in every generic extension of V[G ].
We first claim that (M#1 (A))

M is �1-iterable in V[G ] and in fact in every generic
extension V[G,H ] of V[G ] via its unique iteration strategy. In order to see this, let
W ∈M be a canonical tree of attempts to find
(a) � : N −→ (M#1 (A))M , where N is countable,
(b) T is a countable iteration tree on N
(c) 〈Q� | � ∈ Lim ∩ (lh(T ) + 1)〉 is such that for every � ∈ Lim ∩ (lh(T ) + 1),

Q� � (M(T � �))# is a Q-structure forM(T ), and for every ordinal � ∈
Lim ∩ lh(T ), we haveQ� � MT

� , and either
(d1) T has a last ill-founded model, or else
(d2) T has limit length but no cofinal branch b such thatQlh(T ) � MT

b .

Notice that we may use j(T ) to certify the first part of (c). If (M#1 (A))
M were

not �1-iterable in V[G,H ], thenW would be ill-founded in V[G,H ], hence inM ,
and then (M#1 (A))

M would not be iterable inM . Contradiction!
Let j′ : V −→ M ′ ⊆ V[H ] ⊆ V[G,H ], where H is (NS�1 )V-generic over V[G ]
and j′ is the induced generic elementary embedding such thatM ′ is transitive. By the

1This result is unpublished, but the methods used in the (known) proof can be found in [33].
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above argument, (M#1 (A))
M and (M#1 (A))

M ′
may be successfully coiterated inside

V[G,H ], so that in fact (M#1 (A))
M = (M#1 (A))

M ′
, and hence (M#1 (A))

M ∈ V.
Assume (M#1 (A))

M were not�1-iterable in some generic extensionV[H ] of V.We
may without loss of generality assume thatH is generic over V[G ]. LetW ′ ∈ V be
defined exactly as the treeW above, except for thatweuseT instead of j(T ) to certify
the first part of (c). By p[j(T )] = p[T ] in V[G,H ], we must have p[W ′] = p[W ]
in V[G,H ]. As we assume (M#1 (A))

M to be not �1-iterable in V[G,H ],W ′ would
be ill-founded in V[G,H ], so thatW would be ill-founded in V[G,H ] and hence in
M . Contradiction!
The argument given shows that (M#1 (A))

M ∈ V is fully iterable in V. 	

§3. Σ1(�1)-definable sets and Σ13 sets. We give a characterization of Σ1(�1)-
definable sets of reals which we will use in the proof of Theorem 1.2. Let WO
denote the Π11-set of all reals that code a well-ordering of� (in some fixed canonical
way) and, given z ∈ WO, let ‖z‖ denote the order-type of the well-ordering coded
by z. Remember that, given a class Γ of subsets of R, a subset A of �1 is Γ in the
codes if there isW ∈ Γ such that A = {‖z‖ | z ∈W ∩WO}. Note that �1 is Σ12 in
the codes.
Lemma 3.1. If a ∈ R, X is a Σ13(a)-subset of R and κ is an uncountable cardinal,
then X is Σ1(κ, a)-definable.
Proof. Pick a Σ13-formula �(v0, v1) that defines X using the parameter a. In this
situation, Shoenfield absoluteness implies that the set X is equal to the set of all
x ∈ R with the property that there is a transitive modelM of ZFC− in H(κ+) such
that a, x ∈M , κ ⊆M , and �(a, x)M . This yields a Σ1(κ, a)-definition of X . 	
In the following, we will show that the converse of the above implication for �1
holds in the presence of large cardinals. This argument makes use of the countable
stationary tower Q<	 introduced by Woodin (see [15, Section 2.7]) and results of
Woodin on generic iteration (see [35, Lemma 3.10 and Remark 3.11]).
Lemma 3.2. LetM be a transitive model of ZFC− with a largest cardinal κ and let

P be a partial order inM of cardinality less than κ such that the following conditions
hold :
(i) Forcing with P adds a (
, �)-extender overM for some 
, � < κ.
(ii) There is an �1-iterableM-ultrafilterU on κ.

ThenM is �1-iterable with respect to P and its images.
Proof. We first suppose thatM is countable. Let

〈〈Mα0 | α < �1〉, 〈jα,�0 :Mα0 −→M�0 | α ≤ � < �1〉〉
denote the iteration of 〈M,∈, U 〉 of length �1. Set κα0 = j

0,α
0 (κ) for all α < �1.

Given α < � < �1, we haveMα0 = H((κ
α
0 )
+)M

α
0 = H((κα0 )

+)M
�
0 .

In the following, we show thatM =M 00 is α-iterable for all α < �1. Assume that
α is the least counterexample to this statement. Then α is a limit ordinal by our
assumptions on P. Suppose that 〈G� | � < α〉 is a sequence of generic filters given
by a generic iteration ofM 00 by the extenders added by P its images such that the
corresponding direct limit is ill-founded. Let

〈〈M 0� | � < α〉, 〈k0�,
 :M 0� −→M 0
 | � ≤ 
 < α〉〉
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denote the corresponding system of models and elementary embeddings.
By simultaneous recursion, we define a system

• 〈M�
 | � ≤ α + 1, 
 < α〉 of transitive models of ZFC−, and
• commuting systems

〈j�,
	 :M
�
	 −→M
	 | � ≤ 
 ≤ α + 1, 	 < α〉,

〈k�
,	 :M
�

 −→M�	 | � ≤ α + 1, 
 ≤ 	 < α〉

of elementary embeddings.

such that the following properties can be verified by simultaneous induction,where
κ
	 = k



0,	(κ



0) for 
 < α + 1 and 	 < α:

• M�	 = H((κ
�
	 )
+)M



	 for all � ≤ 
 ≤ α + 1 and 	 < α.

• j�,
	 � H(κ�	 )M
�
	 is the identity on H(κ�	 )

M�	 .
• For all � ≤ α + 1, 〈M�
 | 
 < α〉 is the generic iteration ofM�0 by P = j

0,�
0 (P)

and its images 〈k00,�(P) | � < α〉 using the sequence 〈G
 | 
 < α〉 of filters.
By [35, Lemma 3.10 and Remark 3.11], the sequence 〈Mα+1
 | 
 < α〉 has a well-
founded direct limit. Since the system of elementary embeddings commutes, the
direct limit of the sequence 〈M 0
 | 
 < α〉 embeds into this model and hence it is
well-founded, a contradiction.
For arbitrary models M , the claim follows by forming a countable elementary
substructure of some H(�). 	
Lemma 3.3. Assume that M#1 (A) exists for every A ⊆ �1. Given a ∈ R, the
following conditions are equivalent for any subset X of R.

(i) X is Σ1(A)-definable for some A ⊆ �1 that is Σ12(a) in the codes.
(ii) X is a Σ13(a)-subset of R.

Proof. Assume that (i) holds. Fix a Σ1-formula ϕ(v0, v1) and a Σ12-formula
�(v0, v1) with the property that X = {x ∈ R | ϕ(A, x)}, where A =
{‖z‖ | z ∈W ∩WO} and W = {z ∈ R | �(a, z)}. Define Y to be the set of
all y ∈ R with the property that there is a countable transitive modelM of ZFC−

and 	,A0,W0 ∈M such that a, y ∈M and the following statements hold:
(i) 	 is a Woodin cardinal inM andM is �1-iterable with respect toQM<	 and its
images.

(ii) In M , we have W0 = {z ∈ R | �(a, z)}, A0 = {‖z‖ | z ∈W0 ∩WO} and
ϕ(A0, y) holds.

Claim. The set Y is a Σ13(a)-subset of R.

Proof. The only condition on M which is not first-order is �1-iterability. This
condition states that all countable generic iterates are well-founded and hence it is
a Π12-statement. 	
Claim. Y ⊆ X .
Proof. Fix y ∈ Y and pick a countable transitive modelM0 and 	,A0,W0 ∈M0
witnessing this. Let 〈Mα | α ≤ �1〉 be a generic iteration ofM0 using QM0<	 and its
images. Set N = M�1 and let j : M0 −→ N denote the corresponding elementary
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embedding. Then N is a transitive model of ZFC− and j(�M01 ) = �
N
1 = �1. Pick

α ∈ A. Then there is u ∈WON such that α = αu and

∃z ∈WO [‖u‖ = ‖z‖ ∧ �(a, z)]

holds. Since �1 ⊆ N , Shoenfield absoluteness implies that there is z ∈ WON with
α = ‖z‖ and �(a, z)N . By elementarity, this shows that z ∈ j(W0) and α ∈ j(A0).
In the other direction, fix z ∈ j(W0). Then �(a, z)N holds and Shoenfield abso-
luteness implies that z ∈ W and ‖z‖ ∈ A. We can conclude that A = j(A0) and
ϕ(A, y)N holds. By Σ1-upwards absoluteness, this shows that ϕ(A, y) holds and
hence y ∈ X . 	
Claim. X ⊆ Y .
Proof. Pick x ∈ X . Then ϕ(A, x) holds and we can find a subset C of �1
such that a, x,A ∈ M#1 (C ), �1 = �

M#1 (C )
1 and ϕ(A, x)M

#
1 (C ) holds. Shoenfield

absoluteness implies that

W̄ = W ∩M#1 (C ) = {z ∈ RM
#
1 (C ) | �(a, z)M#1 (C )} ∈ M#1 (C ).

As in the proof of the above claim, we can now use Shoenfield absoluteness to see
that A = {‖z‖ | z ∈ W̄ ∩WOM

#
1 (C )}.

Let N be a countable elementary submodel of M#1 (C ) and let � : N −→ M
denote the corresponding transitive collapse. Then M is a countable transitive
model of ZFC− with a, x ∈M and there is 	 ∈M such that 	 is a Woodin cardinal
in M andM is iterable with respect QM<	 and its images by Lemma 3.2. InM , we
have �(W̄ ) = {z ∈ R | �(a, z)}, �(A) = {‖z‖ | z ∈ �(W̄ ) ∩WO} and ϕ(�(A), x)
holds. Together, this shows that M and 	, �(A), �(W̄ ) ∈ M witness that x is an
element of Y . 	
This completes the proof of the implication from (i) to (ii). The converse
implication is a direct consequence of Lemma 3.1. 	
Note that the assumptions of Lemma 3.3 hold for instance inM2.

Remark 3.4. The assumptions for the implication from (i) to (ii) in Lemma 3.3
are optimal in the following sense:

(i) The implication is not a theorem of ZFC. If CH holds and the set {R} is
Σ1(�1)-definable, then the projective truth predicate is a Σ1(�1)-definable
subset of R that is not projective. Note that the above assumptions holds for
instance in L.Moreover, wewill later prove results that show that the assump-
tion also holds inM1 (see Lemma 5.2). This shows that the implication does
not follow from the existence of a single Woodin cardinal.

(ii) The implication does not follow from ¬CH. Suppose that L[G ] is an
Add(�,�2)-generic extension of L. Since {RL} is Σ1(�1)-definable in L[G ],
the projective truth predicate of L is Σ1(�1)-definable in L[G ]. Assume that
this set is projective in L[G ]. By a result of Woodin (see [18, Lemma 9.1]),
there is an Add(�,�1)-generic filterH over L and an elementary embedding
of L(R)L[H ] into L(R)L[G ]. Then the projective truth predicate of L is also pro-
jective in L[H ]. Since Add(�,�1) is definable over H(�1)L and satisfies the
countable chain condition, the forcing relation for Add(�,�1) for projective
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statements with parameters in RL is projective in L. Using the homogeneity
of Add(�,�1), this shows that the projective truth predicate is projective
in L, a contradiction.

A simpler version of the proof of Lemma 3.3, using Lemma 3.2 and generic iter-
ations of countable substructures of H(�), where � is above a measurable cardinal,
yields the following result.

Lemma 3.5. The equivalence in Lemma 3.3 holds if there is a precipitous ideal on
�1 and a measurable cardinal. 	
In the following, we will add a predicate A for sets of reals to the language to
obtain a stronger version of Lemma 3.3.Note that quantifiers overA are unbounded
in this language. We consider universally Baire (uB) subsets of R.

Definition 3.6. Suppose that 〈M,∈, I 〉 is a countable transitive model of ZF−

and B ⊆ R. The structure 〈M,∈, I 〉 is B-iterable if the following conditions
hold.

(i) 〈M,∈, I 〉 is �1-iterable, i.e., all countable iterates are well-founded.
(ii) B ∩M ∈M .
(iii) If i :M −→ N is a countable iteration, then i(B ∩M ) = B ∩N .

Suppose that B is a subset of R. A set of reals is Σ1n(B) if it is defined by a
Σ1n-formula, where x ∈ B and x /∈ B are allowed as atomic formulas.
Lemma 3.7. Assume that there is a proper class of Woodin cardinals. If B is a uB
set of reals and X is a subset of R that is Σ1(�1)-definable over 〈H(�2),∈, B,NS�1〉,
then X is a Σ13(B)-subset of R.

Proof. Suppose that X is defined by a Σ1-formula ϕ(v0, v1) over the structure
〈H(�2),∈, B,NS�1〉. We define Y as the set of all reals x such that there is a
B-iterable structure 〈M,∈, I 〉 with the property thatM is a model of ZFC, x ∈M
and 〈M,∈, B ∩M, I 〉 |= ϕ(�M1 , x).
Claim. Y ⊆ X .
Proof. Suppose that x ∈ Y and that this is witnessed by a B-iterable structure

〈M,∈, I 〉. In this situation, the proof of [35, Lemma 4.36] shows that there is an
iteration j : 〈M,∈, I 〉 −→ 〈M ′,∈, I ′〉 of length �1 with I ′ = NS�1 ∩M ′. SinceM
is B-iterable, we also have j(B ∩M ) = B ∩M ′. This shows that ϕ(�1, x) holds in
〈M ′,∈, B ∩M ′,NS�1 ∩M ′〉 and therefore we can conclude that the statement also
holds in 〈H(�2),∈, B,NS�1〉. 	
Claim. X ⊆ Y .
Proof. Suppose that x ∈ X . We first argue that the required B-iterable structure
exists in a generic extension. By our large cardinal assumptions and [12, Theorem 3],
there is a generic extension V[G ] of V with the property that NS�1 is precipitous
in V[G ]. Suppose that 
 is the least measurable cardinal in V[G ] and � is the least
inaccessible cardinal above 
 in V[G ]. Let T and U be trees in V with p[T ] = B
and p[U ] = R\B witnessing that B is uB. Define M = V[G ]� , I = NSV[G ]�1 and
BG = p[T ]V[G ].

Subclaim. 〈M,∈, I, BG 〉 |= ϕ(�V[G ]1 , x).

https://doi.org/10.1017/jsl.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.36
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Proof. Assume, towards a contradiction, that ϕ(�V[G ]1 , x) does not hold in the
structure 〈M,∈, I, BG 〉. Let F be Pmax-generic over L(B,R)V. Since our assumption
implies that

〈H(�2)V[G ],∈, I, BG 〉 |= ∀α [“α = �1 ” −→ ¬ϕ(α, x)]

holds and this statement can be expressed by a Π2-formula with parameter x, our
large cardinal assumptions allow us to use results of Woodin on the Π2-maximality
of Pmax-extensions of L(B,R) (see [3, Theorem 1.1]) to conclude that

〈H(�2)L(B,R)[F ],∈,NSL(B,R)[F ]�1 , B〉 |= ¬ϕ(�V1 , x)

holds. But we also know that

〈H(�2)V,∈,NSV�1 , B〉 |= ∀α [“α = �1 ” −→ ϕ(α, x)]

holds and hence the same theorem implies that

〈H(�2)L(B,R)[F ],∈,NSL(B,R)[F ]�1 , B〉 |= ϕ(�V1 , x)

holds, a contradiction. 	
Let H be Col(�, �)-generic over V[G ].

Subclaim. 〈M,∈, I 〉 is p[T ]-iterable in V[G,H ].
Proof. We work in V[G,H ]. Since there is a measurable cardinal in M , the
structure 〈M,∈, I 〉 is �1-iterable by Lemma 3.2. Set BG∗H = p[T ]V[G,H ]. Sup-
pose that j : M −→ M ′ is a countable iteration. We argue that p[j(T )] ∩M ′ =
BG∗H ∩M ′. Since the statement p[j(T )] ∩ p[j(U )] �= ∅ is absolute between M ′

and V[G,H ], this holds in V[G,H ]. Since p[T ] ⊆ p[j(T )] and p[U ] ⊆ p[j(U )]
and p[T ] ∪ p[U ] = R in V[G,H ]. This implies BG∗H ∩ M ′ = p[T ]V[G,H ] =
p[j(T )]V[G,H ]. 	
The existence of the requiredB-iterable structure is projective inB . Since results of
Woodin show that our large cardinal assumption implies that the theory of L(B,R)
cannot be changed by forcing (see [15, Theorem 3.3.8] and [35, Theorem 2.30]),
such a B-iterable structure exists in V and this structure witnesses that x is an
element of Y . 	
Since Y is a Σ13(B)-subset of R, this completes the proof. 	
Note that it is also possible to prove the previous result in a similar way as
Lemma 3.3 by using countable transitive models of ZFC− with a Woodin cardinal
that areB-iterable (defined similar toDefinition 3.6) with respect to the correspond-
ing countable stationary tower forcing and its images. As in the above argument,
the existence of such models witnessing Σ1-statements is shown by considering a
suitable initial segment of V in a generic extension by a collapse forcing and then
using the same absoluteness argument as before.

§4. Σ1(�1)-definable subsets of �1�1. In this section, we present the proofs of the
main results about Σ1(�1)-definable subset of H(κ+) stated in the introduction.

4.1. Well-orderings of the reals. The above lemma directly yields the following
strengthening of Theorem 1.2.
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Theorem 4.1. Assume that eitherM#1 (A) exists for every A ⊆ �1 or that there is
a precipitous ideal on �1 and a measurable cardinal. IfA ⊆ �1 is Σ12 in the codes, then
no well-ordering of the reals is Σ1(A)-definable.

Proof. Assume that there is a well-ordering of the reals that is Σ1(A)-definable.
By Lemmas 3.3 and 3.5, this assumption implies that there is a Σ13-well-ordering
of the reals. If M#1 (A) exists for every A ⊆ �1, then this yields a contradiction,
because this assumption implies that Σ12-determinacy holds (see [24]), every Σ

1
3-set

of reals has the Baire property (see [23, 6G.11]) and hence there are no Σ13-well-
orderings of the reals. In the other case, if there is a precipitous ideal on �1 and a
measurable cardinal, then [20, Theorem 1.4] shows that every Σ13-set of reals has the
Baire property and we also derive a contradiction in this case. 	
We will consider Σ1-well-orderings of the reals that allow more complicated
parameters. As mentioned above, results of Woodin on the Π2-maximality of the
Pmax -extension of L(R) imply that no well-ordering of the reals is Σ1(A)-definable
over 〈H(�2),∈, B〉 for someA ∈ P(�1)L(R) andB ∈ P(R)L(R). In the following, we
will use Pmax -forcing to derive a stronger conclusion from a stronger assumption.

Theorem 4.2. Suppose that there is a proper class of Woodin cardinals. If B is uB,
then there is no well-ordering of the reals which is Σ1(�1)-definable over the structure
〈H(�2),∈, B,NS�1〉.
Proof. If there is a proper class of Woodin cardinals, then every uB set of reals
is determined by [15, Theorems 3.3.4 and 3.3.14]. Hence the claim follows from
Lemma 3.7. 	

4.2. Bernstein subsets. The next lemma shows how to construct perfect subsets
of Σ1(�1)-definable subsets of �1�1. It will allow us to prove that the existence of
large cardinals implies the nonexistence of Δ1(�1)-definable Bernstein subsets
of �1�1. The lemma will also be used for a result about the nonstationary ideal
(see Section 4.4). In the following, we interpret a function x ∈ �1�1 as a code for
the subset x̄ = {α < �1 | x(α) > 0}.
Lemma 4.3. Assume thatM#1 (A) exists for every A ⊆ �1. Let A ⊆ �1 be Σ12 in
the codes and let X be a Σ1(A)-definable subset of �1�1. If there is an x ∈ X with the
property that x̄ is a bistationary subset of �1, then for every � < �1 there is

(i) a continuous injection � : �12 −→ X with ran(�) ⊆ Nx�� ∩ X ,
(ii) a club D in �1 with monotone enumeration 〈	α | α < �1〉

such that for all z ∈ �12 and α < �1, we have z(α) = 1 if and only if �(z)(	α) > 0.
Proof. Fix � < �1 and a Σ1-formula ϕ(v0, v1) with X = {z ∈ �1�1 | ϕ(A, z)}.
Pick a ∈ R and a Σ12-formula �(v0, v1) with A = {‖w‖ | w ∈WO, �(a,w)}. We
can findC ⊆ �1 such that a, x,A ∈M#1 (C ),�1 = �

M#1 (C )
1 andϕ(A, x)M

#
1 (C ). Then

x̄ is a bistationary subset of �1 in M#1 (C ). Note that every stationary subset of
�1 is a condition in Q<	 . Let N be a countable elementary submodel of M#1 (C )
with a, x,A ∈ N and � + 1 ⊆ N , let � : N −→ M be the corresponding transitive
collapse and let 	 denote the uniqueWoodin cardinal inM . Since Lemma 3.2 shows
thatM is �1-iterable with respect to QM<	 and its images, there is a directed system

〈〈Ms | s ∈ ≤�12〉, 〈js,t :Ms −→Mt | s, t ∈ ≤�12, s ⊆ t〉〉
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of transitive models of ZFC− and elementary embeddings such that the following
statements hold.

(i) M =M∅.
(ii) If s ∈ <�12, then there areMs -generic filters Gs0 and Gs1 over j∅,s (QM<	) such
that (j∅,s ◦ �)(�1\x̄) ∈ Gs0 , (j∅,s ◦ �)(x̄) ∈ Gs1 ,Ms�〈i〉 = Ult(Ms,Gsi ) and
js,s�〈i〉 is the ultrapower map induced by Gsi for all i < 2.

(iii) If s ∈ ≤�12 with lh(s) ∈ Lim, then
〈Ms, 〈js�α,s :Ms�α −→Ms | α < lh(s)〉〉

is the direct limit of the directed system

〈〈Ms�α | α < lh(s)〉, 〈js�ᾱ,s�α :Ms�ᾱ −→Ms�α | ᾱ ≤ α < lh(s)〉〉.

Let js = j∅,s for all s ∈ ≤�12. Since �1 = �
Mz
1 for all z ∈ �12, we can define

i : �12 −→ �1�1; z �−→ (jz ◦ �)(x).
Then elementarity and Σ1-upwards absoluteness imply thatA = (jz ◦ �)(A) ∈Mz ,
x � � = i(z) � � and ϕ(A, i(z)) for all z ∈ �12. This shows that ran(i) ⊆ Nx�� ∩X .
Given z ∈ �12, we define

cz : �1 −→ �1; α �−→ �Mz�α1 .

By definition, cz is strictly increasing and continuous for every z ∈ �12. Moreover,
we have cz0 � α = cz1 � α for all z0, z1 ∈ �12 and α < �1 with z0 � α = z1 � α.
Claim. Given z ∈ �12 and α < �1, then z(α) = 1 if and only if i(z)(cz(α)) > 0.
Proof. Given z ∈ �12 and α < �1, we know that cz(α) is smaller than the critical
point of jz�(α+1),z and this allows us to use [15, Fact 2.7.3] to conclude that

z(α) = 1 ⇐⇒ (jz�α ◦ �)(x̄) ∈ Gz�αz(α)
⇐⇒ �

Mz�α
1 ∈ (jz�(α+1) ◦ �)(x̄)

⇐⇒ cz(α) ∈ (jz�(α+1) ◦ �)(x̄)
⇐⇒ (((jz�(α+1) ◦ �)(x))(cz(α)) > 0
⇐⇒ (((jz�(α+1),z ◦ jz�(α+1) ◦ �)(x))(cz(α)) > 0
⇐⇒ i(z)(cz(α)) > 0. 	

In particular, this shows that the function i is injective.

Claim. The function i is continuous.
Proof. Let z ∈ κ2 and � < κ. Then there is α < κ with � < cz(α) < crit (jz).
Given z̄ ∈ �12, we know that cz̄(α) is the critical point of jz̄�α,z and hence

i(z̄) � � = (jz̄ ◦ �)(x) � � = (jz̄�α ◦ �)(x) � �.
If z̄ ∈ Nz�α ∩ �12, then jz�α = jz̄�α and therefore i(z) � � = i(z̄) � � . 	
Claim. There is a club D in �1 such that cz � D = idD for all z ∈ �12.
Proof. Suppose that zM is a real coding M . We define D = Card

L[zM ] ∩ �1.
A statement and proof analogous to [2, Lemma 19] for forcing with Q<	 instead
of a precipitous ideal shows that the cardinals in L[zM ] are closure points of the
images of cz for all z ∈ �12. We can conclude that cz � D = idD for all z ∈ �12. 	
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Let 〈	α | α < �1〉 denote the monotone enumeration ofD and let e : �12 −→ �12
denote the unique continuous injection with e(z)−1{1} = {	α | α < �1, z(α) = 1}
for all z ∈ �12. Set � = i ◦ e. Then we have

z(α) = 1 ⇐⇒ e(z)(	α) = 1 ⇐⇒ i(e(z))(ce(z)(	α)) > 0 ⇐⇒ �(z)(	α) > 0

for all z ∈ �12 and α < �1. 	
A simpler version of the proof of Lemma 4.3 shows the following.

Lemma 4.4. The conclusion of Lemma 4.3 follows from the existence of a
precipitous ideal on �1 and a measurable cardinal. 	
The above lemmas allow us to prove the following strengthening of Theorem 1.4.

Theorem 4.5. Assume that either M#1 (A) exists for every A ⊆ �1 or that there
is a precipitous ideal on �1 and a measurable cardinal. Let Γ denote the collection of
subsets of �1�1 that are Σ1(A)-definable for some A ⊆ �1 that is Σ12 in the codes. If
Δ ⊆ Γ with

⋃
Δ = �1�1, then some element of Δ contains a perfect subset.

Proof. Pick some x ∈ �1�1 with the property that {α < �1 | x(α) = 1} is a
bistationary subset of �1. Then there is X ∈ Δ with x ∈ X . In this situation,
Lemmas 4.3 and 4.4 imply that X contains a perfect subset. 	
Theorem 4.6. Assume that eitherM#1 (A) exists for every A ⊆ �1 or that there is
a precipitous ideal on �1 and a measurable cardinal. IfA ⊆ �1 is Σ12 in the codes, then
no Bernstein subset of �1�1 is Δ1(A)-definable over 〈H(�2),∈〉.
Proof. Apply Theorem 4.5 with Δ = {A, �1\A} ⊆ Γ. 	
Wewill see in Lemma 5.6 below that the existence of a Σ1(�1)-definable Bernstein
subset of �1�1 is consistent with the existence of a Woodin cardinal.

4.3. A perfect set theorem. We aim to prove a perfect set theorem for Σ1(�1)-
definable subsets of �1�1. This is motivated by the following result.

Theorem 4.7 (Woodin, [16, Corollary 7.11]). Assume ADL(R) and suppose thatG
is Pmax -generic over L(R). Work inL(R)[G ]. Suppose thatA is a subset of �1�1 which
is defined from a parameter in L(R). Then at least one of the following statements
holds.

(i) A contains a perfect subset.
(ii) A ⊆ L(R).
We will prove a similar result for Σ1(�1)-definable sets in V from the assumption
that NS�1 is saturated and there is a measurable cardinal. We do not know if our
result is a true dichotomy, i.e., whether the two cases are mutually exclusive.
Assuming thatNS�1 is saturated, the following result of Woodin shows that there
is a canonical iteration of length �1 of any countable substructure of H(�2).

Lemma 4.8 (Woodin). Suppose that the non-stationary ideal NS�1 on �1 is sat-
urated. If A ⊆ �1 and i : 〈M,∈, I, Ā〉 −→ 〈H(�),∈,NS�1 , A〉 is an elementary
embedding with � ≥ �2 and M is countable, then there is a generic iteration
j :M −→ N of length �1 with N well-founded and j(Ā) = A.
Proof. We inductively construct a generic iteration

〈〈〈Mα,∈, Iα , Āα〉 | α < �1〉, 〈iα,� :Mα −→M� | α ≤ � < �1〉〉
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1118 PHILIPP LÜCKE, RALF SCHINDLER, AND PHILIPP SCHLICHT

with M = M0 and elementary embeddings 〈jα :Mα −→M | α < �1〉 such that
jα = j� ◦ iα,� for all α ≤ � < �1. Suppose that 〈Mα,∈, Iα , Āα〉, iα,� and jα are
defined for α ≤ � ≤ 
. Set κ = i0,
(�M
1 ) and U
 = {X ∈ P(κ)M
 | �1 ∈ j
(X )}.
Claim. U
 is P(κ)/I
 -generic overM
 .
Proof. Suppose that A ∈ M
 is a maximal antichain in P(κ)/I
 . Since NS�1
is saturated, P(κ)/I
 satisfies the �M
2 -chain condition in M
 . Let 〈Xα | α < κ〉
enumerate A inM
 and assume thatXα /∈ U
 for all α < κ. By the definition ofU
 ,
we have X = �α<κ(κ\Xα) ∈ U
 . Since U
 is normal, the set X is stationary. This
contradicts the assumption that A is maximal. 	
We defineM
+1 = Ult(M
,U
), i
,
+1 : M
 −→ M
+1 the ultrapower map, and
j
+1 :M
+1 −→ H(�) by j
+1([f]) = j
(f)(�1). It is straightforward to check that
j
+1 is well-defined and elementary.

Claim. j
 = j
+1 ◦ i
,
+1.
Proof. If x ∈M
 , then

j
+1(i
,
+1(x)) = j
+1([cx]) = j
+1(cx)(�1) = cj
 (x)(�1) = j
(x). 	
This completes the proof of the lemma. 	
Theorem 4.9. Suppose thatNS�1 is saturated and there is a measurable cardinal.
Suppose thatX is a Σ1(�1)-definable subset of �1�1. Then at least one of the following
statements holds.

(i) X contains a perfect subset.
(ii) X ⊆ L(R).
Proof. Suppose that
 is measurable and � = 
+. Suppose thatX �⊆ L(R). Then
there is some A ∈ X\L(R). Suppose that i : 〈M,∈, I, Ā〉 −→ 〈H(�),∈,NS�1 , A〉
is elementary and M is countable. Let 
̄ = i−1(
). Since NS�1 is saturated and
P(�1)# exists, 〈M,∈, I, Ā〉 is �1-iterable by [35, Theorems 3.10 and 4.29].
Claim. If i0(Ā) ∩ α = i1(Ā) ∩ α with α = min({i0(�M1 ), i1(�M1 )}) holds for all
countable iterations i0 :M −→ N0 and i1 :M −→ N1, then X ⊆ L(R).
Proof. It follows from Lemma 4.8 that i0(Ā) ∩ α = A ∩ α. Hence A can be
reconstructed from (M, I, Ā) in L(R) by considering generic iterations of arbitrarily
large countable length in L(R). 	
Claim. If there are countable iterations i0 : M −→ N0 and i1 : M −→ N1 with
i0(Ā) ∩ α �= i1(Ā) ∩ α for α = min({i0(�M1 ), i1(�M1 )}), then this remains true in
every countable iterate ofM .

Proof. Let 
 = max({i0(�M1 ), i1(�M1 )}). Suppose that Ū is a normal measure
on 
̄ in M . Suppose that j : M −→ M
 is the iterate of M of length 
 with Ū .
Then j(
̄) > 
. As in the proof of Lemma 3.2, the iterated ultrapowers ofM with
Ū commute with the generic ultrapower since 
̄ > (2�1)M . The same argument
works for all further steps in the generic iteration of M and hence we obtain a
commutative diagram. This shows that the generic iteration ofM
 commutes with
the generic iteration ofM . In any Col(�, j(
))-generic extension ofM
 , there are
sequences of ultrafilters which induce i0, i1 as in the statement of the claim by
Σ12-absoluteness. Hence such iterations exist in any Col(�, 
)-generic extension
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of M by elementarity. This statement is preserved in generic iterations of M by
elementarity and guarantees the existence of i0 and i1. 	
The last claim allows us to build a perfect tree T of height �1 of generic iterates
ofM with the property that the set of images of Ā along the branches of T form a
perfect subset of X . 	
Remark 4.10. If CH fails, then the set X = {x ∈ �1�1 | ∀α ≥ � x(α) = 0} is a
Δ1(�1)-definable subset of �1�1 without the perfect set property.

4.4. The club filter and the non-stationary ideal. In this section, we will use
Lemma 4.3 to prove a strengthening of Theorem 1.5.
Lemma 4.11. Assume that eitherM#1 (A) exists for every A ⊆ �1 or that there is a
precipitous ideal on �1 and a measurable cardinal. Let A be an unbounded subset of
�1 that is Σ12 in the codes and let Y be a Σ1(A)-definable subset of P(�1). Then the
following statements hold for all y ∈ Y and � < �1.
(i) If y is a stationary subset of �1, then there is z ∈ Y such that z is an element
of the club filter on �1 and y ∩ � = z ∩ �.

(ii) If y is a costationary subset of�1, then there is z ∈ Y such that z is an element
of the nonstationary ideal on �1 and y ∩ � = z ∩ �.

Proof. Let X ⊆ �12 denote the set of characteristic functions of elements of the
set Y . Since A is unbounded in �1, the set X is Σ1(A)-definable. Fix y ∈ Y and
� < �1. In the following,wemay assume thaty is a bistationary subset of�1, because
otherwise the above statements hold trivially. Let x ∈ X denote the characteristic
function of y. We can apply Lemmas 4.3 and 4.4 to find x0, x1 ∈ Nx�� ∩ X and
a monotone enumeration 〈cα | α < �1〉 of a club C in �1 such that xi(cα) = i
for all α < �1 and i < 2. Set zi = {α < �1 | xi(α) > 0} ∈ Y for i < 2. Then C
witnesses that z0 is an element of the club filter on �1 and that z1 is an element of
the nonstationary ideal on �1. 	
Theorem 4.12. Assume that either M#1 (A) exists for every A ⊆ �1 or that there
is a precipitous ideal on �1 and a measurable cardinal. If A ⊆ �1 is Σ12 in the codes
andX is a subset of P(�1) that separates the club filter from the non-stationary ideal,
then X is not Δ1(A)-definable.
Proof. Assume that the set X is Δ1(A)-definable over 〈H(�2),∈〉. Since X is
disjoint from the nonstationary ideal on �1 and therefore contains no countable
subsets of�1, Σ1-reflection implies thatA is unbounded in�1 and the second part of
Lemma 4.11 shows that X contains no costationary subsets of �1. But this implies
thatX is equal to the club filter on�1 and therefore P(�1)\X contains a stationary
subset of �1. In this situation, the first part of Lemma 4.11 implies that P(�1)\X
contains an element of the club filter on �1, a contradiction. 	
Corollary 4.13. Assume that eitherM#1 (A) exists for every A ⊆ �1 or that there
is a precipitous ideal on �1 and a measurable cardinal. If A ⊆ �1 is Σ12 in the codes,
then the club filter on �1 is notΠ1(A)-definable over 〈H(�2),∈〉.
Proof. This is immediate from Theorem 4.12. 	
We can also use Lemma 4.11 to study Σ1(�1)-definable singletons.
Lemma 4.14. Assume that eitherM#1 (A) exists for every A ⊆ �1 or that there is
a precipitous ideal on �1 and a measurable cardinal. If A ⊆ �1 is Σ12 in the codes
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and x is a subset of �1 with the property that {x} is Σ1(A)-definable, then x is either
contained in the club filter on �1 or in the nonstationary ideal on �1.

Proof. If A is bounded in �1, then Σ1-reflection implies that x ∈ H(�1) and
hence x is contained in the nonstationary ideal on �1. Otherwise A is unbounded
in �1 and the claim follows directly from Lemma 4.11. 	
Remark 4.15. If V = L and κ is an uncountable regular cardinal, then there is
a bistationary subset x of κ such that {x} is Σ1(κ)-definable. Such subsets can be
constructed from the canonical ♦κ-sequence in L, using the facts that this sequence
is definable over 〈Lκ,∈〉 by a formula without parameters and the set {Lκ} is Σ1(κ)-
definable. Another way to construct such subsets is described in [10, Section 7].

4.5. Uniformization of the club filter. Weshow that the existence of large cardinals
implies that the club filter on �1 has no Σ1(�1)-definable uniformization.

Definition 4.16. Let κ be an uncountable regular cardinal. A uniformization of
the club filter on κ is a function f : Cκ −→ Cκ such that f(X ) ⊆ X is a club for
all X ∈ Cκ.
Lemma 4.17. If in a model of ZF, the club filter C�1 on �1 is an ultrafilter, then
there is no uniformization of C�1 which is definable from a set of ordinals.

Proof. Suppose that the club filter C�1 is an ultrafilter and there is a uniformiza-
tion of C�1 which is definable from a set of ordinals z. Then we can find a function
f : P(�1) −→ C�1 definable from z such that for all A ∈ P(�1), f(A) is a club
subset of A or of its complement. Let HODz denote the class of sets which are
hereditarily ordinal definable from z. Since �1 is regular in HODz , there is a subset
of �1 which is bistationary in HODz . The least such set S in a definable enumera-
tion of HODz is definable from z and �1. Then f(S) ∈ HODz and hence S is not
bistationary in HODz . 	
Remark 4.18. Suppose that in a model of ZF, x# exists for every real x (and
hence for every x ∈ [�1]<�1 ), and there is no uniformization of C�1 . Then there is
no function f : P(�1) −→ [�1]<�1 such that A ∈ L[f(A)] for all A ⊆ �1. Suppose
that f is such a function. For A ⊆ �1 let xA denote the inclusion-least finite set of
f(A)-indiscernibles such that A is definable from f(A) and xA in L[f(A)]. Then
the club CA off(A)-indiscernibles (i.e., Silver indiscernibles) between sup(xA∩�1)
and�1 is either contained inA or disjoint fromA. SinceCA is definable fromf(A)#,
this defines a uniformization of C�1 , contradicting the assumption.

Theorem 4.19. Suppose that there are infinitely many Woodin cardinals and a
measurable cardinal above them.

(i) In L(R), there is no uniformization of the club filter on �1.
(ii) There is no Σ1(�1)-definable uniformization of the club filter on �1.

Proof. (i) In L(R), every element is ordinal definable froma real andour assump-
tions imply that the club filter on �1 is an ultrafilter. By Lemma 4.17, there is no
uniformization of the club filter on �1.
(ii) Assume that there is a Σ1(�1)-definable uniformization of C�1 . By the
Π2-maximality of the Pmax -extension of L(R) (see [16, Theorem 7.3]), the same
Σ1-formula defines a uniformization of C�1 in the Pmax -extension of L(R). Since
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Pmax is weakly homogeneous in L(R) (see [16, Lemma 2.10]), this shows that there
is a uniformization of C�1 in L(R), contradicting the first part of the theorem. 	

Remark 4.20. Unpublished results of Woodin (see [15, Remark 3.3.12] and
[17, End of Section 6.3]) show that the existence of a proper class of Woodin limits
of Woodin cardinals implies that the Axiom of Determinacy holds in the Chang
model L(On�). Hence C�1 is an ultrafilter in L(On

�). It follows from Lemma 4.17
that there is no uniformization of C�1 in L(On

�).

Remark 4.21. Let κ be inaccessible in L and let G be Col(�,<κ)-generic
over L. Since Col(�,<κ) satisfies the κ-chain condition in L, every element of
CL[G ]�1 contains a constructible club and there is a uniformization of C�1 in L(R)

L[G ].

4.6. Σ1(�1)-absoluteness. In this section, we observe that for Σ1(�1)-formulas,
absoluteness to �1-preserving forcings holds for formulas without parameters, but
not for formulas with subsets of �1 as parameters.

Lemma 4.22. Let 	 be a Woodin cardinal below a measurable cardinal.

(i) Σ1(�1) statements (without parameters) are absolute to generic extensions for
forcings of size less than 	.2

(ii) The set of Σ1(�1)-formulas defining sets {x} with x ⊆ � is absolute for
forcings of size less than 	. Moreover, the set of Σ1(�1)-definable singletons
{x} with x ⊆ �1 is absolute for �1-preserving forcings of size less than 	.

(iii) The canonical code forM#1 is a subset of � which is not Σ1(�1)-definable in
any generic extension by forcings of size less than 	.

Proof. The first statement follows directly from Lemma 3.3, since it is equivalent
to a Σ13-statement. The second statement follows from the first statement. For the
third statement, suppose that the canonical code forM#1 is Σ1(�1)-definable. Then
it is Σ13-definable by Lemma 3.3. It is well known that forcing of size less than 	
preserves M#1 (see [27, Lemma 3.7]). Since Σ

1
3-truth can be computed in M

#
1 (see

[31, p. 1660]), the canonical code forM#1 is an element ofM
#
1 , a contradiction. 	

Remark 4.23. The existence of large cardinals does not imply that Σ1(�1)-
formulas with parameters in H(�2) are absolute to generic extensions which
preserve �1. For instance, we can add a Suslin tree T by adding a Cohen real (see
[11, Theorem 28.12]). When we add a branch through T by forcing with T , �1 is
not collapsed. Note that the existence of a branch through T is Σ1(T ).

§5. Σ1(�1)-definable sets inM1. We show that for some of the results above, large
cardinal assumptions are necessary, because these results fail in M1. We start by
showing that the assumption of Theorem 4.1 is optimal. For other applications, we
will construct well-orderings of H(κ+) with the property that the initial segments
are uniformly Σ1(κ)-definable.

Definition 5.1. Given an infinite cardinal κ, a well-ordering � of a subset of
H(κ+) is a good Σ1(κ)-well-ordering if the set I (�) = {{x | x � y} | y ∈ ran(�)}
of all proper initial segments of � is Σ1(κ)-definable.
2Given a Σ1-formula ϕ(v), a partial order P of cardinality less than 	 and G P-generic over V, then

this statement says that ϕ(�V1 )
V holds if and only if ϕ(�V[G ]1 )V[G ] holds.
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Theorem 5.2. Suppose thatM1 exists. InM1, the canonical well-ordering ofM1
restricted to H(�2) is a good Σ1(�1)-definable well-order.
Proof. Let 	 be the unique Woodin cardinal inM1. Work inM1| 	. Then there is
no inner model with a Woodin cardinal, becauseM1| 	 is closed under sharps and,
by a theorem ofWoodin, the existence of such an inner model would imply thatM#1
is an element ofM1| 	.3
By a mouse we mean a premouse in the sense of Mitchell-Steel [22] such that all
countable elementary substructures are �1-iterable. The previous argument allows
us to use [2, Lemma 2.1] to conclude that a premouseM ∈ H(�2) with no definable
Woodin cardinals is a mouse if and only if there is a transitive model U ∈ H(�2)
of ZFC− plus “ there is no inner model with a Woodin cardinal ” with �1 ⊆ U and
〈U,∈〉 |= “M is a mouse”. This shows that the set

A = {M ∈ H(�2) |M is a mouse, �M1 = �1, ��(M ) = �1}
is Σ1(�1)-definable. Since N ∈ H(�2) is an initial segment ofM1|�2 if and only if
N is a proper initial segment of someM in A, the above computations show that
the collection of all initial segments ofM1|�2 is also Σ1(�1)-definable.
Let � denote the canonical well-ordering of H(�2) inM1. Given x, y ∈ H(�2),
we have x � y if and only if there is an initial segment N of M1|�2 such that
x, y ∈ N and x <N y, where <N is the canonical well-ordering of N . By the above
computations, this shows that� is a good Σ1-definable well-order of H (�2)M1 . 	
Theorem 5.3. Suppose thatM1 exists. There is a generic extension ofM1 in which

¬CH holds and there is a good Σ1(�1)-definable well-order ofH (�2).
Proof. Let 	 denote the unique Woodin cardinal in M1. Work inM1 and let �
denote the canonical well-ordering ofM1. Given α ∈ �1 ∩ Lim, let Cα denote the
�-least cofinal subset of α of order-type �. Then �C = 〈Cα | α ∈ �1 ∩ Lim〉 is a
C -sequence. Let � < 	 be a Mahlo cardinal and let κ < � be Σ1-reflecting inM1|�.
In this situation, let P denote the partial order constructed in [8] that forces BPFA
to hold in a generic extension ofM1|� using the reflecting cardinal κ and let G be
P-generic over M1. Then �

M1
1 = �M1[G ]1 , H(�2)(M1|�)[G ] = H(�2)M1[G ], �C is still a

C -sequence in (M1|�)[G ] and, by [1, Theorem 2], there is a good Σ1( �C )-definable
well-ordering of H(�2) inM1[G ]. The forcing does not add an inner model with a
Woodin cardinal, since (as in the proof of Lemma 5.2) this would imply thatM#1
is an element of (M1| 	)[G ] and hence ofM1| 	, by using two mutual generics and
the fact thatM1 is Σ13-correct in V. Hence we can use the same Σ1(�1)-definition of
the initial segments ofM1 as in the proof of Lemma 5.2. Therefore the set { �C} is
Σ1(�1)-definable inM1[G ]. This yields the statement of the theorem. 	
Theorem 5.4. Suppose that M1 exists. Then the following statements hold in a
forcing extensionM1[G ] ofM1.
(i) There is a Woodin cardinal.
(ii) The GCH fails at �1.
(iii) There is a Σ1(�1)-definable well-ordering ofH(�2).
Proof. If 	 is the unique Woodin cardinal in M1 and � is the canonical well-
ordering ofM1 restricted to H(�2)M1 , then the following statements hold inM1:

3This result is unpublished, but the methods used in the (known) proof can be found in [33].

https://doi.org/10.1017/jsl.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.36


Σ1(κ)-DEFINABLE SUBSETS OF H(κ
+) 1123

(i) � is a good Σ1(�1)-definable well-ordering.
(ii) If P is a partial order of cardinality less than 	 with the property that forcing
with P preserves cofinalities less than or equal to �2 and G is P-generic over
V, then H(�2)V is Σ1(�1)-definable in V[G ].

(iii) There is a closed unbounded subset of [H(�2)]� consisting of elementary
submodels M of H(�2) with �[I (�) ∩M ] ⊆ I (�), where � : M −→ N
denotes the corresponding transitive collapse.

The proof of (i) and (ii) work as in the proofs of Theorems 5.2 and 5.3. The
statement (iii) can be derived from the version of the condensation lemma (see
[36, Theorem 9.3.2]) forM1, where the cases (a), (b) and (d) can be ruled out.
This shows that the tuple 〈	, �2, �1,�〉 is suitable for�1 as in [10, Definition 7.1].
Suppose that G is Add(�1, 
)-generic for some cardinal 
 < 	 with cof(
) > �1.
Then [10, Corollary 7.9] shows that there is a cofinality preserving forcing extension
of V[G ] that contains a Σ1(�1)-definable well-order of H(�2). 	
The following result shows that the assumption in Theorem 4.6 is optimal.
Lemma 5.5. Let κ be an uncountable regular cardinal. If there is a good
Σ1(κ)-definable well-ordering ofH(κ+), then there is a Bernstein subset of κκ that is
Δ1(κ)-definable over 〈H(κ+),∈〉.
Proof. AΣ1(κ)-definable Bernstein set can be constructed by a Σ-recursion along
the good Σ1(κ)-definable well-ordering � of H(κ+). We fix a Σ1(κ)-definable enu-
meration of perfect subtrees of κκ of length κ+. In each step, we choose two distinct
elements of the next perfect subset of κκ. We add one of these to the Bernstein set
and the other one to its complement. Moreover we add the next element in� either
to the Bernstein set or to its complement. 	
Lemma 5.6. The existence of a Δ1(�1)-definable Bernstein subset of �1�1 is
consistent with the existence of a Woodin cardinal.
Proof. This follows from Theorem 5.2 and Lemma 5.5. 	

§6. Σ1(κ)-definable sets at large cardinals. In this section, we generalize some of
the previous results to large cardinals.

Definition 6.1 ([7, 29]). Let κ be an uncountable cardinal.
(i) A weak κ-model is a transitive modelM of ZFC− of size κ with κ ∈M .
(ii) The cardinal κ is �1-iterable if for every subset A of κ there is a weak
κ-modelM and a weakly amenableM -ultrafilter U on κ such that A ∈ M
and 〈M,∈, U 〉 is �1-iterable.

We start by proving the following analog of Lemma 3.3.
Lemma 6.2. Assume that κ is either an �1-iterable cardinal or a regular cardinal
that is a stationary limit of �1-iterable cardinals. Then the following statements are
equivalent for every subset X of R.
(i) The set X is Σ1(κ)-definable.
(ii) The set X is Σ13-definable.
Proof. By Lemma 3.1, it suffices to show that (i) implies (ii). Assume that
ϕ(v0, v1) is a Σ1-formula with X = {x ∈ R | ϕ(κ, x)}. Define Y to be the set of
all y ∈ R with the property that there is a countable transitive modelM of ZFC−,
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a cardinal 	 ofM with ϕ(	, y)M and a weakly amenableM -ultrafilter F on 	 such
that the structure 〈M,∈, F 〉 is �1-iterable.
Claim. The set Y is a Σ13-subset of R.
Proof. Since �1-iterability is a Π12-statement and all other conditions are
first order statements about 〈M,∈, F 〉, the existence of such a structure is a
Σ13-statement. 	
Claim. X ⊆ Y .
Proof. First, assume that κ is �1-iterable and pick x ∈ X . Then we can find
A ⊆ κ with x ∈ L[A] and ϕ(κ, x)L[A]. By our assumption, there is a transitive
modelN of ZFC− of cardinality κ with κ,A ∈ N and anN -ultrafilterU on κ such
that the structure 〈N,∈, U 〉 is iterable. Then x ∈ N andϕ(κ, x)N . Let 〈N0,∈, U0〉 be
a countable elementary submodel of 〈N,∈, U 〉with x,A ∈ N0 and let � : N0 −→M
denote the corresponding transitive collapse. Set 	 = �(κ) and F = �[U0]. In this
situation, [14, Theorem 19.15] shows that the structure 〈M,∈, F 〉 is iterable. Since
ϕ(	, x)M holds by elementarity, we can conclude that x is an element of Y .
Now, assume that κ is a stationary limit of �1-iterable cardinals. Pick x ∈ X
and a strictly increasing continuous chain 〈Nα | α < κ〉 of elementary submodels
of H(κ+) of cardinality less than κ such that x ∈ N0 and κα = κ ∩ Nα ∈ κ for all
α < κ. Then C = {κα | α ∈ κ ∩ Lim} is a club in κ and there is an κ̄ < κ such
that κκ̄ is �1-iterable. Since �1-iterability implies inaccessibility, we have κ̄ = κκ̄.
By elementarity and Σ1-upwards absoluteness, we know that ϕ(κ̄, x) holds. In this
situation, we can repeat the construction of the first case to obtain a countable
iterable structure 〈M,∈, F 〉 that witnessing that x is an element of Y . 	
Claim. Y ⊆ X .
Proof. Pick y ∈ Y and let 〈M0,∈, F0〉 and 	 ∈M0 witness this. Then 〈M0,∈, F0〉
is iterable and ϕ(	, y)M0 holds. Let

〈〈〈Mα,∈, Fα〉 | α ∈ On〉, 〈jᾱ,α :Mᾱ −→Mα | ᾱ ≤ α ∈ On〉〉
denote the corresponding system of models and elementary embeddings. Then
j0,κ(	) = κ and ϕ(κ, y) holds by elementarity and Σ1-upwards absoluteness. This
shows that y is an element of X . 	
This completes the proof of the lemma. 	
Corollary 6.3. Assume that κ is either an �1-iterable cardinal or a regular car-
dinal that is a stationary limit of �1-iterable cardinals. If there is a Σ1(κ)-definable
well-ordering of the reals, then there is a Σ13-well-ordering of the reals. 	
If κ is either a Woodin cardinal below a measurable cardinal or a measurable
cardinal above aWoodin cardinal, then the above results allow us to show that there
is no Σ1(κ)-definable well-ordering of the reals.

Proof of Theorem 1.6. Letκ eitherbeameasurable cardinalaboveaWoodincar-
dinal or aWoodin cardinal belowameasurable cardinal. ThenΣ12-determinacy holds
and no well-ordering of the reals is Σ13-definable. If κ is a measurable cardinal, then
κ is �1-iterable (see [6]) and Corollary 6.3 implies that no well-ordering of the reals
is Σ1(κ)-definable. In the other case, if κ is a Woodin cardinal, then κ is a stationary
limit of measurable cardinals (and hence a stationary limit of �1-iterable cardinals)
and Corollary 6.3 implies that no well-ordering of the reals is Σ1(κ)-definable. 	
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In the following, we prove a large cardinal version of Lemma 4.3. This result will
allow us to prove Theorem 1.7.
Lemma 6.4. Let κ be a measurable cardinal and let X be a Σ1(κ)-definable subset
of κκ. If there is an x ∈ X such that are normal ultrafilters U0 and U1 on κ with
x̄ = {α < κ | x(α) = 0} ∈ U1\U0, then for every � < κ there is
(i) a continuous injection � : �12 −→ X with ran(�) ⊆ Nx�� ∩ X ,
(ii) a club D in κ with monotone enumeration 〈	α | α < κ〉

such that for all z ∈ κ2 and α < κ, we have z(α) = 1 if and only if �(z)(	α) > 0.
Proof. Fix � < κ and a regular cardinal � > κ with P(P(κ)) ∈ H(�). Pick a
Σ1-formula ϕ(v0, v1) with X = {z ∈ κκ | ϕ(κ, z)} and an elementary submodel
N of H(�) of cardinality less than κ with κ, x,U0, U1 ∈ N and � + 1 ⊆ N . Let
� : N −→M denote the corresponding transitive collapse.
In this situation [32, Theorem 2.3] shows that there is a directed system

〈〈Ms | s ∈ ≤κ2〉, 〈js,t :Ms −→Mt | s, t ∈ ≤κ2, s ⊆ t〉〉
of transitive models of ZFC− and elementary embeddings such that the following
statements hold:
(i) M =M∅.
(ii) If s ∈ <κ2 and i < 2, then Ms�〈i〉 = Ult(Ms, (j∅,s ◦ �)(Ui)) and js,s�〈i〉 is
the corresponding ultrapower map induced by (j∅,s ◦ �)(Ui).

(iii) If s ∈ ≤κ2 with lh(s) ∈ Lim, then
〈Ms, 〈js�α,s :Ms�α −→Ms | α < lh(s)〉〉

is the direct limit of the directed system

〈〈Ms�α | α < lh(s)〉, 〈js�ᾱ,s�α :Ms�ᾱ −→Ms�α | ᾱ ≤ α < lh(s)〉〉.
Set js = j∅,s for all s ∈ ≤κ2. Since κ = (jz ◦ �)(κ) for all z ∈ κ2, we can define

i : κ2 −→ κκ; z �−→ (jz ◦ �)(x).
In this situation, elementarity and Σ1-upwards absoluteness imply thatϕ(κ, i(z))
and x � � = i(z) � � hold for all z ∈ κ2. In particular, we have ran(i) ⊆ Nx�� ∩ X .
Given z ∈ κ2, we define

cz : κ −→ κ; α �−→ (jz�α ◦ �)(κ).
Then ran(cz) is strictly increasing and continuous for every z ∈ κ2. By definition,
we have cz0 � α = cz1 � α for all z0, z1 ∈ κ2 and α < κ with z0 � α = z1 � α. Given
z ∈ κ2 and α < κ, we have

crit
(
jz�α,z�(α+1)

)
= cz(α) < cz(α + 1) = crit

(
jz�(α+1),z

)

and
(jz�α ◦ �)(x̄) ∈ (jz�α ◦ �)(U1)\(jz�α ◦ �)(U0).

This allows us to conclude that
z(α) = 1 ⇐⇒ cz(α) ∈ (jz�(α+1) ◦ �)(x̄)

⇐⇒ (((jz�(α+1) ◦ �)(x))(cz(α)) > 0
⇐⇒ (((jz�(α+1),z ◦ jz�(α+1) ◦ �)(x))(cz(α)) > 0
⇐⇒ (i(z)(cz(α)) > 0

holds for all z ∈ κ2 and α < κ. In particular, this shows that i is injective.
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Now, fix z ∈ �12 and � < �1. Pick α < �1 with cz(α) > � . Since we have
cz̄(α) = crit (jz̄�α,z) and i(z̄) � � = (jz̄�α ◦ �)(x) � � for all z̄ ∈ �12, we can
conclude that i(z) � � = i(z̄) � � holds for all z̄ ∈ Nz�α ∩ κ2. This shows that i is
continuous.
Let 〈	α | α < κ〉 denote the monotone enumeration of the clubD of all uncount-
able cardinals less than κ and let e : κ2 −→ κ2 denote the unique continuous
injectionwithe(z)−1{1} = {	α |α < κ, z(α) = 1} forallz ∈ κ2.Thencz � D = idD
for all z ∈ κ2. Set � = i ◦ e. Given z ∈ κ2 and α < κ, we then have

z(α) = 1 ⇐⇒ e(z)(	α) = 1 ⇐⇒ i(e(z))(ce(z)(	α)) > 0 ⇐⇒ �(z)(	α) > 0. 	

The above lemma allows us to prove the following strengthening of Theorem 1.7.

Theorem 6.5. Let κ be a measurable cardinal with the property that there are two
distinct normal ultrafilters on κ and let Γ be a set of Σ1(κ)-definable subsets of κκ. If⋃
Γ = κκ, then some element of Γ contains a perfect subset.

Proof. Pick normal ultrafilters U0 and U1 on κ with U0 �= U1. Then there is
x ∈ κκ with {α < κ | x(α) > 0} ∈ U1\U0 andX ∈ Γ with x ∈ X . In this situation,
Lemma 6.4 implies that X contains a perfect subset. 	
The following result shows that the conclusion of Theorem 1.7 does not hold for
all measurable cardinals.

Theorem 6.6. Assume that 	 is a measurable cardinal andU is a normal ultrafilter
on 	 with V = L[U ]. If κ ≤ 	 is an uncountable regular cardinal, then there is a
Bernstein subset of κκ that is Δ1(κ)-definable over 〈H(κ+),∈〉.
Proof. Following [14, p. 264], we define a ZFC−-mouse at � to be a struc-
ture 〈M,∈, F 〉 such that M is a transitive model of ZFC− with M = Lα[F ]
for some ordinal α and F is a weakly amenable M -ultrafilter on � such that
〈M,∈, F 〉 is�1-iterable. Note that�1-iterability implies full iterability andH(	+) ⊆
Ult(V, U ) implies that every element of H(	+) is contained in a ZFC−-mouse at
some � > 	.
Given an uncountable regular cardinal κ ≤ 	, we define a well-order� on H(κ+)
by setting x � y if there is a ZFC−-mouse 〈M,∈, F 〉 at some � > κ with x, y ∈ M
and x <L[F ] y.

Claim. � is a good Σ1(κ)-definable well-order of P(κ)L[U ].
Proof. Let M be a ZFC−-mouse. By [14, Lemma 20.8], there are elementary
embeddings i : M −→ L
 [F ] and j : Ult(V, U ) −→ L[F ] with critical points
greater than κ and P(κ)M = P(κ)L
 [F ] ⊆ P(κ)L[F ] = P(κ)V. Hence � is equal
to the restriction of the canonical well-order of Ult(V, U ) to H(κ+)V and every
ZFC−-mouse is downwards-closed with respect to �. Since �1-iterability can be
checked by transitive models of some fragments of ZFC containing �1 as a subset
and is therefore a Σ1(κ) condition, the above computations yield the statement of
the claim. 	
By Lemma 5.5, the above claim implies the statement of the theorem. 	
In the remainder of this section, we study the Π1-definability of the club filter at
large cardinals. We start by proving Theorem 1.9, which shows that the club filter
on κ is not Π1(κ)-definable if κ is a stationary limit of �1-iterable cardinals.
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Proof of Theorem 1.9. Let κ be a regular cardinal that is a stationary limit of
�1-iterable cardinals. Fix a Σ1-formula ϕ(v0, v1) and assume, towards a contradic-
tion, that the complement of the club filter on κ is equal to the set {x ⊆ κ |ϕ(κ, x)}.
Let y denote the set of �1-iterable cardinals less than κ and set z = κ\y. Then z is
a bistationary subset of κ and ϕ(κ, z) holds.
Pick a strictly increasing continuous chain 〈Nα | α < κ〉 of elementary submodels
of H(κ+) of cardinality less than κ such that z ∈ N0 and κα = κ ∩ Nα ∈ κ for
all α < κ. Then C = {κα | α ∈ κ ∩ Lim} is a club in κ. Let 	 denote the minimal
element of κ ∩ Lim with κ	 ∈ y. Since κ	 is an �1-iterable cardinal and therefore
regular, we know that 	 = κ	 . Let � : N	 −→ N denote the transitive collapse ofN	 .
Then �(κ) = 	 and �(z) = z ∩ 	. In this situation, Σ1-upwards absoluteness implies
that ϕ(	, z ∩ 	) holds in V. Moreover, C ∩ 	 is a club in 	 and the minimality of 	
implies that C ∩ 	 is a subset of z ∩ 	.
Since 	 is �1-iterable, we can find a weak 	-model M0 and an M0-ultrafilter F0
on 	 such that z ∩ 	, C ∩ 	 ∈M0, ϕ(	, z ∩ 	)M0 holds and 〈M0,∈, F0〉 is iterable. Let

〈〈〈Mα,∈, Fα〉 | α ∈ On〉, 〈jᾱ,α :Mᾱ −→Mα | ᾱ ≤ α ∈ On〉〉
denote the corresponding system of models and elementary embeddings. Then
j0,κ(	) = κ and j0,κ(C ∩ 	) is a club in κ that witnesses that the set j0,κ(z ∩ 	)
is contained in the club filter on κ. But Σ1-upwards absoluteness and elementarity
imply that ϕ(κ, j0,κ(z ∩ 	)) holds, a contradiction. 	
Next, we prove an analog of Lemma 4.11 for certain large cardinals.
Lemma 6.7. Let κ be an uncountable regular cardinal, let M be a weak κ-model
and let U be an M -ultrafilter such that 〈M,∈, U 〉 is �1-iterable. If ϕ(v0, v1) is a
Σ1-formula, then the following statements hold for all � < κ and x ∈M ∩ P(κ) with
the property that ϕ(κ, x)M holds:
(i) Ifx ∈ U , then there is an elementy of the club filter onκ such thatx � � = y � �
and ϕ(κ, y) holds.

(ii) If x /∈ U , then there is an element y of the nonstationary ideal on κ such that
x � � = y � � and ϕ(κ, y) holds.

Proof. Pick an elementary submodel 〈N,∈, F 〉 of 〈M,∈, U 〉 of cardinality less
than κ with κ, x ∈ N and � + 1 ⊆ N . Let � : N −→ M0 denote the cor-
responding transitive collapse. Set F0 = �[F ]. Then F0 is an M0-ultrafilter and
[14, Theorem 19.15] implies that the structure 〈M0,∈, F0〉 is iterable. Let

〈〈〈Mα,∈, Fα〉 | α ∈ On〉, 〈jᾱ,α :Mᾱ −→Mα | ᾱ ≤ α ∈ On〉〉
denote the corresponding system of models and elementary embeddings. Define
y = (j0,κ ◦ �)(x). Since κ = (j0,κ ◦ �)(κ), Σ1-upwards absoluteness and ele-
mentarity imply that ϕ(κ, y) holds and x � � = y � �. Moreover, the set
C = {(j0,α ◦ �)(κ) | α < κ} is a club in κ.
Now, assume x ∈ U . Then (j0,α ◦ �)(x) ∈ Fα and (j0,α ◦ �)(κ) ∈ (j0,α+1 ◦ �)(x)
for all α < κ. Since we have (j0,α ◦ �)(x) < (j0,α+1 ◦ �)(x) = crit (jα+1,κ) for all
α < κ, we can conclude that C is a subset of y in this case and therefore y is
contained in the club filter on κ.
Finally, assume x /∈ U . Then (j0,α ◦�)(x) /∈ Fα and (j0,α ◦�)(κ) /∈ (j0,α+1 ◦�)(x)
for all α < κ. As above, we can conclude that C is disjoint from y in this case and
therefore y is an element of the nonstationary ideal. 	

https://doi.org/10.1017/jsl.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.36
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The previous lemma allows us to show that the club filter and the non-stationary
ideal cannot be separated by a Δ1(κ)-set for certain large cardinals κ.

Proof of Theorem 1.8. Let κ be an �1-iterable cardinal and assume that there
are Σ1-formulas ϕ(v0, v1) and �(v0, v1) with the property that the subset X =
{x ⊆ κ | ϕ(κ, x)} of P(κ) separates the club filter from the nonstationary ideal
and P(κ)\X = {x ⊆ κ | �(κ, x)}. Pick an elementary submodel M of H(κ+) of
cardinality κ with κ + 1 ⊆ M . By our assumptions, there is a κ-model N and an
N -ultrafilter U on κ such thatM ∈ N and 〈N,∈, U 〉 is iterable. Set F =M ∩U .
Claim. F =M ∩ X .
Proof. Assume that there is x ∈ F with x /∈ X . Then elementarity implies that
�(κ, x)M holds and Σ1-upwards absoluteness implies that �(κ, x)N holds. By the
first part of Lemma 6.7, this shows that there is an element y of the club filter on κ
such that �(κ, y) holds, a contradiction. This shows that F ⊆M ∩ X .
Now, assume that x ∈ M ∩ X with x /∈ U . Then elementarity implies that
ϕ(κ, x)M holds and Σ1-upwards absoluteness implies that ϕ(κ, x)N holds. By the
second part of Lemma 6.7, there is an element y of the nonstationary ideal on κ
such that ϕ(κ, y) holds, a contradiction. Together with the above computations,
this shows that F =M ∩X . 	
Since 〈M,∈, F 〉 |= “F is a normal ultrafilter on κ ” and F is Δ1(κ)-definable over

〈M,∈〉, elementarity implies thatX is a normal ultrafilter over κ in V. Let Ult(V, X )
denote the corresponding ultrapower of V. Then H(κ+) = H(κ+)Ult(V,X ). Since X
is definable over 〈H(κ+),∈〉, we can conclude that X is an element of Ult(V, X ), a
contradiction. 	
For measurable cardinals κ, we obtain a result similar to Lemma 4.22.

Lemma 6.8. Let κ be an �1-iterable cardinal and let � be a measurable cardinal.

(i) Σ1(κ)-statements (without parameters) are absolute to generic extensions for
forcings of size less than � which preserve the �1-iterability of κ.

(ii) The set of Σ1(κ)-definable singletons {x} with x ⊆ κ is absolute for forcings
of size less than � which preserve the �1-iterability of κ.

Proof. The first claim follows from Lemma 6.2, since the statement is equiva-
lent to a Σ13-statement and Σ

1
3-absoluteness holds for forcings of size less than �

(see [27, Lemma 3.7]). The second claim follows from the first claim. 	
Note that, if κ is an �1-iterable cardinal, then forcing with a partial order of
cardinality less than κ preserves the �1-iterability of κ.

§7. Open questions. We close this paper with a collection of questions raised by
the above results.
First, Lemmas 3.3 and 3.7 suggest the following question.

Question 7.1. Assume that there is a proper class of Woodin cardinals. If B is a
uB set of reals, is every Σ13(B)-set Σ1(�1)-definable over 〈H(�2),∈, B,NS�1〉?
Theorem 4.19 leaves open the following question.

Question 7.2. Suppose that there is a Woodin cardinal and a measurable cardinal
above it. Is there no Σ1(�1)-definable uniformization of the club filter on �1?
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Note that the existence of a good Σ1(�1)-definable well-order of P(�1) yields a
Σ1(�1)-definable uniformization of the club filter on �1 and Theorem 5.2 shows
that such a uniformization is compatible with the existence of a Woodin cardinal.
Next, we ask if the assumption in Theorem 4.9 is optimal. The conclusion does
not follow from the existence of a Woodin cardinal by the proof of Lemma 5.6.
Moreover, the perfect set property for all definable subsets of �1�1 can be forced by
Levy-collapsing an inaccessible cardinal (see [28]).

Question 7.3. Suppose that NS�1 is saturated or that there is a Woodin cardinal
and a measurable cardinal above it. Does the perfect set dichotomy over L(R) in
Theorem 4.9 hold?
Moreover, we do not know if the two cases in the perfect set dichotomy in
Theorem 4.9 are mutually exclusive unless 2� < 2�1 . This is related to the ques-
tion over which models it is possible to add perfect subsets of the ground model
(see [19, Lemma 6.2] and [34]).

Question 7.4. Is it consistent with the existence of a Woodin cardinal and a
measurable cardinal above it that there is a perfect subset of �1�1∩L(R)? In particular,
does this statement fail in the Pmax -extension of L(R) if there are infinitely many
Woodin cardinals?
Weask about generalizations of the results of this paper to�2 and larger cardinals.
In this situation, the method of iterations of generic ultrapowers fails, since generics
need not exist over uncountable models.

Question 7.5. Is the existence of a Σ1(�2)-definable well-ordering of the reals
compatible with the existence of a supercompact cardinal?
We also ask about a perfect set dichotomy for large cardinals.

Question 7.6. Let κ be a supercompact cardinal and let X be a subset of κκ that
is Σ1-definable over 〈H(κ+),∈〉 and has cardinality greater than κ. Does X contain a
perfect subset?
The motivation for this question is that for supercompact cardinals, there are
many different normal ultrafilters on κ. Let κ be a measurable cardinal and let
D denote the collection of all subsets y of κ with the property that there are
ultrapowers I0 and I1 of V with normal ultrafilters on κ such that jI0 (κ) = jI1 (κ)
and jI0 (y) �= jI1 (y). Then the above proofs show: If X is a Σ1(κ)-definable subset
of κκ and there is an element x ofX with {α < κ | x(α) > 0} ∈ D, thenX contains
a perfect subset.
Finally, Lemma 6.8 leaves open the following question.

Question 7.7. Suppose that Φ(κ) holds, where Φ(κ) is a large cardinal property
that implies that κ is weakly compact. Are Σ1(κ)-formulas with parameters in H(κ+)
absolute to generic extensions for <κ-distributive forcings which preserve Φ(κ)?
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