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The Covid-19 pandemic has put forecasting under the spotlight, pitting epidemiological models against
extrapolative time-series devices.We have been producing real-time short-term forecasts of confirmed cases
and deaths using robust statistical models since 20 March 2020. The forecasts are adaptive to abrupt
structural change, a major feature of the pandemic data due to data measurement errors, definitional and
testing changes, policy interventions, technological advances and rapidly changing trends. The pandemic
has also led to abrupt structural change in macroeconomic outcomes. Using the same methods, we forecast
aggregate UK unemployment over the pandemic. The forecasts rapidly adapt to the employment policies
implemented when the UK entered the first lockdown. The difference between our statistical and theory-
based forecasts provides a measure of the effect of furlough policies on stabilising unemployment, establish-
ing useful scenarios had furlough policies not been implemented.
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1. Introduction

One characteristic of both the Covid-19 data on confirmed cases and deaths and macroeconomic data
over the pandemic is their inherent nonstationarity. The Covid-19 data exhibit continually changing
trends, with explosive roots in some periods, and they are also subject to abrupt shifts. Every aspect of the
distribution is changing over time, as can be seen in figure 1, which records total and new cases and
deaths for the UK, with data from the start of the pandemic to 14 January 2021. Panels (e) and (f)
highlight how the distributions are shifting over time. Added to the problem of nonstationary data is the
compounding effect of the nonstationarity of the reporting process. There are reporting delays, changing
definitions and data errors. For example, the expansion of infection and antibody testing, the sudden
inclusion of care home cases for the UK, corrections for previous errors in reporting leading to negative
numbers reported for cases for some days, omitting rows of data due to the use of out-dated Excel
spreadsheets and lags in data releases, especially at the weekend, generating weekly changing ‘season-
ality’. The nonstationarity of the data interacts with the nonstationarity of the reporting process and the
changing seasonal pattern, which requires highly adaptive forecastingmethods.Macroeconomic data are
also subject to changing stochastic trends, abrupt distributional shifts, structural breaks and outliers,
measurement errors, data revisions and seasonality, so it is natural to see if the same forecastingmethods
could be useful to both Covid-19 and macroeconomic data.

There is a two-way interaction between the pandemic and the economy. As confirmed cases and
deaths grew exponentially, public health policy led to the first lockdown, resulting in a substantial fall in
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output, and following with a lag, a fall in cases and deaths, leading in turn to a relaxation of lockdown.
Large extensions in testing detected more cases, as many individuals were asymptomatic, and cases
began increasing rapidly again after educational institutions reopened, indeed far exceeding the initial
levels. Although the NHS remained under considerable strain, Covid-19 death rates dropped sharply
from improved procedures, probably leading some individuals to take greater risks, especially those
whose livelihoods depended onworking, and younger ages, further spreading the virus. This resulted in a
second lockdown and further changes in economic policy. The new B117 variant led to a further
explosion of cases and deaths, resulting in a third lockdown. Given the close interactions between public
health policy and its impact on the economy, it should not come as a surprise that forecasting devices that
are successful in one arena may also be valuable in the other.

Ideally, the health and economic systems would be jointly forecast, with forecasts of Covid-19 cases
and deaths used to predict policy responses to the health crisis including lockdowns. This, in turn,
predicts an economic response to the lockdown, namely rising unemployment, which would predict a
policy response such as furlough policies. In practice, this joint system is too challenging to model to
produce accurate forecasts at longer horizons. The economic and health responses operate at different
frequencies. We produce 7-day ahead forecasts for Covid-19, which gives sufficient time to ensure ICU
capacity, healthcare availability and so on, but we produce 1–3-month ahead forecasts for unemploy-
ment which are less timely as the data are only available with a substantial lag. Tying together the health
and economic systems is difficult, but there are many commonalities in both the data and forecasting
procedures that we discuss below.

There are two dominant approaches to forecasting that can be applied to health and economic data:
structural models, including epidemiological models and, for example, dynamic stochastic general
equilibrium models in economics, and time-series models, which could include autoregressive models,
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Figure 1. (Colour online) Panel (a): UK total confirmed cases. Panel (b): UK total deaths. Panel (c): UK confirmed cases with smoothed
trend. Panel (d): UK new deaths with smoothed trend. Panel (e): densities for new cases averaged over 3-month intervals. Panel (f):
densities for new deaths averaged over 3-month intervals
Source: https://ourworldindata.org/coronavirus.
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Theta (Assimakopoulos and Nikolopoulos, 2000), Cardt (Castle et al., 2021) and growth curves (Harvey
and Kattuman, 2020).While structural and statistical models have different underlying assumptions and
different ways of using past data, they can both be informative. Neither approach captures the true
underlying data generating process (DGP) of the disease transmission mechanism, which depends on a
myriad of factors including host, social, environmental and policy variables, resulting in a far too
complex process to model. Instead, both rely on simplifying assumptions.

Epidemiological models, like structural models in economics, have a sound theoretical basis and
many useful applications. Structural models are invaluable to understanding what is going on, but at the
same time there is a history of simple data-based devices out-forecasting those structural models, not just
in economics but in many different disciplines. One of the reasons for these forecast results is that there
are shifts in the distribution of the data that lead to systematically poor forecasts. This is because models
tend to have a built-in equilibrium to which they revert, but if the data have shifted (as seen in figure 1),
the forecasts will try to return to the wrong equilibrium. From their taxonomy of all sources of forecast
errors, Clements and Hendry (1998) show that forecast failure, where outcomes systematically lie well
outside interval forecasts, is primarily due to unanticipated shifts. As they are unanticipated, large
forecast errors are relatively common. However, systematic forecast failure arises from not adjusting to
the shift after it has occurred. In this paper, we contrast statistical forecastingmethods that adapt rapidly,
relying purely on the recent past data capturing how it has evolved and shifted to predict what will
happen next, to more structural models based on epidemiology or economic theory.

Adaptive forecasting devices rapidly adjust to the latest information in the data, handling both
stochastic trends and abrupt shifts. In Section 2, we present a statistical forecasting device (Cardt; see
Castle et al., 2021) that is highly adaptive and has been shown toworkwell in forecasting the 100,000 time
series of varying frequency and sample length in the M4 competition (see Makridakis et al., 2020).
Section 3 applies that forecasting device to short-term forecasts of Covid-19 confirmed cases and deaths
(see also Doornik et al., 2020b, 2020c), evaluating these forecasts against published forecasts from
epidemiological models. Section 4 forecasts UK aggregate unemployment, comparing our statistical
forecasts to those from a more structural congruent econometric model, before Section 5 concludes.

2. An adaptive statistical forecasting device

To forecast Covid-19 cases and deaths, we begin by decomposing the data into a trend, seasonal and
irregular component, and then forecast the components separately before aggregating. The forecasts for
the trend and irregular components are computed using a statistical device we have developed for short-
term forecasting called the Calibrated Average of Rho (ρ), Delta (δ) and THIMA, or Cardt for short (see
Castle et al., 2021). It is a modified version of the forecasting device used in our submission for the M4
competition (Makridakis et al., 2020) described in Doornik et al. (2020a). The seasonal component is
extrapolated from themost recent estimates of the seasonal pattern. For the unemployment forecasts, we
apply Cardt directly to the unemployment rate data rather than undertaking an initial decomposition, as
the data are less messy owing to the estimates being reported as 3-month averages. The decomposition is
outlined in Section 2.1, and the Cardt forecast device is described in Section 2.2.

2.1. Decomposing Covid-19 data into a trend, seasonal and irregular component

Define It as the cumulative number of positive tests and it for the daily number of positive tests, where
it ¼ΔIt , and equivalently, the cumulative number of deaths isDt , and the daily count is dt ¼ΔDt , where
we let Yt denote It orDt . Our forecasting models are for the logarithm of Yt , adding 1 to allow for a zero
count at the beginning of the pandemic. The resulting decomposition into trend bμt , seasonal bγt and
remainder bεt is

log Yt þ1ð Þ¼ logbμt þ logbγtþbεt ,
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which is transformed back using but ¼ exp bεtð Þ:

Yt ¼bμtbγtbut �1¼ bμt �1½ �bγtbut þ bγtbut �1½ �≈ bμt�1½ �bγtbμt ¼ bYtbγtbut:
Both bγt and but have an expectation of one and are uncorrelated.

The decomposition is obtained by taking moving windows of the data and saturating these by
segments of linear trends, denoted trend indicator saturation (TIS; Castle et al., 2019). The changing
seasonality is modelled by including six indicator variables for 6 days of the week and both a weekly sine
and cosine wave, and a half-weekly sine and cosine wave. Despite redundancy, these can all be included
initially as selection is applied. Sparsity is obtained by selecting the broken trends and seasonal
components that are significant at tight significance levels using the machine learning tree-search
algorithm, Autometrics (Doornik, 2009). An estimate of the unobserved flexible trend and unobserved
changing seasonal pattern is obtained by taking the average of the fitted values for each observation
across all windows that include that observation. The remainder is the difference between the actual
observation and the estimated trend and seasonal component.

2.2. The Cardt forecasting device

The trend and remainder terms are forecast separately using Cardt, and recombined, adding in the
seasonal component from the last observations at the seasonal frequency (e.g., the seasonal pattern from
the last week of in-sample data for the daily Covid-19 data is extrapolated forwards) in a final forecast.
Cardt is applied to the irregular component, as there may be some residual dynamics that are captured in
the decomposition. The remainder is not a martingale-difference process.

To apply Cardt, three models are estimated including:
δ: Obtains estimates of the growth rate based on first differences, but is dampened by removing large

values and allowing for seasonality.
ρ: Estimates a simple autoregressive model with seasonality, forcing a unit root if the estimates are

close to one and hence switching to a model in first differences with dampened mean.
THIMA: A trend-halved integrated moving average model, which consists of a dampened trend

which is arbitrarily halved, together with an intercept correction estimated by a moving average model.

The arithmeticmean average of the three forecasts is computed. These forecasts are then calibrated by
treating them as if they were observed, and a richer autoregressive model is estimated from the extended
data series. The fitted values from this calibrated model give the final forecasts, undoing any trans-
formations such as log and differencing. Higher orders of integration [e.g., I(2) and damped I(2)] can be
allowed for when applying the methodology; Doornik et al. (2020b) provides further details.

The results from the M3 and M4 competition data, which include data of differing sample sizes,
frequencies, category of data and degree of nonstationarity (both stochastic trends and abrupt shifts),
suggest that the Cardt method forecasts well over short horizons. The method dampens trends and
growth rates, which is important to avoid wild forecasts, averages across forecasts (which is a principle
dating back to Bates and Granger, 1969) and robustifies the forecasts to breaks in the data by ‘over-
differencing’ (see Hendry, 2006). We next apply the forecasting method to Covid-19 cases and deaths in
Section 3 and UK unemployment in Section 4.

3. Short-term forecasts of Covid-19 confirmed cases and deaths

We first published forecasts on 20 March 2020, forecasting 5 days ahead, and updating mostly every
2 days. The number of forecasts produced has since expanded to approximately 50 countries, 50 US
states and over 300 Local Authority areas for England, forecasting 7 days ahead (see Doornik et al.,
2020b, 2020c for details of how the forecasts are produced).1 One important aspect of the algorithm is

1The forecasts are available on www.doornik.com/COVID-19.
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that it is automated, including downloading, sorting the data and forecasting. This enables a wide
coverage and frequent updating of the forecasts.

Figure 2 shows an edited version of the forecasts forUK total cases and deaths for 14–20 January 2021,
which were produced using data to 13 January 2020. The solid grey line records the actual data, obtained
from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns
Hopkins University Center for Systems Science and Engineering.2 The dashed line records the trend
decomposition bμ. The red line is the forecast using the most recent data released. The grey lines are
forecasts commencing from the last four data points, so commence with data conditioning only on actual
outturns 4 days previously, 3 days previously and so on, but the forecasts are adjusted to match the last
known observation. The average forecast is given in the black line. Big differences between the black and
red lines enable us to monitor changes. For example, if policy is starting to be effective, we should see the
red line based on most recent data deviate below the black line.

One important aspect of the forecastingmethod is its robustness to breaks. Figure 3 records the forecasts
for total deaths in Italy early in the pandemic. In panel (a), the forecasts cover 6–12 March 2020, with the
red line reporting the forecasts with 80 per cent uncertainty bands based on data available to 5March 2020.
The outturns are significantly higher after 2 days of forecasts, lying well outside the interval forecasts. The
growth rate of cumulative deaths rose suddenly and quickly. An adaptive forecasting method needs to
recover rapidly from these mistakes to avoid systematic failure. Moving 1 day forward in panel (b), the
forecasts have updated and are now similar to the trajectory of the data, which was unknown at the time.
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Figure 2. (Colour online) Forecasts for UK total confirmed cases [panel (a)] and total deaths [panel (b)] over 14 January to 20 January 2021
Source: www.doornik.com/COVID-19.
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Figure 3. (Colour online) Forecasts for Italian total deaths over 6–12 March 2020 [panel (a)] and 7–13 March 2020 [panel (b)]
Source: www.doornik.com/COVID-19.

2The data can be downloaded from github.com/CSSEGISandData/COVID-19.
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The average forecast in black, using the last four observations as starting points, trails behind as expected
given the shift, providing further evidence of when breaks occur in the data.

Prior to the second national lockdown for England, the policy approach had been to rank areas into
tiers depending on the number of confirmed cases, with varying restrictions depending on the severity of
cases within an area. This approach requires forecasts at a much finer resolution than the national level.
Our statistical forecasting methods can be applied to highly disaggregated data such as data at the local
authority level. The forecasts using the same methodology as that applied to the country level data are
shown in figure 4, with the much darker shading in the right panel showing the huge increase in forecast
cases in January 2021 relative to the previous summer.

3.1. Evaluation of statistical forecasts in comparison to epidemiological forecasts

We compare the evolution of the forecast performance of our statistical methods with those from the Los
Alamos National Laboratory (LANL), which have been published twice a week since 5 April 2020, and
forecasts from the Institute for Health Metrics and Evaluation (IHME), published since 25 March 2020
but not consistently.3 The LANL forecasting model is not a full susceptible, infected and recovered
epidemiological model, but is a modification of one in which they use a statistical model to capture the
dynamics of the infection rate and then theymap this to the reported data. They also produce uncertainty
bands capturing model and measurement uncertainty.

Figure 5 records the forecast paths for the UK comparing our forecasts with those from LANL, with
cases on the left panel and deaths on the right panel, up to November 2020. There are substantial
revisions to both cases and deaths data. For confirmed cases, the UK data include results from both pillar
1 and pillar 2 testing. Pillar 1 testing includes those with a clinical need, and health and care workers,
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Figure 4. (Colour online)Week ahead forecasts for confirmed cases per 100,000 by England Local Authority areas from9 July 2020 (left
panel) and 2 January 2021 (right panel)
Source: www.doornik.com/COVID-19.

3See https://covid-19.bsvgateway.org/ for the LANL forecasts and http://www.healthdata.org/covid for the IHME forecasts.
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whereas pillar 2 testing is for the wider population. Up to 1 July, these data were collected separately
meaning that people who had tested positive via both methods were counted twice. On 2 July, data for
both pillars were combined, and around 30,000 duplicates were found and removed from the data, hence
the revision to reported cases on 2 July. For the data on deaths, there was a large revision on 12 August.
Deaths were redefined, so that a Covid-19-related death was recorded only if the individual had a positive
test within the last 28 days. Previously, all deaths after a positive test were attributed to Covid-19. The
data were then revised backwards. Time-series models have the advantage of adjusting to such data
revisions rapidly, without the need for intercept adjustments as structural models would.

Table 1 evaluates the two forecast paths, reporting the mean absolute percentage error (MAPE) and
root-mean-square percentage error (RMSPE), as well as the percentage of forecasts lying below the
10 per cent and above the 90 per cent quintiles, where F denotes our forecasts. Letbyj,Tþh denote a forecast
at horizon h (where h spans 1�7 days ahead) from group j¼ 1,…, J :

MAPE¼ 100
J

XJ

j¼1

yj,Tþh�byj,Tþh

��� ���
yj,Tþh

,

RMSPE¼ 100
J

XJ

j¼1

yj,Tþh�byj,Tþh

� �2
" #1=2

,

where yj,Tþh > 0 in our application. For confirmed cases, both Cardt and LANL forecasts are close,
although Cardt does slightly better on RMSPE, but for deaths, Cardt tends to outperform those of LANL
by a margin. The interval forecasts are much harder to accurately predict for both sets of forecasts. For
the bottom quantile, our forecasts are significantly below 10 per cent but a bit closer for the top quantile,
whereas the LANL forecasts are closer but with considerable variation.

1 July: Pillar 1 and pillar 2 data combined

Figure 5. (Colour online) Forecast paths for UK, cases (left panel) and deaths (right panel), with our Cardt forecasts in red and LANL
forecasts in blue
Source: www.doornik.com/COVID-19.
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Wenext compare our forecasts to those from IHME,which use forecastingmodels that are a hybrid of
disease transmission models and statistical models. Since the change in the definition of a Covid-19-
related death, the IHME have been targeting a different measure of deaths to that reported by Johns
Hopkins, but we evaluate the forecasts based on their definition of the outturns, which are reported the
following week. Table 2 records equivalent statistics for a comparison between our forecasts F and the
IHME forecasts, although over a smaller sample when the forecast dates coincide. The Cardt forecast
errors are consistently smaller over 1–7 days ahead, but again the quantiles are hard to predict.

Thus, our statistical forecasts for Covid-19 perform well and can rapidly update when there are
changes in data definitions or shifts in the data. We next examine how the method performs when
forecasting UK unemployment during the pandemic.

4. Forecasting UK unemployment over the Covid-19 pandemic

Statistical time-series models have been successfully used to forecast macroeconomic data including the
unemployment rate. Structural models that capture the theoretical relationship between the unemploy-
ment rate and nominal wage inflation in a traditional Phillips (1958) curve approach, or the relationship
between unemployment and output followingOkun’s (1962) Law, have notmet withmuch success when
forecasting. However, there is a vast literature that uses the time-series properties of the data to produce
statistical forecasts, including univariate linear models (e.g., Autoregressive Integrated Moving Average
or unobserved component models), multivariate linear models (e.g., Vector Autoregressive Moving

Table 1. Forecast accuracy for It and Dt for UK data spanning 30 April 2020 to 28 October 2020. There are 51 forecast
errors at each horizon

h (days)

Central forecasts Interval forecasts

MAPE (%) RMSPE Below 0.1 quantile (%) Above 0.9 quantile (%)

LANL F LANL F LANL F LANL F

Confirmed cases

1 0.4 0.5 1.5 1.5 10 4 8 4

2 0.6 0.6 1.7 1.6 8 4 12 4

3 0.9 0.8 1.9 1.8 10 4 14 6

4 1.3 1.3 2.6 2.5 10 6 16 8

5 1.5 1.4 2.9 2.6 6 6 16 10

6 1.7 1.6 3.1 2.8 6 6 20 10

7 2.0 2.0 3.5 3.1 6 6 18 14

Deaths

1 0.4 0.2 1.8 0.3 45 2 8 2

2 0.5 0.2 1.9 0.3 16 2 16 0

3 0.6 0.2 1.9 0.4 12 0 18 2

4 0.6 0.5 2.0 1.9 14 2 10 4

5 0.9 0.7 2.8 2.0 14 2 10 8

6 0.9 0.7 2.9 2.0 10 2 8 10

7 1.1 1.0 2.9 2.8 12 4 10 14

Abbreviations: LANL, Los Alamos National Laboratory; MAPE, mean absolute percentage error; RMSPE, root-mean-square percentage error.
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Average models or Cointegrated Vector Autoregressive models), various threshold autoregressive
models (including Self-Exciting Threshold Autoregressive models and Smooth transition models),
Markov switching models and artificial neural networks. The empirical literature is inconclusive as to
the ‘best’ forecasting models for unemployment, particularly when faced with structural breaks. For the
US, nonlinear statistical models tend to outperform within contractions or expansions, but perform
worse across business cycles (see, e.g., Montgomery et al., 1998; Rothman, 1998; Koop and Potter, 1999),
whereas Proietti (2003) finds that linearmodels characterised by higher persistence perform significantly
better. For the UK, evidence of nonlinearities is found by Peel and Speight (2000), Milas and Rothman
(2008) and Johnes (1999), and Gil-Alana (2001) finds evidence of long memory. Barnichon and Garda
(2016) apply a flow approach to unemployment forecasting and find improvements, as does Smith
(2011). Evidence of nonlinearity needs to be interpreted cautiously, because location shifts can generate
apparent persistence which may be approximated by nonlinear and ‘regime-switching’ models, gener-
ating spurious nonlinearity due to unmodelled breaks.

Although economic theory models provide theoretical rigour, they rarely allow for sudden shifts seen
in data. This is particularly relevant in the Covid-19 pandemic. Rapid increases in Covid-19 cases and
deaths have led to changed economic and public health policies, including travel restrictions, social
distancingmeasures, closures of entertainment, hospitality, nonessential shops and indoor premises and
increased testing, along with property tax holidays, direct grants for firms in the most affected sectors,
increased compensation for sick pay leave, temporary increases in Universal Credit, loan guarantees,
deferred VAT and income tax payments, and support for the self-employed and furloughed employees.
Such pervasive shifts in behaviour and policy require adaptive forecasting methods. We contrast an
economic theory model that is data-based in its derivation to statistical extrapolative forecasting devices
that are designed to adapt rapidly to shifts.

For more timely forecasts, we use data at the monthly frequency. Figure 6 [panel (a)] records the
measured unemployment data (U) taken from the labour force survey, which is a 3-month survey of
85,000 individuals, using standard international labour organization (ILO) definitions (see table A.1 in
the data appendix). The monthly data are reported as the mid-month of the 3-month average, so, for
example, the last observation given in September 2020 is the average of the unemployment rates over
August–October 2020 and this generates monthly lead and lag persistence. Panel (b) records the annual
change in the unemployment rate (Δ12U) where the financial crisis peak is evident and the unemploy-
ment rate is picking up markedly since the pandemic was declared.

Table 2. Forecast accuracy for Dt for UK data spanning 10 April 2020 to 2 August 2020. There are 18 forecast errors at each
horizon

h (days)

Central forecasts Interval forecasts

MAPE (%) RMSPE Below quantile (%) Above quantile (%)

IHME F IHME F IHME 0.025 F 0.1 IHME 0.975 F 0.9

Deaths

1 2.4 1.4 4.0 3.6 17 0 22 6

2 3.6 1.7 5.5 3.9 17 0 11 6

3 4.4 2.0 6.5 4.2 17 0 6 6

4 4.9 2.4 7.6 4.7 11 0 11 6

5 5.5 2.7 8.8 5.2 11 0 6 6

6 6.2 3.1 10.1 5.8 11 0 11 6

7 6.8 4.1 11.0 7.3 22 11 6 11

Abbreviations: IHME, Institute for Health Metrics and Evaluation; MAPE, mean absolute percentage error; RMSPE, root-mean-square percentage
error.
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4.1. A model of aggregate UK unemployment

We next derive a theoretically justified, data-based, econometric model for unemployment to compare
its forecast performance to that of Cardt.Ut is the outcome of supply and demand for labour, aggregated
across all prospective workers, with labour demand derived from demand for goods and services. This
implies a highly complex DGP, so instead we use a profits proxy, denoted π, which assumes that
unemployment falls when hiring labour is profitable, and increases if it is not profitable. πmeasures the
gap between the real interest rate (reflecting the costs) and the real growth rate (reflecting the demand
side), such that the unemployment rate rises when the real interest rate exceeds the real growth rate, and
vice versa:

πt ¼� Rl,t �Δ12pt �Δ12yt
� �

, (1)

where Rl,t is the long-term interest rate; Δ12yt is the annual change in log Gross Value Added which
measures GDP at themonthly frequency andΔ12pt is the annual Consumer Price Index inflation rate, all
recorded in figure 7 for the in-sample period up to 2019(12).4

Other regressors in the model are recorded in figure 8 and include annual nominal wage inflation
(Δ12w) in panel (a) along with real wage inflation whichwas negative for almost 8 years after the financial
crisis. Panel (b) records the log of average real weekly earnings and output per worker, with the resulting
wage share given in panel (c), adjusted to give a zeromean by calculating the in-sample mean of the wage
share, denotedbμ. Panel (d) records the output gap (ygap),measured using the deviation between the log of
output and the fitted value from impulse indicator saturation (IIS; Hendry et al., 2008) and TIS (Castle
et al., 2019), estimated to the end of 2019. TIS attributes the fall in output over the financial crisis to
mostly shifts in permanent or potential output, so the output gap over this period is fairly small.

We specify an autoregressive distributed lag model which initially includes πt�i, Δ12wt�i, y
gap
t�i and

w�p� yþ l�bμð Þt�i for i¼ 0,…,13, seasonal dummies, IIS and step indicator saturation (see Castle

et al., 2015), and nonlinear transformations of regressors given by xj��xj
� �k� xj��xj

� �k
for k¼ 2,3, and

xj∈ πt�i;Δ12wt�i;y
gap
t�i ; w�p� yþ l�bμð Þt�i

	 

, where �� indicates the sample mean. The nonlinear trans-

formations are polynomial in form, asmany nonlinearmodels, including regime-switching and smooth-
transition regressionmodels, which are popular in the unemployment literature, can be approximated by
Taylor expansions, and so polynomials form a flexible approximating class, but must enter in deviations
frommeans (by demeaning both prior to and after the polynomial transformation) to avoid high levels of
collinearity (see Castle and Hendry, 2011). An encompassing test could be used against specific non-
linear models like threshold specifications as in Castle and Hendry (2014).
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Figure 6. Panel (a): the monthly UK unemployment rate (ILO measure for all aged 16 and over, not seasonally adjusted). Panel (b):
annual change in the monthly unemployment rate

4There is almost complete coverage of GVA at the monthly frequency which is used to proxy GDP (see https://www.ons.
gov.uk/economy/grossdomesticproductgdp/methodologies/aguidetointerpretingmonthlygrossdomesticproduct for details).
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This results in 621 candidates with 215 observations. We retain the primary economic regressors,
constant and seasonals (81 parameters), and select the saturation estimators and nonlinearities at a
significance level of α¼ 0:0001 using Autometrics (Doornik, 2009). We then select over the regressors at
α¼ 0:001. The resulting selected model is5

bUt ¼ 0:0008
0:0005ð Þ

þ0:983
0:006ð Þ

Ut�1�0:028
0:007ð Þ

πt þ0:036
0:008ð Þ

πt�2�0:022
0:007ð Þ

Δ12wt�2

þ0:025
0:004ð Þ

w�p� yþ l�bμð Þt�2þ seasonals

bσ¼ 0:09%; Far 7,191ð Þ¼ 1:00; Farch 7,201ð Þ¼ 0:55; χ2 2ð Þ¼ 0:87;

Fhetero 21,193ð Þ¼ 1:12; Freset 2,196ð Þ¼ 1:18; T ¼ 2002 2ð Þ�2019 12ð Þ ð2Þ

with the solved long-run solution

bd¼U�0:049
0:016ð Þ

� 0:46
0:27ð Þ

πþ 1:32
0:36ð Þ

Δ12w� 1:49
0:47ð Þ

w�p� yþ l�bμð Þ: (3)

The selected model is well specified, passing all diagnostic tests, and fits the in-sample data well,
recorded in figure 9 with scaled residuals, residual density and residual autocorrelation function. The
model includes the lagged unemployment rate picking up inertia, the profits proxy which enters
contemporaneously and lagged two periods, nominal wage inflation and the wage share, both lagged
two periods. No impulse or step indicators are retained, so there are no outliers or shifts in the data that
are not explained by regressors in the model. This is quite remarkable given the sample includes the
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Figure 7. Panel (a): annual change in log GDP. Panel (b): annual CPI inflation rate. Panel (c): long-term (10 year) government bond
yields. Panel (d): profits proxy measured by πt ¼� Rl,t �Δ12pt �Δ12yt½ �, for 1997(4)–2019(12)

5Estimated coefficient standard errors are shown in parentheses below estimated coefficients, bσ is the residual standard
deviation,R2 is the coefficient ofmultiple correlation,Far is a test for residual autocorrelation (see Godfrey, 1978),Farch tests for
autoregressive conditional heteroscedasticity (see Engle, 1982),Fhetero is a test for residual heteroskedasticity (seeWhite, 1980),
χ2 2ð Þ is a test for non-normality (see Doornik and Hansen, 2008) and Freset is the reset test (see Ramsey, 1969).
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Financial Crisis and Great Recession period, where the regressors in the model are able to explain the
impact on unemployment well. We also do not retain any nonlinear terms, refuting some empirical
studies that argue that the unemployment rate is best characterised by regime switching behaviour.
The solved out long-run solution gives an equilibrium unemployment rate of about 5 per cent. This
matches the mean unemployment rate over the last 160 years. The results are similar to the model of
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Figure 8. (Colour online) Panel (a): nominal and real wage inflation. Panel (b): output per worker and real wages. Panel (c): the wage
share, measured byw�p�yþ l�bμ. Panel (d): output gap, measured as deviation from fitted regression of IIS and TIS over sample to
2019(12) selected at α¼ 0:0001, for 2000(1)–2019(12)
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Figure 9. (Colour online) Panel (a): unemployment rate andmodel fit. Panel (b): scaled residuals. Panel (c): residual density. Panel (d):
residual autocorrelation
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unemployment reported in Hendry (2001), which is estimated on nonoverlapping data of a different
frequency.

The coefficient on the lagged unemployment rate suggests U is close to a unit root. With an infinite
sample, the unemployment rate is bounded between 0 and 1 and therefore could not contain a stochastic
trend, but we have a fairly small sample of monthly data which does suggest local nonstationarity. We
therefore transform to a stationary representation using (3), recorded in figure 10 [panel (d)]. The
resulting new general model for ΔUt includes 12 lags of the differenced regressors and is reselected at a
significance level of α¼ 0:001 using Autometrics. The intercept and seasonals are not selected over.
Nonlinear functions and impulse and step indicators are not included given their absence in (2). The
final model is

cΔUt ¼þ0:0003
0:0002ð Þ

þ 0:20
0:067ð Þ

ΔUt�1�0:024
0:009ð Þ

Δπt �0:013
0:002ð Þ

bdt�1þ seasonals;

bσ¼ 0:09%; R2 ¼ 0:65; Far 7,193ð Þ¼ 1:54; Farch 7,201ð Þ¼ 1:06;

χ2 2ð Þ¼ 0:85; Fhetero 17,197ð Þ¼ 0:94; Freset 2,198ð Þ¼ 1:93:

(4)

The model fit, scaled residuals and residual density are recorded in figure 10, along with bd from the
long-run solution reported in (3) in panel (d). The model is congruent in-sample, with short-run
dynamics due to changes in the profits proxy and past changes in the unemployment rate, with a speed of
adjustment back to equilibrium of 1.3 per cent per month.

4.2. Forecasting the UK unemployment rate over the pandemic

We commence forecasting in January 2020 before the pandemic took hold in the UK,6 up to the last
available unemployment rate observation for the 3-month average over August–October 2020, recorded
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Figure 10. (Colour online) Panel (a): annual change in the unemployment rate and model fit. Panel (b): scaled residuals. Panel (c):

residual density. Panel (d): bd from (3)

6The first known cases in the UK were confirmed on 31 January 2020.
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as the rate for September, resulting in nine forecast observations.We produce conditional forecasts from
1- to 3-month ahead from the econometric model (2), conditioning on contemporaneous data (πt),
where the 1-month ahead forecasts will include a measure of the unemployment rate for that month in
the data used to forecast, given the 3-month averaging, so are interpreted as partial nowcasts. The model
parameters are fixed at their in-sample estimates, so there is no recursive updating through the forecast
period.

Figure 11 [panel (a)] records the forecasts with 95 per cent error bands, which show the forecasts
perform poorly over the first wave of the pandemic. The forecast commencing in February predicts a
strong uptick in unemployment in March and April due to the decline in output reflecting a weakening
demand side in the profits proxy. The model predicts unemployment to be rising significantly through-
out March, April and May, when unemployment remained low. By June, the outturns are closer to the
1-step ahead forecasts made in May, although the forecasts then start to underpredict the rise in
unemployment at the 2- and 3-month horizons. The last 1-step ahead forecast for September 2020
made in August 2020, marked by the solid black square, includes data on the unemployment rate in
September. The accuracy of this forecast demonstrates the benefits of conditioning on current infor-
mation, although the poor 1-step ahead forecasts earlier in the sample suggests that this is not always the
case. The UK’s first nationwide lockdown extended from 23 March to 10 May, coinciding with the
forecast failure from the econometric model.

4.2.1. Understanding the forecast failure
Figure 12 records the extended data series up to 2020(9), where the macroeconomic impact of the
pandemic is huge. Panel (a) shows annual falls of 28 per cent in April and 26 per cent in May in gross
value added. Such falls absolutely dominate the historical scale of growth rates, and are reflected in the
profits proxy in panel (c), as well as the wage share [panel (e)] and the output gap [panel (f)].
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Figure 11. (Colour online) Panel (a): conditional 1–3-month ahead forecasts from the econometric model. Panel (b): conditional 1–3-
month ahead forecasts from the econometric model with a lockdown dummy. Panel (c): unconditional 1–3-month ahead forecasts
using Cardt. Panel (d): equally weighted average of the econometric model forecasts and Cardt forecasts
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Extending the in-sample period to September 2020 and re-estimating (2) results in the coefficient on
πt falling to bβπ ¼�0:003 with ∣btπ∣¼ 1:09, so becomes insignificant. Table 3 records the correlation
between Δ12U and π for the in-sample and forecast periods. The correlation is effectively zero over 2020.
To disentangle this effect, we apply a subset of multiplicative indicator saturation (MIS; see Castle et al.,
2017) to identify parameter nonconstancy in the model. We include πt �S2020 jð Þ for j¼ 1,…,9, where
S2020 jð Þ is a step indicator that takes the value 1 for observations 2020(1)–2020(j) [2020(9) is the end of
the sample], in model (2). All regressors in the model are fixed apart from the interaction terms, and we
select at α¼ 0:001 usingAutometrics. πt �S2020 3ð Þ is retained leaving the full sample πt coefficient close to
that from (2) using data to 2019(12). The method successfully detects the induced shift in our estimated
model following the policy intervention which began in March, and reveals that the apparent change in
the coefficient of π is due to the shift in policy.

Forecast failure is often due to structural breaks in the data that are not captured by the economic
model. Here, themodel predicts a structural break in the data which does not materialise. This is because
policy intervention changes the earlier constant relationships captured in the economic model by
artificially holding down measured unemployment rates via the furlough scheme and other economic
policies. We view these conditional forecasts from the economic model as scenario forecasts answering
the question ‘what would the unemployment rate have been if the policy intervention had not occurred?’
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Figure 12. (Colour online) Panel (a): annual change in log gross value added and annual CPI inflation rate. Panel (b): long-term
(10-year) government bond yields. Panel (c): profits proxy measured by πt ¼� Rl,t �Δ12pt �Δ12yt½ �. Panel (d): nominal and real wage
inflation. Panel (e): the wage share, measured by w�p� yþ l�bμ. Panel (f): the output gap computed by extrapolating the trend
estimated to 2019(12) and calculating the deviation from actual output over 2020. Sample: 2019(1)–2020(9)

Table 3. Correlation between π and Δ12U

Correlation between π and Δ12U

1998(1)–2019(12) �0.61

2020(1)–2020(9) 0.03
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4.2.2. Forecasting with a policy intervention dummy
MIS revealed a significant indicator in March which we use to capture the effect of the UK’s Covid-19
policies. Over the forecast period, the UK underwent its first national lockdown, with accompanying
economic policies. Lockdown restrictions requiring nonessential businesses to close were imposed on
23 March 2020, and the UK announced a job retention scheme, aimed to support employers who could
not maintain the current workforce, because their operations were affected by coronavirus. The scheme,
also known as the furlough scheme, paid 80 per cent of workers’ salaries. The aim of the furlough policy
was to mitigate the impact of lockdown on recorded unemployment, so will have a direct effect on our
forecasting model. We take the econometric model (2), fixing the in-sample parameters, and add a
‘lockdown’ dummy given by

Df ¼ 1 for March,April,May;

Df ¼ 0 otherwise:

Alternative taperings could be considered, as the economic impact will be due to changing behaviour as
well as government policy. However, behavioural changes are harder to measure, and so linking
dummies to explicit policies holds appeal. This also means that the model can be tested over the second
and third national UK lockdowns when the unemployment data become available.

Although lockdown was only introduced on 23March, the evidence fromMIS suggests that there is a
sufficient shift in March to commence forecasting in April using data up to March. Estimates of the
lockdown dummy are given in table 4. The dummy is poorly estimated on March data alone, so there is
not enough information to improve the forecast for April. However, estimating the model up to April
leads to a highly significant lockdown dummy which heavily adjusts the forecasts of unemployment. By
May, there are stable estimates of the policy intervention dummy, dampening the forecasts from the
model without policy intervention.

The forecasts for 1–3-month ahead are recorded in figure 11 [panel (b)]. The first three sets of
forecasts are identical to those in panel (a). The next set of forecasts made in March show a small
reduction in forecast error relative to the unadjusted model (an average forecast error over h¼ 1,2,3 of
1 per cent compared to a forecast error of 1.26 per cent for the unadjusted model). With just one more
observation to estimate the lockdown dummy, the improvement in forecast accuracy is substantial
(averaging over the three forecast horizons, the forecasts made in April have an average forecast error of
0.18 per cent relative to 0.67 per cent for the unadjusted model). The forecasts are the same after the
lockdown dummy ends, but during lockdown, the adjustment significantly improves the forecast
performance of the econometric model.

To get a sense of the magnitude of the forecast differences, in the 3-month period from April to June
2020, there were 1.338-million people unemployed in the UK. In April, the econometric model predicted
there would be 1.546-million people unemployed for the same period.7 The same model including the

Table 4. Parameter estimates for the lockdown dummy included in (2)

Estimation βDf
btDf σ (%)

2002(2)–2020(3) �0.0017 �1.98 0.087

2002(2)–2020(4) �0.0050 �7.65 0.092

2002(2)–2020(5) �0.0055 �10.3 0.092

7Predicted levels of unemployed are computed using the forecast unemployment rate but the known economically active
population, so forecast errors are solely due to unemployment rate forecast differences.
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lockdown dummy predicted 1.377-million unemployed, a difference of 169,000 people. Interpreting this
difference as a scenario, whereby the level of unemployment would have been 169,000 higher had
furlough and other related policies not been implemented, suggests that the economic response was
fundamental to holding unemployment down in the first wave of the pandemic.

4.3. Unconditional econometric forecasts

The forecasting model (2) conditions on contemporaneous data, πt , and hence a comparison with
unconditional forecasts will be based on different information sets. To make the econometric model
forecasts unconditional, we replace the known πTþh, where T is the forecast origin and h is the forecast
horizon, with forecasts of bπTþh∣T using Cardt to forecast the profits proxy. Castle et al. (2018) examine
when contemporaneous regressors should be retained in forecasting models if they also need to be
forecast, given that structural breaks occur in the conditioning variables. Despite conditioning on a
subset of the information set available for the conditional econometric model forecasts, table 5 shows
that the unconditional forecasts are more accurate over March and April when the pandemic took hold.
The extrapolative Cardt forecasts of πt were poor in March and April when profits fell dramatically. bπt
missed the fall initially, but these poor forecasts helped the econometric model to avoid predicting a large
rise in the unemployment rate. The forecast error in the profits proxy is a measure of the economic
policies implemented in March and April. However, moving forward to May and June, forecasts of the
profits proxy miss the rebound, predicting very large negative values. This impacts on the econometric
model forecasts, leading the unconditional forecasts to perform much worse. The comparison of
conditional and unconditional forecasts show that more information does not always lead to improved
forecast performance as structural breaks impact on the forecasts in different ways.

Table 5. Absolute forecast errors (�100) for unemployment forecasts over 2020. Unconditional econometric are
unconditional forecasts from the econometric model using Cardt to forecast the contemporaneous profits proxy πt .
Average is the equally weighted average of the conditional econometric and Cardt forecasts. Bold indicates smallest
absolute forecast errors

2020 Jan Feb Mar Apr May Jun Jul Aug Sep MAPE MPE

1-step

Econometric 0.02 0.12 0.17 0.82 0.66 0.05 0.04 0.22 0.06 0.24 �0.16

Econometric + policy 0.02 0.12 0.17 0.65 0.16 0.05 0.04 0.22 0.06 0.17 �0.09

Unconditional
econometric

0.02 0.10 0.03 0.25 0.78 0.29 0.09 0.21 0.02 0.20 �0.14

Cardt 0.02 0.07 0.09 0.00 0.01 0.25 0.16 0.36 0.21 0.13 0.11

Average 0.02 0.09 0.09 0.41 0.32 0.10 0.10 0.29 0.14 0.17 �0.01

3-step

Econometric 0.26 1.10 1.63 1.50 0.64 0.21 0.32 0.81 �0.66

Econometric + policy 0.26 1.10 1.63 1.16 0.16 0.21 0.32 0.69 �0.54

Unconditional
econometric

0.06 0.08 0.04 0.14 1.72 0.83 0.22 0.44 �0.43

Cardt 0.05 0.06 0.14 0.25 0.45 0.83 0.81 0.37 0.37

Average 0.11 0.52 0.75 0.62 0.10 0.52 0.57 0.45 �0.14

Abbreviations: MAPE, mean absolute percentage error; MPE, mean percentage error.
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4.4. Forecasting the unemployment rate using Cardt

The econometric model forecasts can be used as a counterfactual to measure what effect the pandemic
would have had on unemployment if the economic policies that accompanied the first lockdown had not
been implemented.We can think of the econometric model as describing ‘business as usual’ as themodel
specification and estimation is fixed prior to the pandemic, thus reflecting the predicted unemployment
rate had no mitigation policies, including furlough, been implemented. To contrast, we use the
extrapolative statistical forecasting device, Cardt, to forecast unemployment. This device does not
account for any specific economic and policy measures implemented over the forecast horizon but
relies on extrapolating recent trends in the data. Themethod worked well for the Covid-19 data, so it is of
interest whether it also produces reasonable forecasts for the unemployment rate. The forecasts are
recorded in figure 11 [panel (c)]. The statistical forecasts are much closer to the outturns until June when
the unemployment rate starts to rise, but the extrapolative forecasts do not. In April, Cardt predicted
1.321-million unemployment in the three months from April to June 2020, which is a difference of
225,000 people compared to the ‘business as usual’ econometric model.

Cardt also provides a useful benchmark against published forecasts. The Bank of England (BoE)
unemployment rate forecasts from the Monetary Policy Report in January 20208 predict an unemploy-
ment rate of 3.8 per cent for 2020Q1, very close to our Cardt forecasts. In the May Monetary Policy
Report,9 the BoE offer a scenario with the unemployment rate rising to almost 10 per cent before falling
back in 2021, and by August,10 they predict a rate of 7.5 per cent in 2020Q4. Cardt predicts an
unemployment rate of 4.7 per cent for 2020Q4 based on data available to August 2020, substantially
lower than the forecast produced by the BoE, and a difference of 960,000 people (assuming a constant
economically active population at September 2020 levels). Being data-based, Cardt forecasts are
influenced by the furlough having reduced measured unemployment.

4.5. Forecast comparisons

Table 5 records the absolute forecast errors for the conditional econometric model with contempora-
neous πt , the unconditional econometric model with forecast bπt , the conditional model with the
lockdown policy dummy and the statistical forecasts. The row ‘Average’ reports the equally weighted
forecasts from the conditional econometric model and Cardt, with the forecasts recorded in figure 11
[panel (d)]. MAPE denotes the mean absolute percentage error for a given horizon across all months in
the forecast period, and MPE denotes the mean percentage error.

The statistical model produces some of the most accurate forecasts up to and including May for all
horizons, with substantial reductions in forecast errors relative to the conditional econometric model
throughout the lockdown period. The econometric model forecasts are poor in April and May when
policies such as furlough played a significant role, and could be seen as the counterfactual unemployment
rate had such a policy not been introduced. Accounting for the policy takes some time, but it can improve
the econometric model forecasts, as seen for the two months when the policy dummy can be accurately
estimated. For 3-month ahead, the lockdown policy dummy has no effect throughout April and May
because of the 3-month lead time, but it does improve the forecasts for June and July. The average is never
the best forecast (except for the 3-month ahead forecast in July), but bothminimizes the risk of very large
forecast errors and has the smallest MPE. The unconditional econometric forecasts are the best more
than 40 per cent of the time, but also occasionally the worst.

Ericsson (1992) proposes a forecast encompassing test that assesses the ability of one set of forecasts to
explain the errors of another forecasting device allowing for the forecasts to be cointegrated. This builds
on the encompassing principle developed by Mizon and Richard (1986) and the test of forecast

8https://www.bankofengland.co.uk/monetary-policy-report/2020/january-2020.
9https://www.bankofengland.co.uk/-/media/boe/files/monetary-policy-report/2020/may/monetary-policy-report-may-2020.
10https://www.bankofengland.co.uk/-/media/boe/files/monetary-policy-report/2020/august/monetary-policy-report-august-

2020.
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encompassing by Chong andHendry (1986; see alsoHendry, 1988). Letbyt∣t�j and ~yt∣t�j denote two sets of
forecasts from the models in table 5, withbet ¼ yt �byt∣t�j and ~et ¼ yt �~yt∣t�j as the forecast errors, where
j¼ 1,2,3, and t¼ 2020 1ð Þ�2020 9ð Þ. The forecast encompassing tests for both directions are given by

bet ¼ λ0þ λ1 ~yt∣t�j�byt∣t�j

� �
þη1,t ,

~et ¼ δ0þδ1 byt∣t�j�~yt∣t�j

� �
þη2,t:

(5)

If H0 : λ1 ¼ 0 is rejected, the difference between ~yt∣t�j and byt∣t�j helps to explain the forecast errors from
modelb�, and hence~yt∣t�j provides information above and beyondwhat is available from thebyt∣t�j forecast.
Likewise, if H0 : δ1 ¼ 0 is rejected, we conclude that byt∣t�j forecast encompasses ~yt∣t�j.

The encompassing test is normally distributed asT ,H!∞, but our sample size is very small. Hendry
(1986) provides power functions of the Chong and Hendry (1986) encompassing test for H¼ 5,…,14,
for the case when both forecasting models are misspecified and finds a fair degree of power. Gaussianity
of the disturbances in (5) is required for small sample analysis using the t-distribution, but that
assumption does not hold for our forecasts. As a check, we conduct a simulation study to evaluate the
power of the encompassing test, reported in table 6.11 For the forecast encompassing case where a second
forecasting model provides no additional information over and above the forecasts from the first model,

Table 6. Probability of rejection of the null hypothesis for the Ericsson (1992) encompassing test

H¼ 100 H¼ 20 H¼ 9

M1 encompasses M2

H0 : λ1 ¼ 0 5% 0.07 0.05 0.05

10% 0.10 0.10 0.10

H0 : δ1 ¼ 0 5% 0.98 0.39 0.08

10% 0.99 0.46 0.13

Neither M1 or M2 encompass each other

H0 : λ1 ¼ 0 5% 0.91 0.76 0.51

10% 0.93 0.83 0.66

H0 : δ1 ¼ 0 5% 1.00 1.00 0.77

10% 1.00 1.00 0.86

Neither M1 or M2 encompass each other; non-normal errors

H0 : λ1 ¼ 0 5% 0.88 0.72 0.51

10% 0.90 0.81 0.64

H0 : δ1 ¼ 0 5% 1.00 0.99 0.72

10% 1.00 0.99 0.81

11The DGP is given by yt ¼ β0þβ1yt�1þβ2zt�1þ εy,t and zt ¼ γ0þ γ1zt�1þ εz,t for t¼ 1,…,TþH, where εy,t �IN 0,σ2εy

h i
and εz,t �IN 0,σ2εz

h i
, or εy,t � t3 and εz,t � t3. β0 ¼ γ0 ¼ 1; β1 ¼ 0:8; β2 ¼ 1; γ1 ¼ 0:5 and σ2εy ¼ σ2εz ¼ 1. The data are generated

with the initial conditions of E y½ � ¼ 15 and E z½ � ¼ 2. T ¼ 100 and 1-step ahead forecasts over h¼ 1,…,H are computed using
the in-sample estimated parameters.M¼ 1000 replications. For the case where M1 encompasses M2, M1 is the DGP and M2
includes an intercept and zt�2, so contains no additional information to forecast yt+h. When neither M1 orM2 encompass each
other then M1 has β2=0 and M2 has β1=0.
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the power to detect forecast encompassing declines substantially for small samples. When neither model
forecast encompasses the other as both forecasts yield additional information, the power is still quite high
even in very small samples, and does not fall bymuch under non-normal errors. These results are close to
the power estimates in table 3 of Hendry (1986). Therefore, we proceed with the empirical encompassing
tests, but note that the power may be low given the small sample.

Table 7 records the results from the forecast encompassing tests. For each row, forecasts from model
M1 are denoted byt∣t�j in (5) and forecasts from model M2 are denoted ~yt∣t�j. In the first row, there is
evidence that the unconditional model forecasts provide information above that contained in the
conditional model forecasts. This is striking as the unconditional forecasts use a reduced information
set with forecasts of the profits proxy. There is no strong evidence that the conditional model forecasts
encompass the unconditional model forecasts, so they do not capture additional information relative to
the unconditional forecasts. The following three rows test various specifications of the econometric

Table 7. Forecast encompassing tests statistics for 2020 unemployment rate forecasts. Coefficient estimates from (5) are
reported with estimated standard errors in parentheses and estimated t(df )-statistics in square brackets. df ¼ 7 for
1 month, df ¼ 6 for 2 months and df ¼ 5 for 3 months. ∗, ∗∗ and ∗∗∗ denote significance at 10 per cent, 5 per cent and 1 per
cent, respectively

λ1 δ1

1 month 2 months 3 months 1 month 2 months 3 months

M1 Econometric vs. M2 Unconditional Econometric

0.858*
(0.447)
[1.92]

0.728**
(0.265)
[2.75]

0.582**
(0.163)
[3.57]

0.142
(0.447)
[0.32]

0.272
(0.265)
[1.03]

0.418*
(0.163)
[2.57]

M1 Econometric vs. M2 Cardt

1.131***
(0.181)
[6.25]

1.155***
(0.205)
[5.63]

1.239***
(0.233)
[5.31]

�0.131
(0.181)
[�0.73]

�0.155
(0.205)
[�0.76]

�0.239
(0.233)
[�1.03]

M1 Econometric+Policy vs. M2 Cardt

1.037***
(0.275)
[3.77]

1.178***
(0.261)
[4.51]

1.281***
(0.248)
[5.17]

�0.037
(0.275)
[�0.14]

�0.178
(0.261)
[�0.68]

�0.281
(0.248)
[�1.13]

M1 Unconditional Econometric vs. M2 Cardt

0.963***
(0.207)
[4.65]

0.764***
(0.187)
[4.09]

0.707***
(0.121)
[5.83]

0.037
(0.207)
[0.18]

0.236
(0.187)
[1.26]

0.293*
(0.121)
[2.42]

Forecasts from (2) 
Unemployment rate 

2019 2020

0.035

0.040

Oct Apr July Oct

(a)Forecasts from (2) 
Unemployment rate 

Cardt forecasts 
Unemployment rate 

2019 2020

0.035

0.040

Oct Apr July Oct

(b)Cardt forecasts 
Unemployment rate 

Figure 13. (Colour online) Panel (a): conditional 1–3-month ahead forecasts from the econometric model over 2019. Panel (b):
unconditional 1–3-month ahead forecasts using Cardt over 2019
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Table 8. Absolute forecast errors (�100) for unemployment forecasts over 2019. Unconditional are unconditional forecasts from the econometric model using Cardt to forecast the
contemporaneous profits proxy πt . Average is the equally weighted average of the conditional econometric and Cardt forecasts. Bold indicates smallest forecast errors

2019 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec MAPE MPE

1-Step

Econometric 0.041 0.157 0.039 0.002 0.114 0.036 0.006 0.012 0.038 0.049 0.045 0.107 0.054 0.011

Unconditional 0.040 0.174 0.032 0.014 0.115 0.038 0.009 0.007 0.043 0.058 0.027 0.105 0.055 0.013

Cardt 0.055 0.188 0.007 0.019 0.138 0.047 0.013 0.018 0.070 0.049 0.023 0.131 0.063 0.015

Average 0.048 0.172 0.023 0.010 0.126 0.041 0.010 0.015 0.054 0.049 0.034 0.119 0.058 0.013

3-Step

Econometric 0.078 0.117 0.156 0.081 0.074 0.053 0.020 0.076 0.042 0.111 0.081 0.031

Unconditional 0.119 0.174 0.154 0.112 0.067 0.056 0.032 0.103 0.088 0.173 0.108 0.038

Cardt 0.128 0.167 0.165 0.100 0.093 0.071 0.051 0.087 0.096 0.147 0.111 0.037

Average 0.103 0.142 0.161 0.090 0.083 0.062 0.035 0.081 0.069 0.129 0.096 0.034

Abbreviations: MAPE, mean absolute percentage error; MPE, mean percentage error.
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model against the statistical forecasts. There is statistically significant evidence that Cardt forecast
encompasses the econometric model at all forecast horizons. Hence, there is a clear benefit to using
statistical forecasts during periods subject to structural breaks.

As a benchmark comparison, we consider the same forecasts over 2019, recorded in figure 13 with
table 8 reporting the forecast errors and table 9 reporting the forecast encompassing test statistics. All
forecasts are more accurate given the stable environment, but the conditional econometric model
forecasts produce the smallest forecast errors on average. The unconditional forecast errors are close
to those of the conditional forecast errors, so the costs of forecasting contemporaneous regressors using
Cardt are small, and negative in some cases where the unconditional forecasts deliver the smallest
forecast errors of all models considered. At the 2- and 3-month horizons, there is evidence that both the
conditional and unconditional forecasts encompass each other, so both yield additional information.
This implies the Cardt forecasts of the profits proxy do contribute additional information. The forecast
errors from Cardt are mostly larger than those for the econometric model, although table 9 shows that
they also forecast encompass the econometric model. There is additional information in both the
econometric model forecasts and the statistical forecasts, with significant forecast encompassing tests
in both directions. As all forecast errors are in the same direction, averaging does not help.

The switch in rankings from 2019 to 2020, and the shift to unidirectional forecast encompassing for
Cardt, highlights the value of different forecasting methodologies at different points in the forecast
period due to the impact of structural breaks and policy interventions. The substantial and significant
forecast improvements using Cardt over the lockdown period mean that over the forecast sample, this
statistical forecasting method performs best overall, but in quiescent periods, a model embodying our
theoretical understanding of the economy yields advantages. If themost appropriate forecastingmodel is
not known, pooling using an equally weighted average can reduce large forecast errors if the forecasting
models are differentially biased.

5. Conclusions

Forecasting has come under the spotlight during the Covid-19 pandemic, with a huge number of publicly
available forecasts for cases and deaths. The economic impact of the pandemic also needs to be forecast,

Table 9. Forecast encompassing tests statistics for 2019 unemployment rate forecasts. Coefficient estimates from (5) are
reported with estimated standard errors in parentheses and estimated t(df )-statistics in square brackets. df ¼ 10 for
1 month, df ¼ 9 for 2 months and df ¼ 8 for 3 months. ∗, ∗∗ and ∗∗∗ denote significance at 10 per cent, 5 per cent and 1 per
cent, respectively

λ1 δ1

1 month 2 months 3 months 1 month 2 months 3 months

M1 Econometric vs. M2 Unconditional Econometric

�1.951
(2.465)
[�0.79]

�2.504**
(0.805)
[�3.11]

�1.700**
(0.594)
[�2.86]

2.951
(2.465)
[1.20]

3.504***
(0.805)
[4.36]

2.700***
(0.594)
[4.55]

M1 Econometric vs. M2 Cardt

�1.847*
(0.876)
[�2.11]

�1.912***
(0.521)
[�3.67]

�1.907**
(0.578)
[�3.30]

2.847***
(0.876)
[3.25]

2.912***
(0.521)
[5.59]

2.907***
(0.578)
[5.03]

M1 Unconditional Econometric vs. M2 Cardt

�2.508**
(1.110)
[�2.26]

�3.564**
(1.785)
[�2.00]

0.590
(2.423)
[0.24]

3.508**
(1.110)
[3.16]

4.564**
(1.785)
[2.56]

0.410
(2.423)
[0.17]
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facing large variations in policy and economic responses across the world. In a simplified characteri-
sation of forecasting methodology, we categorise forecasts into two broad classes; those based on
epidemiological or structural theory-based models, and those based on statistical extrapolations. In this
paper, we argue that the very nature of the pandemicmeans that wide-sense nonstationarity, particularly
in the form of structural breaks, is present in the data. As such, forecasting models must be adaptive to
these shocks. Structural models tend to have inbuilt equilibria and are therefore not rapidly adaptive,
whereas statistical forecastingmodels can be designed to adapt rapidly to shocks by ensuring there are no
equilibria in the forecasting model. We demonstrate the forecast performance of such a model in the
context of both Covid-19 data and corresponding unemployment data. We also show how the statistical
forecasts can be used to produce unconditional forecasts from conditional models, embedding forecasts
of contemporaneous regressors in the forecasting model.

There are drawbacks of the Cardt methodology in that it cannot be used to assess policy implications
or undertake scenario analysis. However, the unemployment forecasting example shows that comparing
econometric model forecasts with extrapolative forecasts can be highly informative as to the effects of
current policy, thereby providing a measure of the effect of policy on the outcome. Such large forecast
errors for the econometric model relative to those of Cardt show the success of the UK furlough scheme
in maintaining employment during lockdown, but forecasts for the summer months suggest that the
policy delayed rather than mitigated the rise in unemployment. The pandemic has highlighted the need
for both forms of forecast, with a portmanteau approach to forecasting more relevant in the
pandemic era.
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Data appendix
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Table A.1. Lower cases represent logs, Δxt represents the monthly change in xt and Δ12xt
represents the annual change in xt .

∗https://www.ons.gov.uk/employmentandlabourmarket/
peopleinwork/earningsandworkinghours/datasets/averageweeklyearningsearn01

Label Description Source: code

U ILO unemployment rate for UK: all aged 16 and over (NSA) ONS: MGUK

Y Chained volume index of gross value added ONS: MGDP

P Consumer price index, all items (2015 = 100) ONS: D7BT

Rl Long-term (10-year) government bond yields (%; monthly) FRED:
IRLTLT01GBM156N

W Average weekly earnings: total pay Great Britain (seasonally
adjusted)

ONS: KAB9∗

RW Real average weekly earnings (seasonally adjusted) ONS: A3WX

L Number of people in employment (aged 16 and over,
seasonally adjusted)

ONS: MGRZ

Abbreviation: ILO, International Labour Organization; NSA, not seasonally adjusted.
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