A MARRIAGE OF BROUWER'S INTUITIONISM AND HILBERT'S FINITISM I: ARITHMETIC

TAKAKO NEMOTO AND SATO KENTARO

Abstract. We investigate which part of Brouwer's Intuitionistic Mathematics is finitistically justifiable or guaranteed in Hilbert's Finitism, in the same way as similar investigations on Classical Mathematics (i.e., which part is equiconsistent with **PRA** or consistent provably in **PRA**) already done quite extensively in proof theory and reverse mathematics. While we already knew a contrast from the classical situation concerning the continuity principle, more contrasts turn out: we show that several principles are finitistically justifiable or guaranteed which are classically not. Among them are: (i) fan theorem for decidable fans but arbitrary bars; (ii) continuity principle and the axiom of choice both for arbitrary formulae; and (iii) Σ_2 induction and dependent choice. We also show that Markov's principle MP does not change this situation; that neither does lesser limited principle of omniscience LLPO (except the choice along functions); but that limited principle of omniscience LPO makes the situation completely classical.

§1. Introduction.

1.1. Brouwer's Intuitionism and Hilbert's Finitism. *Brouwer's Intuitionism* is considered as the precursor of many varieties of constructivism and finitism which reject the law of excluded middle (LEM) for statements concerning infinite objects. It is said that even Hilbert, a most severe opponent of Brouwer's, adopted a part of Brouwer's idea in his proposal for meta-mathematics or proof theory, and this partial adoption is now called *Hilbert's Finitism*. However, there are several essential differences between these two varieties of constructivism or finitism.

First, they are different in their original aims. Brouwer's Intuitionism is a claim how mathematics in its entirety should be, and the mathematics practiced according to this is called *Intuitionistic Mathematics* (INT). On the other hand, Hilbert's Finitism was intended to apply only to a particular part of mathematics, called *proof theory* or *meta-mathematics*. The aim of this part *was* "saving" the entirety of mathematics from the fear of inconsistency. The "entirety of mathematics" in Hilbert's idea is far beyond finitism and now called *Classical Mathematics* (CLASS) in the context of comparison among kinds of mathematics.

This difference might explain why Hilbert's Finitism is stricter than Brouwer's Intuitionism: for example, the induction schema on numbers is granted for free in

Received June 4, 2015.

²⁰²⁰ Mathematics Subject Classification. 03F25, 03F35, 03F50, 03F55, 03F60.

Key words and phrases. Hilbert's programme, intuitionistic mathematics, Russian recursive mathematics, interpretability, consistency strength, semi-classical principle, function-based second order arithmetic, Lifschitz's realizability, Kleene's second model, Coquand–Hofmann forcing

[©] The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic 0022-4812/22/8702-0001 DOI:10.1017/jsl.2018.6

the latter whereas it is allowed only if restricted to finitely checkable statements in the former. The acceptance of the schema for properties not finitely checkable (even though LEM for such properties is not allowed) seems to be reason enough not to call Brouwer's Intuitionism a finitism, and moreover Brouwer's Intuitionism requires transcendental assumptions which basically assert that everything is to be constructed (cf. the notion of *choice sequence*) contradicting CLASS.

It is worth mentioning Bishop's constructivism, a third variety of constructivism. *Bishop-style constructive mathematics* (BISH) is considered to be completely constructive, in the sense that it does not assume any transcendental assertion. Thus all the theorems of BISH, as formal sentences, are contained in those of CLASS and INT. Nonetheless, it does not seem plausible to call it a finitism either, for it also accepts the induction schema applied to properties not finitely checkable. It accepts the axiom of choice applied to such properties as well, which is also beyond the finitistically justifiable part of CLASS.

Another contrast between Brouwer and Hilbert is in their attitudes towards formalization: while Brouwer did not formalize INT, Hilbert tried to formalize CLASS and since then his Finitism (now identified with what is formalizable in *Primitive Recursive Arithmetic* **PRA**; see [47]¹) has been established as the meta-theory of handling formalization, or, in which proof theory is practiced. This contrast has, however, been gradually losing significance: followers of Brouwer formalized INT, and now our interest is in how different it is, as a formal theory,² from CLASS and from BISH as well as from *Russian Recursive Mathematics* RUSS. The last requires a different transcendental assumption asserting that everything is computable.

Unfortunately a difference is also in popularity: CLASS has been investigated extensively, e.g., identifying the finitistically secured part, while there seems to have been no similar systematic investigation for INT.

Given these contrasts, the aim of the present series of articles, the identification of the part of INT and addable axioms that Hilbert would recognize as secured, has multi-fold motivations. To repeat: from the viewpoint that Brouwer's Intuitionism is the precursor of various kinds of constructivism and finitism; from the historical perspective that Brouwer and Hilbert were severe opponents of each other; and from the necessity of the identification as has been done for CLASS in order to develop INT in parallel to CLASS.

1.2. Reducibility and interpretability. By what criterion would Hilbert recognize a fragment of mathematics as secured according to his Finitism? We may distinguish two criteria: a fragment is said to be (i) *finitistically guaranteed* if it is consistent provably in **PRA**; and (ii) *finitistically justifiable* if it is consistent relative to **PRA** provably in **PRA**. It is likely that these were not distinguished in Hilbert's original intention prior to Gödel's incompleteness theorem.

¹However in [48] Tait himself admitted that, at least after Gödel's incompletness theorem, Hilbert accepted Ackermann function as finitistic, where Ackermann function had been known not to be primitive recursive by then.

²"Intuitionism as an opponent of formalism" is also a quite interesting topic, which has not yet been investigated enough so far. For instance, in the authors' opinion, Brouwer's original proof of bar induction should be analyzed from this viewpoint.

Proof theory, to which Hilbert's Finitism was originally intended to apply, has refined (ii) above (see [32, Section 2.5]): a formal theory T_1 is (*proof theoretically*) *reducible to* another T_2 over a class C of sentences if there is a primitive recursive function f such that provably within **PRA**, for any sentence A from C, if x is a proof of A in T_1 then f(x) is a proof of A in T_2 . Usually C contains the absurdum \bot and so this notion yields the comparison of *externally defined consistency strengths* (namely, the consistency of T_2 implies that of T_1 or consistency-wise implication) provably in **PRA**. In many interesting cases, the theories essentially contain a fragment of arithmetic and we can assume C includes Π_1^0 or Π_2^0 sentences. As the Gödel sentence (of a reasonable theory) is Π_1^0 , it also yields the comparison of *internally defined consistency strength*: any reasonable formal theory consistent provably in T_1 is consistent provably also in T_2 . Now **I** Σ_1 , **RCA**₀ and **WKL**₀ are parts of Classical Mathematics that are known to be proof theoretically reducible to **PRA**. As a subtheory is trivially reducible to a supertheory, these four theories are *proof theoretically equivalent*.

For our purposes, however, we can use a stronger notion, interpretability. We will prove reducibility results by giving concrete interpretations, among which are Gödel–Gentzen negative interpretation and realizability interpretation. Our notion of interpretability is slightly broader than that in some literature, in the sense that logical connectives can be interpreted non-trivially (as in the aforementioned examples).³ An interpretation *I* is called *C*-preserving, if any *C* sentence *A* is implied by its interpretation A^I in the interpreting theory T_2 . All interpretations in the present article are Π_1^0 -preserving, and so imply reducibility with $C = \Pi_1^0$. Whereas reducibility concerns only proofs ending with sentences in *C*, interpretability means that all mathematical practice formalized in one theory can be simulated in another. As each step of proofs in T_1 is transformed into a uniformly bounded number of steps in T_2 , the induced transformation *f* of proofs belongs to even lower complexity, and so the consistency-wise implication is proved in meta-theories weaker than **PRA**.

The difference between reducibility and interpretability becomes essential when we talk about the relations between finitistically guaranteed theories (hence weaker than **PRA**): while the reducibility is proved typically by cut elimination, which requires commitment to superexponential functions, such a commitment yields the consistency of **B** Σ_1 **ex**, **RCA**₀^{*} and **WKL**₀^{*}, typical finitistically guaranteed theories, and so collapses the hierarchy of the externally defined consistency strengths of such weaker theories.

1.3. Characteristic axioms of Intuitionistic Mathematics. Up to the present, there seems to be a consensus on what axiomatizes (the characteristic part of) INT.

³We *could* give a tentative definition: a map I from \mathcal{L}_1 to \mathcal{L}_2 is an *interpretation* of an \mathcal{L}_1 -theory T_1 in an \mathcal{L}_2 -theory T_2 iff (a) $T_2 \vdash \bot^I \rightarrow \bot$, (b) $T_2 \vdash A^I$ for any axiom A of T_1 , and (c) there is a polynomial-time computable function p such that if C is from A, B by a *single* logical rule then p(A, B, C) is a *derivation* of C^I from A^I , B^I in T_2 . However, we will not need such a definition but only basic properties that the word suggests (and which follow from the definition above): (i) a composition of interpretations is an interpretation; (ii) all those we will define with name "interpretation" in this article are interpretations and (iii) the existence of a C-preserving interpretation implies both C conservation provable in **B** Σ_1 **ex** and the reducibility over C.

An informal explanation of such characterizing axioms is as follows, where the terminology might differ from Brouwer's original.

Intuitionistic logic neither the law of excluded middle $(A \lor \neg A)$ nor double negation elimination $(\neg \neg A \rightarrow A)$ is accepted unless A is finitely checkable (while the explosion axiom $\bot \rightarrow A$ is accepted);

Basic arithmetic basic properties, which are finitely checkable and which govern the natural numbers and fundamental operations, are accepted;

Induction on natural numbers the induction schema on ω for all the legitimate properties⁴ (not necessarily finitely checkable) is accepted;

Bar induction transfinite induction along the well-founded tree (coded by a *bar*, which intersects any infinite sequence) of finite sequences of numbers, with various restriction, ⁵ is accepted;

Fan theorem classically equivalent to a form of König's lemma or **weak fan theorem**, restricted to binary trees but defined by any legitimate properties, is an important consequence of bar induction in many applications; either of them is taken as an axiom of INT instead of bar induction in some literature;

Axiom of choice for any legitimate property A of sorts i and j, if for any x of sort i there is y of j such that A[x, y] holds then there exists a function f of sort $i \rightarrow j$ such that A[x, f(x)] holds for any x of i;

Continuity principle a function on Baire space ω^{ω} defined by any legitimate property is locally continuous.

The last contradicts CLASS, and the others, except the first two and weak fan theorem, are classically beyond Finitism. Since *Heyting arithmetic*, consisting only of the first three, is mutually interpretable with Peano arithmetic, and hence already beyond Finitism, we need to restrict these axioms, as in CLASS.

The first half of the main purpose of the present series of articles is thus to clarify how large fragments of these axioms are *jointly* reducible to Hilbert's Finitism (i.e., finitistically justifiable) or jointly consistent provably in Finitism (i.e., finitistically guaranteed). This article, the first in the series, addresses this question, in the language \mathcal{L}_F of function-based second order arithmetic (similar to that of **EL** from [50, Chapter 3, 6.2]), where we need some twist to state the existence of choice functions on Baire space (see Section 2.5.5) or where we could say that the axiom of choice for such sorts is illegitimate at all (see f.n.12).

The expositions of axioms here are informal or pre-formal, and it is quite delicate how to formalize them. We follow a standard way, but some discussions are unavoidable and will be addressed in Section 2.

We define fragments of the axioms basically by requiring the relevant properties to be in classes of formulae, e.g., Σ_n^0 's and Π_n^0 's (which however do not exhaust all

⁴It is debatable whether the properties involving third or higher-order quantifiers are legitimate in Brouwer's Intuitionism. If not, it is also a plausible not to call them properties. However, to emphasize the limitation on what we can consider, we call a property legitimate if we can consider it. This terminology is parallel to Feferman's (e.g. [15]) in the context of predicativity.

⁵There is a debate on the right formulation of Brouwer's intension. See Section 2.5.1.

arithmetical formulae because of the lack of prenex normal form theorem), and by controlling the sorts in the axiom of choice.

1.4. Finitistically justifiable and guaranteed parts of Intuitionistic Mathematics.

We will see that the following with \mathbf{EL}_0^- (i.e., the logic and basic arithmetic) are jointly reducible to PRA:

- induction on natural numbers restricted to Σ⁰₂ properties (Σ⁰₂-Ind);
 bar induction restricted to Π⁰₁ properties (Π⁰₁-BI, see the exact formulation in Definition 2.26):
- fan theorem for fans (decidable by definition) and bars defined by any legitimate properties (\mathcal{L}_{F} -FT);
- axiom of choice for all legitimate properties and dependent choice of numbers
- for Σ⁰₂ ones (Σ⁰₂-DC⁰);
 continuity principle for functions defined by any legitimate properties (L_F-WC!⁰ and L_F-WC!¹),

and that, with the following further restrictions, jointly consistent provably in PRA: induction on numbers to decidable properties; dependent choice and bar induction omitted; fans to be complete binary (\mathcal{L}_{F} -WFT).

Besides the well known contrast with the classical situation concerning the continuity principle, we see further contrasts, as any of the following is, classically, beyond **PRA**: Σ_2^0 -Ind; fan theorem restricted either to decidable bars Δ_0^0 -FT or to complete binary fans and Π_1^0 bars Π_1^0 -WFT; and Π_1^0 axiom of choice.

Our method is Kleene's functional realizability, known to be able to interpret most part of INT in CLASS. We examine which fragments of INT are interpreted by this in WKL₀ or WKL₀^{*}. As it is based on a Π_2^0 -definable application "|" for functions, unlike the number realizability, naïve attempts of proof easily rely on Π_2^0 or higher induction. The proof is, in general, not straightforward from previously known one.

As a byproduct, we can add *Markov's principle* MP (i.e., Σ_1^0 -DNE double negation elimination restricted to Σ_1 assertions) to the combinations above. MP is accepted from some constructive views and called semi-constructive. While it seems agreed not to accept MP in Intuitionism, it is not agreed to accept its negation.⁶ We need no interpretations that exclude MP, as the interpretability of T + MP trivially implies that of T.

Moreover, we will see that these fragments are optimal: none of Π_2^0 -Ind, Σ_1^0 -BI_D (restricted to decidable bars), Π_2^0 -DC!⁰ (with uniqueness in the premise) and Π_1^0 -DC!¹ (dependent choice of functions) can *only* with EL_0^- be reducible to **PRA**; none of Π_1^0 -Ind, Σ_1^0 -Ind, Δ_0^0 -Bl_D, Δ_0^0 -DC!⁰ and Δ_0^0 -FT only with EL₀⁻ is consistent provably in **PRA**. For the former, we interpret $I\Sigma_2$, which proves the consistency of **PRA**, by generalizing Coquand and Hofmann's method [11]. For the latter, we interpret $I\Sigma_1$ which is equiconsistent with **PRA**.

Note that, by Gödel's second incompleteness, if a theory T_1 proves the consistency $Con(T_2)$ of another T_2 , then T_1 is not reducible to (nor interpretable in) T_2 , since otherwise T_1 proves its own consistency.

⁶Brouwer's creative subject, a method controversial even among Intuitionists, or its formalization Kripke's schema yields the negation of MP. However we confine ourselves to "objective Intuitionism" in Beeson's [5] term, excluding such "subjectivities".

TAKAKO NEMOTO AND SATO KENTARO

1.5. Effects of semi-constructive or semi-classical principles. Hilbert's Finitism did not intend to restrict the mathematics, but to maximize the set of acceptable axioms that are in the direct sense beyond Finitism but that are secured on his Finitistic ground through meta-mathematics. So we should continue to clarify which axioms beyond Intuitionism can be added to the secure parts of INT without losing finitistic guaranteedness or justifiability. The aforementioned byproduct on MP is a part of answer, and it is natural to try to answer more generally: which part of classical logic, or even of CLASS, is finitistically guaranteed or justifiable jointly with major parts⁷ of INT? As many classically valid principles are known not to imply full classical logic, the other half of our purpose is to ask: how does the secured part change from the intuitionistic situation to classical one, along the hierarchy of such *semi-classical* principles?⁸

Among famous ones are *limited principle of omniscience* LPO (i.e., Σ_1^0 -LEM the law of excluded middle for Σ_1^0) and *lesser limited principle of omniscience* LLPO (i.e., $\Pi_1^0 \lor \Pi_1^0$ -DNE double negation elimination for $\Pi_1^0 \lor \Pi_1^0$). LLPO is implied by LPO and, as shown in [1], independent of MP. In the presence of full induction, LLPO is equivalent to B Σ_2^0 -DNE and to Σ_1^0 -GDM, generalized De Morgan's law $\neg(\forall x < y)A \rightarrow (\exists x < y) \neg A$ for Σ_1^0 properties. With restricted induction, however, all the implications we know among these are as follows.

Unlike MP, by *weak counterexample argument*⁹ we can presume that Brouwer would reject the idea of LLPO (and hence all principles above it). Thus the status of LLPO in Intuitionism is as that of WKL in Finitism, since WKL is definitely *directly* unacceptable in Finitism, and actually they are equivalent in the presence of axiom of choice (cf. 3.9). Because accepting WKL *indirectly* by consistency proof

Instead of keeping CT, our proof will also show that the combination in Section 1.4 with (W)FT replaced by a *semi-Russian* axiom NCT $\forall \alpha \neg \forall e \neg \forall x (\alpha(x) = \{e\}(x))$ (and so the formula-version, by \mathcal{L}_{F} -AC⁰⁰) is finitistically justifiable or guaranteed, as shown in Theorem 5.6. NCT seems to imply that there is no *lawless choice sequence*. Such a sequence had been rejected in early stages of Intuitionism.

⁹Let $\alpha(n) \neq 0$ iff the first successive *m* occurrence of 9's in the decimal expansion of Napier's constant *e* starts at the *n*-th digit; then $\neg(\exists n \neg(\alpha(2n) = 0) \land \exists n \neg(\alpha(2n+1) = 0))$ and LLPO implies $\forall n(\alpha(2n) = 0) \lor \forall n(\alpha(2n+1) = 0)$; i.e., either the first successive *m* occurrence of 9's, if exists, starts at an odd digit or if it exists it starts at an even digit; however it is open for large enough *m* which disjunct holds. Recall that, in Intuitionism to claim a disjunction, we need to know which disjunct is true.

⁷Since the entirety of INT is not finitistically justifiable, we do not need to stick to the consistency with full INT.

⁸We can ask the same for RUSS, characterized by MP, \mathcal{L}_{F} -AC^{0*i*} and CT $\forall \alpha \exists e \forall x (\alpha(x) = \{e\}(x))$, where {-} is Kleene bracket. We knew the inconsistency of \mathbf{EL}_{0}^{-} +CT+ Δ_{0}^{0} -WFT (by the famous counterexample; cf. [53, Section 3]) and of \mathbf{EL}_{0}^{-} +CT+ Π_{2}^{0} -WC⁰ (as $\forall x (\alpha(x) = \{e\}(x))$ is Π_{2}^{0}). As the socalled KLS Theorem needs only decidable induction (cf. [50, Chapter 6, 4.12, 5.5]), the combination in 1.4 with (W)FT replaced by CT, i.e., \mathbf{EL}_{0}^{-} +CT+ \mathcal{L}_{F} {-AC^{0*i*}, -WC!^{*i*}} (or + Σ_{2}^{0} {-Ind, -DC⁰}+ Σ_{1}^{0} -DC¹+ Π_{1}^{0} -BI) is interpreted by Kleene's number realizability (extended to \mathcal{L}_{F} trivially) in **B** Σ_{1} ex (or in **I** Σ_{1} , as our argument will collaterally show; see Proposition 3.49 and below it) and so finitistically guaranteed (or justifiable). Thus only CT+ Π_{1}^{0} -WC^{*i*} remains to be asked.

was the core of Simpson's "partial realizations of Hilbert's Program" from [44], LLPO should be of particular interest in our context.

We show that adding Σ_1^0 -GDM (and so LLPO), even jointly with MP, does not change the intuitionistic situation described in Section 1.4, except the axiom of function-number and function-function choice. Though these choices cannot be formalized in \mathcal{L}_F , continuous choice (CC), whose Π_1^0 fragment contradicts LLPO, could be seen as conjunctions of them and continuity principle (cf. Section 2.5.5). Our main tool is van Oosten's *Lifschitz-style functional realizability* from [31], in the definition of which, a bounded Σ_2^0 property plays a central role. Thus the arguments on the finitistic ground is much more delicate than in van Oosten's original context.

On the other hand, we will see that LPO already makes the situation completely classical, that is, any of the following *separately*, but together with $\mathbf{EL}_0^- + \mathsf{LPO}$, is already non-reducible to **PRA**:

- Σ_2^0 induction on numbers (Σ_2^0 -Ind);
- fan theorem restricted to Δ_0^0 bars but without the binary constraint (Δ_0^0 -FT);
- weak fan theorem restricted to (complete binary fans and) Π_1^0 -bars (Π_1^0 -WFT); and
- Π_1^0 axiom of choice even with the uniqueness assumption in the premise $(\Pi_1^0-AC!^{00})$.

For the second and fourth we will show the interpretability of ACA_0 with Gödel–Gentzen negative interpretation. For the others, we need the combination with intuitionistic forcing to interpret I Σ_2 or ACA_0 .

1.6. Constructive reverse mathematics on consistency strength. Our study also contributes to the research field, called *constructive reverse mathematics* (cf. e.g., [19, 20]). There implications, on a constructive ground, between (fragments of) axioms from CLASS, INT and RUSS, are investigated and, for the unprovability of these implications, questions of the following type are of interest:

which combination of axioms (from different kinds of mathematics) is consistent and which is not?

Namely, it has been asked only whether a combination is consistent or inconsistent.

Now our investigation is on the proof theoretic or consistency strengths of combinations. In other words, we ask how consistent (or to which extent consistent) the combination is. Thus the question becomes refined:

which combination of axioms (from different kinds of mathematics) is how much consistent?

The proof theoretic investigation of intuitionistic theories seems much less developed than classical ones.

Even the consistency strengths of Σ_n or Π_n induction schemata, the most basic targets of the study, were identified only in 1990s. Then Visser (in his unpublished note, see [56]) pointed out that $i\Sigma_{\infty} = i\Pi_{\infty}$, Heyting arithmetic with induction restricted to prenex formulae, is mutually Π_2 -preservingly interpretable with $i\Pi_2$, and so with classical $I\Sigma_2$. This shows the drastic contrast with the classical situation, as classical $I\Sigma_n$'s form a strict hierarchy exhausting Peano arithmetic **PA**. $i\Sigma_1$ and

I Σ_1 are mutually Π_2 -preservingly interpretable (see [11, 3]), and so are i Π_1 and $\Pi_1 = I\Sigma_1$ as shown easily by Gödel–Gentzen negative interpretation (but only Π_1 -preserving, as shown in [56]). Thus any of i Σ_n ($n \ge 3$) and i Π_n ($n \ge 2$) has the same strength as classical I Σ_2 , and both i Σ_1 and i Π_1 as classical I Σ_1 (and so **PRA**). What remains is i Σ_2 , which [10, Corollary 2.27] interpreted in a fragment of Gödel's **T** of the same proof theoretic strength as I Σ_1 by Dialectica interpretation. We will show these results by realizability but also that these strengths are not affected by adding the fragments of Brouwerian axioms. While for this goal we need functional realizability, our proof also shows that Kleene's number realizability, used in [56], interprets intuitionistic i Σ_2 in classical I Σ_1 . Here, realizing in a classical theory is essential; we do not know if i Σ_2 is realizable in intuitionistic i Σ_1 .

$$\mathbf{I}\Sigma_{3} = \mathbf{I}\Pi_{3} \cdots \cdots \mathbf{I}\Sigma_{2} = \mathbf{I}\Pi_{2} \cdots \cdots \mathbf{I}\Sigma_{1} = \mathbf{I}\Pi_{1} \cdots \cdots \mathbf{I}\Delta_{0} \qquad \text{Classical Arithmetic}$$
$$\mathbf{i}\Sigma_{\infty} = \mathbf{i}\Pi_{\infty} \cdots \cdots \underbrace{\overset{\mathbf{i}}\Sigma_{3} \cdots \cdots \mathbf{i}}_{\mathbf{i}\Pi_{3}} \cdots \mathbf{i}\Sigma_{1} \cdots \mathbf{i} \mathbf{I}\Pi_{1} \cdots \mathbf{i} \mathbf{I}\Delta_{0} \qquad \text{Intuitionistic Arithmetic}$$

As mentioned in Section 1.5, $i\Sigma_2$ and LPO jointly have the same strength as classical $I\Sigma_2$. Generally, our method shows that $i\Sigma_{n+1}+\Sigma_n$ -LEM is mutually Π_{n+2} -preservingly interpretable with $I\Sigma_{n+1}$, whereas Gödel–Gentzen negative interpretation needs stronger $i\Sigma_{n+1}+\Sigma_{n+1}$ -DNE to interpret $I\Sigma_{n+1}$.

Besides induction, there seem to have been no proof theoretic studies (in the sense of Section 1.2) on intuitionistic theories of the strength below **HA**.¹⁰ The present article leads to this large field of proof theoretic study.

1.7. Conclusions. Although bar induction (BI) was accepted in Brouwer's original idea, the accumulation of studies has shown that weak fan theorem (WFT), a consequence of BI, and continuous choice (CC) suffice in most cases. These two have been perceived even to characterize Intuitionistic Mathematics (INT) in constructive reverse mathematics (see [9, Chapter 5], [20, p.44, 1. –7] or [12, Section 4] where WFT is called fan theorem). If we agree with this perception,¹¹ we could conclude that *Brouwer's Intuitionism is compatible with Hilbert's Finitism*, for WFT and CC both for arbitrary formulae are jointly reducible to, and, even provably consistent in **PRA**.

Moreover, some semi-classical principles, e.g., Markov's principle MP and lesser limited principle of omniscience LLPO, do not destroy the compatibility and are hence consistent with Intuitionism and Finitism¹² (Figure 1) even though Brouwer did not accept them. Thus MP and LLPO are acceptable in the same (indirect) sense

¹⁰Those above **HA**, e.g., many variants of **CZF**, have been investigated. Some works of proof mining (e.g., [25]) are related but not exactly: e.g., induction for all negative formulae has no strength in their sense, although it interprets full induction.

¹¹This seems plausible as far as the "antique" fields of mathematics (established until ca.1900) are concerned. Other fields may go beyond this perception (e.g., [54, 52] used BI not only FT in combinatorics), needless to say that of CLASS beyond $\mathcal{L}_{\rm F}$.

¹²For this claim on LLPO, we need to keep continuity principle without replacing it by CC (so the axiom of function-number and function-function choice are excluded) as an axiom of INT. This might be supported by the fact that Brouwer talked about "assignments" rather than left-total binary relations and by the argument triggered by creative subject as will be in f.n.14.

FIGURE 1. "Intuitionisitic Situation" – over any base theory between \mathbf{EL}_0^- and $\mathbf{EL}_0^- + \mathsf{MP} + \Sigma_1^0 - \mathsf{GDM}$.

FIGURE 2. "Classical Situation" – over any base theory between EL_0^-+LPO and $EL_0^-+\mathcal{L}_F-LEM$.

as WKL is acceptable in Hilbert's Finitism. On the other hand, limited principle of omniscience LPO is, by no means, consistent with Intuitionism and Finitism: it is finitistically consistent only with those fragments of Brouwerian axioms with which the entire classical logic is finitistically consistent (Figure 2).

1.8. A marriage of Brouwer's Intuitionism and an ultrafinitism. After Hilbert's Finitism in the early 20th century, ultrafinitisms, stricter kinds of finitism than Hilbert's, have been proposed. Some are motivated by the development of computational complexity theory in the latter half of the century: only functions of a certain complexity are admitted, in the same sense as Hilbert's (formalized as **PRA**) admits only primitive recursive ones. Which part of INT, with which semiclassical principle, is justifiable or guaranteed with respect to them? An abundance of complexity classes (not yet proved to be identical), and hence of ultrafinitisms, makes this question too big to answer in one article.

Here we consider only the easiest kind, which admits only Kalmár's elementary functions.¹³ This could be formalized as $B\Sigma_1 ex$. All our finitistic guaranteedness results yield justifiability with respect to this kind of ultrafinitism, as they are proved

¹³Such functions form the third level \mathcal{E}^3 of *Grzegorczyk hierarchy*. We can replace it by \mathcal{E}^n for any $n \ge 3$ without changing the result, as ultrafinitistic non-justifiability is by the interpretability of $\mathbf{I}\Sigma_1$ which proves the consistency of the theory for \mathcal{E}^n .

via interpretability in $B\Sigma_1 ex$. Recall that the notion of proof theoretic reducibility collapses the consistency of such weak theories but that of interpretability does not.

Theories for even stricter kinds of ultrafinitism require the distinction between large and small numbers (i.e., x's and |x|'s), and therefore, in such a context, the natural formulations of some axioms, e.g., fan theorem, are not clear. The authors hope that they could treat these topics somewhere in the near future.

1.9. Outline and prerequisites. Section 2 introduces our base theory \mathbf{EL}_0^- and some variants, as well as semi-classical principles and Brouwerian axioms whose strengths we will investigate, with basic properties. Section 3 gives upper bounds of the strengths of combinations of them, with Kleene's functional realizability and van Oosten's variant for Lifschitz-style, whose characterization by axioms will be generalized extensively. Folklore results from classical arithmetic, refined in Section 3.1, play vital roles. Section 4 gives lower bounds, with Gödel–Gentzen negative interpretation and by generalizing Coquand–Hofmann forcing interpretation. Section 5 will present the results in final forms, with supplementary results, further problems and related works.

While Section 2 summarizes basic definitions and results on function-based second order arithmetic, the readers are assumed to be familiar with set-based counterpart from, e.g., [45]. They are supposed to know the systems \mathbf{RCA}_0^* , \mathbf{WKL}_0^* , \mathbf{RCA}_0 , \mathbf{WKL}_0 and \mathbf{ACA}_0 as well as the axiom schema Π_m^1 -TI, which is known to be equivalent over \mathbf{ACA}_0 to the transfinite induction along well-founded trees represented by sets. Comprehension axioms below are central in defining theories. By convention, we always assume that there are no collisions of free variables with bound ones. Thus below we implicitly assume that X is not free in A[x].

 $(C-CA) \exists X \forall x (x \in X \leftrightarrow A[x]) \text{ for } A \text{ from } C.$

§2. Preliminaries.

446

2.1. The system EL_0^- of basic arithmetic.

- DEFINITION 2.1 (languages \mathcal{L}_1 and \mathcal{L}_F). (1) The language \mathcal{L}_1 is a one-sorted first order language with equality = consisting of constants 0 and 1, binary function symbols +, \cdot and exp and a binary predicate <.
- (2) The language \mathcal{L}_F of elementary analysis is the two-sorted first order language, whose sorts are called *number* and *function*, which includes \mathcal{L}_1 as the part of the number sort, and which, additionally, has two function symbols Ev and Rest of arity one function and one number and of value number.

Notice that $\mathcal{L}_{\rm F}$ does not have the equality for the function sort as a primitive symbol. We call the systems on this language *function-based second order arithmetic*, in order to distinguish them from *set-based second order arithmetic*, systems on the language $\mathcal{L}_{\rm S}$ (called L₂ in [45]), which has been common in classical reverse mathematics.

NOTATION 2.2. Variables of the number sort are denoted by lower-case Latin letters x, y, z, u, v, etc., and those of the function are by Greek ones α, β , etc.

Let $\alpha(x) := \text{Ev}(\alpha, x)$ and $\alpha \upharpoonright x := \text{Rest}(\alpha, x)$. Furthermore, $(\exists x < t)A$ stands for $\exists x (x < t \land A), (\forall x < t)A$ for $\forall x (x < t \rightarrow A), \alpha < \beta$ for $\forall x (\alpha(x) < \beta(x))$ and $\alpha = \beta$ for $\forall x (\alpha(x) = \beta(x))$.

We let $\exists ! xA[x] := \exists xA[x] \land \forall y, z(A[y] \land A[z] \rightarrow y = z)$ and similarly we also let $\exists ! \alpha A[\alpha] := \exists \alpha A[\alpha] \land \forall \beta, \gamma(A[\beta] \land A[\gamma] \rightarrow \beta = \gamma).$

DEFINITION 2.3 $(\mathcal{C} \land \mathcal{D}, \mathcal{C} \lor \mathcal{D}, \mathcal{C} \rightarrow \mathcal{D}, \neg \mathcal{C}, \mathsf{B} \forall^i \mathcal{C}, \mathsf{B} \exists^i \mathcal{C}, \forall^i \mathcal{C} \text{ and } \exists^i \mathcal{C})$. Let \mathcal{C} and \mathcal{D} be classes of formulae.

 $C \square D$ consists of all formulae of the form $A \square B$ with A and B from C and D, respectively, for $\square \equiv \land, \rightarrow, \lor$.

Moreover $\neg C$, $B \forall^0 C$, $B \exists^0 C$, $\forall^0 C$, $\exists^0 C$, $B \forall^1 C$, $B \exists^1 C$, $\forall^1 C$ and $\exists^1 C$ consist of all those formulae of the forms $\neg A$, $(\forall x < t)A$, $(\exists x < t)A$, $\forall xA$, $\exists xA$, $(\forall \xi < \alpha)A$, $(\exists \xi < \alpha)A$, $\forall \xi A$ and $\exists \xi A$, respectively, with A from C.

DEFINITION 2.4 (Δ_0^0 , $B\Pi_{n+1}^0$, $B\Sigma_{n+1}^0$, Π_n^0 , Σ_n^0 , Π_∞^0 , Σ_∞^0 , Δ_0^1). A formula of \mathcal{L}_F is called Δ_0^0 (as well as Σ_0^0 and Π_0^0) if all the quantifiers in it are number and bounded, i.e., only in the forms $\forall x < t$ and $\exists x < t$.

i.e., only in the forms $\forall x < t$ and $\exists x < t$. Let $B\Pi_{n+1}^{0} :\equiv B \forall^{0} \Sigma_{n}^{0}$; $B\Sigma_{n+1}^{0} :\equiv B \exists^{0} \Pi_{n}^{0}$; $\Pi_{n+1}^{0} :\equiv \forall^{0} \Sigma_{n}^{0}$; and $\Sigma_{n+1}^{0} :\equiv \exists^{0} \Pi_{n}^{0}$. A formula is called *arithmetically prenex* (Π_{∞}^{0} and Σ_{∞}^{0}) if it is Π_{n}^{0} or Σ_{n}^{0} for some *n*; and called Δ_{0}^{1} if it contains no function quantifiers.

DEFINITION 2.5 (**iQex**). The intuitionistic \mathcal{L}_1 -theory **iQex** is generated by the equality axioms and

(a0)
$$x + 0 = x;$$
(a1) $x + (y + 1) = (x + y) + 1;$ (m0) $x \cdot 0 = 0;$ (m1) $x \cdot (y + 1) = (x \cdot y) + x;$ (e0) $exp(x, 0) = 1;$ (e1) $exp(x, y + 1) = exp(x, y) \cdot x;$ (ir) $\neg (x < x);$ (tr) $x < y \land y < z \rightarrow x < z;$ (s0) $x < x + 1;$ (s1) $x < y \rightarrow (x + 1 < y) \lor (x + 1 = y).$

DEFINITION 2.6 (C-Ind, C-Bdg, C-LNP, C-LEM and C-DNE). For a class C of \mathcal{L}_1 or \mathcal{L}_F formulae, define the following axiom schemata:

 $\begin{array}{l} (\mathcal{C}\text{-Ind}): A[0] \land (\forall x < n)(A[x] \rightarrow A[x+1]) \rightarrow A[n]; \\ (\mathcal{C}\text{-Bdg}): (\forall x < n) \exists y A[x, y, n] \rightarrow \exists u (\forall x < n)(\exists y < u) A[x, y, n]; \\ (\mathcal{C}\text{-LNP}): A[x] \rightarrow (\exists y \le x)(A[y] \land (\forall z < y) \neg A[z]), \text{ where } y \le x \text{ stands for } y < x+1; \\ (\mathcal{C}\text{-LEM}): A \lor \neg A; \\ (\mathcal{C}\text{-DNE}): \neg \neg A \rightarrow A, \end{array}$

for any formula A from C.

 $\begin{array}{ll} \text{Definition 2.7 (i}\Pi_{n+1}, i\Sigma_{n+1}, B\Sigma_1 ex, I\Sigma_{n+1}). & \text{Define} \\ & \text{i}\Pi_{n+1} :\equiv \text{i}Qex + \Pi_{n+1}\text{-lnd}; & \text{i}\Sigma_{n+1} :\equiv \text{i}Qex + \Sigma_{n+1}\text{-lnd}; \\ & \text{I}\Delta_0 ex :\equiv \text{i}Qex + \mathcal{L}_1\text{-LEM} + \Delta_0\text{-lnd}; & B\Sigma_1 ex :\equiv \text{I}\Delta_0 ex + \Sigma_1\text{-Bdg}; \\ & \text{I}\Sigma_{n+1} :\equiv \text{i}\Sigma_{n+1} + \mathcal{L}_1\text{-LEM}, \end{array}$

where $\Delta_0 := \Delta_0^0 \cap \mathcal{L}_1$, $\Sigma_n := \Sigma_n^0 \cap \mathcal{L}_1$ and $\Pi_n := \Pi_n^0 \cap \mathcal{L}_1$.

PROPOSITION 2.8. (1) (i) 0 < x+1; (ii) $x < y \lor x = y \lor y < x$; and (iii) Δ_0 -LEM, are provable in **iQex** + Δ_0 -Ind.

- (2) (i) $\mathbf{iQex} + \mathsf{B}\forall^0 \neg \mathcal{C} \mathsf{Ind} + \mathsf{B}\exists^0 (\mathcal{C} \land \mathsf{B}\forall^0 \neg \mathcal{C}) \mathsf{DNE} \vdash \mathcal{C} \mathsf{LNP}.$ *In particular*, (ii) $\mathbf{iQex} + \Delta_0 - \mathsf{Ind} \vdash \Delta_0 - \mathsf{LNP}.$
- (3) (i) B∀⁰Σ_n ⊆ Σ_n up to equivalence over iQex+Σ_n-Bdg; and
 (ii) iQex+Σ_n-Ind ⊢ Σ_n-Bdg for n ≥ 1.

PROOF. (1) (i) is by Δ_0 -Ind, (s0) and (tr).

For (ii), let $A[x, y] :\equiv (x < y \lor x = y \lor y < x)$. Now A[0, 0] and, by (i), $A[0, y] \rightarrow A[0, y+1]$. Thus Δ_0 -Ind yields $\forall y A[0, y]$. Because of Δ_0 -Ind it remains to show $A[x, y] \rightarrow A[x+1, y]$. $x < y \rightarrow A[x+1, y]$ is by (s1), $x = y \rightarrow A[x+1, y]$ by (s0) and $y < x \rightarrow A[x+1, y]$ by (s0) and (tr).

We see (iii) by induction on *A*. The atomic cases are by (ii), where (ir) implies $x < y \lor y < x \rightarrow \neg(x = y)$ and (ir) and (tr) imply $x < y \lor x = y \rightarrow \neg(y < x)$. The cases of \land and \rightarrow logically follow from the induction hypothesis. For $Q \equiv \exists, \forall$, let $B[n] :\equiv (Qx < n)A[x] \lor \neg(Qx < n)A[x]$. By (s1), (i) and (tr), if x < 0 then $x+1 < 0 \lor x+1 = 0$ and x+1 < x+1 contradicting (ir). Thus $\neg(x < 0)$ and B[0]. Now $x < n+1 \rightarrow x < n \lor x = n$ by (s1) and (ii). $B[n] \land (A[n] \lor \neg A[n]) \rightarrow B[n+1]$ and $B[n] \rightarrow B[n+1]$ by the hypothesis for *A*. Apply Δ_0 -Ind.

(2) Let *A* be *C* and *B*[*y*] := $(\forall z \le y) \neg A[z]$. $\neg(\exists y \le x)(A[y] \land (\forall z < y) \neg A[z])$, i.e., $(\forall y \le x)((\forall z < y) \neg A[z] \rightarrow \neg A[y])$ implies *B*[0] $\land (\forall y < x)(B[y] \rightarrow B[y+1])$ and *B*[*x*] by $B\forall^0 \neg C$ -Ind. So $A[x] \rightarrow \neg \neg (\exists y \le x)(A[y] \land (\forall z < y) \neg A[z])$.

(3) (ii) Let A be Π_{n-1} . If $(\forall x < m) \exists y, zA[x, y, z]$, by Σ_n -Ind on $k \le m$, we have $\exists u(\forall x < k)(\exists y, z < u)A[x, y, z]$.

NOTATION 2.9. (1) While $\mathcal{L}_{\rm F}$ has no function symbols besides +, \cdot and exp, we can treat a *bounded* Δ_0^0 *definable function* f (i.e., defined by $A[\vec{x}, \vec{\alpha}, y]$ from Δ_0^0 and bounded by a term $t[\vec{x}, \vec{\alpha}]$) as follows: for a formula B[y], by $B[f(\vec{x}, \vec{\alpha})]$ we mean $(\exists y < t[\vec{x}, \vec{\alpha}])(A[\vec{x}, \vec{\alpha}, y] \land B[y])$. If B[y] is Δ_0^0 , so is $B[f(\vec{x}, \vec{\alpha})]$. In this way, we can introduce fundamental operations on pairing and sequences of numbers without affecting the complexity: we fix, for each standard n, a bounded Δ_0^0 definable bijection $(-, ..., -) : \mathbb{N}^n \to \mathbb{N}$ and the associated projections $(-)_i^n$ satisfying $(x)_i^n \le x$; and also a bijection $\mathbb{N}^{\le \omega} \to \mathbb{N}$ so that evaluation $[u, x] \mapsto u(x)$; concatenation $[u, v] \mapsto u * v$ and $[u, x, \alpha] \mapsto (u*\alpha)(x)$; length-1 sequence $x \mapsto \langle x \rangle$; length $u \mapsto |u|$; and restriction $[u, n] \mapsto u \restriction n$ are bounded Δ_0^0 definable. Assume $\max(u(x), |u|, u \restriction n) \le u$.

(2) Define $(\beta)_i^n = \lambda x.(\mathring{\beta}(x))_i^n$, $(\beta, \gamma) = \lambda x.(\beta(x), \gamma(x))$, $(\beta)_y = \lambda x.\beta((y, x))$, $\beta \ominus y = \lambda x.\beta(y+x)$ and $\underline{z} = \lambda x.z$, which are all bounded Δ_0^0 definable. Alternatively, for example, $A[(\beta)_i^n]$ is the result of replacing all the occurrences of $\alpha(t)$ in $A[\alpha]$ by $(\beta(t))_i^n$ and those of $\alpha \upharpoonright t$ by corresponding bounded Δ_0^0 definable terms.

(3) We assume that classes of formulae are closed under (i) conjunctions and disjunctions with Δ_0^0 , and (ii) substitutions of the expressions from (1) and (2). The operations in Definition 2.3 preserve these closure properties.

DEFINITION 2.10 (EL₀⁻). The \mathcal{L}_{F} -theory EL₀⁻ is generated over intuitionistic logic with equality for numbers, by (a) the axiom of iQex, (b) Δ_{0}^{0} -Ind, (c) $\alpha \upharpoonright 0 = \langle \rangle$, $\alpha \upharpoonright (x+1) = (\alpha \upharpoonright x) * \langle \alpha(x) \rangle$; and (d) Δ_{0}^{0} bounded search defined below:

(*C* bounded search): $\exists \beta \forall x ((\exists y < t[x]) A[x, y] \rightarrow \beta(x) < t[x] \land A[x, \beta(x)])$ for *A* from *C* and a term *t*[*x*].

 \mathbf{EL}_0^- is almost equivalent to $\mathbf{EL}_{\text{ELEM}}$ from [19], which however has terms for all elementary functions by the help of functionals. Our \mathbf{EL}_0^- proves the existence of

those functions by the axiom (d) but shares the important feature with \mathcal{L}_{S} from classical reverse mathematics that second order terms are only variables.

Since Σ_n^0 is Σ_n with \mathcal{L}_F -terms substituted for x's, 2.8 holds with Δ_0 and Σ_n replaced by Δ_0^0 and Σ_n^0 .

LEMMA 2.11. For any A and B, in $iQex + \Delta_0^0$ -Ind or EL_0^- , $A \lor B$ is equivalent to

$$(\exists i < 2)((i = 0 \rightarrow A) \land (i = 1 \rightarrow B)).$$

A key fact in second order arithmetic is a formal version of famous Kleene's normal form theorem. While in references (e.g., [45, Theorem II.2.7]) the proof is omitted or very sketchy, we give a little details.

DEFINITION 2.12 (D_C, B_C). For a Δ_0^0 formula $C[\vec{x}, \vec{\alpha}]$, we define D_C and B_C as follows.

- (1) $D_C[\vec{x}, \vec{u}]$ is the result of replacing $\alpha_i(s)$ and $\alpha_i \upharpoonright s$ by $u_i(s)$ and $u_i \upharpoonright s$. respectively, in C.
- (2) (i) For atomic C, let $B_C[\vec{x}, v, \vec{\alpha}] := \bigwedge_i (v > t_i[\vec{x}, \vec{\alpha}])$ where $t_i[\vec{x}, \vec{\alpha}]$'s are all subterms in C;

 - (ii) for $\Box \equiv \land, \rightarrow, \lor$, let $\mathbf{B}_{C_1 \Box C_2}[\vec{x}, v, \vec{\alpha}] := \bigwedge_{i=1,2} \mathbf{B}_{C_i}[\vec{x}, v, \vec{\alpha}];$ (iii) $\mathbf{B}_{(\underline{Q}z < t)C}[\vec{x}, v, \vec{\alpha}] := (\forall z < t[\vec{x}, \vec{\alpha}]) \mathbf{B}_C[z, \vec{x}, v, \vec{\alpha}] \land \mathbf{B}_{0 < t[\vec{x}, \vec{\alpha}]}[\vec{x}, v, \vec{\alpha}].$

 $B_C[\vec{x}, v, \vec{\alpha}]$ means " $C[\vec{x}, \vec{\alpha}]$ refers α only below v". So we take ' $\bigwedge_{i=1,2}$ ' even for \rightarrow , \forall and ' $(\forall z < t[\vec{x}, \vec{\alpha}])$ ' for \exists . In $\mathcal{L}_{S}, \vec{v} > t_{C}[\vec{x}]$ can play the role of B_{C} for a suitable t_C (cf. [26, Lemma 2.13], where t(i, k) on p.162, 1.9 is a typo of t''(i, k)). Below $\beta(x_0, \dots, x_n)$ stands for $\beta((x_0, \dots, x_n))$ where the inner (\dots) is from 2.9(1).

LEMMA 2.13. For a Δ_0^0 formula $C[\vec{x}, \vec{\alpha}]$, the following are provable in EL₀⁻:

- (i) $B_C[\vec{x}, u, \vec{\alpha}] \land u \leq v \rightarrow B_C[\vec{x}, v, \vec{\alpha}]$ (upward closure);
- (ii) $\exists \beta \forall \vec{x} B_C[\vec{x}, \beta(\vec{x}), \vec{\alpha}] \land \forall u, \vec{x} (B_C[\vec{x}, u, \vec{\alpha}] \rightarrow (C[\vec{x}, \vec{\alpha}] \leftrightarrow D_C[\vec{x}, \vec{\alpha} \upharpoonright u])).$

PROOF. As we can prove (i) by easy induction on C, we concentrate on (ii).

First let C be atomic, whose all subterms are $t_i[\vec{x}, \vec{\alpha}]$'s. By Axiom (d), take β with $\beta(\vec{x}) = 1 + \sum_i t_i[\vec{x}, \vec{\alpha}]$. Then $B_C[\vec{x}, \beta(\vec{x}), \vec{\alpha}]$. For the latter conjunct, assume $\mathbf{B}_{C}[\vec{x}, u, \vec{\alpha}]$. Now $t_{i}[\vec{x}, \vec{\alpha}] < u$ and so $\alpha_{i}(t_{i}[\vec{x}, \vec{\alpha}]) = (\alpha_{i} \mid u)(t_{i}[\vec{x}, \vec{\alpha}])$. Thus we can show $t_i[\vec{x}, \vec{\alpha}] = t_i[\vec{x}, \vec{\alpha} \mid u]$ by induction on t_i and hence $C[\vec{x}, \vec{\alpha}] \leftrightarrow D_C[\vec{x}, \vec{\alpha} \mid u]$.

In the quantifier case, the induction hypotheses for C and $0 < t[\vec{x}, \vec{\alpha}]$ yield γ, δ with $\forall \vec{x}, z \mathbf{B}_C[z, \vec{x}, \gamma(z, \vec{x}), \vec{\alpha}]$ and $\forall \vec{x} \mathbf{B}_{0 < t[\vec{x}, \vec{\alpha}]}[\vec{x}, \delta(\vec{x}), \vec{\alpha}]$. Therefore, β with $\beta(\vec{x}) := \gamma \restriction (t[\vec{x}, \vec{\alpha}], \vec{x}) + \delta(\vec{x})$ yielded by Axiom (c) gives us $\forall \vec{x} \mathbf{B}_{(Oz < t)C}[\vec{x}, \beta(\vec{x}), \vec{\alpha}]$. For the latter conjunct, assume $\mathbf{B}_{(Qz<t)C}[\vec{x}, u, \vec{\alpha}]$. Then $(\forall z < t[\vec{x}, \vec{\alpha}])\mathbf{B}_{C}[z, \vec{x}, u, \alpha]$ and, since $C[z, \vec{x}, \vec{\alpha}] \leftrightarrow D_C[z, \vec{x}, \vec{\alpha}|u]$ for each $z < t[\vec{x}, \vec{\alpha}]$ by the induction hypothesis, we have $(Qz < t[\vec{x}, \vec{\alpha}])C[z, \vec{x}, \vec{\alpha}] \leftrightarrow D_{(Oz < t)C}[z, \vec{x}, \vec{\alpha} \upharpoonright u].$ \neg

The other cases are proved similarly.

THEOREM 2.14. For any $A[\vec{\alpha}]$ from Σ_1^0 there is $D[\vec{u}]$ from Δ_0^0 without $\vec{\alpha}$ with $\mathbf{EL}_0^- \vdash \forall \vec{\alpha} (A[\vec{\alpha}] \leftrightarrow \exists n D[\vec{\alpha} \upharpoonright n]).$

PROOF. For simplicity, let $\vec{\alpha} = \alpha$. Define

$$D[u] := (\exists x < |u|)(\mathbf{B}_C[x, |u|, u * \underline{0}] \land \mathbf{D}_C[x, u])$$

for $A[\alpha] \equiv \exists x C[x, \alpha]$. Note $B_C[x, n, \alpha] \rightarrow \forall \beta B_C[x, n, (\alpha \upharpoonright n) \ast \beta]$. If $\exists n D[\alpha \upharpoonright n]$, say $x < n \land B_C[x, n, (\alpha \upharpoonright n) * 0] \land D_C[x, \alpha \upharpoonright n]$, then, by 2.13, $C[x, \alpha]$. Conversely, if $C[x, \alpha]$, 2.13 yields n > x with $B_C[x, n, \alpha]$ and so $D_C[x, \alpha \upharpoonright n]$. 4

2.2. Choice axioms along numbers. Besides the existence of some specific functions and the closure conditions 2.10(d), EL₀⁻ has no constraints on the second order domain. It seems common to use choice axioms to govern the domain in the function-based setting, while in the set-based one comprehension axioms are more common.

Among several variants of dependent choice, we decide to set the premise to be $\operatorname{Ran}(R) \subset \operatorname{Dom}(R)$ for the relation *R*.

DEFINITION 2.15 (choice schema). For a class C of formulae, define the following axiom schemata.

 $(\mathcal{C}-\mathsf{AC}^{00})$: $\forall x \exists y A[x, y] \rightarrow \exists \alpha \forall x A[x, \alpha(x)]$; $(\mathcal{C}-\mathsf{A}\mathsf{C}^{01})$: $\forall x \exists \beta A[x,\beta] \rightarrow \exists \alpha \forall x A[x,(\alpha)_x]$; $(\mathcal{C}\text{-}\mathsf{D}\mathsf{C}^0)$: $\forall x, y(A[x, y] \rightarrow \exists z A[y, z])$ $\rightarrow \forall x, y(A[x, y] \rightarrow \exists \alpha(\alpha(0) = x \land \forall z A[\alpha(z), \alpha(z+1)]));$ $(\mathcal{C}\text{-}\mathsf{D}\mathsf{C}^1): \forall \beta, \gamma(A[\beta, \gamma] \to \exists \delta A[\gamma, \delta])$ $\rightarrow \forall \beta, \gamma(A[\beta, \gamma]) \rightarrow \exists \alpha((\alpha)_0 = \beta \land \forall z A[(\alpha)_z, (\alpha)_{z+1}])),$

for any A from C.

Moreover C-AC!⁰ⁱ and C-DC!ⁱ for i = 0, 1 are defined with \exists replaced by \exists ! in the premises.

00

LEMMA 2.16. (1) Over
$$\mathbf{EL}_0^- + \mathcal{C}$$
-LNP, (i) $(\mathcal{C} \land \mathsf{B} \forall^0 \neg \mathcal{C})$ -AC!⁰⁰ implies \mathcal{C} -AC⁰⁰;
(ii) $(\mathcal{C} \land \mathsf{B} \forall^0 \neg \mathcal{C})$ -DC!⁰ implies \mathcal{C} -DC⁰.
(2) Over \mathbf{EL}_0^- , for $j \leq i \in \{0, 1\}$, (i) \mathcal{C} -DCⁱ yields $\exists^i \mathcal{C}$ -DC^j;
(ii) \mathcal{C} -DCⁱ yields \mathcal{C} -AC^{0j}; (iii) \mathcal{C} -AC⁰ⁱ yields $\exists^i \mathcal{C}$ -AC^{0j};
(iv) \mathcal{C} -DC!ⁱ yields \mathcal{C} -AC!⁰ⁱ; (v) $\mathcal{C} \land \Pi_1^0$ -DC!¹ yields \mathcal{C} -DC!⁰;
(v) $\mathcal{C} \land \Pi_1^0$ -AC!⁰¹ yields \mathcal{C} -AC!⁰⁰.
(3) (i) $\mathbf{EL}_0^- + \mathcal{C}$ -DC!⁰ $\vdash \mathcal{C}$ -Ind; (ii) $\mathbf{EL}_0^- + \mathcal{C}$ -AC⁰⁰ $\vdash \mathcal{C}$ -Bdg.
(4) $\mathbf{EL}_0^- + \mathbf{B} \forall^0 \mathcal{C}$ -AC!⁰⁰ $+ \exists^0 (\mathbf{B} \forall^0 \mathcal{C})$ -Ind $\vdash \mathcal{C}$ -DC!⁰

(4) $\mathbf{EL}_0 + \mathsf{B}\forall^0 \mathcal{C} - \mathsf{AC}!^{\mathsf{O}\flat} + \exists^0 (\mathsf{B}\forall^0 \mathcal{C}) - \mathsf{Ind} \vdash \mathcal{C} - \mathsf{DC}!^{\mathsf{O}}.$ (5) $\mathbf{EL}_0^- + \forall^0 (\mathcal{C} \land \neg \mathcal{C}) - \mathsf{DC}!^1 + \mathcal{C} - \mathsf{LNP} \vdash \forall^0 \exists^0 \mathcal{C} - \mathsf{DC}!^{\mathsf{O}}.$

PROOF. In what follows, let A be C.

(2)(i) First consider the case of i = 0. If $\forall x, y(\exists uA[x, y, u] \rightarrow \exists z, vA[y, z, v])$) then $\forall x, y(B[x, y] \rightarrow \exists z B[y, z])$ where $B[x, y] \equiv A[(x)_0^2, (y)_0^2, (y)_1^2]$. For any x, y such that $\exists u A[x, y, u]$, since $\exists y, u B[(x, 0), (y, u)]$, C-DC⁰ yields β with $\beta(0) = (x, 0)$ and $\forall z B[\beta(z), \beta(z+1)]$. Define α by $\alpha(x) = (\beta(x))_0^2$. The case of i = 1 is similarly proved.

(ii) First consider the case of i = 0. If $\forall x \exists y A[x, y]$ then

$$\forall u \exists v((v)_0^2 = (u)_0^2 + 1 \land A[(u)_0^2, (v)_1^2]),$$

and C-DC⁰ yields α with $\alpha(0) = (0, 0)$ and

$$\forall x ((\alpha(x+1))_0^2 = (\alpha(x))_0^2 + 1 \land A[(\alpha(x))_0^2, (\alpha(x+1))_1^2]).$$

 Δ_0^0 -Ind shows $(\alpha(x))_0^2 = x$ and so $\forall x A[x, (\alpha(x+1))_1^2]$.

Next consider the case of i = 1. If $\forall x \exists \gamma A[x, \gamma]$, C-DC¹ yields α with $(\alpha)_0 = \underline{0}$ and

$$\forall x((\alpha)_{x+1}(0) = (\alpha)_x(0) + 1 \land A[(\alpha)_x(0), (\alpha)_{x+1} \ominus 1]).$$

(v)(vi) If $\exists ! zA[z]$ then $\exists ! \gamma(A[\gamma(0)] \land \gamma \ominus 1 = \underline{0})$ and vice versa, where $\gamma \ominus 1 = \underline{0}$ is Π_1^0 .

(3)(i) Let $B[x, y] :\equiv y = x + 1 \land (y \leq n \to A[y])$ which is also in C by 2.9(3). If $A[0] \land (\forall x < n)(A[x] \to A[x+1])$, since $\forall x, y(B[x, y] \to \exists ! zB[y, z])$ and B[0, 1], C-DC!⁰ yields α with $\forall xB[\alpha(x), \alpha(x+1)]$ and $\alpha(0) = 0$. By Δ_0^0 -Ind we have $(\forall x \leq n)(x = \alpha(x))$ and A[n].

(4) Let $\forall x, y(A[x, y] \rightarrow \exists ! zA[y, z])$ and A[x, y]. By $\exists^0(B\forall^0C)$ -Ind we can show $\forall n\exists ! uC[n, u]$ where

$$C[n, u] := |u| = n + 2 \land u(0) = x \land u(1) = y \land (\forall k < n+1)A[u(k), u(k+1)].$$

 $B\forall^0 C$ -AC!⁰⁰ yields β with $\forall nC[n, \beta(n)]$. We can easily see $\beta(n) \subset \beta(n+1)$ by Δ_0^0 -Ind. Thus $\forall kA[\alpha(k), \alpha(k+1)]$ for $\alpha(k) = \beta(k)(k)$.

(5) Since $\Pi_1^0 \land \forall^0 (\mathcal{C} \land \neg \mathcal{C}) \subseteq \forall^0 (\Delta_0^0 \land \mathcal{C} \land \neg \mathcal{C}) \subseteq \forall^0 (\mathcal{C} \land \neg \mathcal{C}), (2)(iv)(v) \text{ and } \mathcal{C}\text{-LNP yield}$

$$\exists! \eta \forall x \exists y A[\xi, \eta, x, y] \leftrightarrow \exists! \eta B[\xi, \eta]$$

where $B[\xi, \eta] :\equiv \forall x (\forall y < (\eta)_1^2(x)) (A[\xi, (\eta)_0^2, x, (\eta)_1^2(x))] \land \neg A[\xi, (\eta)_0^2, x, y]).$

Assume $\forall \beta, \gamma(\forall x \exists y A[\beta, \gamma, x, y] \rightarrow \exists! \delta \forall x \exists y A[\gamma, \delta, x, y])$. Then, by the equivalence, we have $\forall \beta, \gamma(B[(\beta)_0^2, \gamma] \rightarrow \exists! \delta B[(\gamma)_0^2, \delta])$, and $\forall^0(\mathcal{C} \land \neg \mathcal{C})$ -DC!¹ yields γ such that $\forall z B[((\gamma)_2)_0^2, (\gamma)_{z+1}]$ which implies $\forall z, x \exists y A[((\gamma)_z)_0^2, ((\gamma)_{z+1})_0^2, x, y]$.

DEFINITION 2.17 (\mathbf{EL}_0^* , \mathbf{EL}_0 and \mathbf{EL}).

$$\mathbf{EL}_0^* :\equiv \mathbf{EL}_0^- + \Delta_0^0 - \mathsf{AC}^{00}; \qquad \mathbf{EL}_0 :\equiv \mathbf{EL}_0^* + \Sigma_1^0 - \mathsf{Ind}; \qquad \mathbf{EL} :\equiv \mathbf{EL}_0 + \mathcal{L}_F - \mathsf{Ind}.$$

By 2.8(2)(ii) and 2.16(1), $\mathbf{EL}_0^- \vdash \Delta_0^0 - \mathsf{DC}^0 \leftrightarrow \Delta_0^0 - \mathsf{DC}!^0$. By 2.16(2)(i)(ii)(3)(i)(4), $\mathbf{EL}_0 = \mathbf{EL}_0^- + \Delta_0^0 - \mathsf{DC}^0$.

2.3. Relation to set-based systems. One might consider that the study of our function-based second order arithmetic is equivalent to that of the famous set-based one (extensively done, e.g., in [45]), since functions are coded by sets as graphs and sets are coded by functions as characteristic functions. This expectation is true if we consider only classical systems not sensitive to arithmetical complexity. Otherwise there are several delicate differences. We first clarify the correspondence between the two settings along which we consider similarity and dissimilarity.

DEFINITION 2.18 (characteristic function interpretation ch). Assign injectively function variables α_X of \mathcal{L}_F to set variables X of \mathcal{L}_S . For an \mathcal{L}_S formula A, define an \mathcal{L}_F formula A^{ch} by

DEFINITION 2.19 (graph interpretation \mathfrak{g}). Assign injectively variables X_{α} of \mathcal{L}_{S} to variables α of \mathcal{L}_{F} . For an \mathcal{L}_{F} -term t, define $[t]^{\mathfrak{g}}(x)$:

$$\begin{split} \llbracket x \rrbracket^{\mathfrak{g}}(y) &:\equiv x = y; \\ \llbracket c \rrbracket^{\mathfrak{g}}(y) &:\equiv c = y \text{ for } c \equiv 0, 1; \\ \llbracket t \circ t' \rrbracket^{\mathfrak{g}}(y) &:\equiv \exists x, x'(\llbracket t \rrbracket^{\mathfrak{g}}(x) \land \llbracket t' \rrbracket^{\mathfrak{g}}(x') \land y = x \circ x') \text{ for } \circ \equiv +, \cdot, \exp; \\ \llbracket \alpha(t) \rrbracket^{\mathfrak{g}}(y) &:\equiv \exists z(\llbracket t \rrbracket^{\mathfrak{g}}(z) \land (z, y) \in X_{\alpha}); \\ \llbracket \alpha \upharpoonright^{\mathfrak{g}}(u) &:\equiv \llbracket t \rrbracket^{\mathfrak{g}}(|u|) \land (\forall x < |u|)((x, u(x)) \in X_{\alpha})). \end{split}$$

For *A* in \mathcal{L}_{F} , define $A^{\mathfrak{g}}$ in \mathcal{L}_{S} as follows, where Func[*X*] := $\forall x \exists ! y((x, y) \in X)$:

$$\begin{array}{l} \bot^{\mathfrak{g}} :\equiv \bot; \quad (s \mathrel{\mathbb{R}} t)^{\mathfrak{g}} :\equiv \exists x, y(\llbracket s \rrbracket^{\mathfrak{g}}(x) \land \llbracket t \rrbracket^{\mathfrak{g}}(y) \land x \mathrel{\mathbb{R}} y) \text{ for } \mathsf{R} \equiv =, <; \\ (A \Box B)^{\mathfrak{g}} :\equiv A^{\mathfrak{g}} \Box B^{\mathfrak{g}} \text{ for } \Box \equiv \land, \rightarrow, \lor; \quad (Q x A)^{\mathfrak{g}} :\equiv Q x A^{\mathfrak{g}} \text{ for } Q \equiv \forall, \exists; \\ (\forall \alpha A)^{\mathfrak{g}} :\equiv \forall X_{\alpha} (\operatorname{Func}[X_{\alpha}] \rightarrow A^{\mathfrak{g}}); \quad (\exists \alpha A)^{\mathfrak{g}} :\equiv \exists X_{\alpha} (\operatorname{Func}[X_{\alpha}] \land A^{\mathfrak{g}}). \end{array}$$

LEMMA 2.20. $\mathbf{EL}_0^- + \Sigma_1^0 - \mathsf{Bdg} + \Delta_0^0 - \mathsf{AC}^{00} + \Sigma_n^0 - \mathsf{Ind}$ is interpreted by the graph interpretation \mathfrak{g} in $\mathbf{RCA}_0^* + \Sigma_n^0 - \mathsf{Ind}$.

PROOF. As **RCA**^{*}₀ proves Σ_1^0 -Bdg, we have, for any term *t*,

$$\exists x \llbracket t \rrbracket^{\mathfrak{g}}(x) \to \forall X_{\alpha} (\forall x \exists ! y((x, y) \in X_{\alpha} \to \exists v \llbracket \alpha \upharpoonright t \rrbracket^{\mathfrak{g}}(v))$$

Thus we can show $\exists ! x \llbracket t \rrbracket^{\mathfrak{g}}(x)$ by induction on t, and hence $(s \mathbb{R} t)^{\mathfrak{g}}$ is equivalent to $\forall x, y(\llbracket s \rrbracket^{\mathfrak{g}}(x) \land \llbracket t \rrbracket^{\mathfrak{g}}(y) \to x \mathbb{R} y)$. Thus, if A is Δ_0^0 , then $A^{\mathfrak{g}}$ is Δ_1^0 and \mathbb{RCA}_0^* yields $X_{\alpha} = \{(x, y) : A[x, y]^{\mathfrak{g}} \land (\forall z < y) \neg A[x, y]^{\mathfrak{g}} \}.$

If $(\forall x \exists y A[x, y])^{\mathfrak{g}}$, then $\forall x \exists ! y((x, y) \in X_{\alpha})$ by Δ_0^0 -LNP, which is provable in **RCA**_0^*. Now $\forall x \exists y((x, y) \in X_{\alpha} \land A[x, y]^{\mathfrak{g}})$ i.e., $(\forall x A[x, \alpha(x)])^{\mathfrak{g}}$. Thus $(\Delta_0^0 - \mathsf{AC}^{00})^{\mathfrak{g}}$. The interpretability of the remaining axioms by \mathfrak{g} is obvious.

Thus g seems to require Δ_1^0 -CA in \mathcal{L}_S . To interpret it, ch seems to require Δ_0^0 -AC⁰⁰ and hence \mathbf{EL}_0^* .

The delicate differences are mainly caused by the clauses $\forall x \exists ! y((x, y) \in X_{\alpha})$ of the totality (which is known to be Π_2^0 complete in recursion theory) and of $\forall x(\alpha_X(x) < 2)$. For example, the premise $\forall x \exists \alpha A[x, \alpha]$ of the number-function choice C-AC⁰¹ is interpreted by \mathfrak{g} as $\forall x \exists X_{\alpha}(\operatorname{Func}[X_{\alpha}] \land A[x, \alpha]^{\mathfrak{g}})$ and so we cannot apply the number-set choice, unless the class is closed under conjunctions with Π_2^0 formulae. Conversely, $(\forall x \exists XA[x, X])^{\mathfrak{ch}}$ is $\forall x (\exists \alpha_X < 2) A[x, X]^{\mathfrak{ch}}$ and therefore we could say that the number-set choice is only a fragment of number-function choice, or bounded version of the latter. This motivates the following.

DEFINITION 2.21 (bounded choice schema). For a class C of formulae, define the following axiom schemata:

 $\begin{array}{l} (\mathcal{C}\text{-}\mathsf{BAC}^{01}) \colon \forall x (\exists \beta < (\gamma)_x) A[x,\beta] \to (\exists \alpha < \gamma) \forall x A[x,(\alpha)_x]; \\ (\mathcal{C}\text{-}\mathsf{BAC}^{00}) \colon \forall x (\exists y < \beta(x)) A[x,y] \to (\exists \alpha < \beta) \forall x A[x,\alpha(x)]; \\ (\mathcal{C}\text{-}\mathsf{2AC}^{01}) \colon \forall x (\exists \beta < \underline{2}) A[x,\beta] \to (\exists \alpha < \underline{2}) \forall x A[x,(\alpha)_x]; \\ (\mathcal{C}\text{-}\mathsf{2AC}^{00}) \colon \forall x (\exists y < 2) A[x,y] \to (\exists \alpha < \underline{2}) \forall x A[x,\alpha(x)], \\ \text{for any } A \text{ from } \mathcal{C}. \end{array}$

2.4. Semi-classical or semi-constructive principles.

DEFINITION 2.22 (MP, LPO, C-DM, C-GDM and LLPO). MP and LPO denote Σ_1^0 -DNE and Σ_1^0 -LEM both from 2.6, respectively. LLPO denotes Σ_1^0 -DM, where for a class C of formulae, define the schemata:

 $(C-DM): \neg (A \land B) \rightarrow \neg A \lor \neg B;$

 $(\mathcal{C}\text{-}\mathsf{GDM}): \neg (\forall x < y)A \to (\exists x < y)\neg A,$ for any A, B from C.

(1) C-LEM yields $A \lor \neg A$ and $\neg \neg A \to A$ for any A built from C Lемма 2.23. *formulae by* \land *,* \lor *,* \rightarrow *and* \neg *.*

- (2) (i) $\mathsf{B}\exists^{0}(\forall^{0}\neg\mathcal{C})\subseteq \neg\exists^{0}\mathsf{B}\forall^{0}\mathsf{B}\exists^{0}\mathcal{C} \text{ over } \mathbf{EL}_{0}^{-}+\exists^{0}\mathcal{C}\text{-}\mathsf{G}\mathsf{D}\mathsf{M}+\mathcal{C}\text{-}\mathsf{B}\mathsf{d}\mathsf{g};$ (ii) $\mathbf{EL}_0^- \vdash (\neg \mathcal{C} \lor \neg \mathcal{C})$ -DNE $\leftrightarrow \mathcal{C}$ -DM.
- (3) $\mathbf{EL}_0^- + \mathcal{C}\text{-}\mathsf{GDM} \vdash \mathsf{B}\exists^0(\neg \mathcal{C})\text{-}\mathsf{DNE} and$ $\mathbf{EL}_{0}^{-}+\mathcal{C}$ -DNE+ B $\exists^{0}(\neg \mathcal{C})$ -DNE $\vdash \mathcal{C}$ -GDM.
- (4) $\mathbf{EL}_0^- + \mathcal{C} \mathsf{GDM} \vdash \mathcal{C} \mathsf{DM}$.

PROOF. Let A and B be C.

(2) (i) $\neg \exists u (\forall x < t) (\exists y < u) A[x, y]$ is equivalent to $\neg (\forall x < t) \exists y A[x, y]$ by C-Bdg and to $(\exists x < t) \forall y \neg A[x, y]$ by $\exists^0 C$ -GDM. (ii) $\neg \neg (\neg A \lor \neg B), (\neg \neg A \land \neg \neg B) \rightarrow \bot$ and $\neg(A \land B)$ are equivalent.

(3) $\neg \neg (\exists x < y) \neg A$ is equivalent to $\neg (\forall x < y) \neg \neg A$ and implies $\neg (\forall x < y)A$. Thus C-DNE yields the converse. -

(1) Over $\mathbf{EL}_{0}^{-} + \Sigma_{n}^{0}$ -DNE, (i) $\neg \Pi_{n}^{0} = \Sigma_{n}^{0}$; (ii) $\neg \Sigma_{n+1}^{0} = \Pi_{n+1}^{0}$; and Lemma 2.24. so (iii) Π^0_{n+1} -DNE holds.

- (2) Over \mathbf{EL}_0^- , the following hold.
 - (i) Σ_{n+1}^0 -DNE yields Σ_n^0 -GDM;
 - (ii) Σ_n^0 -GDM $\wedge \Sigma_{n-1}^0$ -DNE yields B Σ_{n+1}^0 -DNE;
 - (iii) $\mathsf{B}\Sigma_{n+1}^0$ -DNE yields $\Pi_n^0 \lor \Pi_n^0$ -DNE;
 - (iv) $both \Sigma_{n+1}^{0}$ -DNE and $\Pi_{n+1}^{0} \lor \Pi_{n+1}^{0}$ -DNE yield $\Sigma_{n}^{0} \lor \Pi_{n}^{0}$ -DNE;

 - (v) $\Sigma_n^0 \vee \Pi_n^{n-1}$ DNE is equivalent to Σ_n^0 -LEM; (vi) Σ_n^0 -LEM yields Σ_n^0 -DNE and $\Pi_n^0 \vee \Pi_n^0$ -DNE.

PROOF. (1) By induction, $\neg \Pi_n^0 = \neg \forall^0 \neg \neg \Sigma_{n-1}^0 = \neg \neg \exists^0 \neg \Sigma_{n-1}^0 = \neg \neg \exists^0 \Pi_{n-1}^0 = \Sigma_n^0$ and $\neg \Sigma_{n+1}^0 = \forall^0 \neg \Pi_n^0 = \forall^0 \Sigma_n^0$.

(2) (i) and (ii) are by 2.23(3), since Σ_{n-1}^0 -DNE implies $\neg \Sigma_n^0 = \prod_n^0$ and since $\mathsf{B}\exists^0(\neg \Sigma_n^0) = \mathsf{B}\Sigma_{n+1}^0 \subseteq \Sigma_{n+1}^0$. (iii) and (iv) are by 2.11. For (v), for *A* from Σ_{n-1}^0 , Σ_{n-1}^0 -DNE applied to $\neg((\forall xA) \land \neg \forall xA)$ yields $\neg((\forall x \neg \neg A) \land \neg \forall xA)$ and hence $\neg \neg (\exists x \neg A \lor \forall xA)$ where $\neg \Sigma_{n-1}^0 = \prod_{n=1}^0$. The rest of (v) and (vi) are by 2.23(1). \neg

We thus obtain the diagram in Section 1.5. [1] showed the independence of $\Pi_n^0 \vee \Pi_n^0$ -DNE and Σ_n^0 -DNE, and the non-reversibility of (2) (i), (iv) and (vi) for n > 0. While (ii) and (iii) are reversible with Δ_0^1 -Ind, we do not know over \mathbf{EL}_0^- if they are nor if $\Pi_{n+1}^0 \vee \Pi_{n+1}^0$ -DNE or Σ_n^0 -LEM implies $\mathsf{B}\Sigma_{n+1}^0$ -DNE or Σ_n^0 -GDM.

2.5. Brouwerian axioms.

2.5.1. Bar induction.

DEFINITION 2.25 (Bar). Let

 $\mathsf{Bar}[\gamma, \{u: B[u]\}] :\equiv \forall \alpha (\forall k(\gamma(\alpha \restriction k) = 0) \to \exists n B[\alpha \restriction n]).$

DEFINITION 2.26 (C-Bl_D, (C, D)-Bl_M, C-Bl). Define the following axiom schemata:

$$\begin{aligned} (\mathcal{C}\text{-Bl}_{D}) &: \mathsf{Bar}[\underline{0}, \{u: \alpha(u) = 0\}] \land \forall u(\forall xA[u*\langle x \rangle] \to A[u]) \land \forall u(\alpha(u) = 0 \to A[u]) \\ &\to A[\langle \rangle]; \\ ((\mathcal{C}, \mathcal{D})\text{-Bl}_{M}) &: \mathsf{Bar}[\underline{0}, \{u: B[u]\}] \land \forall u(\forall xA[u*\langle x \rangle] \to A[u]) \land \forall u(B[u] \to A[u]) \\ &\to (\forall u, v(B[u] \to B[u*v]) \to A[\langle \rangle]); \\ (\mathcal{C}\text{-Bl}) &: \mathsf{Bar}[\underline{0}, \{u: A[u]\}] \land \forall u(\forall xA[u*\langle x \rangle] \to A[u]) \to A[\langle \rangle], \end{aligned}$$

for any A from C and B from D.

Note that, in C-BI we do not distinguish B from A, since $Bar[\underline{0}, \{u: B[u]\}]$ and $\forall u(B[u] \rightarrow A[u])$ imply $Bar[\underline{0}, \{u: A[u]\}]$.

As LPO is absolutely against Brouwer's philosophy, 2.27 below shows that \mathcal{L}_{F} -BI cannot be a Brouwerian axiom though Brouwer's original texts look to accept it. Whereas Kleene presumed that Brouwer had meant \mathcal{L}_{F} -BI_D, it seems more common to consider $(\mathcal{L}_{F}, \mathcal{L}_{F})$ -BI_M (see, e.g., [53]), which are, as will be shown in 2.28(1)(iii) and 2.39(4), equivalent to \mathcal{L}_{F} -BI_D under another Brouwerian axiom. Yet, there seems to be no positive argument for this presumption in the literature (for, monotonicity was not mentioned explicitly in the original texts and there might be other ways to restrict bar induction consistently with other Brouwerian axioms) and C-BI for $C \not\supseteq \Sigma_1^0 \lor \Pi_1^0$ is still not refuted. However we do not need to enter into such discussion, since our result will be same for C-BI and C-BI_D, and hence for any variant inbetween, including (C, \mathcal{D}) -BI_M. Actually below we see: Π_1^0 -BI is finitistically justifiable and this is optimal in the sense that Σ_1^0 -BI_D is not.

LEMMA 2.27. **EL**₀⁻+C-LEM+($\exists^{0}C \lor \forall^{0}\neg C$)-BI $\vdash \exists^{0}C$ -LEM. *In particular* **EL**₀⁻+($\Sigma_{1}^{0} \lor \Pi_{1}^{0}$)-BI \vdash LPO.

PROOF. Let C[x] be C and

$$B[u] :\equiv (|u| = 1 \land \neg C[u(0)]) \lor (|u| = 0 \land (\exists x C[x] \lor \forall x \neg C[x])).$$

If $\forall x B[u * \langle x \rangle]$ then $|u| = 0 \land \forall x \neg C[x]$ and B[u]. C-LEM yields $Bar[\underline{0}, \{u: B[u]\}]$ by $C[\alpha(0)] \rightarrow B[\alpha \upharpoonright 0]$ and $\neg C[\alpha(0)] \rightarrow B[\alpha \upharpoonright 1]$.

 $\begin{array}{ll} \text{Lemma 2.28.} & (1) \ (i) \ \textbf{EL}_{0}^{-} + \mathcal{C} - \textbf{BI} \vdash (\mathcal{C}, \mathcal{L}_{\text{F}}) - \textbf{BI}_{M}; \\ (ii) \ \textbf{EL}_{0}^{-} + \mathcal{C} - \textbf{BI}_{D} \vdash (\mathcal{C}, \Delta_{0}^{0}) - \textbf{BI}_{M}; \\ (iii) \ \textbf{EL}_{0}^{-} + (\mathcal{C}, \Delta_{0}^{0}) - \textbf{BI}_{M} \vdash \mathcal{C} - \textbf{BI}_{D}. \end{array}$

- (2) $\mathbf{EL}_0^- + \mathcal{C} \mathsf{Bl}_D \vdash \mathcal{C} \mathsf{Ind}.$
- (3) $\mathbf{EL}_{0}^{-}+\exists^{0}\mathcal{C}\text{-}\mathsf{DNE}+\mathcal{C}\text{-}\mathsf{DC}^{0}\vdash\neg\mathcal{C}\text{-}\mathsf{BI}.$
- (4) $\mathbf{EL}_{0}^{-}+(\mathcal{D},\mathsf{B}\exists^{0}\mathcal{C})-\mathsf{BI}_{M}\vdash(\mathcal{D},\exists^{0}\mathcal{C})-\mathsf{BI}_{M}.$
- (5) (i) $\mathbf{EL}_0^- + \mathcal{C} \mathsf{Bl}_D \vdash \forall^0 \mathcal{C} \mathsf{Bl}_D;$
 - (ii) $\mathbf{EL}_{0}^{-}+(\mathcal{C},\mathcal{D})-\mathsf{Bl}_{M} \vdash (\forall^{0}\mathcal{C},\mathcal{D})-\mathsf{Bl}_{M}; and$ (iii) $\mathbf{EL}_{0}^{-}+\mathcal{C}-\mathsf{Bl} \vdash \forall^{0}\mathcal{C}-\mathsf{Bl}.$

PROOF. (1) (i) Trivial. (ii) Easy by 2.10(d). (iii) Let

$$B[u] :\equiv (\exists x \le |u|)(\alpha(u \upharpoonright x) = 0).$$

Then $Bar[0, \{u: \alpha(u) = 0\}$ implies $Bar[0, \{u: B[u]\}]$, and also $B[u*\langle x \rangle]$ implies $B[u] \lor \alpha(u * \langle x \rangle) = 0$ and $B[u] \lor A[u * \langle x \rangle]$ if $\forall u(\alpha(u) = 0 \rightarrow A[u])$. Thus we can see that $\forall x (B[u*\langle x \rangle] \lor A[u*\langle x \rangle])$ implies $B[u] \lor \forall x A[u*\langle x \rangle]$ and $B[u] \lor A[u]$ if $\forall x A[u * \langle x \rangle] \to A[u].$

In what follows, let C be C.

(2) Assume C[0] and $(\forall x < n)(C[x] \rightarrow C[x+1])$. Take

$$\alpha(u) = n - |u| \text{ and } A[u] :\equiv C[n - |u|].$$

(3) Assume (a) Bar[0, $\{u: \neg C[u]\}$] and (b) $\forall u (\forall x \neg C[u * \langle x \rangle] \rightarrow \neg C[u])$. Let

$$B[u, v] :\equiv C[v] \land u \subset v \land |v| = |u|+1.$$

By $\exists^0 C$ -DNE with (b), $\forall u, v(B[u, v] \rightarrow \exists w B[v, w])$. If $C[\langle \rangle]$, as $\exists v B[\langle \rangle, v]$, C-DC⁰ yields α with $\forall nB[\alpha(n), \alpha(n+1)]$ and $\alpha(0) = \langle \rangle$ and, for $\beta(n) := (\alpha(n+1))(n)$, Δ_0^0 -Ind shows $\alpha(n) = \beta \upharpoonright n$ and so $\forall n C[\beta \upharpoonright n]$ contradicting (a).

(4) Let $B[u] := (\exists x, y < |u|) C[u \upharpoonright y, x]$. Obviously $B[u] \rightarrow B[u * v]$.

Bar[0, { $u: \exists x C[u, x]$ }] implies Bar[0, {u: B[u]}], and B[u] implies $\exists x C[u, x]$, if $\forall u, v (\exists x C[u, x] \rightarrow \exists x C[u * v, x]).$

(5)(i) Let $[v]_0^2 := \langle (v(0))_0^2, \dots, (v(|v|-1))_0^2 \rangle$ and $A[y, u] :\equiv C[[u]_0^2, ((\langle y \rangle * u)(|u|))_1^2]$. If $\text{Bar}[\underline{0}, \{u: \alpha(u) = 0\}$] and $\forall u(\alpha(u) = 0 \rightarrow \forall z C[u, z])$ then $\text{Bar}[\underline{0}, \{u: \alpha([u]_0^2) = 0\}]$ and $\forall u(\alpha([u]_0^2) = 0 \rightarrow A[y, u]).$

Moreover if $\forall u (\forall x, zC[u * \langle x \rangle, z] \rightarrow \forall zC[u, z])$, then $\forall xA[y, u * \langle x \rangle]$, i.e., $\forall x C[[u]_0^2 * \langle (x)_0^2 \rangle, (x)_1^2]$ yields $\forall z C[[u]_0^2, z]$, and so A[y, u].

Thus $A[y, \langle \rangle]$ by C-Bl_D for any y. Hence $\forall z C[\langle \rangle, z]$. (ii) (iii) Similar. \dashv

Corollary 2.29. (1) $\mathbf{EL}_0 + \mathsf{MP} \vdash \Pi_1^0 - \mathsf{BI}.$ (2) $\mathbf{EL}_0^- + \Sigma_n^0 - \mathsf{BI}_D \vdash \Pi_{n+1}^0 - \mathsf{Ind}.$

(3) $\mathbf{EL}_0^- \vdash \mathcal{C}\text{-}\mathsf{Bl}_D \leftrightarrow (\mathcal{C}, \Sigma_1^0)\text{-}\mathsf{Bl}_M.$

2.5.2. Fan theorem.

DEFINITION 2.30 (Fan). Let $u < \beta :\equiv (\forall k < |u|)(u(k) < \beta(k))$ and

 $\mathsf{Fan}[\gamma] := \forall u(\gamma(u) = 0 \to \exists x(\gamma(u * \langle x \rangle) = 0) \land \exists n \forall x(\gamma(u * \langle x \rangle) = 0 \to x < n)).$

DEFINITION 2.31 (C-FT, C-BFT, C-WFT). For a class C of formulae, define the following axiom schemata:

 $(\mathcal{C}\text{-}\mathsf{FT}):\mathsf{Fan}[\gamma] \land \mathsf{Bar}[\gamma, \{u: B[u]\}] \to \exists m \forall \alpha (\forall k(\gamma(\alpha \restriction k) = 0) \to (\exists n < m) B[\alpha \restriction n]);$ (C-BFT): Fan[γ] $\land \forall u(\gamma(u) = 0 \rightarrow u < \beta) \land Bar[\gamma, \{u: B[u]\}]$ $\rightarrow \exists m \forall \alpha (\forall k (\gamma(\alpha \restriction k) = 0) \rightarrow (\exists n < m) B[\alpha \restriction n]);$ $(\mathcal{C}\text{-WFT}): (\forall \alpha < 2) \exists n B[\alpha \upharpoonright n] \to \exists m (\forall \alpha < 2) (\exists n < m) B[\alpha \upharpoonright n],$ for any *B* from C.

C-WFT consists of the instances of C-FT with γ defined by $\gamma(u) = 0$ iff u < 2. This is a classical contrapositive of weak König's lemma. 2.20 is enhanced as (1) in the following (cf. [45, X.4 and IV.1.4]).

LEMMA 2.32. (1) $\mathbf{EL}_0^- + \mathcal{L}_F - \mathbf{LEM} + \Sigma_1^0 - \mathsf{Bdg} + \Delta_0^0 - \mathsf{AC}^{00} + \Delta_0^0 - \mathsf{BFT}$ is interpreted by

- (2) (i) $\mathbf{EL}_{0}^{-} + (\exists^{0}\forall^{0}\mathsf{B}\exists^{0}\mathcal{C}, \mathsf{B}\exists^{0}\mathcal{C}) \mathsf{BI}_{M} \vdash \mathcal{C}$ -FT; and
- (ii) $\mathbf{EL}_{0}^{-} + (\exists^{0}\mathsf{B}\forall^{0}\mathsf{B}\exists^{0}\mathcal{C}, \mathsf{B}\exists^{0}\mathcal{C}) \mathsf{B}\mathsf{I}_{M} \vdash \mathcal{C}$ -WFT.
- (3) (i) $\mathbf{EL}_{0}^{-}+\mathsf{B}\exists^{0}\mathcal{C}-\mathsf{FT}\vdash\exists^{0}\mathcal{C}-\mathsf{FT} \text{ and (ii) } \mathbf{EL}_{0}^{-}+\mathsf{B}\exists^{0}\mathcal{C}-\mathsf{BFT}\vdash\exists^{0}\mathcal{C}-\mathsf{BFT}.$
- (4) $\mathbf{EL}_{0}^{-}+\mathsf{B}\forall^{0}\mathcal{C}\text{-WFT}\vdash\mathcal{C}\text{-Bdg}.$

PROOF. In what follows, let C be from C.

(2) (i) Define A as follows, which is in $\exists^0 \forall^0 B \exists^0 C$:

$$A[u, \gamma] :\equiv \exists n \forall v ((\forall k \le |v|)(\gamma(u \ast (v \restriction k)) = 0) \land |v| = n \to (\exists k < |u \ast v|)C[(u \ast v) \restriction k])).$$

If $\operatorname{Fan}[\gamma]$ then $\forall^0 \mathsf{B} \exists^0 \mathcal{C}\text{-}\mathsf{Bdg}$, which is by 2.28(2), yields $\forall x A[u*\langle x \rangle, \gamma] \rightarrow A[u, \gamma]$. (ii) Similar.

(3) Let $B[u] := (\exists x, k < |u|)C[u \upharpoonright k, x]$. As $\exists k, xC[\alpha \upharpoonright k, x]$ implies $\exists nB[\alpha \upharpoonright n]$, if $Bar[\gamma, \{u: \exists xC[u, x]\}]$ then $Bar[\gamma, \{u: B[u]\}]$.

(4) Let $B[u,m] :\equiv |u| \ge m \land (\forall x < m)(u \upharpoonright x = \underline{0} \upharpoonright x \land u(x) > 0 \rightarrow C[x, |u|-m]).$ Then $(\forall x < m) \exists y C[x, y]$ implies $(\forall \alpha < \underline{2}) \exists k B[\alpha \upharpoonright k, m]$ and, by $B \forall^0 C$ -WFT, it also implies $\exists n (\forall \alpha < \underline{2}) (\exists k < n) B[\alpha \upharpoonright k, m]$, and so $\exists n (\forall x < m) (\exists y < n) C[x, y]. \dashv$

Thus, classically Σ_1^0 -BFT is finitistically justifiable. This is optimal in the sense that $(ACA_0)^{cb}$ classically follows from Π_1^0 -WFT as shown in [7] (cf. 4.8(1)); and from Δ_0^0 -FT as in [45, Theorem III.7.2] (cf. 4.9(1)). Though [45, Theorem III.7.2] relies on Σ_1^0 -Ind, it does not matter as seen in the next proposition.

PROPOSITION 2.33. $\mathbf{EL}_0^- + \Delta_0^0$ -FT proves Σ_1^0 -Ind.

PROOF. Let C be Δ_0^0 . Assume $\exists y C[0, y]$ and $(\forall x < n)(\exists y C[x, y] \rightarrow \exists y C[x+1, y])$. With Δ_0^0 -LNP, by replacing C[x, y] with $C[x, y] \land (\forall z < y) \neg C[x, z]$ we may assume $(C[x, y] \land C[x, z]) \rightarrow y = z$. Define γ and B[x, u] by

$$\varphi(u) = 0 \iff (\forall k < |u|)(u(k) \neq 0 \rightarrow k \le n \land (\forall l \le k)(u(l) \neq 0 \land C[l, u(l) - 1]));$$

 $B[x, u] :\equiv |u| > u \upharpoonright (x+1).$

Assume $\gamma(u) = 0$. We prove Fan[γ] by case-distinction:

- if $(\forall k < |u|)(u(k) \neq 0) \land |u| \le n$, then $\forall x(\gamma(u \ast \langle x \rangle) = 0 \leftrightarrow x = 0 \lor x = y+1)$ for *y* with C[|u|, y], yielded by C[|u|-1, u(|u|-1)-1] if |u| > 0;
- otherwise $\forall x(\gamma(u*\langle x \rangle) = 0 \leftrightarrow x = 0).$

As $\forall \alpha \exists m B[n, \alpha \restriction m], \Delta_0^0$ -FT yields *m* with $\forall \alpha (\forall k (\gamma(\alpha \restriction k) = 0) \rightarrow (\exists k < m) B[n, \alpha \restriction k])$. By Δ_0^0 -Ind on $k \le n+1$ we prove $(\exists u < m) D[k, u]$ for

$$D[k, u] :\equiv |u| = k \land (k \neq 0 \rightarrow u(k-1) \neq 0) \land \gamma(u) = 0.$$

If D[k, v], the assumption yields y with C[k, y]; then D[k+1, u] for $u := v * \langle y+1 \rangle$, and $(\exists \ell < m) B[n, (u * \underline{0}) \upharpoonright \ell]$ which implies $u \le (u * \underline{0}) \upharpoonright (n+1) < \ell < m$.

2.5.3. (Weak) continuity principles.

DEFINITION 2.34 (*C*-WC^{*i*}, *C*-WC!^{*i*}). For a class *C* of formulae and i = 0, 1, C-WC^{*i*} is defined as follows, and *C*-WC!^{*i*} is defined with \exists replaced by \exists ! in the premises. (*C*-WC⁰): $\forall \alpha \exists x A[\alpha, x] \rightarrow \forall \alpha \exists x, m \forall \beta A[(\alpha \upharpoonright m) \ast \beta, x];$

 $(\mathcal{C}\text{-WC}^{1}): \forall \alpha \exists \gamma A[\alpha, \gamma] \to \forall \alpha \exists \gamma (A[\alpha, \gamma] \land \forall n \exists m \forall \beta \exists \delta A[(\alpha \restriction m) \ast \beta, (\gamma \restriction n) \ast \delta]),^{14}$ for A from C.

We can see that $(\exists^1 C)$ -WC!⁰ implies $(\exists^1 C)$ -WC!¹, by considering

$$A[\alpha, x, n] :\equiv \exists \gamma (B[\alpha, \gamma] \land \gamma \restriction n = x).$$

Thus, with 2.35(1)(iii) below, \mathcal{L}_{F} -WC!¹ and \mathcal{L}_{F} -WC!⁰ are equivalent.¹⁵ Informally this is an easy consequence of the universality (in the sense of category theory) of the product topology with which Baire space is equipped.

C-WC^{*i*} asserts the existence of a continuous *branch cut*, not the continuity of all branch cuts. We cannot show the equivalence between \mathcal{L}_{F} -WC¹ and \mathcal{L}_{F} -WC⁰. because of the results mentioned in f.n.15.

By 2.14, Σ_1^0 -WC!¹ is vacuous and $\mathbf{EL}_0^- \vdash \Sigma_1^0$ -WC¹. Classically this is optimal by 2.35(2)(ii) below.

- Lemma 2.35. (1) Over \mathbf{EL}_{0}^{-} , (i) Σ_{1}^{0} -WC¹ holds;

 - (ii) C-WC¹ implies C-WC⁰: and
 - (iii) $(\mathcal{C} \wedge \Pi^0_1)$ -WC!¹ implies \mathcal{C} -WC!⁰.
- (2) (i) $\mathbf{EL}_0^- + \Pi_1^0 WC^0 + LLPO$ is inconsistent; and (ii) $\mathbf{EL}_0^- + \Pi_1^0 - \mathsf{WC}!^0 + \mathsf{LPO}$ is inconsistent.

PROOF. (1) As (ii) is easier, we prove (iii). For A from C, let

$$B[\alpha, \gamma] :\equiv A[\alpha, \gamma(0)] \land \gamma \ominus 1 = \underline{0}.$$

Then $\forall \alpha \exists ! x A[\alpha, x]$ implies $\forall \alpha \exists ! \gamma B[\alpha, \gamma]$. By applying $(\mathcal{C} \land \Pi^0_r)$ -WC!¹ to the latter, we have $\forall \alpha \exists \gamma, m(B[\alpha, \gamma] \land \forall \beta \exists \delta B[(\alpha \upharpoonright m) * \beta, (\gamma \upharpoonright 1) * \delta]).$

(2)(i) Let $A[\alpha, i] :\equiv \exists n(\alpha \restriction n = \underline{0} \restriction n \land \alpha(n) > 0 \land n = 2 \cdot \lfloor n/2 \rfloor + i)$ which is Σ_1^0 . Since $\neg (A[\alpha, 0] \land A[\alpha, 1])$, by applying LLPO, we have $\forall \alpha \exists i \neg A[\alpha, i]$. Π_1^0 -WC⁰ yields *i* and *n* with $\forall \beta \neg A[(\underline{0} \upharpoonright n) * \beta, i]$. Thus $\neg A[(\underline{0} \upharpoonright n) * 1, i] \land \neg A[(0 \upharpoonright (n+1)) * 1, i]$. a contradiction.

(ii) Let $A[\alpha, n] := (n = 0 \rightarrow \alpha = 0) \land (n > 0 \rightarrow \alpha(n-1) > 0 \land \alpha \upharpoonright (n-1) = 0 \upharpoonright (n-1)).$ LPO and Δ_0^0 -LNP imply $\forall \alpha \exists ! nA[\alpha, n]$. Π_1^0 -WC!⁰, applied to 0, leads a contradiction similarly.

¹⁴As $\mathcal{L}_{\rm F}$ -WC¹ has turned out to be refuted by Kripke's schema (KS) (see, e.g., [14, p.246]), a formalization of creative subject (CS), its status as an axiom of INT is questionable. Though Vesley [55] proposed an alternative formalization consistent with \mathcal{L}_{F} -WC¹, it does not seem to represent any informal idea of CS but just a technical substitute for KS in a similar way as WFT is a substitute for BI. (Namely, it follows from KS and suffices for concrete uses of CS by Brouwer.) Once \mathcal{L}_{F} -WC¹ thus becomes doubtful, we can no longer fully trust \mathcal{L}_{F} -WC⁰, because any argument for the latter, basically appealing to the meaning of \exists in Intuitionism, cannot avoid the former. This is one reason why we take only C-WC!^{*i*} in Figures 1 and 2 (see also f.n.12). However, for us it matters only when we discuss which axioms characterize INT (to be weakened for our purpose), and we can use models (or interpretations) satisfying \mathcal{L}_{F} -WC^{*i*}: as declared in f.n.6 we confine our study to "objective Intuitionism".

¹⁵Hence the consistency of $\mathcal{L}_{\rm F}$ -WC!¹ with Kripke's schema follows from that of $\mathcal{L}_{\rm F}$ -WC⁰, which is known.

2.5.4. Summary: maximal fragments in the classical setting.

PROPOSITION 2.36. (i) **CFG** *is interpreted by* \mathfrak{g} *in* **WKL**^{*}₀; *and* (ii) **CFG**+ Π_1^0 {-BI, -Ind}+ Σ_1^0 {-DC¹, -DC⁰, -Ind} *is interpreted by* \mathfrak{g} *in* **WKL**₀, *where* **CFG** := **EL**_0^-+ \mathcal{L}_F -LEM+ Σ_1^0 {-Bdg, -BFT, -AC⁰⁰, -AC⁰¹, -WC⁰, -WC¹}.

PROOF. Σ_1^0 -AC⁰⁰, -DC⁰ yield Σ_1^0 -AC⁰¹, -DC¹ by 2.14. The rest is by 2.32(1)(3), 2.16 (1)(2)(i)(4), 2.29(1)(2), 2.35(1).

These fragments are optimal (in the classical setting) in the following sense: Δ_0^0 -DC^{*i*} yields Σ_1^0 -Ind by 2.16(2)(i)(3)(i); Σ_1^0 -DC!¹ is vacuous by 2.14; Π_1^0 -AC!⁰⁰, Π_1^0 -BFT and Δ_0^0 -FT imply (**ACA**_0)^{cb} as mentioned before 2.33 where all Π_1^0 -DC!¹, Π_1^0 -DC!⁰ and Π_1^0 -AC!⁰¹ imply Π_1^0 -AC!⁰⁰ by 2.16(2)(iv)(v)(vi) and Σ_1^0 -BI_D implies Δ_0^0 -FT by 2.32(2)(i) and 2.28(1)(ii); and Π_1^0 -WC!⁰ is inconsistent by 2.35(2)(ii).

One of our main results is that for this optimality LPO suffices instead of the full classical logic or \mathcal{L}_{F} -LEM.

2.5.5. Continuous choice and remarks on choice axioms along functions.

NOTATION 2.37. $\alpha = \beta | \gamma$ denotes a Π_2^0 formula

$$\forall x \exists y (\beta(\langle x \rangle * (\gamma \restriction y)) = \alpha(x) + 1 \land (\forall z < y) (\beta(\langle x \rangle * (\gamma \restriction z)) = 0)).$$

DEFINITION 2.38 (generalized continuous choice/bounding; C-CC^{*i*}, C-CB^{*i*} and C-CC!^{*i*}). For classes C and D of formulae, define the following axiom schemata:

 $((\mathcal{C}, \mathcal{D})-\mathsf{GCC}^{0}): \forall \alpha (B[\alpha] \to \exists x A[\alpha, x]) \to \exists \gamma \forall \alpha (B[\alpha] \to \exists \delta (\delta = \gamma | \alpha \land A[\alpha, \delta(0)]));$ $((\mathcal{C}, \mathcal{D})-\mathsf{GCB}^{0}): \forall \alpha (B[\alpha] \to \exists x A[\alpha, x]) \to \exists \gamma \forall \alpha (B[\alpha] \to \exists \delta (\delta = \gamma | \alpha \land (\exists y < \delta(0))A[\alpha, y]));$

 $((\mathcal{C}, \mathcal{D})\operatorname{-}\mathsf{GCC}^1): \forall \alpha (B[\alpha] \to \exists \beta A[\alpha, \beta]) \to \exists \gamma \forall \alpha (B[\alpha] \to \exists \delta (\delta = \gamma | \alpha \land A[\alpha, \delta]));$

$$((\mathcal{C}, \mathcal{D})\text{-}\mathsf{GCB}^1): \forall \alpha(B[\alpha] \rightarrow \exists \beta A[\alpha, \beta])$$

$$\rightarrow \exists \gamma \forall \alpha (B[\alpha] \rightarrow \exists \delta (\delta = \gamma | \alpha \land (\exists \beta < \delta) A[\alpha, \beta])),$$

for any *A* from C and *B* from D.

 $(\mathcal{C}, \mathcal{D})$ -GCC!^{*i*} is defined with \exists replaced by \exists ! in the premise; \mathcal{C} -CC^{*i*}, \mathcal{C} -CB^{*i*} and \mathcal{C} -CC!^{*i*} are by setting $B \equiv \top$.

C-CC¹ could be seen as the conjunction of C-AC¹¹ the axiom of function-function choice for C properties and C-CC!¹ asserting that any C-definable functional is represented as $\alpha \mapsto \gamma | \alpha$ for some γ .

Even while C-AC^{1*i*}'s are not formalizable in our $\mathcal{L}_{\rm F}$, it is plausible to think: (1) *C*-AC!^{1*i*} implies C-AC!^{0*i*}; and (2) C-AC^{1*i*}'s follow from C-CC^{*i*} and C-AC!^{1*i*}'s from *C*-CC!^{*i*} if all the classes in the axioms of the system are closed under Σ_1^0 definable total functions. For, "imaginary" choice functionals would be of the base complexity but, for (2), be coded by $\alpha | \beta$, which is Σ_1^0 definable as far as $(\alpha | \beta) \downarrow$. As Σ_1^0 -AC⁰⁰ makes **EL**⁻₀ satisfy this condition by overwriting 2.10(d), we can "imaginarily" evaluate the strength of C-AC^{1*i*}, by that of C-CC^{*i*} + Σ_1^0 -AC⁰⁰ from above and C-AC!^{0*i*} from below. We *could* thus add $\mathcal{L}_{\rm F}$ -AC^{1*i*}'s (as we can add $\mathcal{L}_{\rm F}$ -CC^{*i*}) in Section 1.4; Σ_1^0 -AC^{1*i*}'s in Section 2.5.4 by 2.39(1); and claim that LPO+ Π_1^0 -AC!^{1*i*}'s are non-justifiable by 4.9(iii) and 2.16(2)(vi).

Similarly, we could consider that C-AC¹⁰ (and so C-AC¹¹) makes C-WC⁰ and C-WC!⁰ be equivalent. From 2.35(2)(i) we *could* claim that neither Π_1^0 -AC¹¹ nor

 $\Pi^0_1\text{-}\mathsf{AC}^{10}$ can be added to the combination of Brouwerian axioms finitistically justifiable or guaranteed jointly with LLPO, while $\mathcal{L}_F\text{-}\mathsf{AC!}^{1i}$ can with $\Sigma^0_1\text{-}\mathsf{GDM}$ and MP.

LEMMA 2.39. (1) $\mathbf{EL}_{0}^{-} \vdash \Sigma_{1}^{0} - \mathsf{CC}^{1}$.

- (2) Over \mathbf{EL}_0^- , (i) \mathcal{C} -CC¹ implies \mathcal{C} -WC⁰; (ii) $(\mathcal{C} \wedge \Pi_1^0)$ -CC!¹ implies \mathcal{C} -WC!⁰.
- (3) Over $\mathbf{EL}_0^- + \Sigma_1^0 \mathsf{Bdg}$, (i) $\mathcal{C} \mathsf{CC}^1$ yields $\mathcal{C} \mathsf{WC}^1$; (ii) $\mathcal{C} \mathsf{CC}!^1$ yields $\mathcal{C} \mathsf{WC}!^1$.
- (4) $\mathbf{EL}_{0}^{-} + \mathcal{D} \cdot \mathbf{CB}^{0} + \mathcal{C} \cdot \mathbf{BI}_{D} \vdash (\mathcal{C}, \mathcal{D}) \cdot \mathbf{BI}_{M}.$

PROOF. (1) For A from Σ_1^0 , let $\forall \alpha \exists \beta A[\alpha, \beta]$. Take D by 2.14 and γ as follows. Then $\forall \alpha \exists \beta (\beta = \gamma | \alpha \land A[\alpha, \beta])$.

$$\gamma(y) = \begin{cases} (v * \underline{0})(z) + 1 & \text{if } y = \langle z \rangle * u \text{ and if } v := |u| \text{ satisfies } D[u \upharpoonright |v|, v] \\ 0 & \text{otherwise.} \end{cases}$$

(2) Easy.

(3) Let $C[x, y] :\equiv \gamma(\langle x \rangle * (\alpha \restriction y)) > 0 \land (\forall z < y)(\gamma(\langle x \rangle * (\alpha \restriction z)) = 0)$. If $\exists \delta(\delta = \gamma \mid \alpha)$, then $(\forall x < n) \exists y C[x, y]$ and Σ_1^0 -Bdg yields *m* with $(\forall x < n)(\exists y < m)C[x, y]$. Then $\forall \beta(\beta \restriction m = \alpha \restriction m \to (\gamma \mid \beta) \restriction n = (\gamma \mid \alpha) \restriction n)$.

(4) Let *B* from \mathcal{D} and assume $\text{Bar}[\underline{0}, \{u: B[u]\}] \equiv \forall \alpha \exists n B[\alpha \upharpoonright n]$. \mathcal{D} -CB⁰ yields γ with $\forall \alpha (\exists k < (\gamma \mid \alpha)(0)) B[\alpha \upharpoonright k]$. Define β by

$$\beta(u) = 0 \leftrightarrow (\exists k \le |u|)(\gamma(\langle 0 \rangle * (u \restriction k)) \ne 0 \land |u| \ge \gamma(\langle 0 \rangle * (u \restriction k)) - 1).$$

Then Bar[$\underline{0}$, { $u: \beta(u) = 0$ }]. Now $\beta(u) = 0$ implies $|u| \ge (\gamma |u * \underline{0})(0)$ and so B[u], if $\forall u, v(B[u] \rightarrow B[u * v])$.

2.5.6. Remarks on axiom schemata for decidable properties. In the context of Intuitionism, one of the most important constraints on properties is decidability: A is called *decidable* or *detachable* if $\forall x (A[x] \lor \neg A[x])$. In other words, we can decide, for any x, if A[x] holds or not.

This is not syntactical and so inadequate for our way of defining axiom schemata, similarly to the non-syntactical constraints Δ_{n+1}^0 in classical arithmetic. For, it might be the case that $\forall x(A[x, y] \lor \neg A[x, y])$ holds for some y but, for another z, $\forall x(A[x, z] \lor \neg A[x, z])$ does not. Thus the constraint is on the abstract $\{x: A[x, y]\}$ rather than on the formula A, as the constraint Bar (Definition 2.25), where an abstract $\{\vec{x}: B[\vec{x}, \vec{y}]\}$ is a formula $B[\vec{x}, \vec{y}]$ with designated free variables \vec{x} . By 2.8(1), Δ_0^0 abstracts are decidable, but not vice versa.

Below are some related schemata, where D, E and U stand for 'decidable', 'existential' and 'universal', respectively. In some literature MP and LLPO refer to E-DNE and E-GDM (restricted to z = 2), respectively.

DEFINITION 2.40. $A[\vec{x}, \vec{y}]$ is called *decidable in* \vec{x} if

$$\mathsf{D}[\{\vec{x}: A[\vec{x}, \vec{y}]\}] :\equiv \forall \vec{x} (A[\vec{x}, \vec{y}] \lor \neg A[\vec{x}, \vec{y}]).$$

Define the following axiom schemata:

 $\begin{array}{l} (\mathsf{E}\text{-}\mathsf{DNE}) \colon \mathsf{D}[\{x:A[x]\}] \to (\neg \neg \exists x A[x]) \to \exists x A[x]); \\ (\mathsf{E}\text{-}\mathsf{GDM}) \colon \mathsf{D}[\{x,y:A[x,y,z]\}] \to (\neg (\forall x < z) \exists y A[x,y,z] \to (\exists x < z) \forall y \neg A[x,y,z]); \end{array}$

$$(\mathsf{EU-Ind}): \mathsf{D}[\{x, y, z: A[x, y, z]\}] \land \exists y \forall z A[0, y, z] \rightarrow ((\forall x < n)(\exists y \forall z A[x, y, z] \rightarrow \exists y \forall z A[x+1, y, z]) \rightarrow \exists y \forall z A[n, y, z]); (\mathsf{U-BI}): \mathsf{D}[\{u, y: B[u, y]\}] \land \mathsf{Bar}[\underline{0}, \{u: \forall y B[u, y]\}] \rightarrow (\forall u (\forall x, y B[u*\langle x \rangle, y] \rightarrow \forall y B[u, y]) \rightarrow \forall y B[\langle \rangle, y]).$$

In what follows, however, we will not consider these schemata for the following reason. In the upper bound proofs, we always have full choice \mathcal{L}_{F} -AC⁰⁰, with which decidable properties are equivalently Δ_{0}^{0} , in other words, D({ $x: A[x, \vec{y}]$ }) implies $\exists \alpha \forall x (\alpha(x) = 0 \leftrightarrow A[x, \vec{y}])$. For lower bounds, we can obtain all the expected results for the corresponding weaker syntactical classes (e.g., Δ_{0}^{0} instead of D, Σ_{1}^{0} instead of E). Thus our results for syntactic classes can automatically be enhanced for these schemata. So the schemata listed above (as well as EU-DC⁰ and E-DC¹ defined similarly) are all finitistically justifiable jointly with \mathcal{L}_{F} -AC⁰ⁱ (i = 0, 1), \mathcal{L}_{F} -FT and \mathcal{L}_{F} -CCl¹.

§3. Upper Bounds: Functional Realizability.

3.1. Preliminaries for upper bound proofs. We will need two equivalences, which are among the folklore in classical second order arithmetic. We here sharpen these in the intuitionistic context (Corollaries 3.3 and 3.9) with some related fundamental results.

3.1.1. Bounded comprehension. The first equivalence to be sharpened is between induction and bounded comprehension. This was mentioned in [45, Exercise II.3.13]. For this equivalence, we need a semi-classical principle. For the equivalence in the purely intuitionistic setting, we need to replace the induction C-Ind by the least number principle C-LNP.

DEFINITION 3.1 (C-BCA, $\Delta_0^0(\mathcal{C})$, $\Sigma_1^0(\mathcal{C})$, $\Pi_1^0(\mathcal{C})$). For a class \mathcal{C} of formulae, (C-BCA): $\exists u(|u| = n \land (\forall k < n)(u(k) = 0 \leftrightarrow A[k]))$ for any A from \mathcal{C} . $\Delta_0^0(\mathcal{C})$ denotes the smallest class $\mathcal{D} \supseteq \mathcal{C}$ closed under $\land, \lor, \rightarrow, \mathsf{B}\exists^0, \mathsf{B}\forall^0$. Analogously $\Sigma_1^0(\mathcal{C}) \equiv \exists^0 \Delta_0^0(\mathcal{C})$ and $\Pi_1^0(\mathcal{C}) \equiv \forall^0 \Delta_0^0(\mathcal{C})$.

LEMMA 3.2. (1) $\mathbf{EL}_{0}^{-}+\mathsf{B}\forall^{0}\mathcal{C}-\mathsf{LNP}$ proves \mathcal{C} -BCA.

- (2) $\mathbf{EL}_0^- + C$ -BCA proves C-Ind, C-LEM and C-LNP.
- (3) $\mathbf{EL}_0^- + C$ -BCA proves $\Delta_0^0(C)$ -BCA.
- (4) Hence C-BCA and $B\forall^0C$ -LNP are equivalent over \mathbf{EL}_0^- .

PROOF. In this proof, let A be from C.

(1) We may assume $|u| \leq |v| \land (\forall k < |u|)(u(k) \leq v(k)) \rightarrow u \leq v$ by changing way of coding if necessary. Let $B[u] :\equiv |u| = n \land (\forall k < n)(u(k) = 0 \rightarrow A[k])$ which is $B \forall^0 C$ (cf. Notation 2.9(3)). $B \forall^0 C$ -LNP yields v with $B[v] \land (\forall u < v) \neg B[u]$. It remains to show $(\forall k < n)(A[k] \rightarrow v(k) = 0)$. For k < n with A[k], if $v(k) \neq 0$, then udefined by u(k) = 0 and u(l) = v(l) for $l \neq k$ satisfies u < v and B[u], a contradiction.

(2) By C-BCA we can take u such that $(\forall x \le n)(u(x) = 0 \leftrightarrow A[x])$. If A[0] and $(\forall x < n)(A[x] \to A[x+1])$, then u(0) = 0 and $(\forall x < n)(u(x) = 0 \to u(x+1) = 0)$ which, with Δ_0^0 -Ind, yields u(n) = 0 and so A[n]. The others are similar.

(3) We show $\forall n \exists u (|u| = n \land (\forall x < n)(u(x) = 0 \leftrightarrow A[(x)_0^k, \dots, (x)_{k-1}^k]))$ by induction on *A*. Consider the case of $A[\vec{x}] \equiv (Qy < t[\vec{x}])B[\vec{x}, y]$. The induction hypothesis yields *v* with

 $(\forall z < |v|)(v(z) = 0 \leftrightarrow B[(z)_0^{k+1}, \dots, (z)_k^{k+1}]) \text{ and } |v| = (n, t[(n)_0^k, \dots, (n)_{k-1}^k]).$

Then $(\forall x < n)(\forall y < (|v|)_1^2)(v(((x)_0^k, \dots, (x)_{k-1}^k, y)) = 0 \leftrightarrow B[(x)_0^k, \dots, (x)_{k-1}^k, y]).$ Take *u* with

 $(\forall x < n)(u(x) = 0 \leftrightarrow (Qy < t[(x)_0^k, \dots, (x)_{k-1}^k])(v((x)_0^k, \dots, (x)_{k-1}^k, y) = 0)).$

This is what we need.

COROLLARY 3.3. (1) $\mathbf{EL}_0^- \vdash \Pi_n^0$ -BCA $\leftrightarrow \Pi_n^0$ -LNP. (2) $\mathbf{EL}_0^- + \Sigma_n^0$ -Ind $+ \Sigma_{n+1}^0$ -DNE $\vdash \Sigma_n^0$ -BCA $\wedge \Delta_0^0(\Sigma_n^0)$ -Ind. (3) $\mathbf{EL}_0^- + \Sigma_n^0$ -Ind $+ \Sigma_n^0$ -LEM $\subseteq \mathbf{EL}_0^- + \Sigma_n^0$ -BCA $\subseteq \mathbf{EL}_0^- + \Sigma_n^0$ -Ind $+ \Sigma_{n+1}^0$ -DNE.

PROOF. (1) This is by 3.2(1)(2). (2) We have $\mathsf{B}\forall^0 \neg \Pi_n^0 \subseteq \Sigma_n^0$ by 2.8(3)(i)(ii) and 2.24(1)(i), and $\mathsf{B}\exists^0(\Pi_n^0 \land \mathsf{B}\forall^0 \neg \Pi_n^0) \subseteq \Sigma_{n+1}^0$. By 2.8(2)(i), $\mathsf{EL}_0^- + \Sigma_n^0 - \mathsf{Ind} + \Sigma_{n+1}^0 - \mathsf{DNE}$ proves $\Pi_n^0 - \mathsf{LNP}$ and so $\Pi_n^0 - \mathsf{BCA}$ which with $\Sigma_n^0 - \mathsf{DNE}$ implies $\Sigma_n^0 - \mathsf{BCA}$.

The statements (2) and (3) refine the corresponding classical results: Σ_n^0 -Ind implies $\Delta_0^0(\Sigma_n^0)$ -Ind (e.g., [18, Chapter I, 2.14 Lemma]); and Σ_n^0 -Ind is equivalent to Σ_n^0 -BCA. Since Σ_n^0 -BCA easily follows from $\mathcal{L}_{\rm F}$ -Ind+ Σ_n^0 -LEM, in the usual intuitionistic context with full induction, Σ_n^0 -BCA is equivalent to Σ_n^0 -LEM. In our context however we need some trick to adjust the proof above to Σ_n^0 to show this (cf. [28, Corollary 84]) while we saw that it is equivalent to $B\Pi_{n+1}^0$ -LNP, to $\Delta_0^0(\Sigma_n^0)$ -LNP and to Π_n^0 -LNP+ Σ_n^0 -DNE. As $\mathcal{L}_{\rm F}$ -Ind+ Σ_n^0 -LEM is known not to imply Σ_{n+1}^0 -DNE (by [1]), the second \subseteq in (3) is proper. We do not know if so is the first.

Our proof refines [18, Chapter I, 2.13 Lemma] and differs from that suggested in [45]. The latter proof is based on *pigeon-hole principle* (PHP), and does not solve the question above either. Whereas we applied the least number principle to sequence u's or large numbers in the sense of Section 1.8, in the proof by PHP the induction is applied to k's with k < |u| or small numbers.¹⁶ Thus the difference between these two proofs could be essential in the further studies mentioned in Section 1.8,¹⁷ but not so essential for the purpose of the present article.

3.1.2. Bounded König's lemma. The other equivalence is between weak König's lemma (WKL) and Π_1^0 axiom of choice (for sets) which is mentioned in [45, p.54, f.n.1]. The implication from the former to the latter was in [26, Lemma 3.6], and the converse is proved as follows: similarly to [45, Lemma VII.6.6.1], Π_1^0 axiom of choice implies Σ_1^0 separation which is known to be equivalent to WKL by [45, Lemma IV.4.4]. We refine this equivalence in our \mathbf{EL}_0^- .

DEFINITION 3.4 ($u < \alpha$, C-BKL, C-WKL). Let $u < \alpha := (\forall k < |u|)(u(k) < \alpha(k))$. For a class C of formulae define the following schemata:

 \dashv

¹⁶Actually bounded comprehension in [45] is the existence of set with the condition to which only finite segment is relevant.

 $^{^{17}}$ Also, the dissolution of the distinction between large and small numbers is essential for the proof of 2.39(1).

 $\begin{array}{l} (\mathcal{C}\text{-}\mathsf{B}\mathsf{K}\mathsf{L}) \colon \forall n (\exists u < \alpha) (|u| = n \land (\forall k \leq n) A[u \upharpoonright k]) \to (\exists \gamma < \alpha) \forall n A[\gamma \upharpoonright n]; \\ (\mathcal{C}\text{-}\mathsf{W}\mathsf{K}\mathsf{L}) \colon \forall n (\exists u < \underline{2}) (|u| = n \land (\forall k \leq n) A[u \upharpoonright k]) \to (\exists \gamma < \underline{2}) \forall n A[\gamma \upharpoonright n], \\ \text{for any } A \text{ from } \mathcal{C}. \end{array}$

- LEMMA 3.5. (1) For A from $\forall^0 C$ there is a formula B from $B\forall^0 C$ such that (a) $\forall n B[\beta \restriction n] \rightarrow \forall n A[\beta \restriction n]$ and (b) $\forall n (\exists u < \alpha)(|u| = n \land (\forall k \le n) A[u \restriction k])$ $\rightarrow \forall n (\exists u < \alpha)(|u| = n \land (\forall k \le n) B[u \restriction k]).$
- (2) *Over* $\mathbf{EL}_{0}^{-} + \mathsf{B}\forall^{0}\mathcal{C} \mathsf{BKL}$, (i) $\forall^{0}\mathcal{C} \mathsf{BKL}$ *holds*; (ii) $(\exists \beta < \alpha)\forall nA[\beta \restriction n]$ *is* $\forall^{0}(\mathsf{B}\exists^{0}\mathsf{B}\forall^{0}\mathcal{C})$ *if* A *is* $\forall^{0}\mathcal{C}$.
- (3) $\mathbf{EL}_{0}^{-}+\mathcal{D}\text{-}\mathsf{BKL}+\mathsf{B}\exists^{0}\mathcal{D}\text{-}\mathsf{Ind}+\mathsf{B}\exists^{0}\mathsf{B}\forall^{0}\neg\mathcal{C}\text{-}\mathsf{LEM}+\mathsf{B}\exists^{0}\mathcal{C}\text{-}\mathsf{DNE}\vdash\mathcal{C}\text{-}\mathsf{BFT},$ where $\mathcal{D} \equiv \mathsf{B}\forall^{0}(\mathcal{C} \to \mathsf{B}\exists^{0}\mathcal{C}).$

PROOF. Let C be C.

(1) Say $A[u] \equiv \forall x C[u, x]$. Define $B[u] := (\forall x, k < |u|) C[u \upharpoonright k, x]$. For (a), if $\forall n B[\beta \upharpoonright n]$, then, for *n* and *x*, $B[\beta \upharpoonright (n+x+1)]$ implies $C[\beta \upharpoonright n, x]$. As $\forall u((\forall k \le |u|) A[u \upharpoonright k] \to (\forall k \le |u|) B[u \upharpoonright k])$, (b) holds. (2) This follows from (1).

(3) Define the following, where B is in \mathcal{D} .

$$D[v] := (\exists k \le |v|) C[v \upharpoonright k]$$

$$B[u] := \gamma(u) = 0 \land (\forall v < \beta)(\gamma(v) = 0 \land |v| = |u| \land D[u] \to D[v]).$$

Assume Fan[γ], Bar[γ , *C*] and $\forall u(\gamma(u) = 0 \rightarrow u < \alpha)$.

We show $\exists u(\gamma(u) = 0 \land |u| = n \land (\forall k \le n) B[u \upharpoonright k])$ by $B\exists^0 \mathcal{D}$ -Ind on *n*. If n = 0 this is trivial. Assume $|v| = n \land (\forall k \le n) B[v \upharpoonright k]$. $B\exists^0 B\forall^0 \neg C$ -LEM gives two cases: if $\gamma(w) = 0 \land |w| = n+1 \land \neg D[w]$ then $(\forall k \le n+1) \neg D[w \upharpoonright k]$ and $(\forall k \le n+1) B[w \upharpoonright k]$; if no such *w* exists, as $\forall w(\gamma(w) = 0 \land |w| = n+1 \rightarrow D[w])$ by $B\exists^0 C$ -DNE, $\mathsf{Fan}[\gamma]$ yields *x* with $\gamma(v * \langle x \rangle) = 0 \land B[v * \langle x \rangle]$.

Now \mathcal{D} -BKL yields $\beta < \alpha$ with $\forall k B[\beta \upharpoonright k]$. By $\mathsf{Bar}[\gamma, C]$ we have *n* with $C[\beta \upharpoonright n]$. Then $\forall v(\gamma(v) = 0 \land |v| = n \to (\exists k \le n) C[v \upharpoonright k])$ by $B[\beta \upharpoonright n]$.

Compare (2)(i) with 2.32(3)(ii). A similar argument was also used for 2.28(4) (and will be in 3.56(2)).

As an instance of (3) with $C \equiv \Delta_0^0$, $\mathbf{EL}_0^- + \Delta_0^0$ -BKL $\vdash \Delta_0^0$ -BFT. This was shown in [21], but the essentially same proof had been given: e.g., the proof of [24, 4.7 Proposition 2) " \rightarrow "] with g instantiated with the particular g defined just below (++) on p.1263 is exactly the same proof, and there might be earlier proofs.

Lemma 3.6. (1) $\mathbf{EL}_{0}^{-}+\neg \mathcal{C}\text{-}\mathsf{BKL}+\mathsf{B}\exists^{0}\mathcal{C}\text{-}\mathsf{GDM}\vdash \exists^{0}\mathcal{C}\text{-}\mathsf{GDM};$

- (2) $\mathbf{EL}_{0}^{-}+\mathsf{B}\forall^{0}\mathcal{C}-\mathsf{B}\mathsf{KL}+\mathsf{B}\exists^{0}\mathsf{B}\forall^{0}\mathcal{C}-\mathsf{Ind}\vdash\forall^{0}\mathcal{C}-\mathsf{B}\mathsf{A}\mathsf{C}^{00};$
- (3) $\mathbf{EL}_{0}^{0} + \mathcal{D} \mathsf{DNE} + \mathcal{D} \mathsf{Ind} + \forall^{0} \neg \mathcal{E} 2\mathsf{AC}^{00} + \exists^{0}\mathcal{E} \mathsf{DM} \vdash \mathcal{C} \mathsf{WKL} \text{ for } \mathcal{D} \equiv \mathsf{B}\exists^{0}\mathsf{B}\forall^{0}\mathcal{C}$ and $\mathcal{E} \equiv \mathcal{D} \land \neg \mathcal{D}$.

PROOF. Let A be C.

(1) Let $C[u] :\equiv |u| > 0 \rightarrow \neg A[u(0), |u|-1]$. Assume $\neg(\forall x < m) \exists y A[x, y]$. Then, for any *n*, we have $\neg(\forall x < m)(\exists y < n)A[x, y]$ and therefore by $(\mathsf{B}\exists^0\mathcal{C})$ -GDM, $(\exists x < m)(\forall y < n)\neg A[x, y]$. For such x < m it is easy to see that $\langle x \rangle * (\underline{0} \upharpoonright (n-1))$ witnesses $\exists u(u < \underline{m} \land |u| = n \land (\forall k \le n)C[u \upharpoonright k])$. $\neg \mathcal{C}$ -BKL yields $\beta < \underline{m}$ with $\forall nC[\beta \upharpoonright n]$, and $\forall y \neg A[\beta(0), y]$.

(2) Assume $\forall x (\exists y < \alpha(x)) \forall z A[x, y, z]$. Let $B[u] :\equiv (\forall x, z < |u|) A[x, u(x), z]$. For *n*, $B\exists^0B\forall^0C$ -Ind on k < n shows

$$(\exists u < \alpha)(|u| = k \land (\forall x < k)(\forall z < n)A[x, u(x), z]).$$

 $B \forall^0 C$ -BKL yields $\beta < \alpha$ with $\forall x B[\beta \upharpoonright x]$. So $\forall x, z A[x, \beta(x), z]$.

(3) Assume $\forall n (\exists u < 2) (|u| = n \land (\forall k < n) A[u \upharpoonright k])$. Define a \mathcal{D} formula B and an \mathcal{E} formula C by

$$B[k, u] := (\exists v < \underline{2})(|v| = k \land (\forall l \le |u| + k)A[(u * v) \restriction l]);$$

$$C[n, u, x] := B[n, u * \langle 1 - x \rangle] \land \neg B[n, u * \langle x \rangle].$$

Suppose $\exists nC[n, u, 0] \land \exists nC[n, u, 1]$, say $C[n, u, 0] \land C[m, u, 1]$. Now we may assume $n \ge m$. C[n, u, 0] implies $B[n, u < \langle 1 \rangle]$ and so $B[m, u < \langle 1 \rangle]$ contradicting C[m, u, 1]. Thus $\exists^0 \mathcal{E}$ -DM yields $\forall n \neg C[n, u, 0] \lor \forall n \neg C[n, u, 1]$.

 $\forall^0 \neg \mathcal{E}\text{-}2\mathsf{A}\mathsf{C}^{00}$ yields $\gamma < \underline{2}$ with $\forall u, n \neg C[n, u, \gamma(u)]$. By induction on *n*, we can show $(\exists v < \underline{2} \upharpoonright n)(\forall k < n)(v(k) = \gamma(v \upharpoonright k))$. Thus $\Delta_0^0 - 2AC^{00}$ yields $\beta < 2$ with $\forall k(\beta(k) = \gamma(\beta \restriction k)) \text{ and so } \forall n, k \neg C[n, \beta \restriction k, \beta(k)].$

We prove $B[n-k, \beta \mid k]$ by \mathcal{D} -Ind on $k \leq n$. For k = 0, this is by assumption. For k < n, if $B[n-k, \beta \upharpoonright k]$, say $|v| = n-k \land (\forall l \le n) A[((\beta \upharpoonright k) * v) \upharpoonright l]$ then $B[n-k-1, (\beta \upharpoonright k) \ast \langle v(0) \rangle]$. We may assume $v(0) = 1-\beta(k)$. By $\neg C[n-k-1, \beta \upharpoonright k, \beta(k)]$ we have $\neg \neg B[n-k-1, (\beta \upharpoonright k) * \langle \beta(k) \rangle]$. Apply *D*-DNE. Thus $B[0, \beta \upharpoonright n]$, and \dashv $A[\beta \restriction n].$

Via g and ch from Section 2.3, Π_1^0 -2AC⁰¹ corresponds to Π_1^0 -AC and Π_1^0 -2AC⁰⁰ to Σ_1^0 separation. Hence (3) with $C \equiv \Delta_0^0$ refines the classical fact that Σ_1^0 separation implies WKL (cf. [45, Lemma IV.4.4]).

Replacing $\forall^0 \neg \mathcal{E}$ -2AC⁰⁰ and $\exists^0 \mathcal{E}$ -DM by $\forall^0 \neg \mathcal{E}$ -BAC⁰⁰ and $\exists^0 \mathcal{E}$ -GDM in (iii), we can prove C-BKL. However, in a straightforward manner (or as in [45, Lemma IV.1.4]) we can show $\mathbf{EL}_{0}^{-}+\mathcal{C}$ -WKL $\vdash \mathcal{C}$ -BKL.

COROLLARY 3.7. Over $\mathbf{EL}_0^- + \Delta_0^0(\mathcal{C})$ {-DNE, -GDM, -Ind}, the following are equivalent:

- (a) $\Pi_1^0(\mathcal{C})$ -BKL;
- (b) $\Delta_0^0(\mathcal{C})$ -BKL;
- $\begin{array}{l} \text{(c)} \hspace{0.1cm} \Sigma_{1}^{0}(\mathcal{C})\text{-}\mathsf{GDM} + \Pi_{1}^{0}(\mathcal{C})\text{-}\mathsf{BAC}^{00}; \\ \text{(d)} \hspace{0.1cm} \Sigma_{1}^{0}(\mathcal{C})\text{-}\mathsf{DM} + \Pi_{1}^{0}(\mathcal{C})\text{-}\mathsf{2AC}^{00}; \\ \text{(e)} \hspace{0.1cm} \Delta_{0}^{0}(\mathcal{C})\text{-}\mathsf{WKL}. \end{array}$

LEMMA 3.8. $\mathbf{EL}_0^- + \Delta_0^0$ -BKL proves Π_1^0 -BAC⁰¹.

PROOF. Let A be Π_1^0 . By 2.14, we may assume $A[x, \beta] \equiv \forall y C[x, \beta | y]$ where C is Δ_0^0 . Let $(u)_x(y) = u((x, y))$ for (x, y) < |u| and define

$$B[u] := (\forall x < |u|)(\forall y < |(u)_x|)C[x, (u)_x \upharpoonright y];$$

$$D[x, n, v] := v < (\gamma)_x \land |v| = n \land (\forall y < n)C[x, v \upharpoonright y].$$

Assume $\forall x (\exists \beta < (\gamma)_x) A[x, \beta].$

By assumption, $(\forall x < n)(\exists v)D[x, n, v]$. By induction on $m \le n$, we can show $(\exists w < \gamma \restriction (m, n))(w < \gamma \land (\forall x < m)D[x, n, (w)_x])$. We have $(\exists u < \gamma)(|u| = n \land B[u])$ by setting m = n. Δ_0^0 -BKL yields $\beta < \gamma$ with $\forall n B[\beta \upharpoonright n]$, and $\forall x, y C[x, (\beta)_x \upharpoonright y]$, i.e., $\forall x A[x, (\beta)_x]$.

COROLLARY 3.9. Π_1^0 -BKL; Π_1^0 -BAC⁰¹+ Σ_1^0 -GDM; Π_1^0 -2AC⁰⁰+LLPO; and Δ_0^0 -WKL are equivalent over **EL**_0^-.

REMARK 3.10. If we define C-BDC^{*i*}, bounded dependence choice, similarly to Π_1^0 -BAC¹, 3.8 can be enhanced to Π_1^0 -BDC¹ with the essentially same proof (see also the proof of 3.56(2)), and Π_1^0 -BDC⁰¹+ Σ_1^0 -GDM can be added to 3.9. This will play an essential role in the second author's next work [41].

3.2. Functional realizability.

3.2.1. General theory of Lifschitz's realizability. A general and abstract machinery for Lifschitz's realizability is provided by a theory **CDL** of combinators and \in_{L} . This could be seen as a subsystem of *explicit mathematics* with classes¹⁸ from [16]: all individuals are also classes and comprehension is much more restricted than elementary, with some modification on case distinction. Since the use of undefined terms is essential, we have to modify the first order logic as follows.

DEFINITION 3.11 (logic of partial terms (cf. [5, VI.1])). The first order logic of partial terms is formulated by the usual axioms and inference rules of the first order (intuitionistic or classical) logic, but

- (i) a new unary predicate (treated as a logical symbol) ↓, called *definedness* predicate, is added;
- (ii) the usual \forall and \exists -axioms (if formulated in Hilbert-style) are replaced by $\forall x A[x] \land t \downarrow \rightarrow A[t]$ and $A[t] \land t \downarrow \rightarrow \exists x A[x]$, respectively;
- (iii) the equality axioms are formulated only with free variables and only for atomic formulae;
- (iv) so-called strictness axiom: $A[t] \rightarrow t \downarrow$ for any *atomic* formula A[x] in which x actually occurs (which includes $t[s] \downarrow \rightarrow s \downarrow$ for any term t[x] in which x actually occurs).

Notice that (iii) includes x = x and so (iv) yields $x \downarrow$. Thus free variables vary only over "defined" objects. This logic is called E^+ -logic with equality in [50, Chapter 1, 2.4], where \downarrow is called the existence predicate.

- DEFINITION 3.12 (\mathcal{L}_{Cb} , \mathcal{L}_{CD} , \mathcal{L}_{CDL}). (1) The language \mathcal{L}_{Cb} has = as the only predicate symbol (besides \downarrow); one binary function symbol |; constant symbols k, s, p, p₀ and p₁. \mathcal{L}_{CD} is the expansion with constants z, o and d; and a unary relation symbol Bo. \mathcal{L}_{CDL} expands \mathcal{L}_{CD} with a binary predicate symbol \in_{L} and constant symbols g, u, r, f and c. Variables of these languages are denoted by α , β , γ , ..., ξ , η , ... (except λ) possibly with subscripts.
- (2) (i) $st :\equiv s | t; st_0 \dots t_n :\equiv (\dots (st_0) \dots)t_n; \langle s, t \rangle := pst \text{ and } \langle s, t, t' \rangle := ps(ptt').$ (ii) $s \simeq t :\equiv (s\downarrow) \lor (t\downarrow) \to s = t.$
- (3) (i) For a term t and a variable ξ , another term $\lambda \xi.t$, without occurrences of ξ , is defined inductively:

¹⁸The notion of class in explicit mathematics has been called *type* in the later references of explicit mathematics.

- (a) $\lambda \xi.\eta :\equiv k\eta$ if $\xi \not\equiv \eta$;
- (b) $\lambda \xi. \xi :\equiv skk;$
- (c) $\lambda \xi.c := kc$ for a constant *c*;
- (d) $\lambda \xi.st :\equiv s(\lambda \xi.s)(\lambda \xi.t);$
- (4) (i) $\lambda \eta_0 \cdots \eta_n t := \lambda \eta_0 (\dots (\lambda \eta_n t) \dots);$ (ii) fix $:= \lambda \zeta (\lambda \xi \eta, \zeta (\xi \xi) \eta) (\lambda \xi \eta, \zeta (\xi \xi) \eta).$

DEFINITION 3.13 (Cb, CD, CDL). The theory Cb of \mathcal{L}_{Cb} is generated over intuitionistic logic of partial terms by axioms (k), (s), (p). CD is Cb+(zo)+(d) in \mathcal{L}_{CD} , and CDL is Cb+(g)+(u)+(r) in \mathcal{L}_{CDL} .¹⁹

- (k) $k\alpha\beta = \alpha$; (s) $s\alpha\beta\downarrow \wedge s\alpha\beta\gamma \simeq \alpha\gamma(\beta\gamma)$;
- (p) $\mathbf{p}_0(\mathbf{p}\alpha\beta) = \alpha \wedge \mathbf{p}_1(\mathbf{p}\alpha\beta) = \beta \wedge \mathbf{p}_0\alpha\downarrow\wedge\mathbf{p}_1\alpha\downarrow;$
- (zo) Bo[α] \leftrightarrow (α = z $\lor \alpha$ = o); (d) d $\beta\gamma$ z = $\beta \land$ d $\beta\gamma$ o = γ ;
- (g) $g\alpha \downarrow \land (\xi \in_{\mathsf{L}} g\alpha \leftrightarrow \xi = \alpha);$ (u) $u\alpha \downarrow \land (\xi \in_{\mathsf{L}} u\alpha \leftrightarrow (\exists \beta \in_{\mathsf{L}} \alpha)(\xi \in_{\mathsf{L}} \beta));$
- $(\mathbf{r}) \ (\forall \eta \in_{\mathbf{L}} \alpha)(\beta \eta \downarrow) \to \mathsf{r} \alpha \beta \downarrow \land \forall \xi (\xi \in_{\mathbf{L}} \mathsf{r} \alpha \beta \leftrightarrow (\exists \eta \in_{\mathbf{L}} \alpha)(\xi = \beta \eta)).$

In **CDL** we can consider an object as a code of a set of objects with \in_L , and g, u and r give the codes of singletons, unions and direct images under operations, respectively. The constants f and c are used only in the extensions.

- DEFINITION 3.14 (CDLc, CDLf). (1) CDLc is an extension of CDL by the additional axiom $\exists ! \xi(\xi \in_L \alpha) \rightarrow (c\alpha \downarrow \land c\alpha \in_L \alpha)$.
- (2) **CDL**f is an extension of **CDL** by

 $(\exists \xi \in_{\mathsf{L}} \alpha)(\mathsf{p}_0 \xi = \eta) \to \mathsf{f} \alpha \eta \downarrow \land \forall \xi (\xi \in_{\mathsf{L}} \mathsf{f} \alpha \eta \leftrightarrow \xi \in_{\mathsf{L}} \alpha \land \mathsf{p}_0 \xi = \eta).$

Thus c "chooses" an element if the set is a singleton and f gives the code of inverse images along projection if inhabited. While these are not needed in the definition nor in the proofs of basic properties below, they will be essential to generalize the "featured" properties of Lifschitz's realizability (c in 3.32 and f in 3.34).

- LEMMA 3.15. (1) $\mathbf{Cb} \vdash (\lambda\xi, t[\xi]) \downarrow \land (s \downarrow \to (\lambda\xi, t[\xi])s \simeq t[s])$ for any $\mathcal{L}_{\mathbf{Cb}}$ term $t[\xi]$.
- (2) **Cb** \vdash fix $\zeta \downarrow \land$ fix $\zeta \eta \simeq \zeta$ (fix ζ) η .

N with Kleene bracket $nm \simeq \{n\}(m)$ is a model of **CD**. We can trivially expand it to **CDL** by interpreting \in_{L} as = (only singletons are codable), but also by interpreting $n \in_{L} m$ as $n < (m)_{1}^{2} \land \pi[(m)_{0}^{2}, n]$ where π is universal Π_{1} (the codable are bounded Π_{1}^{0}), and we can interpret g, u and r accordingly, as well as c and f.

In \mathbf{r}_{L} -realizability defined below, a realizer of existence statement is a (code of) inhabited sets of pairs of witnesses and realizers of the instantiated statements. Within the trivial model of **CDL**, \mathbf{r}_{L} -realizability is the usual number-realizability; and in the other aforementioned model it is Lifschitz's (number) realizability.

Below let \mathcal{L} and \mathcal{L}' be first order languages sharing the set of variables, and let \mathcal{L}' expand \mathcal{L}_{CDL} .

DEFINITION 3.16 ($\alpha \mathbf{r}_{L} A$, \mathbf{r}_{L} -realizable). For atomic \mathcal{L} formulae A, fix \mathcal{L}' formulae $\alpha \mathbf{r}_{L} A$ whose free variables are α and those in A, where $\alpha \mathbf{r}_{L} \perp :\equiv \bot$. Extend $\alpha \mathbf{r}_{L} A$

¹⁹With the totality $\forall \alpha, \beta(\alpha | \beta \downarrow)$, we can define p and p_i by d, z and o. However, without it, it seems difficult to obtain $p_0 \alpha \downarrow \land p_1 \alpha \downarrow$.

for an arbitrary \mathcal{L} formula A by

$$\begin{split} \alpha \mathbf{r}_{\mathrm{L}} \left(A \wedge B \right) &:\equiv \left(\mathsf{p}_{0} \alpha \mathbf{r}_{\mathrm{L}} A \right) \wedge \left(\mathsf{p}_{1} \alpha \mathbf{r}_{\mathrm{L}} B \right); \\ \alpha \mathbf{r}_{\mathrm{L}} \left(A \to B \right) &:\equiv \forall \beta (\beta \mathbf{r}_{\mathrm{L}} A \to \alpha \beta \downarrow \wedge \alpha \beta \mathbf{r}_{\mathrm{L}} B); \\ \alpha \mathbf{r}_{\mathrm{L}} \left(A \vee B \right) &:\equiv \\ \exists \eta (\eta \in_{\mathrm{L}} \alpha) \wedge (\forall \xi \in_{\mathrm{L}} \alpha) (\mathrm{Bo}[\mathsf{p}_{0}\xi] \wedge (\mathsf{p}_{0}\xi = \mathsf{z} \to \mathsf{p}_{1}\xi \mathbf{r}_{\mathrm{L}} A) \wedge (\mathsf{p}_{0}\xi = \mathsf{o} \to \mathsf{p}_{1}\xi \mathbf{r}_{\mathrm{L}} B)); \\ \alpha \mathbf{r}_{\mathrm{L}} \forall \xi A[\xi] &:= \forall \xi (\alpha \xi \downarrow \wedge \alpha \xi \mathbf{r}_{\mathrm{L}} A[\xi]); \\ \alpha \mathbf{r}_{\mathrm{L}} \exists \xi A[\xi] &:\equiv \exists \eta (\eta \in_{\mathrm{L}} \alpha) \wedge (\forall \xi \in_{\mathrm{L}} \alpha) (\mathsf{p}_{1}\xi \mathbf{r}_{\mathrm{L}} A[\mathsf{p}_{0}\xi]). \end{split}$$

An \mathcal{L} theory T is called \mathbf{r}_{L} -realizable in an \mathcal{L}' theory T' if $T' \vdash \exists \alpha (\alpha \mathbf{r}_{L} A)$ for any A in T.

DEFINITION 3.17 (operator b_A). Fix \mathcal{L}_{CDL} terms $b_{A[\vec{\eta}]}$ for atomic $A[\vec{\eta}]$'s. Extend b_A to arbitrary A by

$$\begin{split} \mathbf{b}_{A \wedge B} &:= \lambda \vec{\eta} \alpha. \mathbf{p} (\mathbf{b}_A \vec{\eta} (\mathbf{r} \alpha \mathbf{p}_0)) (\mathbf{b}_B \vec{\eta} (\mathbf{r} \alpha \mathbf{p}_1)); \\ \mathbf{b}_{B \to A} &:= \lambda \vec{\eta} \alpha \beta. \mathbf{b}_A \vec{\eta} (\mathbf{r} \alpha (\lambda \zeta. \zeta \beta)); \\ \mathbf{b}_{\forall \xi A[\vec{\eta}, \xi]} &:= \lambda \vec{\eta} \alpha \xi. \mathbf{b}_{A[\vec{\eta}, \xi]} \vec{\eta} \xi (\mathbf{r} \alpha (\lambda \zeta. \zeta \xi)); \\ \mathbf{b}_{\exists \xi A[\vec{\eta}, \xi]}, \mathbf{b}_{A \vee B} &:= \lambda \vec{\eta} \alpha. \mathbf{u} \alpha. \end{split}$$

Strictly, b_A is defined for abstracts A rather than formulae. We write $b_{C[\vec{\alpha}]}$ also for $b_{C[\vec{\alpha}]}\vec{\eta}$ with the free variables $\vec{\eta}$ implicit (i.e., other than $\vec{\alpha}$'s) in $C[\vec{\alpha}]$. We will not need the definition of b_A but the following.

LEMMA 3.18. For an \mathcal{L}' theory T', if

$$\mathbf{CDL} + T' \vdash \exists \xi (\xi \in_{\mathsf{L}} \alpha) \land (\forall \xi \in_{\mathsf{L}} \alpha) (\xi \mathbf{r}_{\mathsf{L}} A[\vec{\eta}]) \to (\mathsf{b}_{A} \vec{\eta} \alpha) \downarrow \land \ \mathbf{b}_{A} \vec{\eta} \alpha \mathbf{r}_{\mathsf{L}} A[\vec{\eta}]$$

for any atomic \mathcal{L} formula A, then it holds for an arbitrary \mathcal{L} formula A.

PROPOSITION 3.19. Assume the premise of 3.18. If $A[\vec{\eta}]$ follows from sentences B_1, \ldots, B_n intuitionistically, then there is a closed \mathcal{L}_{CDL} -term t such that

 $\mathbf{CDL} \vdash \forall \beta_1, \dots, \beta_n (\beta_1 \mathbf{r}_{\mathsf{L}} \mathbf{B}_1 \wedge \dots \wedge \beta_n \mathbf{r}_{\mathsf{L}} \mathbf{B}_n \to t\beta_1 \dots \beta_n \downarrow \wedge t\beta_1 \dots \beta_n \mathbf{r}_{\mathsf{L}} \forall \vec{\eta} A[\vec{\eta}])$

PROOF. Consider a Hilbert-style calculus. The axioms in the negative parts are realizable as follows. $\lambda \vec{\eta}.\mathbf{k}, \lambda \vec{\eta}.\mathbf{s}, \lambda \vec{\eta}.\mathbf{p}_i, \lambda \vec{\eta}.\mathbf{p}$ and $\lambda \vec{\eta} \xi \alpha.\alpha \xi$ realize the universal closures of the axioms $\forall \vec{\eta} (A \rightarrow B \rightarrow A), \forall \vec{\eta} ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)), \forall \vec{\eta} (A_0 \wedge A_1 \rightarrow A_i), \forall \vec{\eta} (A_0 \rightarrow A_1 \rightarrow A_0 \wedge A_1) \text{ and } \forall \vec{\eta}, \xi (\forall \zeta A[\zeta] \rightarrow A[\zeta]), \text{ respectively. For the inference rules for the negative part, if <math>s \mathbf{r}_L \forall \vec{\eta} (C \rightarrow A)$ and $t \mathbf{r}_L \forall \vec{\eta} C$ then $\lambda \vec{\eta}.s \vec{\eta} (t \vec{\eta}) \mathbf{r}_L \forall \vec{\eta} A$, and if $t \mathbf{r}_L \forall \vec{\eta}, \zeta (C \rightarrow A[\zeta])$ then $\lambda \vec{\eta} \alpha \zeta.t \vec{\eta} \zeta \alpha \mathbf{r}_L \forall \vec{\eta} (C \rightarrow \forall \zeta A[\zeta]).$

For the \exists -axiom, it is easy to see $\lambda \vec{\eta} \xi \gamma . \mathbf{g}(\langle \xi, \gamma \rangle) \mathbf{r}_{L} \forall \vec{\eta}, \xi(A[\xi] \to \exists \zeta A[\zeta])$. For the \exists -rule, we show that if $t \mathbf{r}_{L} \forall \vec{\eta}, \zeta(A[\zeta] \to C)$ then $\lambda \vec{\eta} \gamma . \mathbf{b}_{C} \vec{\eta} (\mathbf{r} \gamma (\lambda \xi. t \vec{\eta} (\mathbf{p}_{0} \xi) (\mathbf{p}_{1} \xi)))$ realizes $\forall \vec{\eta} (\exists \zeta A[\zeta] \to C)$ as follows. Take γ such that $\gamma \mathbf{r}_{L} \exists \zeta A[\zeta]$. Then we have $(\forall \xi \in_{L} \gamma) (\mathbf{p}_{1} \xi \mathbf{r}_{L} A[\mathbf{p}_{0} \xi])$ and $(\forall \xi \in_{L} \gamma) (t \vec{\eta} (\mathbf{p}_{0} \xi) (\mathbf{p}_{1} \xi)) \land t \vec{\eta} (\mathbf{p}_{0} \xi) (\mathbf{p}_{1} \xi) \mathbf{r}_{L} C)$, i.e., $(\forall \xi' \in_{L} \mathbf{r} \gamma (\lambda \xi. t \vec{\eta} (\mathbf{p}_{0} \xi) (\mathbf{p}_{1} \xi))) (\xi' \mathbf{r}_{L} C)$. Similarly $\exists \xi' (\xi' \in_{L} \mathbf{r} \gamma (\lambda \xi. \beta \vec{\eta} (\mathbf{p}_{0} \xi) (\mathbf{p}_{1} \xi)))$. Now we can apply 3.18.

For the \lor -axioms, it is easy to see $\lambda \vec{\eta} \gamma. \mathbf{g}(\langle \mathbf{z}, \gamma \rangle) \mathbf{r}_{\mathrm{L}} \forall \vec{\eta} (A \to A \lor B)$ and also $\lambda \vec{\eta} \gamma. \mathbf{g}(\langle \mathbf{o}, \gamma \rangle) \mathbf{r}_{\mathrm{L}} \forall \vec{\eta} (B \to A \lor B)$. For the \lor -rule, if $s \mathbf{r}_{\mathrm{L}} \forall \vec{\eta} (A \to C)$ and $t \mathbf{r}_{\mathrm{L}} \forall \vec{\eta} (B \to C)$ then, similarly we can show that $\lambda \vec{\eta} \alpha. \mathbf{b}_C \vec{\eta} (r \alpha (\lambda \xi. \mathbf{d}(s \vec{\eta}(\mathbf{p}_1 \xi))(t \vec{\eta}(\mathbf{p}_1 \xi))(\mathbf{p}_0 \xi)))$ realizes $\forall \vec{\eta} (A \lor B \to C)$.

Therefore $A \mapsto \exists \alpha (\alpha \mathbf{r}_{L} A)$ can be considered as an interpretation of intuitionistic logic (i.e., the theory axiomatized by \emptyset) over \mathcal{L} to extensions of **CDL** in the sense of Section 1.2. The theme of this section is to clarify: with which axioms in \mathcal{L}' , which axioms in \mathcal{L} can be interpreted in this way.

3.2.2. Kleene's second model \mathfrak{k} . We will need functional realizability and so a functional model of **CD**, called Kleene's second model. Though [51, Chapter 9, 4.1] gave a construction in an abstract way, it seems easier for us to give an explicit definition, in order to check if the construction is possible in our context of weak induction.

NOTATION 3.20 (u|v). The expression (u|v)(x) denotes $u(\langle x \rangle * (v \restriction y)) - 1$ if $y = \min\{z : u(\langle x \rangle * (v \restriction z)) > 0\}$, and is undefined if there is no such y. Now "(u|v)(x) is defined" is Δ_0^0 . If $u \subseteq u'$, $v \subseteq v'$ and (u|v)(k) is defined, then (u|v)(k) = (u'|v')(k).

DEFINITION 3.21 ($A^{\mathfrak{k}}$). For an \mathcal{L}_{Cb} term *t* and \mathcal{L}_{Cb} formula *A*, define \mathcal{L}_{F} formulae $[t]^{\mathfrak{k}}(\xi)$ and $A^{\mathfrak{k}}$ by

$$\llbracket \alpha \rrbracket^{\mathfrak{k}}(\xi) :\equiv \xi = \alpha; \qquad \llbracket c \rrbracket^{\mathfrak{k}}(\xi) :\equiv \xi = c^{\mathfrak{k}} \text{ for a constant } c; \\ \llbracket st \rrbracket^{\mathfrak{k}}(\xi) :\equiv \exists \eta, \zeta (\llbracket s \rrbracket^{\mathfrak{k}}(\eta) \land \llbracket t \rrbracket^{\mathfrak{k}}(\zeta) \land \xi = \eta | \zeta);$$

and by

$$(s\downarrow)^{\mathfrak{k}} :\equiv \exists \xi(\llbracket s \rrbracket^{\mathfrak{k}}(\xi)); \qquad (s=t)^{\mathfrak{k}} :\equiv \exists \xi(\llbracket s \rrbracket^{\mathfrak{k}}(\xi) \land \llbracket t \rrbracket^{\mathfrak{k}}(\xi)); \quad \bot^{\mathfrak{k}} :\equiv \bot; (A \Box B)^{\mathfrak{k}} :\equiv A^{\mathfrak{k}} \Box B^{\mathfrak{k}} \ (\Box \equiv \land, \rightarrow, \lor); \quad (Q\xi A)^{\mathfrak{k}} :\equiv Q\xi A^{\mathfrak{k}} \ (Q \equiv \lor, \exists).$$

where $\xi = \eta | \zeta$ is from 2.37 and where $c^{\mathfrak{k}}$'s are defined as follows by Δ_0^0 bounded search in \mathbf{EL}_0^- from 2.10:

$$\begin{split} \mathsf{p}_{i}^{\mathfrak{k}}(x) &= \begin{cases} (w(y))_{i}^{2} + 1 & \text{if } x = \langle y \rangle \ast w \text{ and } |w| = y + 1; \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{p}^{\mathfrak{k}}(x) &= \begin{cases} (u(y), v(y)) + 2 & \text{if } x = \langle \langle y \rangle \ast v \rangle \ast u \text{ and } |u| = |v| = y + 1; \\ 0 & \text{if } x = \langle \langle y \rangle \ast v \rangle \ast u \text{ and } |u| \neq |v| = y + 1; \\ 1 & \text{otherwise.} \end{cases} \\ \mathsf{k}^{\mathfrak{k}}(x) &= \begin{cases} u(y) + 2 & \text{if } x = \langle \langle y \rangle \rangle \ast u \text{ and } |u| = y + 1; \\ 1 & \text{if } x = \langle v \rangle \text{ and } |v| \neq 1; \\ 0 & \text{otherwise.} \end{cases} \\ \mathsf{s}^{\mathfrak{k}}(x) &= \begin{cases} ((u|w)|(v|w))(y) + 3 & \text{if } x = \langle \langle \langle y \rangle \ast w \rangle \ast v \rangle \ast u \text{ and } |u| = |v| = |w| \\ & \text{and } (\forall z \leq y) \begin{pmatrix} (u|w)(z), (v|w)(z) \text{ and } \\ ((u|w)|(v|w))(z) \text{ are defined} \end{pmatrix}; \end{cases} \\ \mathsf{s}^{\mathfrak{k}}(x) &= \begin{cases} \mathsf{s}^{\mathfrak{k}}(x) = \begin{cases} \mathsf{s}^{\mathfrak{k}}(x) = \begin{cases} \mathsf{s}^{\mathfrak{k}}(x) + \mathsf{s}^{\mathfrak{k}}(x) = \mathsf{s}^{\mathfrak{k}}(x) = \mathsf{s}^{\mathfrak{k}}(x) = \mathsf{s}^{\mathfrak{k}}(x) = \mathsf{s}^{\mathfrak{k}}(x) = \begin{cases} \mathsf{s}^{\mathfrak{k}}(x) = \mathsf{$$

https://doi.org/10.1017/jsl.2018.6 Published online by Cambridge University Press

 $\text{Proposition 3.22.} \quad \mathbf{EL}_0^- + \Delta_0^0 \text{-} \mathsf{AC}^{00} \vdash (\mathbf{Cb})^{\mathfrak{k}} \wedge ((\mathsf{p}\alpha\beta)^{\mathfrak{k}} = (\alpha,\beta)).$

PROOF. Let $\overline{\alpha}n$ denote $\alpha \upharpoonright n$. We can easily see $(p_i \alpha)^{\mathfrak{k}}(x) = (\alpha(x))_i^2$, and using the following we can show $(k\alpha\beta)^{\mathfrak{k}}(x) = \alpha(x)$ and $(p\alpha\beta)^{\mathfrak{k}}(x) = (\alpha(x), \beta(x))$ and the first conjunct of (s).

$$(\mathbf{p}\alpha)^{\mathfrak{k}}(x) = \begin{cases} (\alpha(y), v(y)) + 1 & \text{if } x = \langle y \rangle * v \land |v| = y + 1; \\ 0 & \text{otherwise.} \end{cases}$$

$$(\mathbf{k}\alpha)^{\mathfrak{k}}(x) = \begin{cases} \alpha(y) + 1 & \text{if } x = \langle y \rangle; \\ 0 & \text{otherwise.} \end{cases};$$

$$(\mathbf{s}\alpha)^{\mathfrak{k}}(x) = \begin{cases} ((\overline{\alpha}k|w)|(v|w))(y) + 2 & \text{if } x = \langle \langle y \rangle * w \rangle * v \text{ and, for } k := |v| = |w|, \\ (\forall z \leq y) \begin{pmatrix} (\overline{\alpha}k|w)(z), (v|w)(z) \text{ and} \\ ((\overline{\alpha}k|w)|(v|w))(z) \text{ are defined} \end{pmatrix};$$

$$1 & \text{if } x = \langle \langle y \rangle * w \rangle * v \text{ and } |v| = |w| \text{ but otherwise;} \\ 0 & \text{if } x = \langle \langle y \rangle * w \rangle * v \text{ and } |v| = |w| \text{ but otherwise;} \\ 1 & \text{if } x = \langle \langle y \rangle * w \rangle * v \text{ ond } |v| = |w| \text{ but otherwise;} \\ 1 & \text{if } x = \langle \langle y \rangle * w \rangle * v \text{ with } |v| > 0 \text{ or } x = \langle \rangle * v \text{ or } x = \langle \rangle. \end{cases}$$

$$(\mathbf{s}\alpha\beta)^{\mathfrak{k}}(x) = \begin{cases} ((\overline{\alpha}k|w)|(\overline{\beta}k|w))(y) + 1 & \text{if } x = \langle y \rangle * w \text{ and, for } k := |w|, \\ (\forall z \leq y) \begin{pmatrix} (\overline{\alpha}k|w)(z), (\overline{\beta}k|w)(z) \text{ and} \\ ((\overline{\alpha}k|w))(\overline{\beta}k|w))(z) \text{ are defined} \end{pmatrix}; \end{cases}$$

Let $(s\alpha\beta\gamma)^{\mathfrak{k}}\downarrow$. Then $(s\alpha\beta\gamma)^{\mathfrak{k}}(y) = ((\overline{\alpha}k|\overline{\gamma}k)|(\overline{\beta}k|\overline{\gamma}k))(y)$, where k is a least such that $(\overline{\alpha}k|\overline{\gamma}k)(z)|(\overline{\beta}k|\overline{\gamma}k)(z)$ and $((\overline{\alpha}k|\overline{\gamma}k)|(\overline{\beta}k|\overline{\gamma}k))(z)$ are defined for all $z \leq y$. By 3.20, $((\alpha|\gamma)|(\beta|\gamma))(y)$ is defined and is $((\overline{\alpha}k|\overline{\gamma}k)|(\overline{\beta}k|\overline{\gamma}k))(y)$. Σ_1^0 -AC⁰⁰ yields $(\alpha|\gamma)\downarrow$, $(\beta|\gamma)\downarrow$, $((\alpha|\gamma)|(\beta|\gamma))\downarrow$ and $(s\alpha\beta\gamma)^{\mathfrak{k}} = ((\alpha|\gamma)|(\beta|\gamma))$. Conversely let $((\alpha|\gamma)|(\beta|\gamma))\downarrow$, which implies $(\alpha|\gamma)\downarrow$ and $(\beta|\gamma)\downarrow$. For x, by 2.16(3)(ii), Δ_0^0 -AC⁰⁰ yields k with $(\overline{\alpha}k|\overline{\gamma}k)(y), (\overline{\beta}k|\overline{\gamma}k)(y)$ and $((\overline{\alpha}k|\overline{\gamma}k)|(\overline{\beta}k|\overline{\gamma}k))(y)$ are defined for all $y \leq x$. Then $(s\alpha\beta\gamma)^{\mathfrak{k}}(x) = ((\overline{\alpha}k|\overline{\gamma}k)|(\overline{\beta}k|\overline{\gamma}k))(x)$. Thus $(s\alpha\beta\gamma)^{\mathfrak{k}}\downarrow$.

LEMMA 3.23. (1) (i) For a Σ_1^0 formula A, \mathbf{EL}_0^- proves that:

if $\forall x, y, z, \alpha(A[x, y, \alpha] \land A[x, z, \alpha] \rightarrow y = z)$ *then there is* γ_A *such that* (a) $\forall \alpha((\gamma_A | \alpha) \downarrow \leftrightarrow \exists \beta \forall x A[x, \beta(x), \alpha])$ *and that* (b) $\forall \alpha((\gamma_A | \alpha) \downarrow \rightarrow \forall x A[x, (\gamma_A | \alpha)(x), \alpha]);$

and (ii) for a Σ_1^0 formula A, $\mathbf{EL}_0^- + \Delta_0^0 - \mathsf{AC}^{00}$ proves that there is γ_A with (b) and $\forall \alpha((\gamma_A | \alpha) \downarrow \leftrightarrow \forall x \exists y A[x, y, \alpha]).$

(2) For a Π_1^0 formula $B[\xi, \eta, \gamma]$, $\mathbf{EL}_0^- + \Delta_0^0$ -BKL proves that there is χ_B such that for any $\alpha, \beta, \xi, (\chi_B | \alpha | \beta) \downarrow \land \forall \xi ((\exists \eta < \alpha) B[\xi, \eta, \beta] \leftrightarrow \forall n((\chi_B | \alpha | \beta)(\xi \restriction n) = 0)).$

PROOF. (1)(ii) follows from (i) and Δ_0^0 -LNP. (i) By 2.14, take *C* from Δ_0^0 with $A[x, y, \alpha] \leftrightarrow \exists k C[x, y, \alpha \upharpoonright k]$. Let

$$\gamma_A(w) = \begin{cases} y+1 & \text{if } w = \langle x \rangle * v \text{ and } y < |v| \land (\exists k < |v|) C[x, y, v \upharpoonright k]; \\ 0 & \text{if there are no such } x, v, y. \end{cases}$$

(2) By 3.5(2)(ii) and 2.14, let $\forall \xi, \alpha, \beta((\exists \eta < \alpha)B[\xi, \eta, \beta] \leftrightarrow \neg \exists nC[\xi \upharpoonright n, (\alpha, \beta)])$ where *C* is Δ_0^0 . By (1)(i) with 2.10(d) we can take γ with $(\gamma \mid (\alpha, \beta))\downarrow$ and $\forall u((\gamma \mid (\alpha, \beta))(u) = 0 \leftrightarrow \neg C[u, (\alpha, \beta)])$. Set $\chi_B := \lambda \alpha \beta . \gamma \mid (p \mid \alpha \mid \beta)$.

Here (1) formalizes the famous fact: any continuous functional can be represented by an operation in Kleene's second model (cf. [23, Section 5.2]). (2) is a preliminary for van Oosten's model treated in 3.2.3.

DEFINITION 3.24 (\mathfrak{k}). Expand \mathfrak{k} to \mathcal{L}_{CDL} by $\operatorname{Bo}[\alpha]^{\mathfrak{k}} :\equiv \alpha < 2 \land \forall x, y(\alpha(x) = \alpha(y))$ and $\xi \in_{\mathrm{L}}^{\mathfrak{k}} \alpha :\equiv \alpha = \xi$ with $z^{\mathfrak{k}} := \underline{0}$; $o^{\mathfrak{k}} := \underline{1}$; $d^{\mathfrak{k}} := \lambda \xi \eta \zeta . \gamma_{\mathcal{A}}(\mathsf{p}\xi(\mathsf{p}\eta\zeta))$; $\mathbf{g}^{\mathfrak{k}}, \mathbf{u}^{\mathfrak{k}}, \mathbf{c}^{\mathfrak{k}} := \lambda \xi . \xi$; $\mathbf{f}^{\mathfrak{k}} := \mathsf{k}^{\mathfrak{k}}$; and $\mathbf{r}^{\mathfrak{k}} := \lambda \xi \eta . \eta | \xi$, where $\gamma_{\mathcal{A}}$ is as in 3.23(1)(i) above applied to \mathcal{A} from Δ_{0}^{0} such that $\mathcal{A}[x, y, \mathsf{p}^{\mathfrak{k}}\xi(\mathsf{p}^{\mathfrak{k}}\eta\zeta)] \leftrightarrow ((\zeta(0) = 0 \to y = \xi(x)) \land (\zeta(0) \neq 0 \to y = \eta(x)))$.

Proposition 3.25. $\mathbf{EL}_{0}^{-}+\Delta_{0}^{0}-\mathsf{AC}^{00}\vdash(\mathbf{CDLc})^{\mathfrak{k}}+(\mathbf{CDLf})^{\mathfrak{k}}.$

3.2.3. Van Oosten's model \mathfrak{o} . Under \mathfrak{k} , only singletons are codable and so \mathbf{r}_{L} -realizability is the usual functional realizability. On the other hand, under \mathfrak{o} due to van Oosten [31, Section 5], α codes the sets of infinite paths through the "bounded" tree $\{u < (\alpha)_1^2: \forall n((\alpha)_0^2(u \upharpoonright n) = 0)\}$ so that bounded König's lemma could be \mathbf{r}_{L} -realizable. We have to check if it works in our context of weak induction. This is not easy. Indeed Dorais [13, Remark 4.10] tried to weaken induction in van Oosten's argument but required Π_1^0 -Bdg. We show that it is not needed and Δ_0^0 -Ind suffices.

DEFINITION 3.26 (\mathfrak{o} and π_A). (1) Let \mathfrak{o} coincide with \mathfrak{k} on \mathcal{L}_{CD} , and

$$\xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha :\equiv \xi < (\alpha)_{1}^{2} \land \forall n((\alpha)_{0}^{2}(\xi \restriction n) = 0).$$

(2) For any Π_1^0 formula $A[\xi, \eta, \gamma]$, define $\pi_A := \lambda \alpha \beta \gamma . \mathsf{p}|(\chi_A |\beta|\gamma)|\alpha$ where χ_A is from 3.23(2).

Then $\pi_A |\alpha| \beta |\gamma|$ codes the bounded Π_1^0 set $\{\xi < \alpha : (\exists \eta < \beta) A[\xi, \eta, \gamma]\}$, as stated in the next lemma (2), whereas (1) gives us the necessary bound to make the arguments (for 3.28) work only with Δ_0^0 -Ind. This will be essential to define the interpretation of r in 3.28, and, in later parts, r will gives the necessary bounds.

LEMMA 3.27. (1) $\mathbf{EL}_0^- + \mathsf{MP} + \Delta_0^0 - \mathsf{AC}^{00} + \Delta_0^0 - \mathsf{BKL}$ proves that there is ζ such that, for any α and β ,

$$\begin{array}{l} (\forall \eta \in {}^{\mathfrak{o}}_{\mathrm{L}} \alpha)((\beta|\eta) \downarrow) \to \zeta|(\alpha,\beta) \downarrow \land \\ (\forall \eta \in {}^{\mathfrak{o}}_{\mathrm{L}} \alpha)((\beta|\eta) < \zeta|(\alpha,\beta) \land \forall k (\exists n < (\zeta|(\alpha,\beta))(k))(\beta(\langle k \rangle * (\eta \restriction n)) > 0)). \end{array}$$

(2) For A from Π_1^0 , $\mathbf{EL}_0^- + \Delta_0^0$ -BKL proves

$$\forall \alpha, \beta, \gamma((\pi_A | \alpha | \beta | \gamma) \downarrow \land \forall \xi (\xi \in_{\mathrm{L}}^{\mathfrak{o}} \pi_A | \alpha | \beta | \gamma \leftrightarrow \xi < \alpha \land (\exists \eta < \beta) A[\xi, \eta, \gamma])).$$

PROOF. Since (2) is immediate, we prove (1). Let

 $C[u, k, \alpha, \beta] := (\exists x, w < |u|) \neg ((\alpha)_0^2(u \upharpoonright x) = 0 \land \beta(\langle k \rangle * (u \upharpoonright w)) = 0)$

and $D[k, y, \alpha, \beta] := (\forall u < (\alpha)_1^2)(|u| = y \rightarrow (\exists l \le |u|)C[u \upharpoonright l, k, \alpha, \beta])$, where $u < \gamma$ is defined in 3.4. Now we have

$$\begin{aligned} (\forall \eta \in_{\mathbf{L}}^{\mathfrak{o}} \alpha)((\beta|\eta)\downarrow) \\ \leftrightarrow \ \forall k (\forall \eta < (\alpha)_{1}^{2})(\ \forall x((\alpha)_{0}^{2}(\eta \upharpoonright x) = 0) \rightarrow \exists w(\beta(\langle k \rangle \ast(\eta \upharpoonright w)) > 0)) \end{aligned}$$
 (by $\Delta_{0}^{0}\text{-}\mathsf{AC}^{00})$

$$\leftrightarrow \forall k (\forall \eta < (\alpha)_1^2) \neg (\forall x ((\alpha)_0^2(\eta \upharpoonright x) = 0) \land \neg \exists w (\beta(\langle k \rangle * (\eta \upharpoonright w)) > 0))$$
 (by MP)

$$\leftrightarrow \forall k (\forall \eta < (\alpha)_1^2) \exists x, w \neg ((\alpha)_0^2(\eta \upharpoonright x) = 0 \land \beta(\langle k \rangle * (\eta \upharpoonright w)) = 0)$$

$$(by MP)$$

$$(by MP)$$

$$\leftrightarrow \forall k (\forall \eta < (\alpha)_1^2) \exists l C[\eta \upharpoonright l, k, \alpha, \beta] \leftrightarrow \forall k \neg (\exists \eta < (\alpha)_1^2) \forall l \neg C[\eta \upharpoonright l, k, \alpha, \beta]$$
(by MP)

$$\leftrightarrow \forall k \neg \forall y (\exists u < (\alpha)_1^2) (|u| = y \land (\forall l \le y) \neg C[u \upharpoonright l, k, \alpha, \beta]) \leftrightarrow \forall k \exists y D[k, y, \alpha, \beta]$$

(by Δ_0^0 -BKL, MP).

3.23(1)(ii) yields γ with $\forall kD[k, (\gamma | (\alpha, \beta))(k), \alpha, \beta]$. Then

$$\forall k (\forall \eta \in_{\mathsf{L}}^{\mathfrak{o}} \alpha) (\exists n < (\gamma | (\alpha, \beta))(k)) (\beta (\langle k \rangle * (\eta \restriction n)) > 0).$$

Thus ζ with the following is what we need:

$$(\zeta|(\alpha,\beta))(k) = \max((\gamma|(\alpha,\beta))(k), \beta \upharpoonright (\langle k \rangle \ast ((\alpha)_1^2 \upharpoonright (\gamma|(\alpha,\beta))(k)))) + 1. \quad \dashv$$

PROPOSITION 3.28. \mathbf{EL}_{0}^{-} + MP+ Δ_{0}^{0} -AC⁰⁰+ Δ_{0}^{0} -BKL \vdash (**CDL**c + **CDL**f)^o with suitable g° , u° , r° , c° and f° .

PROOF. First $\alpha = \xi$ is Π_1^0 . Next notice that

- $(\exists \beta \in_{\mathrm{L}}^{\mathfrak{o}} \alpha)(\xi \in_{\mathrm{L}}^{\mathfrak{o}} \beta)$ is equivalent to $\xi < \alpha \land (\exists \beta < \alpha)((\beta \in_{\mathrm{L}}^{\mathfrak{o}} \alpha) \land (\xi \in_{\mathrm{L}}^{\mathfrak{o}} \beta)),$ $(\exists \eta \in_{\mathrm{L}}^{\mathfrak{o}} \alpha)(\xi = \beta | \eta)$ is equivalent to $\xi < \zeta | (\alpha, \beta) \land (\exists \eta \in_{\mathrm{L}}^{\mathfrak{o}} \alpha)(\xi = \beta | \eta)$ under $(\forall \eta \in \overline{\mathfrak{o}}^{\mathfrak{o}} \alpha)(\beta | \eta \downarrow)$ and
- $\xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha \wedge \mathfrak{p}_{0} | \xi = \eta$ is equivalent to $\xi < \alpha \wedge \xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha \wedge (\xi)_{0}^{2} = \eta$,

where ζ is from 3.27(1) and $\xi = \beta | \eta$ is equivalently Π_1^0 with the bound $\zeta | (\alpha, \beta)$. 3.27(2) yields g° , u° , r° and f° .

Let $u \perp \xi := (\exists k < |u|)(u(k) \neq \xi(k))$; recall $u < \beta := (\forall k < |u|)(u(k) < \beta(k))$ and $(\beta \ominus n)(k) = \beta(k+n)$.

Assume $\exists ! \xi(\xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha)$ and $\xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha$. Then

$$(\forall u < (\alpha)_1^2)(u \perp \xi \to \neg(\exists \eta < (\alpha)_1^2 \ominus |u|) \forall n((\alpha)_0^2((u * \eta) \restriction n) = 0)).$$

By Δ_0^0 -BKL, we have

$$(\forall u < (\alpha)_1^2) \left(u \perp \xi \to \neg \forall m (\exists v < (\alpha)_1^2 \ominus |u|) \begin{pmatrix} |v| = m \land \\ (\forall n < m + |u|)((\alpha)_0^2((u * v) \restriction n) = 0) \end{pmatrix} \right),$$

and, by MP, $(\forall u < (\alpha)_1^2)(u \perp \xi \rightarrow B[u, \alpha])$ where

$$B[u,\alpha] :\equiv \exists m (\forall v < (\alpha)_1^2 \ominus |u|) (|v| = m \rightarrow (\exists n < m + |u|) ((\alpha)_0^2 ((u * v) \restriction n) > 0)).$$

Thus $\xi \upharpoonright n$ is the only w with

 $C[n, w, \alpha] :\equiv w < (\alpha)_1^2 \land |w| = n \land (\forall u < (\alpha)_1^2)(|u| = n \land u \neq w \to B[u, \alpha])$

since $\forall n \neg B[\xi \upharpoonright n, \alpha]$. *C* is equivalently Σ_1^0 with Σ_1^0 -Bdg which is by Δ_0^0 -AC⁰⁰ with 2.16(3)(ii). Apply 3.23(1)(ii) to $D[n, y, \alpha] :\equiv \exists w (C[n+1, w, \alpha] \land w(n) = y)$; then $\forall n D[n, (\gamma_D \mid \alpha)(n), \alpha]$, i.e., $(\gamma_D \mid \alpha)(n) = \xi(n)$. Set $c^\circ = \gamma_D$.

3.2.4. Characterizing axioms of realizability. As in Section 3.2.1 let \mathcal{L}' expand \mathcal{L}_{CDL} via some interpretation, but atomic \mathcal{L}_{CDL} formulae may be non-atomic in \mathcal{L}' , as in \mathfrak{k} or \mathfrak{o} . As Δ_0^0 is non-sense, 2.9(3) is not applicable here. General treatment here will help us in [30].

DEFINITION 3.29 ($A^{\mathbf{r}_{L}}$, canonicalized, $N(\mathcal{C})$, $RH(\mathcal{C})$, \mathcal{R}). (1) To an \mathcal{L} formula A, assign an \mathcal{L}' formula $A^{\mathbf{r}_{L}}$ by

$$A^{\mathbf{r}_{\mathrm{L}}} :\equiv \exists \alpha (\alpha \mathbf{r}_{\mathrm{L}} A) \text{ for atomic } A;$$

$$(A \Box B)^{\mathbf{r}_{\mathrm{L}}} :\equiv A^{\mathbf{r}_{\mathrm{L}}} \Box B^{\mathbf{r}_{\mathrm{L}}} \text{ for } \Box \equiv \wedge, \rightarrow, \lor;$$

$$(QxA)^{\mathbf{r}_{\mathrm{L}}} :\equiv QxA^{\mathbf{r}_{\mathrm{L}}} \text{ for } Q \equiv \forall, \exists.$$

- (2) $A[\vec{\eta}]$, without other parameters, is called \mathbf{r}_{L} -canonicalized by c_{A} (in a theory) if $\forall \vec{\eta}, \alpha (\alpha \mathbf{r}_{L} A[\vec{\eta}] \rightarrow c_{A} \vec{\eta} \downarrow \land c_{A} \vec{\eta} \mathbf{r}_{L} A[\vec{\eta}])$ (is provable in the theory).
- (3) A formula is called (i) N(C) or *negative in* C if it is built up from C formulae by ∧, → and ∀; and (ii) RH(C) or *Rasiowa–Harrop in* C if it is built up from C by ∧, ∀ and A → with arbitrary formulae A.
- (4) \mathcal{R} is the class of \mathcal{L}' formulae negative in

 $\{\exists \xi(\xi \in_{\mathrm{L}} \alpha), \xi \in_{\mathrm{L}} \alpha, \alpha \beta \downarrow, \gamma = \alpha \beta, \operatorname{Bo}[\alpha]\} \cup \{\alpha \mathbf{r}_{\mathrm{L}} A \mid A \text{ is } \mathcal{L}\text{-atomic}\}.$

DEFINITION 3.30 (Generalized choice schemata $(\mathcal{C}, \mathcal{D})$ -GC_L and $(\mathcal{C}, \mathcal{D})$ -GC!). For classes \mathcal{C} and \mathcal{D} of \mathcal{L}' formulae, define the following axiom schemata:

$$((\mathcal{C}, \mathcal{D})\text{-}\mathsf{GC}_{\mathrm{L}}): \forall \alpha (D[\alpha] \to \exists \beta C[\alpha, \beta]) \\ \to \exists \gamma \forall \alpha (D[\alpha] \to \gamma \alpha \downarrow \land \exists \xi (\xi \in_{\mathrm{L}} \gamma \alpha) \land (\forall \xi \in_{\mathrm{L}} \gamma \alpha) C[\alpha, \xi]); \\ ((\mathcal{C}, \mathcal{D})\text{-}\mathsf{GC}!): \forall \alpha (D[\alpha] \to \exists ! \beta C[\alpha, \beta]) \to \exists \gamma \forall \alpha (D[\alpha] \to \gamma \alpha \downarrow \land C[\alpha, \gamma \alpha]),$$

for any *C* from C and *D* from D.

LEMMA 3.31. Assume the premise of 3.18.

- (1) If C formulae are \mathbf{r}_{L} -canonicalized, then so are RH(C) ones.
- (2) (i) $\alpha \mathbf{r}_{\mathrm{L}} A$ is in \mathcal{R} ; and (ii) $\mathbf{CDL} + (\mathcal{R}, \mathcal{R}) \mathsf{GC}_{\mathrm{L}} \vdash A^{\mathbf{r}_{\mathrm{L}}} \leftrightarrow \exists \alpha (\alpha \mathbf{r}_{\mathrm{L}} A)$, for an \mathcal{L} formula A.

PROOF. It is easy to see (1) and (2)(i). We prove (2)(ii) by induction on A. The atomic, \land , \lor cases are obvious.

By induction hypothesis, $(B \to C)^{\mathbf{r}_{\mathrm{L}}}$ is equivalent to $\exists \beta(\beta \mathbf{r}_{\mathrm{L}} B) \to \exists \gamma(\gamma \mathbf{r}_{\mathrm{L}} C)$, i.e., $\forall \beta((\beta \mathbf{r}_{\mathrm{L}} B) \to \exists \gamma(\gamma \mathbf{r}_{\mathrm{L}} C))$. Obviously $\alpha \mathbf{r}_{\mathrm{L}} (B \to C)$ implies this. Conversely, by (2)(i), the above with $(\mathcal{R}, \mathcal{R})$ -GC_L yields α such that

$$\forall \beta (\beta \mathbf{r}_{\mathrm{L}} B \to (\alpha \beta) \downarrow \land \exists \xi (\xi \in_{\mathrm{L}} \alpha \beta) \land (\forall \xi \in_{\mathrm{L}} \alpha \beta) (\xi \mathbf{r}_{\mathrm{L}} C)).$$

Thus $\lambda \beta. b_C(\alpha \beta) \mathbf{r}_L (B \to C)$.

If $\alpha \mathbf{r}_{L} \forall \xi A[\xi]$ then $\forall \xi (\alpha \xi \mathbf{r}_{L} A[\xi])$ and so $\forall \xi A[\xi]^{\mathbf{r}_{L}}$ by induction hypothesis. If $\forall \xi A[\xi]^{\mathbf{r}_{L}}$ then $\forall \xi \exists \gamma (\gamma \mathbf{r}_{L} A[\xi])$ and so $(\mathcal{R}, \mathcal{R})$ -GC_L yields α with

$$\forall \xi (\alpha \xi \downarrow \land \exists \eta (\eta \in_{\mathsf{L}} \alpha \xi) \land (\forall \eta \in_{\mathsf{L}} \alpha \xi) (\eta \mathbf{r}_{\mathsf{L}} A[\xi])).$$

Thus $\lambda \xi. \mathbf{b}_A \xi(\alpha \xi) \mathbf{r}_L \forall \xi A[\xi].$

If $\alpha \mathbf{r}_{L} \exists \xi A[\xi]$, then $(\exists \xi \in_{L} \alpha)(\mathbf{p}_{1}\xi \mathbf{r}_{L} A[\mathbf{p}_{0}\xi])$ and by induction hypothesis $A[\mathbf{p}_{0}\xi]^{\mathbf{r}_{L}}$ for some ξ and so $\exists \eta A[\eta]^{\mathbf{r}_{L}}$. Conversely, if $A[\eta]^{\mathbf{r}_{L}}$, the induction hypothesis yields α with $\alpha \mathbf{r}_{L} A[\eta]$ and so $g(\mathbf{p}\eta\alpha) \mathbf{r}_{L} \exists \xi A[\xi]$.

LEMMA 3.32. In CDLc, under the assumption of 3.18 if $(\xi = \eta)^{\mathbf{r}_{L}} \rightarrow \xi = \eta$ and \mathcal{D} formulae are canonicalized, then $(\mathcal{L}, \mathcal{D})$ -GC! is realizable.

PROOF. Assume $\zeta \mathbf{r}_{\mathrm{L}} \forall \alpha (D[\alpha] \rightarrow \exists! \beta C[\alpha, \beta])$. For α with $\zeta' \mathbf{r}_{\mathrm{L}} D[\alpha]$, we have

(a) $\zeta \alpha(c_D \alpha) \downarrow$,

(b) $\mathbf{p}_0(\zeta \alpha(c_D \alpha)) \mathbf{r}_L \exists \beta C[\alpha, \beta]$ and

(c) $\mathsf{p}_1(\zeta \alpha(c_D \alpha)) \mathbf{r}_L \, \forall \beta, \beta'(C[\alpha, \beta] \land C[\alpha, \beta'] \rightarrow \beta = \beta').$

Let $\gamma := \lambda \alpha.c(\mathsf{r}(\mathsf{p}_0(\zeta \alpha(c_D \alpha)))\mathsf{p}_0).$

If $\eta, \eta' \in_{L} p_0(\zeta \alpha(c_D \alpha))$, by (b)(c), $(p_0 \eta = p_0 \eta')^{\mathbf{r}_L}$. By the assumption, we have $\exists ! \eta(\eta \in_{L} r(p_0(\zeta \alpha(c_D \alpha)))p_0)$ and $\gamma \alpha \downarrow$. For $\xi \in_{L} p_0(\zeta \alpha(c_D \alpha))$, by $p_0 \xi = \gamma \alpha$ and (b), we have $p_1 \xi \mathbf{r}_L C[\alpha, \gamma \alpha]$. So $b_C \alpha(\gamma \alpha)(r(p_0(\zeta \alpha(c_D \alpha)))p_1) \mathbf{r}_L C[\alpha, \gamma \alpha]$.

Thus $\zeta \mathbf{r}_{\mathrm{L}} \forall \alpha (D[\alpha] \rightarrow \exists! \beta C[\alpha, \beta])$ implies

$$\lambda \alpha \zeta'.\mathsf{b}_{C} \alpha(\gamma \alpha)(\mathsf{r}(\mathsf{p}_{0}(\zeta \alpha(c_{D} \alpha)))\mathsf{p}_{1}) \mathbf{r}_{\mathsf{L}} \forall \alpha(D[\alpha] \rightarrow C[\alpha, \gamma \alpha]). \qquad \dashv$$

Below we additionally assume $\mathcal{L} \equiv \mathcal{L}'$. The notions of canonicalizedness, actualizedness and completedness (the last two being defined below) are, although *not* implying "being realized", called "having a canonical realizer" in the literature, where the three notions do not seem to be distinguished clearly. The last two make sense only when the formula belongs to both the realized and realizing languages (i.e., $A \in \mathcal{L} \cap \mathcal{L}'$), while the first is free from such an assumption. By definition, $A^{r_L} \leftrightarrow A$ if all the atomic are \mathbf{r}_L -completed.

DEFINITION 3.33 (actualized, completed). $A[\vec{\eta}]$ is (i) \mathbf{r}_{L} -actualized by d_{A} if $\forall \vec{\eta} (A[\vec{\eta}] \leftrightarrow (d_{A}\vec{\eta} \downarrow \land d_{A}\vec{\eta} \mathbf{r}_{L} A[\vec{\eta}]))$; (ii) \mathbf{r}_{L} -completed by c_{A} if it is \mathbf{r}_{L} -canonicalized and \mathbf{r}_{L} -actualized by the same c_{A} .

LEMMA 3.34. (1) If \in_{L} is completed, so is $\exists \xi (\xi \in_{L} -)$.

- (2) If C formulae are completed, so are N(C) ones.
- (3) $(\mathcal{L}, \mathcal{D})$ -GC_L is \mathbf{r}_{L} -realizable in CDLf if \in_{L} is completed, $(-|-)\downarrow$ actualized, and \mathcal{D} formulae canonicalized under the assumption of 3.18.

PROOF. (1) For $\xi \in_{L} \alpha$, we have $c_{\in_{L}} \xi \alpha \downarrow$ and $\langle \xi, c_{\in_{L}} \xi \alpha \rangle \downarrow$. Therefore $\exists \xi (\xi \in_{L} \alpha)$ iff $r\alpha(\lambda\xi, \langle \xi, c_{\in_{L}} \xi \alpha \rangle)$ $\mathbf{r}_{L} \exists \xi (\xi \in_{L} \alpha)$.

(2) By induction on $N(\mathcal{C})$ formulae. Consider \rightarrow only. If $\alpha \mathbf{r}_{L} (A \rightarrow B)$, A implies $\alpha c_{A} \mathbf{r}_{L} B$, $c_{B} \mathbf{r}_{L} B$ and B. If $A \rightarrow B$ then $\xi \mathbf{r}_{L} A$ implies $c_{A} \mathbf{r}_{L} A$ and A whence B, which means $\lambda \xi . c_{B} \mathbf{r}_{L} (A \rightarrow B)$.

(3) Assume $\zeta \mathbf{r}_{L} \forall \alpha (D[\alpha] \rightarrow \exists \beta C[\alpha, \beta])$. Then, for α with $\zeta' \mathbf{r}_{L} D[\alpha]$, we have $\zeta \alpha (c_{D}\alpha) \downarrow \land (\zeta \alpha (c_{D}\alpha) \mathbf{r}_{L} \exists \beta C[\alpha, \beta])$. Let

$$\delta := \lambda \zeta \alpha. \mathsf{r}(\zeta \alpha(c_D \alpha)) \mathsf{p}_0.$$

For $\xi \in_L \delta \zeta \alpha$, by $(\forall \eta \in_L f(\zeta \alpha(c_D \alpha))\xi)(p_1 \eta \mathbf{r}_L C[\alpha, \xi])$ and 3.18, we can imply that $b_C \alpha \xi(r(f(\zeta \alpha(c_D \alpha))\xi)p_1)$ realizes $C[\alpha, \xi]$. Since \in_L is completed,

$$\lambda \xi \xi'. \mathbf{b}_C \alpha \xi(\mathbf{r}(\mathbf{f}(\zeta \alpha(c_D \alpha))\xi)\mathbf{p}_1) \tag{(*)}$$

realizes $(\forall \xi \in_{\mathsf{L}} \delta \zeta \alpha) C[\alpha, \xi].$

As $\exists \xi(\xi \in L \delta\zeta \alpha)$, (1) yields $d_{\exists \xi(\xi \in L^{-})}(\delta\zeta \alpha) \mathbf{r}_L \exists \xi(\xi \in L \delta\zeta \alpha)$. The triple of $d_{(-|-)\downarrow}(\delta\zeta)\alpha, d_{\exists \xi(\xi \in L^{-})}(\delta\zeta \alpha)$ and (*) realizes $\delta\zeta \alpha \downarrow \land \exists \xi(\xi \in L \delta\zeta \alpha) \land (\forall \xi \in L \delta\zeta \alpha) C[\alpha, \xi]$. Thus $\exists \gamma \forall \alpha (D[\alpha] \to \gamma \alpha \downarrow \land \exists \xi(\xi \in L \gamma \alpha) \land (\forall \xi \in L \gamma \alpha) C[\alpha, \xi])$ is realized by $g(\langle \delta\zeta, \lambda \alpha\zeta', \langle d_{(-|-)\downarrow}(\delta\zeta)\alpha, d_{\exists \xi(\xi \in L^{-})}(\delta\zeta \alpha), \lambda\xi\xi', b_C \alpha\xi(r(f(\zeta\alpha(c_D\alpha))\xi)p_1)\rangle))$. Take $\lambda\zeta$. of this term. \dashv

COROLLARY 3.35. Assume

- all the following formulae are \mathbf{r}_{L} -completed in $\mathbf{CDL}f+T: \xi \in_{L} \alpha, \alpha \beta \downarrow, \gamma = \alpha \beta$, Bo[α] and both A itself and $\alpha \mathbf{r}_{L}$ A for atomic A;
- CDLf+*T* is **r**_L-realizable in CDLf+*T* itself;
- $RH(\mathcal{R}) \supseteq \mathcal{D} \supseteq \mathcal{R}$ and $\mathcal{C} \supseteq \mathcal{R}$; and
- the premise of 3.18 is satisfied.

Then $\mathbf{CDLf} + T \vdash \exists \alpha (\alpha \mathbf{r}_{L} A) iff \mathbf{CDLf} + T + (\mathcal{C}, \mathcal{D}) - \mathsf{GC}_{L} \vdash A$.

This generalizes the characterizations of Kleene's number realizability (by ECT); Lifschitz's (number) realizability; Kleene's functional realizability (by $(\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0}))$ -GCC¹) and van Oosten's functional realizability.

Moreover, this shows that $(\mathcal{L}, RH(\mathcal{R}))$ -GC_L follows from $(\mathcal{R}, \mathcal{R})$ -GC_L over **CDL**f. We used f only in the proof of the last lemma and we do not know if it is definable from other constants.

3.3. Realizability of intuitionistic systems. We apply the results from the last subsection to our situation: $\mathcal{L} \equiv \mathcal{L}' \equiv \mathcal{L}_F$ where \mathcal{L}_F is considered to include \mathcal{L}_{CDL} via either \mathfrak{k} or \mathfrak{o} . Setting $\alpha \mathbf{r}_L A :\equiv A$ and $\mathbf{b}_A := \lambda \vec{\eta} \alpha . \underline{0}$ for atomic $A[\vec{\eta}]$, we have 3.19.

DEFINITION 3.36 ($\mathbf{r}_{f}, \mathbf{r}'_{f}$). Let $\alpha \mathbf{r}_{f} A :\equiv (\alpha \mathbf{r}_{L} A)^{\mathfrak{k}}$ and $\alpha \mathbf{r}'_{f} A :\equiv (\alpha \mathbf{r}_{L} A)^{\mathfrak{o}}$, where QxA[x] is treated as $Q\xi A[\xi(0)]$.

3.3.1. Realizability of base theories. Recall $\mathbf{EL}_0^* = \mathbf{EL}_0^- + \Delta_0^0 - \mathbf{AC}^{00}$. As seen in 3.2.3, for \mathbf{r}_t' -realizability, it is convenient to define the following.

DEFINITION 3.37 ($\mathbf{EL}_0^{\prime*}$, \mathbf{EL}_0^{\prime}). Define

 $\mathbf{EL}_{0}^{\prime*} := \mathbf{EL}_{0}^{-} + \Delta_{0}^{0} - \mathsf{AC}^{00} + \mathsf{MP} + \Delta_{0}^{0} - \mathsf{BKL}; \text{ and } \mathbf{EL}_{0}^{\prime} := \mathbf{EL}_{0}^{\prime*} + \Sigma_{1}^{0} - \mathsf{Ind}.$

LEMMA 3.38. (1) $N(\Sigma_1^0)$ formulae are $\mathbf{r}_{\mathbf{f}}$ -completed in $\mathbf{EL}_0^- + \Sigma_1^0$ -Bdg. (2) $N(\Sigma_1^0 \cup \mathsf{B}\exists^1 \Pi_1^0)$ are $\mathbf{r}'_{\mathbf{f}}$ -completed in $\mathbf{EL}_0'^*$.

PROOF. The atomic are trivially completed. Let *B* from Δ_0^0 be completed by c_B . $\exists z B[\vec{\eta}, z]$, i.e., $\exists \beta \forall x B[\vec{\eta}, \beta(0)]$ implies $(\gamma_B | \vec{\eta}) \downarrow \land B[\vec{\eta}, (\gamma_B | \vec{\eta})(0)]$ by 3.23(1)(i), i.e., $g|\langle \gamma_B | \vec{\eta}, c_B | \vec{\eta} | (\gamma_B | \vec{\eta}) \rangle \mathbf{r}_L \exists z B[\vec{\eta}, z]$. By the hypothesis on c_B , we have

$$\exists \alpha (\alpha \mathbf{r}_{\mathrm{L}} \exists z B[\vec{\eta}, z]) \rightarrow \exists z B[\vec{\eta}, z].$$

This suffices for (1) by 3.34(2) with 2.11. For (2), for A from Π_1^0 , 3.27(2) yields $\forall \xi (\xi \in_{\mathrm{L}}^{\mathfrak{o}} \pi_A |\alpha| \underline{1} | \gamma \leftrightarrow \xi < \alpha \land A[\xi, \gamma])$. Thus,

$$(\exists \xi < \alpha) A[\xi, \gamma] \text{ iff } \mathsf{r}|(\pi_A |\alpha|\underline{1}|\gamma)|(\lambda \xi, \langle \xi, \mathsf{k}|\underline{0}, c_A |\xi|\gamma\rangle) \, \mathsf{r}'_{\mathtt{f}} \ (\exists \xi < \alpha) A[\xi, \gamma]. \quad \exists$$

THEOREM 3.39. (1) $\mathbf{EL}_0^* + (\mathcal{L}_F, N(\Sigma_1^0)) - \mathbf{GCC}^1$ is \mathbf{r}_f -realizable in \mathbf{EL}_0^* .

(2) $\mathbf{EL}_{0}^{\prime*} + (\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0} \cup \mathsf{B}\exists^{1}\Pi_{1}^{0})) \{-\mathsf{GCC!}^{1}, -\mathsf{GC}_{\mathrm{L}}^{\circ}\} \text{ is } \mathbf{r}_{\mathtt{f}}^{\prime} \text{ -realizable in } \mathbf{EL}_{0}^{\prime*}, \text{ and so is } (\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0} \cup \mathsf{B}\exists^{1}\Pi_{1}^{0})) - \mathsf{GCB}^{1}.$

PROOF. Since $\in_{L}^{\mathfrak{e}}$ and $\in_{L}^{\mathfrak{o}}$ are $N(\Sigma_{1}^{0})$, they are completed. Also $\alpha\beta\downarrow$ is completed by $\mathbf{g}|\langle \alpha|\beta, c_{\delta=\alpha|\beta}|(\alpha|\beta)|\alpha|\beta\rangle$. Thus, by 3.32 and 3.34(3), $(\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0}))$ -GCC¹ in (1) and $(\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0} \cup \mathsf{B}\exists^{1}\Pi_{1}^{0}))\{$ -GCC!¹, -GC_{L}^{\mathfrak{o}}\} in (2) are realizable, and so are $N(\Sigma_{1}^{0})$ axioms of \mathbf{EL}_{0}^{-} . Moreover MP and Δ_{0}^{0} -BKL are $\mathbf{r}_{\mathtt{f}}'$ -realizable by 3.38(2) as they are $N(\Sigma_{1}^{0} \cup \mathsf{B}\exists^{1}\Pi_{1}^{0})$. Obviously $(\mathcal{C}, \mathcal{D})$ -GC_{L}^{\mathfrak{o}} implies $(\mathcal{C}, \mathcal{D})$ -GCB¹.

It remains to realize (d) (in 2.10) of \mathbf{EL}_0^- and $\Delta_0^0 - AC^{00}$. As (d) is of the form $\exists \delta \forall x A[x, \delta(x), \alpha]$ with A from Δ_0^0 , 3.23(1)(i) yields γ_A with

$$\mathsf{g}|\langle \gamma_A|\alpha, c_{\forall xA[x,\xi(x),\eta]}|(\gamma_A|\alpha)|\alpha\rangle \mathbf{r}_{\mathsf{L}} \exists \delta \forall xA[x,\delta(x),\alpha].$$

 Δ_0^0 -AC⁰⁰ is realized similarly by 3.23(1)(ii) (or see more general 3.42(ii) below). \dashv

- COROLLARY 3.40. (1) $\mathbf{EL}_0^* + \mathsf{S} \vdash \exists \alpha (\alpha \mathbf{r}_{\mathfrak{f}} A) \text{ iff } \mathbf{EL}_0^* + \mathsf{S} + (\mathcal{L}_{\mathsf{F}}, N(\Sigma_1^0)) \mathsf{GCC}^1 \vdash A$ for any schema S consisting of $N(\Sigma_1^0)$ formulae.
- (2) $\mathbf{EL}_0^{\prime *} + \mathsf{S} \vdash \exists \alpha (\alpha \mathbf{r}_{\mathbf{f}}^{\prime} A) \quad i\!f\!f \mathbf{EL}_0^{\prime *} + \mathsf{S} + (\mathcal{L}_{\mathsf{F}}, N(\Sigma_1^0 \cup \mathsf{B}\exists^1\Pi_1^0)) \mathsf{GC}_{\mathsf{L}}^{\mathfrak{o}} \vdash A \quad for \quad any schema \mathsf{S} \ consisting \ of \ N(\Sigma_1^0 \cup \mathsf{B}\exists^1\Pi_1^0) \ formulae.$

These characterizations follow from 3.35. Among $N(\Sigma_1^0)$ schemata are MP, Σ_1^0 -Ind and Π_2^0 -Ind.

3.3.2. Realizability of the axioms of Intuitionism with the weakest induction. While 3.40 reduces realizability to the derivability from $(\mathcal{L}_{\rm F}, \mathcal{R})$ -GC_L, showing the latter is often as demanding as showing the former directly, as below. The folklore result 3.8 will be essential in the proof of 3.42(ii).

PROPOSITION 3.41. \mathcal{L}_{F} -BFT *is* (i) \mathbf{r}_{f} -*realizable in* $\mathbf{EL}_{0}^{*}+\Delta_{0}^{0}$ -BFT; (ii) $\mathbf{r}_{f}^{'}$ -*realizable in* $\mathbf{EL}_{0}^{'*}$.

PROOF. As Δ_0^0 -BFT is equivalently $N(\Sigma_1^0)$, by 3.40 it suffices to derive \mathcal{L}_F -BFT from $(\mathcal{L}_F, N(\Sigma_1^0))$ -GC_L in the respective systems.

Assume $\operatorname{Fan}[\gamma]$, $\forall u(\gamma(u) = 0 \rightarrow u < \beta)$ and $\operatorname{Bar}[\gamma, \{u: B[u]\}]$, namely

$$(\forall \alpha < \beta)(\forall k(\gamma(\alpha \restriction k) = 0) \to \exists k B[\alpha \restriction k]).$$

Then $(\mathcal{L}_{\mathrm{F}}, N(\Sigma_{1}^{0}))$ -GC_L yields ζ with

$$(\forall \alpha < \beta)(\forall k(\gamma(\alpha \restriction k) = 0) \rightarrow (\zeta \mid \alpha) \downarrow \land \exists \eta(\eta \in_{\mathsf{L}} \zeta \mid \alpha) \land (\forall \eta \in_{\mathsf{L}} \zeta \mid \alpha) B[\alpha \restriction (\eta(0))]).$$

Particularly, for $\alpha < \beta$, if $\forall k(\gamma(\alpha \restriction k) = 0)$ then both (a) $\exists m C[\alpha \restriction m]$ and (b) $\forall m(C[\alpha \restriction m] \rightarrow (\exists k < m) B[\alpha \restriction k])$ hold, where $C[u] :\equiv |u| > (\zeta \mid u)(0)$ which is Σ_1^0 , and where $\zeta \mid u$ is defined analogously to 3.20.

Since (a) means $Bar[\gamma, C]$, Σ_1^0 -BFT with 2.32(3)(ii) yields *n* with

$$(\forall \alpha < \beta)(\forall k(\gamma(\alpha \restriction k) = 0) \rightarrow (\exists m < n)C[\alpha \restriction m]),$$

which, with (b), implies $(\forall \alpha < \beta)(\forall k(\gamma(\alpha \restriction k) = 0) \rightarrow (\exists k < n)B[\alpha \restriction k])$. Here, note **EL**^{*}₀ $\vdash \Delta_0^0$ -BFT by 3.5(3). \dashv

PROPOSITION 3.42. Both \mathcal{L}_{F} -AC⁰⁰ and \mathcal{L}_{F} -AC⁰¹ are (i) \mathbf{r}_{f} -realizable in \mathbf{EL}_{0}^{*} ; (ii) \mathbf{r}_{f} -realizable in \mathbf{EL}_{0}^{*} .

PROOF. As C-AC⁰¹ yields C-AC⁰⁰, it suffices to derive \mathcal{L}_F -AC⁰¹ from $(\mathcal{L}_F, \{\top\})$ -GC_L (uniformly for (i) and (ii)).

Assume $\forall x \exists \beta A[x, \beta]$, i.e., $\forall \zeta \exists \beta A[\zeta(0), \beta]$. By $(\mathcal{L}_{\mathrm{F}}, \{\top\})$ -GC_L, we have ζ with $\forall x((\zeta | \underline{x}) \downarrow \land \exists \eta (\eta \in_{\mathrm{L}} \zeta | \underline{x}) \land (\forall \eta \in_{\mathrm{L}} \zeta | \underline{x}) A[x, \eta])$. Therefore 3.23(1)(ii) applied to $y = (\zeta | (x)_{0}^{2})((x)_{1}^{2})$ yields γ with $(\gamma | \zeta) \downarrow$ and $\forall x((\gamma | \zeta)_{x} = (\zeta | \underline{x}))$.

We then treat (i) and (ii) separately. (i) For $\in_{L} \equiv \in_{L}^{\mathfrak{k}}$, obviously $\forall x A[x, (\gamma | \zeta)_{x}]$. (ii) For $\in_{L} \equiv \in_{L}^{\mathfrak{o}}$, Π_{1}^{0} -BAC⁰¹, with 3.8, applied to $\forall x \exists \eta (\eta \in_{L}^{\mathfrak{o}} (\gamma | \zeta)_{x})$ yields α with $\forall x ((\alpha)_{x} \in_{L}^{\mathfrak{o}} (\gamma | \zeta)_{x})$, which implies $\forall x A[x, (\alpha)_{x}]$.

THEOREM 3.43. (1) $\mathbf{EL}_{0}^{-}+\mathsf{MP}+\mathcal{L}_{F}\{-\mathsf{CC}^{1},-\mathsf{AC}^{00},-\mathsf{AC}^{01},-\mathsf{BFT}\}$ is \mathbf{r}_{f} -realizable in $\mathbf{EL}_{0}^{-}+\mathsf{MP}+\Delta_{0}^{0}-\mathsf{AC}^{00}+\Delta_{0}^{0}-\mathsf{BFT}.$

(2) $\mathbf{EL}_{0}^{'-} + \mathsf{MP} + \tilde{\Sigma}_{1}^{0} - \mathsf{GDM} + \mathcal{L}_{F} \{-\mathsf{CB}^{1}, -\mathsf{CC}!^{1}, -\mathsf{AC}^{00}, -\mathsf{AC}^{01}, -\mathsf{BFT}\}$ is $\mathbf{r}_{f}^{'}$ -realizable in $\mathbf{EL}_{0}^{'*}$.

As a byproduct, we have the following upper bound result for the semi-Russian axiom NCT (cf. f.n.8).

DEFINITION 3.44 (Church's thesis CT and negative Church's thesis NCT). Let $\{e\}(k) = n$ abbreviate the Σ_1^0 formula asserting that the value of the recursive function with index *e* at *k* is *n* (Kleene bracket).

(CT): $\forall \alpha \exists e \forall k (\alpha(k) = \{e\}(k));$

(NCT): $\forall \alpha \neg \forall e \neg \forall k (\alpha(k) = \{e\}(k)).$

COROLLARY 3.45. $\mathbf{EL}_0^- + \mathsf{MP} + \mathcal{L}_F \{-\mathsf{CC}^1, -\mathsf{AC}^{00}, -\mathsf{AC}^{01}\} + \mathsf{NCT} \text{ is } \mathbf{r}_{\mathtt{f}} \text{-realizable in } \mathbf{EL}_0^- + \mathsf{MP} + \Delta_0^0 - \mathsf{AC}^{00} + \mathsf{CT}.$

3.3.3. Realizability with Σ_1^0 induction. One may wonder if C-FT follows from C-BFT with $\mathcal{L}_{\rm F}$ -AC⁰⁰, as we can take a function bounding the number *n* of branching in Fan[γ]. This is not the case when $\mathcal{C} \equiv \Delta_0^0$ by 3.43(1) and 2.33. Here we have to distinguish two ways of bounding:

- (locally bound) depending on nodes $\forall u(\gamma(u) = 0 \rightarrow u \ll \delta)$ as defined below, and
- (uniformly bound) depending only on heights $\forall u(\gamma(u) = 0 \rightarrow u < \delta)$.

Now \mathcal{L}_{F} -AC⁰⁰ yields the former, and we need Σ_{1}^{0} -Ind or primitive recursion to enhance it to the latter. This seems analogous to the classical fact mentioned before 2.33 that KL (König's lemma) or $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Δ_{0}^{0} -FT is consistency-wise stronger than WKL₀ (but also than $\mathbf{EL}_{0}+\mathcal{L}_{F}$ -FT or $\mathbf{I\Sigma}_{1}$).

DEFINITION 3.46 (C-LBFT). Let LBFan[γ , δ] := Fan[γ] $\land \forall u(\gamma(u) = 0 \rightarrow u \ll \delta)$ where $u \ll \delta := (\forall k < |u|)(u(k) < \delta(u \upharpoonright k))$. For a class C of formulae, define the following axiom schema:

(C-LBFT): LBFan[γ , δ] \land Bar[γ , {u: B[u]}]

 $\rightarrow \exists m \forall \alpha (\forall k (\gamma(\alpha \restriction k) = 0) \rightarrow (\exists n < m) B[\alpha \restriction n]),$

for any B from C.

Lemma 3.47. (1) $\mathbf{EL}_0 + \mathcal{C} - \mathsf{BFT} \vdash \mathcal{C} - \mathsf{LBFT}.$ (2) $\mathbf{EL}_0^- + \Pi_1^0 - \mathsf{AC}^{00} + \mathcal{C} - \mathsf{LBFT} \vdash \mathcal{C} - \mathsf{FT}.$ **PROOF.** (1) Defined the following, which is equivalently Δ_0^0 .

$$C[d, e, \delta] :\equiv \forall u(|u| = |d| \land (\forall k < |d|)(u(k) < d(k)) \rightarrow \delta(u) < e).$$

Since $\forall d \exists v (|v| = |d| + 1 \land d \subset v \land C[d, v(|d|), \delta])$, by $\Delta_0^0 \text{-} \mathsf{DC}^0$ we can take β such that $\forall n C[\beta \upharpoonright n, \beta(n), \delta]$. Then $\forall u(\gamma(u) = 0 \rightarrow u \ll \delta)$ implies $\forall u(\gamma(u) = 0 \rightarrow u < \beta)$. (2) $\Pi_1^0 \text{-} \mathsf{AC}^{00}$, applied to $\mathsf{Fan}[\gamma]$, yields δ with $\forall u(\gamma(u) = 0 \rightarrow u \ll \delta)$.

Next let us realize Σ_2^0 -DC⁰, which implies Σ_1^0 -DC¹ by 2.14 and Σ_2^0 -Ind by 2.16(3)(i). This might be the most non-trivial part of the present article. The trick is the use of semi-classical principle. For, the realizing theory does not need to be intuitionistic since $i\Sigma_1$ and $I\Sigma_1$ are known to be mutually interpretable. We do not know if Σ_2^0 -Ind (or Σ_2^0 -DC⁰) can be realizable directly in $i\Sigma_1$. Let us start with \mathbf{r}_f -realizability.

DEFINITION 3.48 (closure under C functions). A class S is called *closed under* C *functions* iff (i) $S \land C \land \neg C \subseteq S$ and (ii) for C from C and D from S, there is D_C from S with $\mathbf{EL}_0^- \vdash \exists! y C[x, y] \rightarrow (D_C[x] \leftrightarrow \exists y (C[x, y] \land D[x, y]))$.

PROPOSITION 3.49. (1) $\Delta_0^0(\Sigma_1^0) \cap N(\Sigma_1^0)$ is closed under Σ_1^0 functions. (2) If $S \subseteq N(\Sigma_1^0)$ and is closed under Σ_1^0 functions, both $\exists^0 S$ -DC⁰ and $\exists^0 S$ -Ind are \mathbf{r}_f -realizable in \mathbf{EL}_0+S -Ind.

PROOF. (1) is by induction on $D: \exists ! yC[x, y]$ yields

 $\exists y (C[x, y] \land (D_1[y] \to D_2[y])) \leftrightarrow (\exists y (C[x, y] \land D_1[y]) \to \exists y (C[x, y] \land D_2[y])).$

(2) As S-Ind is $N(\Sigma_1^0)$, it suffices to derive S-DC⁰ in **EL**₀+(\mathcal{L}_F , $N(\Sigma_1^0)$)-GCC¹+S-Ind by 2.16(2)(i)(3)(i), 3.40(1) and 3.42(i). Let $\forall x, y(A[x, y] \rightarrow \exists z A[y, z])$ with A from S, say $\forall x, y(A[x, y] \rightarrow (\gamma | \underline{x} | \underline{y}) \downarrow \land A[\underline{y}, (\gamma | \underline{x} | \underline{y})(0)])$ by $(\mathcal{L}_F, N(\Sigma_1^0))$ -GCC¹. Fix x, y with A[x, y]. We prove $\exists ! uC[n, u] \land D_C[n]$ by S-Ind on n, where

 $C[n, u] :\equiv |u| = n + 2 \land u \upharpoonright 2 = \langle x \rangle * \langle y \rangle \land (\forall k < n)(u(k+2) = (\gamma | \underline{u(k)} | \underline{u(k+1)})(0));$ $D[k, u] :\equiv A[u(k), u(k+1)],$

and D_C is S by 3.48. If it is done, Σ_1^0 -AC⁰⁰ yields β with $\forall n \exists u(C[n, u] \land u(n) = \beta(n))$. As $C[0, \langle x \rangle * \langle y \rangle]$, $D_C[0]$ is by A[x, y]. If $\exists ! uC[n, u] \land D_C[n]$, say C[n, v], then $D_C[n]$ means A[v(n), v(n+1)] and hence $(\gamma | \underline{v(n)} | \underline{v(n+1)}) \downarrow \land A[v(n+1), z]$ with $z = (\gamma | v(n) | v(n+1))(0)$. Thus $C[n+1, v * \langle z \rangle]$ and so $D_C[n+1]$.

As $\Pi_1^0 \subseteq \Delta_0^0(\Sigma_1^0) \cap N(\Sigma_1^0)$, Σ_2^0 {-DC⁰,-Ind} is **r**_f-realizable in **EL**₀+ Σ_2^0 -DNE, by 3.3(2), the other folklore.

For this argument functionality is not essential: ECT in Kleene's number realizability can substitute GCC, and so $i\Sigma_2$ is realizable in $I\Sigma_1$. Wehmeier [56] identified the strengths of $i\Sigma_1$, $i\Pi_{n+2}$ and $i\Sigma_{n+3}$ by this realizability, but left $i\Sigma_2$. Burr [10] identified it by another method. Our argument shows that Wehmeier's method could deal with $i\Sigma_2$. If we expand this number realizability to \mathcal{L}_F in an obvious manner, Σ_2^0 -DC⁰ and CT are also realizable. By allowing Σ_n oracle, we can interpret $i\Sigma_{n+2}+\Sigma_{n+1}$ -DNE in $I\Sigma_{n+1}$.

For \mathbf{r}'_{f} -realizability, this does not seem to work well. We employ a more elaborated way, which works also in the first order setting, i.e., Lifschitz's number realizability,

with recursive indices substituting functions. However, in this case we do not know if we can enhance Σ_2^0 to $\exists^0(\Delta_0^0(\Sigma_1^0) \cap N(\Sigma_1^0))$ as in the previous case.

DEFINITION 3.50 ((C, D)-EUB). The schema of *extended uniform bounding* (C, D)-EUB is defined as follows. ((C, D)-EUB): $\forall x(D[x] \rightarrow \exists y C[x, y]) \rightarrow \exists \alpha \forall n (\forall x < n) (D[x] \rightarrow (\exists y < \alpha(n)) C[x, y])$, for any *C* from *C* and any *D* from *D*.

LEMMA 3.51. (Π_1^0, Π_1^0) -EUB is \mathbf{r}'_{f} -realizable in \mathbf{EL}'_0 +LPO.

PROOF. Let *C* and *D* be Π_1^0 . Let *D* be $\mathbf{r}'_{\mathbf{f}}$ -completed by c_D , by 3.38(2). Define *A* and *B* as follows:

$$A[n,m,\zeta] := (\forall x < n)(D[x] \to (\zeta |\underline{x}|(c_D |\underline{x}))(0) \le m);$$

$$B[\alpha] := \forall n (\forall x < n)(D[x] \to (\exists y < \alpha(n))C[x, y]).$$

As A is equivalently Σ_1^0 by LPO, 3.23(1)(ii) yields γ_A with

$$\forall n \exists m A[n,m,\zeta] \to (\gamma_A|\zeta) \downarrow \land \forall n A[n,(\gamma_A|\zeta)(n),\zeta].$$

Let $\zeta \mathbf{r}'_{\mathbf{f}} \forall x(D[x] \to \exists y C[x, y])$. We prove $\exists m A[n, m, \zeta]$ by induction on n. Obviously $A[0, 0, \zeta]$. If $A[n, m, \zeta]$ and D[n], then $c_D |\underline{n} \mathbf{r}'_{\mathbf{f}} D[n]$ and so $(\zeta |\underline{n}| (c_D |\underline{n})) \downarrow$ which implies $A[n+1, m', \zeta]$ for $m' := m + (\zeta |\underline{n}| (c_D |\underline{n}))(0)$. If $A[n, m, \zeta]$ and $\neg D[n]$, then $A[n+1, m, \zeta]$. By \prod_{1}^{0} -LEM, we have $\exists m A[n, m, \zeta] \to \exists m A[n+1, m, \zeta]$.

Thus $\forall nA[n, (\gamma_A|\zeta)(n), \zeta]$. Then

$$(\forall x < n)(D[x] \to (\zeta |\underline{x}|(c_D |\underline{x}))(0) \le (\gamma_A |\zeta)(n) \land \zeta |\underline{x}|(c_D |\underline{x}) \mathbf{r}_{\mathbf{f}}' \exists y C[x, y])$$

and so $B[\gamma_A|\zeta]$. As *B* is $N(\mathsf{B}\exists^1\Pi_1^0)$, by 3.38(2), let *B* be $\mathbf{r}'_{\mathbf{f}}$ -completed by c_B . Then $\mathbf{g}|\langle \gamma_A|\zeta, c_B|(\gamma_A|\zeta)\rangle \mathbf{r}'_{\mathbf{f}} \exists \alpha B[\alpha]$.

Therefore $\lambda \zeta.g|\langle \gamma_A|\zeta, c_B|(\gamma_A|\zeta)\rangle$ **r**'_f-realizes the instance of (Π_1^0, Π_1^0) -EUB. \dashv

PROPOSITION 3.52. Π_1^0 -DC⁰ is \mathbf{r}'_{f} -realizable in \mathbf{EL}'_0 + LPO. Hence so are Σ_2^0 -DC⁰, Σ_1^0 -DC¹ and Σ_2^0 -Ind.

PROOF. By 3.39(2) and 3.51, it suffices to derive Π_1^0 -DC⁰ in $\mathbf{EL}_0' + (\Pi_1^0, \Pi_1^0)$ -EUB. Let A be Π_1^0 , and assume $\forall x, y(A[x, y] \rightarrow \exists z A[y, z])$. Then (Π_1^0, Π_1^0) -EUB yields α with $(\forall v < n)(A[(v)_0^2, (v)_1^2] \rightarrow (\exists z < \alpha(n))A[(v)_1^2, z])$.

Fix x, y with A[x, y]. Δ_0^0 -DC⁰ yields β with

$$\beta \upharpoonright 2 := \langle x+1 \rangle * \langle y+1 \rangle$$
 and $\beta(k+2) := \alpha((\beta(k), \beta(k+1))).$

Define the following, where $u < \beta := (\forall k < |u|)(u(k) < \beta(k))$.

$$B[n, \beta] := (\exists u < \beta) C[u, n];$$

$$C[u, n] := |u| = n + 2 \land u(0) = x \land (\forall k \le n) A[u(k), u(k+1)].$$

B is Π_1^0 by 2.23(2)(i) and 3.7. Σ_1^0 -Ind and MP yield Π_1^0 -Ind. It remains to see $\forall nB[n, \beta]$ by Π_1^0 -Ind, as it implies $\exists \gamma(\gamma(0) = x \land \forall kA[\gamma(k), \gamma(k+1)])$ by Π_1^0 -BKL with 3.5(2)(i).

Obviously $\langle x \rangle * \langle y \rangle$ witnesses $B[0, \beta]$. Let $B[n, \beta]$, say $u < \beta \land C[u, n]$. Since $(u(n), u(n+1)) < (\beta(n), \beta(n+1)), A[u(n), u(n+1)]$ yields

$$z < \alpha((\beta(n), \beta(n+1))) = \beta(n+2) \text{ with } A[u(n+1), z].$$

 \dashv

 \neg

So $C[u*\langle z \rangle, n+1] \wedge u*\langle z \rangle < \beta$.

Theorem 3.53. (1) $\mathbf{EL}_0 + \Sigma_1^0 - \mathsf{DC}^1 + \Sigma_2^0 \{-\mathsf{DC}^0, -\mathsf{Ind}\} + \mathcal{L}_F - \mathsf{FT}$ is $\mathbf{r}_{\mathtt{f}}$ -realizable in $\mathbf{EL}_0 + \Delta_0^0 - \mathsf{BFT} + \Sigma_2^0 - \mathsf{DNE}$.

(2) $\mathbf{EL}_0' + \Sigma_1^0 \{-\mathbf{GDM}, -\mathbf{DC}^1\} + \Sigma_2^0 \{-\mathbf{DC}^0, -\mathbf{Ind}\} + \mathcal{L}_F - \mathsf{FT} \text{ is } \mathbf{r}_{\mathtt{f}}' - realizable \text{ in } \mathbf{EL}_0' + \mathsf{LPO}.$

3.3.4. Realizability with Π_2^0 induction. It is natural to ask how to realize Π_{n+2}^0 -Ind and Σ_{n+3}^0 -Ind. As Wehmeier [56] mentioned, they are all realizable in $\mathbf{I}\Sigma_2$ by Kleene's number realizability. This remains to hold for our two kinds of functional realizability. It is technically convenient to introduce the following schema.

DEFINITION 3.54 ((C, D)-RDC). For classes C, D of formulae, define the following axiom schemata:

$$((\mathcal{C}, \mathcal{D})-\mathsf{RDC}^1): \forall \alpha(D[\alpha] \to \exists \beta(D[\beta] \land C[\alpha, \beta]))$$

 $\to \forall \gamma (D[\gamma] \to \exists \delta((\delta)_0 = \gamma \land \forall n \ C[(\delta)_n, (\delta)_{n+1}])),$

for any *C* from C and *D* from D.

LEMMA 3.55. (1) $\mathbf{EL}_0^- + (\mathcal{C}, \exists^1 \mathcal{C}) - \mathsf{RDC}^1 \vdash \mathcal{C} - \mathsf{DC}^1$. (2) $\mathbf{EL}_0^- + (\mathcal{C}, \mathcal{D}) - \mathsf{RDC}^1 \vdash (\mathcal{C}, \exists^1 \mathcal{D}) - \mathsf{RDC}^1$.

PROOF. As (1) is easy, we show (2).

Assume $\forall \alpha (\exists \xi D[\alpha, \xi] \rightarrow \exists \beta (\exists \eta D[\beta, \eta] \land C[\alpha, \beta]))$. For γ with $\exists \eta D[\gamma, \eta]$, say $D[\gamma, \eta], (\mathcal{C}, \mathcal{D})$ -RDC¹ applied to

$$\forall \alpha(D[(\alpha)_0^2, (\alpha)_1^2] \to \exists \beta(D[(\beta)_0^2, (\beta)_1^2] \land C[(\alpha)_0^2, (\beta)_0^2]))$$

yields δ such that $(\delta)_0 = (\gamma, \eta)$ and $\forall n \ C[((\delta)_n)_0^2, ((\delta)_{n+1})_0^2]$.

Our goal is to show the realizability of $\exists^1 \Pi_{\infty}^0 \{-DC^1, -DC^0, -Ind\}$. By 2.16(2)(i)(3)(i) and the last lemma, it suffices to realize $(\exists^1 \Pi_{\infty}^0, \exists^1 \Pi_{\infty}^0)$ -RDC¹.

LEMMA 3.56. (1) (i) $\Pi_n^0 \to \Pi_{n+1}^0 \subseteq \forall^0 \neg \Pi_n^0 \text{ over } \mathbf{EL}_0^- + \Sigma_n^0 - \mathsf{DNE}; and$ (ii) $(\forall \xi \in_{\mathbf{L}}^{\mathfrak{o}} \alpha) A[\xi, \alpha] \text{ is } \Pi_2^0 \text{ over } \mathbf{EL}_0'^* \text{ if } A \text{ is } \Pi_2^0.$

(2) For B from Π_1^0 , EL $_0^0 + \Delta_0^0$ -BKL proves

$$\forall n (\exists \eta < \alpha) (\forall k < n) B[k, (\eta)_k, (\eta)_{k+1}] \rightarrow (\exists \eta < \alpha) \forall k B[k, (\eta)_k, (\eta)_{k+1}].$$

(3) (i) $\Pi_{\infty}^{0} \subseteq \exists^{1}\Pi_{1}^{0} \text{ over } \mathbf{EL}_{0}^{-} + \Pi_{1}^{0} - \mathsf{AC}^{01}. \text{ Hence (ii) } \mathbf{EL}_{0}^{-} + \Pi_{1}^{0} - \mathsf{AC}^{01} \vdash \exists^{1}\Pi_{\infty}^{0} - \mathsf{AC}^{01}, \mathbf{EL}_{0}^{-} + \Pi_{1}^{0} - \mathsf{DC}^{1} \vdash \exists^{1}\Pi_{\infty}^{0} - \mathsf{DC}^{1} \text{ and } \mathbf{EL}_{0}^{-} + (\mathcal{C}, \Pi_{1}^{0}) - \mathsf{RDC}^{1} \vdash (\mathcal{C}, \exists^{1}\Pi_{\infty}^{0}) - \mathsf{RDC}^{1}.$

PROOF. (1)(i) By 2.24(1)(ii), Σ_n^0 -DNE yields

$$\Pi_n^0 \to \forall^0 \Sigma_n^0 = \forall^0 (\Pi_n^0 \to \Sigma_n^0) = \forall^0 (\Pi_n^0 \to \neg \neg \Sigma_n^0) = \forall^0 \neg (\Pi_n^0 \land \neg \Sigma_n^0) \subseteq \forall^0 \neg \Pi_n^0.$$

(ii) Take *B* from Π_1^0 with $(\xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha \to A[\xi, \alpha]) \leftrightarrow \forall x \neg B[x, \xi, \alpha]$ by (i). Then $(\forall \xi \in_{\mathrm{L}}^{\mathfrak{o}} \alpha) A[\xi, \alpha]$ is equivalent to $(\forall \xi < (\alpha)_0^2) \forall x \neg B[x, \xi, \alpha]$, and therefore to $\forall x \neg (\exists \xi < (\alpha)_0^2) B[x, \xi, \alpha]$ which is equivalently Π_2^0 by 3.5(2)(ii) and MP.

(2) Let C be Δ_0^0 such that $\forall \eta, k(B[k, \eta, \eta'] \leftrightarrow \forall \ell C[k, \eta \restriction \ell, \eta' \restriction \ell])$ by 2.14. The premise implies $\forall z (\exists u < \alpha)(|u| = z \land (\forall k, \ell < z)C[k, (u)_k \restriction \ell, (u)_{k+1} \restriction \ell])$, where $(u)_k$ is as in 3.8. Apply Δ_0^0 -BKL.

(3) Π_1^0 -AC⁰¹ yields the Skolem functions for any Π_∞^0 formula under the necessary existence assumption. More precisely, we can show, by meta-induction on $k \le n$ with Π_1^0 -AC⁰¹, that $\forall x_k \exists y_k \dots \forall x_0 \exists y_0 C[x_n, \dots, x_0, y_n, \dots, y_0]$ is equivalent to $\exists \alpha \forall x_k, \dots, x_0 C[x_n, \dots, x_0, y_n, \dots, y_{k+1}, (\alpha)_k (x_k), \dots, (\alpha)_0 (x_k, \dots x_0)]$, for any Δ_0^0 -formula *C*.

DEFINITION 3.57 (rec). Let rec be such that

 $\mathbf{EL}_{0}^{-} \vdash (\operatorname{rec}|\xi|\eta|\underline{0} \simeq \xi)^{\mathfrak{k}} \wedge (\operatorname{rec}|\xi|\eta|z + 1 \simeq \eta |(\operatorname{rec}|\xi|\eta|\underline{z})|\underline{z})^{\mathfrak{k}}.$

The existence of rec is directly by 3.23(1)(ii), but it can also be constructed by fix and d as in the usual theories of operations and numbers (cf. [5, VI.2.8] and [51, Chapter 9, 3.8]). However, we need Π_2^0 -Ind as well as Δ_0^0 -AC⁰⁰ to imply $\forall z((\text{rec}|\xi|\eta|\underline{z})\downarrow)$ from $\forall z((\text{rec}|\xi|\eta|\underline{z})\downarrow \rightarrow (\text{rec}|\xi|\eta|\underline{z}+1)\downarrow)$. This is why we need Π_2^0 -Ind.

In the following, (i) is just by constructing the realizer in this way, whereas (ii) requires further tricks.

THEOREM 3.58. $(\mathcal{L}_{\mathrm{F}}, \exists^{1}\Pi_{\infty}^{0})$ -RDC¹ is (i) $\mathbf{r}_{\mathtt{f}}$ -realizable in $\mathbf{EL}_{0}^{*}+\Pi_{2}^{0}$ -Ind; and (ii) $\mathbf{r}_{\mathtt{f}}^{*}$ -realizable in $\mathbf{EL}_{0}^{*}+\Pi_{2}^{0}$ -Ind.

PROOF. By 3.55(2) and 3.56(3)(ii), it suffices to realize (\mathcal{L}_F, Π_1^0) -RDC¹. Let A be Π_1^0 , which is by Lemma 3.38 completed by c_A , and B an arbitrary \mathcal{L}_F formula. By 3.23(1)(ii) construct ε so that, for any ζ, ζ', γ ,

$$\varepsilon|\zeta|\zeta'|\gamma|\underline{0}\simeq \mathsf{g}|\langle\gamma,\langle\zeta',\underline{0}\rangle\rangle; \qquad \varepsilon|\zeta|\zeta'|\gamma|\underline{z+1}\simeq \mathsf{u}|(\mathsf{r}|(\varepsilon|\zeta|\zeta'|\gamma|\underline{z})|(\theta|\zeta)),$$

where $\theta := \lambda \zeta \xi. \zeta |(\xi)_0^2|(c_A|(\xi)_0^2)$. The last \simeq means that, as far as $\theta | \zeta$ is defined on $\varepsilon |\zeta| \zeta' |\gamma| \underline{z}$, for any η ,

$$\eta \in_{\mathsf{L}} \varepsilon |\zeta| \zeta' |\gamma| \underline{z+1} \text{ iff } \left(\exists \xi \in_{\mathsf{L}} \varepsilon |\zeta| \zeta' |\gamma| \underline{z} \right) \left(\eta \in_{\mathsf{L}} \zeta |(\xi)_0^2| (c_A|(\xi)_0^2) \right)$$

Note that $(\alpha | ... | \beta) \downarrow$ is Π_2^0 by Δ_0^0 -AC⁰⁰. By 3.23(1)(ii), we can take ε'' such that, for any ζ, ζ', γ ,

$$\forall z(\varepsilon |\zeta| \zeta' |\gamma| \underline{z} \downarrow) \to \varepsilon'' |\zeta| \zeta' |\gamma \downarrow \land \forall z((\varepsilon'' |\zeta| \zeta' |\gamma)_z \simeq \varepsilon |\zeta| \zeta' |\gamma| \underline{z}).$$

For (i), set $\varepsilon' = \varepsilon''$ and, for (ii), by 3.27(2) take also ε' so that, for any ζ, ζ', γ ,

$$\forall z(\varepsilon|\zeta|\zeta'|\gamma|\underline{z}\downarrow) \rightarrow \left(\begin{array}{c} \varepsilon'|\zeta|\zeta'|\gamma\downarrow\wedge\\ \forall \eta \left(\eta \in_{\mathsf{L}} \varepsilon'|\zeta|\zeta'|\gamma\leftrightarrow \left(\eta \leq \varepsilon''|\zeta|\zeta'|\gamma\wedge\forall z\left((\eta)_{z+1}\in_{\mathsf{L}} \theta|\zeta|(\eta)_{z}\right)\right)\right) \end{array} \right).$$

We \mathbf{r}_{L} -realize ({*B*}, {*A*})-RDC¹. By 2.8(1)(iii), 3.19 and 3.39, we may assume that *A* contains no \rightarrow except \neg applied to atomic subformulae. Then obviously $c_A|(\eta)_0^2 \mathbf{r}_L A[(\eta)_0^2]$ is equivalent to $A[(\eta)_0^2]$, a Π_1^0 formula.

Assume $\zeta \mathbf{r}_{L} \forall \alpha (A[\alpha] \rightarrow \exists \beta (A[\beta] \land B[\alpha, \beta]))$ and $\zeta' \mathbf{r}_{L} A[\gamma]$. By Π_{2}^{0} -Ind on z we can show:

(a) $\varepsilon |\zeta| |\zeta'| |\gamma| \underline{z} \downarrow \land (\forall \eta \in_{\mathsf{L}} \varepsilon |\zeta| |\zeta'| |\gamma| \underline{z}) (c_A | (\eta)_0^2 \mathbf{r}_{\mathsf{L}} A[(\eta)_0^2])$

- (b) $(\exists \eta \leq \varepsilon'' | \zeta| \zeta'| \gamma)((\eta)_z \in \iota \varepsilon | \zeta| \zeta'| \gamma| \underline{z} \land (\check{\forall} k < z)((\check{\eta})_{k+1} \in \iota \theta | \zeta| (\eta)_k))$ and
- (c) $(\forall \eta \in_{\mathsf{L}} \varepsilon' | \zeta | \zeta' | \gamma) (c_A | (\mathsf{p}_0 | (\eta)_z)) \mathbf{r}_{\mathsf{L}} A[\mathsf{p}_0 | (\eta)_z])$

By 3.23(1)(ii) take v such that $(p_0|(v|\eta))_z = p_0|(\eta)_z$, $(p_0|(p_1|(v|\eta)) = \lambda \xi \underline{0}$ and $(p_1|(p_1|(v|\eta)))|\underline{z} = p_1|(p_1|(\eta)_{z+1})$ for any η, z . Now (c) yields

$$(\forall \eta \in_{\mathsf{L}} \varepsilon' | \zeta| \zeta'| \gamma) (\mathsf{p}_1| (\mathsf{p}_1|(\nu|\eta)) \mathbf{r}_{\mathsf{L}} \forall z B[(\mathsf{p}_0|(\nu|\eta))_z, (\mathsf{p}_0|(\nu|\eta))_{z+1}]).$$

To show $\mathbf{r}|(\varepsilon'|\zeta|\zeta'|\gamma)|\mathbf{v} \mathbf{r}_{L} \exists \eta((\eta)_{0} = \gamma \land \forall z B[(\eta)_{z}, (\eta)_{z+1}])$, it remains to show $\exists \eta(\eta \in_{L} \varepsilon'|\zeta|\zeta'|\gamma)$. Σ_{1}^{0} -AC⁰⁰ yields $\alpha = \varepsilon''|\zeta|\zeta'|\gamma$. (i) is done. For (ii) apply 3.56(2) to (b).

By 2.16(2)(i)(3)(i) and 3.55(1), the next corollary follows.

COROLLARY 3.59. $\exists^{1}\Pi_{\infty}^{0}$ {-DC¹, -DC⁰, -Ind} *are* (i) \mathbf{r}_{f} -*realizable in* \mathbf{EL}_{0}^{*} + Π_{2}^{0} -Ind; (ii) \mathbf{r}_{f} -*realizable in* \mathbf{EL}_{0}^{*} + Π_{2}^{0} -Ind.

3.3.5. Realizability with full induction and full bar induction. For the sake of completeness, let us realize even stronger induction schemata, beyond Π^0_{∞} -Ind = Σ^0_{∞} -Ind. The self-realizability of full induction \mathcal{L}_F -Ind was known (e.g., from [31]). Here we recall and hierarchize it.

- DEFINITION 3.60. (1) $\Lambda_{n,0}^i :\equiv \forall^i \Sigma_n^0; \Lambda_{n,m+1}^i :\equiv \forall^i (\Lambda_{n,m}^i \rightarrow \Sigma_n^0) \text{ for } i < 2.$
- (2) $\Xi_{n,0} :\equiv \Pi_{n+1}^0; \Xi_{n,m+1} :\equiv \forall^1 (\Xi_{n,m} \rightarrow \Sigma_n^0).$
- (3) Θ_0^1 is the closure of Δ_0^0 under $\wedge, \vee, \forall^0, \exists^0$ and $\exists^1; \Theta_{m+1}^1$ is that of Θ_m^1 under $\wedge, \vee, \forall^0, \exists^0, \forall^1, \exists^1 \text{ and } \Theta_m^1 \rightarrow (-).$

 Θ_m^1 is the second order analogue of Burr's Θ_m from [10]. Note that Θ_m^1 's exhaust \mathcal{L}_F and $\Xi_{n,m} \subseteq \Theta_m^1$. Moreover, $\Xi_{n,m+1}$ is equivalent to $\Lambda_{n+1,m}^1$ over $\mathbf{EL}_0^- + \Sigma_{n+1}^0$ -DNE. The next is enough to generalize 3.58.

LEMMA 3.61. Let m > 0. If A is Θ_m^1 whose Δ_0^0 subformulae contain $no \rightarrow except \neg$ applied to atomic subformulae, then both $\alpha \mathbf{r}_f A$ and $\alpha \mathbf{r}'_f A$ are equivalently $\Xi_{1,m}$ over \mathbf{EL}_0^* and $\mathbf{EL}_0'^*$, respectively.

PROOF. $(\alpha | ... | \beta) \downarrow$ is Π_2^0 by $\Delta_0^0 - AC^{00}$. For \exists, \forall in the case of $\mathbf{r}'_{\mathbf{f}}$ with m = 0, use 3.5(2)(ii) and 3.56(1)(ii). $\Xi_{n,m}$ is closed under \land , as $(A \to B) \land (C \to D)$ is equivalent to $\forall n((n = 0 \to A) \land (n > 0 \to C) \to (n = 0 \to B) \land (n > 0 \to D))$.

Here m > 0 is required only because of our treatment of first order quantifiers in the definition of realizability. If $\alpha \mathbf{r}_L \forall x A[x]$ and $\alpha \mathbf{r}_L \exists x A[x]$ were defined by $\forall x (\alpha | \underline{x} \downarrow \land \alpha | \underline{x} \mathbf{r}_L A[x])$ and $\exists x ((\alpha)_0^2 = \underline{x} \land (\alpha)_1^2 \mathbf{r}_L A[x])$ respectively, then this lemma would be the case also for m = 0.

THEOREM 3.62. $(\mathcal{L}_{\mathrm{F}}, \Theta_m^1)$ -RDC¹, and hence Θ_m^1 {-DC¹, -DC⁰, -Ind}, are $\mathbf{r}_{\mathtt{f}}$ -realizable in $\mathbf{EL}_0^* + \Xi_{1,m}$ -Ind, and $\mathbf{r}'_{\mathtt{f}}$ -realizable in $\mathbf{EL}_0' + \Xi_{1,m}$ -Ind.

PROOF. Note $\exists^1 \Pi_1^0 = \Theta_0^1$ over $\mathbf{EL}_0^* + \Pi_1^0 - \mathsf{AC}^{01}$ by 2.11 and 3.56(3). Thus, the case of m = 0 is already proved in Theorem 3.58. Now assume m > 0. The proof is the same as 3.58, but now $c_A|(\xi)_0^2$, $c_A|(\eta)_0^2$ and $c_A|(p_0|(\eta)_z)$ being replaced with $((\xi)_{1}^2)_0^2$, $((\eta)_1^2)_0^2$ and $p_0|(p_1|(\eta)_z)$ respectively, which guarantees that (a) and (c) are $\Xi_{1,m}$ if A is Θ_m^1 .

REMARK 3.63. As $\exists^1 \Pi_1^0 = \exists^1 \neg \Sigma_1^0$ has a universal formula over \mathbf{EL}_0^- , so does Θ_0^1 over $\mathbf{EL}_0^* + \Pi_1^0 - \mathbf{AC}^{01}$.

For m > 0, since $\exists^1 \Xi_{1,m}$ has a universal formula (defined easily from a universal Σ_1^0 formula) over \mathbf{EL}_0^- , 3.31(2)(ii) and 3.61 tell us that Θ_m^1 has a universal formula over $\mathbf{EL}_0^+ + (\mathcal{L}_F, N(\Sigma_1^0)) - \mathsf{GCC}^1$. By a close look at the proof of 3.31(2)(ii), we see that $(\mathcal{L}_F, N(\Sigma_1^0)) - \mathsf{GCC}^1$ can actually be weakened to $(\Xi_{1,m}, \Xi_{1,m-1}) - \mathsf{GCC}^1$.

As $\neg \Theta_m \subseteq \Theta_{m+1}$, by the usual diagonalization, the formalized strict hierarchy theorem can be proved.

Similarly, Burr's Θ_{m+1} has a universal formula in the presence of ECT. This suggests that, in certain contexts, Θ_m 's and Θ_m^1 's behave as nicely as essential Σ_m^i 's and essential Π_m^i 's do in the classical context with AC.

A similar strategy by 3.61 applies to bar induction. This is the last Brouwerian axiom that we realize.

THEOREM 3.64. $(\Theta_m^1, \mathcal{L}_F)$ -Bl_M is $\mathbf{r_f}$ -realizable in $\mathbf{EL}_0^* + \Xi_{1,m}$ -Bl_D, and $\mathbf{r'_f}$ -realizable in $\mathbf{EL}_0' + \Xi_{1,m}$ -Bl_D.

PROOF. First assume m > 0. As $(\mathcal{L}_F, \Delta_0^0)$ -GCB¹ implies \mathcal{L}_F -CB⁰, it suffices to realize Θ_m^1 -Bl_D, by 2.39(4) and 3.39. Assume

 $\zeta \mathbf{r}_{\mathrm{L}} \operatorname{Bar}[\underline{0}, \{u: \alpha(u) = 0\}] \land \forall u(\alpha(u) = 0 \to A[u]) \land \forall u(\forall x A[u*\langle x \rangle] \to A[u]).$

3.23(1)(ii) yields γ , δ , ε with

$$\begin{split} \gamma |\xi|\underline{u}|\eta &\simeq \xi |\underline{u}*\langle \eta(0) \rangle; \\ \delta |\zeta|\alpha|\xi|\underline{u} &\simeq \begin{cases} (\zeta)_1^3 |\underline{u}| (c_{\alpha(u)=0} |\alpha|\underline{u}) & \text{if } \alpha(u) = 0; \\ (\zeta)_2^3 |\underline{u}| (\lambda\eta, \gamma|\xi|\underline{u}|\eta) & \text{otherwise}; \end{cases} \\ \varepsilon &:= \lambda\alpha\zeta. \text{fix} |(\delta|\zeta|\alpha). \end{split}$$

Let $B[u] :\equiv (\varepsilon |\alpha| \zeta |\underline{u}) \downarrow \land (\varepsilon |\alpha| \zeta |\underline{u} \mathbf{r}_{L} A[u])$. If $\alpha(u) = 0$ then $\varepsilon |\alpha| \zeta |\underline{u} \mathbf{r}_{L} A[u] \equiv B[u]$. As $\text{Bar}[\underline{0}, \{u: \alpha(u) = 0\}]$ by 3.38, it remains to show $\forall x B[u * \langle x \rangle] \rightarrow B[u]$: we may assume $\alpha(u) \neq 0$, and $\varepsilon |\alpha| \zeta |\underline{u} \simeq (\zeta)_{2}^{3} |\underline{u}| (\lambda \eta. \varepsilon |\alpha| \zeta |\underline{u} * \langle \eta(0) \rangle)$. Thus $\forall x B[u * \langle x \rangle]$, i.e., $(\lambda \eta. \varepsilon |\alpha| \zeta |\underline{u} * \langle \eta(0) \rangle)$ $\mathbf{r}_{L} \forall x A[u * \langle x \rangle]$ yields $\varepsilon |\alpha| \zeta |\underline{u} \mathbf{r}_{L} A[u]$. Hence $\lambda \alpha \zeta. (\varepsilon |\alpha| \zeta |\langle \rangle)$ realizes $\{A\}$ -Bl_D.

For m = 0, as in Theorem 3.62 we can consider $\Theta_0^1 \equiv \exists^1 \Pi_1^0$, say $A[u] \equiv \exists \eta C[\eta, u]$ with C being Π_1^0 . We can modify the argument above by replacing $(\zeta)_1^3$ and $(\zeta)_2^3$ with $p|((\zeta)_1^3)_0^2|(c_C|\underline{u})$ and $p|((\zeta)_2^3)_0^2|(c_C|\underline{u})$ respectively in the definition of δ , so that B is equivalently Π_2^0 .

One may wonder if this can be extended to the "bar version" of dependent choice, defined as follows:

$$((\mathcal{C}, \mathcal{D})\text{-}\mathsf{Bar}\mathsf{DC}_M): \mathsf{Bar}[\underline{0}, \{u: B[u]\}] \land \forall u, v(B[u] \to B[u*v]) \land \forall u, \beta \exists \gamma A[u, \beta, \gamma] \land (\forall u(B[u] \to A[u, (\alpha)_{\prec u}, (\alpha)_{u}]) \to \exists \delta \forall u(A[u, (\delta)_{\prec u}, (\delta)_{u}] \land (B[u] \to (\delta)_{u} = (\alpha)_{u}))$$

where $(\gamma)_{\prec u}$ is such that $((\gamma)_{\prec u})_{x} = (\gamma)_{u*\langle x \rangle}$ and A is from \mathcal{C} and B from \mathcal{D} .

Among similar axioms are *transfinite dependent choice* [35, 36] and *bar recursion* [4, Section 6.4]. In our context, this extension is not proper, since

 $\mathbf{EL}_0^- + \forall^0 (\mathcal{C} \land (\mathcal{D} \to \Delta_0^0)) - \mathsf{AC}^{01} + \exists^1 \forall^0 (\mathcal{C} \land (\mathcal{D} \to \Delta_0^0)) - \mathsf{Bl}_D \vdash (\mathcal{C}, \mathcal{D}) - \mathsf{Bar}\mathsf{DC}_M.$

TAKAKO NEMOTO AND SATO KENTARO

We can show this by applying $\exists^1 \forall^0 C$ -Bl_D to the following:

$$A'[u] :\equiv \exists \delta \forall v (A[u * v, (\delta)_{\prec u * v}, (\delta)_{u * v}] \land (B[u * v] \to (\delta)_{u * v} = (\alpha)_{u * v})).$$

§4. Lower Bounds: Forcing and Negative Interpretations.

4.1. Gödel–Gentzen negative interpretation. Gödel–Gentzen negative interpretation N, sometimes called double negation translation, is the standard way of interpreting logical symbols of classical logic intuitionistically. In arithmetic, since $\neg\neg A$ is equivalent to A for atomic A, if we consider the classical \lor and \exists as abbreviations defined from $\land, \rightarrow, \bot, \forall$, we may identify A^N with A, and intuitionistic theories are extensions of classical ones with new logical symbols \lor and \exists in the same sense as modal logics are extensions with \Box and \diamondsuit . Here, however, we consider \lor and \exists are primitive symbols even in the classical theories, which extend intuitionistic ones only by the axiom schema \mathcal{L}_{F} -LEM.

DEFINITION 4.1 (N). For a formula A, define

$$A^{N} :\equiv \neg \neg A \text{ for atomic } A;$$

$$(A \Box B)^{N} :\equiv A^{N} \Box B^{N} \text{ for } \Box \equiv \wedge, \rightarrow; \qquad (\forall \xi A)^{N} :\equiv \forall \xi A^{N};$$

$$(A \lor B)^{N} :\equiv \neg (\neg A^{N} \land \neg B^{N}); \qquad (\exists \xi A)^{N} :\equiv \neg \forall \xi \neg A^{N},$$

where QxA[x] is considered as $Q\xi A[\xi(0)]$.

- LEMMA 4.2. (1) A^N intuitionistically follows from B_1^N, \ldots, B_n^N , if A classically follows from B_1, \ldots, B_n .
- (2) $((\exists x < y)A)^N$ and $((\forall x < y)A)^N$ are equivalent to $\neg(\forall x < y)\neg A^N$ and $(\forall x < y)A^N$, respectively.
- (3) $\mathbf{EL}_0^- + \Sigma_n^0^- \mathsf{DNE} \vdash A^N \leftrightarrow A$ if A is negative in Π_{n+1}^0 , i.e., built up by \wedge, \rightarrow and \forall from Π_{n+1}^0 formulae.
- (4) $\mathbf{EL}_0^{n+1} + \Sigma_0^{n-1} \mathsf{DNE} \vdash A \to A^N$ if A is built up by \land, \lor, \forall and \exists from those formulae negative in Π_{n+1}^0 .
- COROLLARY 4.3. (1) $\mathbf{EL}_0^- \vdash (\mathbf{EL}_0^-)^N$; and Π_{n+1}^0 -preservingly N interprets $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM in $\mathbf{EL}_0^- + \Sigma_n^0$ -DNE.
- (2) Over $\mathbf{EL}_0^{-1} + \Sigma_n^0 \mathsf{DNE}$, (i) $\Pi_{n+1}^0 \mathsf{Ind}$, (ii) $\Sigma_n^0 \mathsf{Ind}$ are equivalent to their *N*interpretations; if $n \ge 1$, so are (iii) $\Sigma_n^0 - \mathsf{Bdg}$, (iv) $\mathcal{C} - \mathsf{Bl}_D$ and (v) $(\mathcal{C}, \mathcal{D}) - \mathsf{Bl}_M$ for $\mathcal{C} \in \{\Sigma_k, \Lambda_{k,m}^i, \Xi_{k,m} \mid k \le n\}, \mathcal{D} \in \{\Pi_\ell^0, \Sigma_{\ell+1}^0 \mid \ell < n\}.$

In this corollary (2), only (ii) cannot be proved instance-wise, but the equivalence between the schemata by meta-induction on n.

Recall 3.60, the definitions of $\Lambda_{n,m}^i, \Xi_{n,m}$. $\Lambda_{1,m}^1$ is the *N*-interpretation of Π_{m+1}^1 normal form, over MP.

While N will be one of our main tools for lower bound proof, it yields some result for a semi-Russian axiom KA, introduced by Veldman [53]. This asserts the existence of counterexample of Δ_0^0 -WFT.

DEFINITION 4.4 (KA). Let $KA := \exists \gamma KA[\gamma]$ where

$$\mathbf{KA}[\gamma] := (\forall \alpha < \underline{2}) \exists n(\gamma(\alpha \restriction n) > 0) \land \forall m(\exists u < \underline{2})(|u| = m \land (\forall k < m)(\gamma(u \restriction k) = 0)).$$

Proposition 4.5. $\mathbf{EL}_{0}^{-}+\mathsf{MP}+\Delta_{0}^{0}-\mathsf{AC}^{00}+\mathsf{NCT}\vdash\mathsf{KA}.$

PROOF. Let $\{c\}$ be the computable counterexample, i.e.,

$$\mathbf{EL}_0^-+\Sigma_1^0$$
-Bdg \vdash CT \rightarrow KA[{ c }].

Applying *N* to this, with 4.2(3) with n = 1, we have

$$\operatorname{EL}_0^-+\operatorname{MP}+\Sigma_1^0\operatorname{-Bdg}\vdash\operatorname{NCT}\to\operatorname{KA}[\{c\}].$$

 Δ_0^0 -AC⁰⁰ yields γ with $\{c\} = \gamma$.

Classically \mathcal{L}_{F} -AC⁰⁰ implies (\mathcal{L}_{F} -CA)^{ch}. As a refinement, it is known that, even intuitionistically with LPO, Π_{1}^{0} -AC⁰⁰ implies (Σ_{1}^{0} -CA)^{ch} and hence it is of the strength of ACA₀. Here Π_{1}^{0} -AC⁰⁰ can be weakened to Π_{1}^{0} -AC!⁰⁰, and even to SBAC! defined below, which restricts the Π_{1}^{0} formulae to be of a special form. With SBAC, we can refine the classical implication from KL (König's lemma) to ACA₀ (cf. [45, Theorem III.7.2]) as follows.

DEFINITION 4.6 (semi-bounded axiom of choice SBAC and SBAC!). SBAC is defined as follows and SBAC! is defined with \exists replaced by \exists ! in the premise.

(SBAC): $\forall x \exists y \operatorname{SB}_{C,D,t}[x, y] \rightarrow \exists \alpha \forall x \operatorname{SB}_{C,D,t}[x, \alpha(x)]$, for *C* and *D* both from Δ_0^0 , where $\operatorname{SB}_{C,D,t}[x, y] :\equiv C[x, y] \lor (y < t[x] \land \forall z D[x, y, z])$.

 $\begin{array}{ll} \text{Lemma 4.7.} & (1) \quad \textbf{EL}_0^- + \textsf{LPO} + \Delta_0^0 \text{-} \textsf{FT} \vdash (\textsf{SBAC})^N. \\ (2) \quad \textbf{EL}_0^- + \textsf{LPO} + \quad \textsf{SBAC!} \vdash (\Sigma_1^0 \text{-} \textsf{CA})^{\mathfrak{ch}}. \end{array}$

PROOF. (1) As in the proof of 2.33, we may assume $C[x, y] \wedge C[x, z] \rightarrow y = z$ and $D[x, y, z] \rightarrow y < t[x]$. Let $A :\equiv SB_{C,D,t}$. Define γ by

$$\begin{aligned} \gamma(u) &= 0 \leftrightarrow \\ \exists k (|u| = k + 1 \land (\forall x \le k) (u(x) > 0 \rightarrow (C[x, u(x) - 1] \lor (\forall z < |u|) D[x, u(x) - 1, z]))). \end{aligned}$$

We prove $Fan[\gamma]$. By LPO, there are two cases:

• if $\neg \exists y C[|u|, y]$ then $\forall z(\gamma(u * \langle z \rangle) = 0 \rightarrow z \leq t[x]);$

• if C[|u|, y] for some y then $\forall z(\gamma(u * \langle z \rangle) = 0 \rightarrow z \le \max(y+1, t[x]))$.

Obviously $\gamma(u) = 0 \rightarrow \gamma(u * \langle 0 \rangle) = 0$.

If $\forall k(\gamma(\beta \upharpoonright k) = 0)$ and $\forall x(\beta(x) \neq 0)$, then we have

$$\forall k (\forall x \le k) (C[x, \alpha(x)] \lor (\alpha(x) < t[x] \land (\forall z < k) D[x, \alpha(x), z]))$$

for $\alpha(x) := \beta(x) - 1$, and, as " $\forall k (\forall x \le k)$ " is same as " $\forall x (\forall k \ge x)$ ", we also have $\forall x (C[x, \alpha(x)] \lor (\alpha(x) < t[x] \land \forall z D[x, \alpha(x), z]) \text{ and so } \forall x A^N[x, \alpha(x)].$

Thus $\forall \alpha \neg \forall x A^N[x, \alpha(x)] \rightarrow \forall \beta (\forall k(\gamma(\beta \restriction k) = 0) \rightarrow (\forall x(\beta(x) \neq 0) \rightarrow \bot))$ and, by MP,

$$\forall \alpha \neg \forall x A^{N}[x, \alpha(x)] \rightarrow \mathsf{Bar}[\gamma, \{u: (\exists x < |u|)(u(x) = 0)\}]. \tag{*}$$

Assume $(\forall x \exists y A[x, y])^N$. Fix arbitrary *n*. Then obviously we have $\forall x \neg \forall y \neg (C[x, y] \lor (y < t[x] \land (\forall z < n)D[x, y, z]))^N$ and, by using MP, also $(\forall x < n) \exists y (C[x, y] \lor (y < t[x] \land (\forall z < n)D[x, y, z]))$. With Σ_1^0 -Ind yielded by 2.33, we can show $\exists u(|u| = k + 1 \land \gamma(u) = 0 \land (\forall \ell \le k)(u(\ell) \ne 0)))$ for k < n. Particularly, $\exists v(|v| = n \land (\forall k < n)(v(k) \ne 0) \land \gamma(v) = 0)$. Now by Δ_0^0 -FT this means

 \dashv

 $\neg \operatorname{Bar}[\gamma, \{u: (\exists k < |u|)(u(k) = 0)\}], \text{ and hence, by } (*), \neg \forall \alpha \neg \forall x A^N[x, \alpha(x)], \text{ i.e.,} (\exists \alpha \forall x A[x, \alpha(x)])^N.$

(2) Let *B* be Σ_1^0 of \mathcal{L}_S , say $B^{\mathfrak{ch}}[x] \equiv \exists y C[x, y]$. As before, now we may assume $C[x, y] \wedge C[x, z] \rightarrow y = z$. LPO yields $\forall x \exists ! y (C[x, y] \lor (y = 0 \land \forall z \neg C[x, z]))$. Now SBAC! yields α with $\forall x (C[x, \alpha(x)] \lor (\alpha(x) = 0 \land \forall z \neg C[x, z]))$. Because $\forall x (\exists i < 2)(i = 0 \leftrightarrow C[x, \alpha(x)])$, there is β with $\forall x (\beta(x) = 0 \leftrightarrow C[x, \alpha(x)])$. Then $\forall x (\beta(x) = 0 \leftrightarrow B^{\mathfrak{ch}}[x])$.

Thus in the presence of LPO, we cannot strengthen Δ_0^0 -WFT to Δ_0^0 -FT unless going beyond Finitism.

How about C-WFT, (C, D)-Bl_M or C-Bl_D? By 2.32(3)(ii) and 2.29(1), the first to ask are Π_1^0 -WFT and Σ_1^0 -Bl_D. The below answers this with help of Σ_2^0 -DNE or MP. (1) refines Berger's [7], where he relies on classical logic but with a slightly weaker variant of WFT. We weaken Σ_2^0 -DNE and MP in the next subsections.

LEMMA 4.8. (1)
$$\mathbf{EL}_0^- + \Sigma_2^0 - \mathsf{DNE} + \Pi_1^0 - \mathsf{WFT} \vdash ((\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}})^N$$
.
(2) $\mathbf{EL}_0^- + \mathsf{MP} + \Sigma_1^0 - \mathsf{Bl}_D \vdash ((\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}})^N$.

PROOF. (1) Let A be Σ_1^0 , say $A[x]^{ch} \equiv \exists y C[x, y]$ with C being Δ_0^0 . Recall $v < \underline{2} :\equiv (\forall k < |v|)(v(k) < 2)$. Define

$$D[u] := (\forall x < |u|)(u(x) = 0 \leftrightarrow (\exists y < |u|)C[x, y]);$$

$$B[u] := (\forall v < 2) \neg D[u * v].$$

We show $(\forall \alpha < \underline{2})(\forall k \neg B[\alpha \upharpoonright k] \rightarrow \forall x(\alpha(x) = 0 \leftrightarrow \exists y C[x, y]))$. Let $\forall k \neg B[\alpha \upharpoonright k]$, i.e., $\forall k \neg (\forall v < \underline{2}) \neg D[(\alpha \upharpoonright k) * v]$. By MP, we have $\forall k (\exists v < \underline{2}) D[(\alpha \upharpoonright k) * v]$. If $\alpha(x) = 0$, taking $v < \underline{2}$ with $D[(\alpha \upharpoonright (x+1)) * v]$, as $((\alpha \upharpoonright (x+1)) * v)(x) = \alpha(x) = 0$, we now have $(\exists y < |(\alpha \upharpoonright (x+1)) * v|) C[x, y]$, and $\exists y C[x, y]$. Conversely if C[x, y], taking $v < \underline{2}$ with $D[(\alpha \upharpoonright (x+y+1)) * v]$, since $(\exists z < |(\alpha \upharpoonright (x+y+1)) * v|) C[x, z]$ we can conclude $\alpha(x) = ((\alpha \upharpoonright (x+y+1)) * v)(x) = 0$.

We show $((\exists \alpha < \underline{2}) \forall x (\alpha(x) = 0 \leftrightarrow \exists y C[x, y]))^N$, which is, by MP, equivalent to

$$\neg(\forall \alpha < \underline{2}) \neg \forall x (\alpha(x) = 0 \leftrightarrow \exists y C[x, y]).$$

Suppose for contradiction $(\forall \alpha < \underline{2}) \neg \forall x (\alpha(x) = 0 \leftrightarrow \exists y C[x, y])$. Then, by the above, $(\forall \alpha < \underline{2}) \neg \forall k \neg B[\alpha \restriction k]$ and, by Σ_2^0 -DNE, $(\forall \alpha < \underline{2}) \exists k B[\alpha \restriction k]$. Π_1^0 -WFT yields *n* with $(\forall \alpha < \underline{2})(\exists k < n)B[\alpha \restriction k]$ and so $(\forall \alpha < \underline{2}) \neg D[\alpha \restriction n]$. However we can construct $u < \underline{2}$ with |u| = n and $(\forall k < n)(u(k) = 0 \leftrightarrow (\exists y < n)C[x, y])$, a contradiction.

(2) By 4.3(1)(2)(iv), it suffices to show $(\Sigma_1^0-\mathsf{CA})^{c\mathfrak{h}}$ in $\mathsf{EL}_0^-+\mathcal{L}_{\mathsf{F}}-\mathsf{LEM}+\Sigma_1^0-\mathsf{Bl}_D$. We prove $\Pi_1^0-\mathsf{AC}^{00}$ classically by 4.7(2). Let A be Π_1^0 and $B[u] :\equiv (\exists k < |u|) \neg A[k, u(k)]$. Then $\neg B[\langle \rangle]$ and $B[u] \rightarrow B[u*v]$. Now $\forall k \exists x A[k, x]$ yields $\forall x B[u*\langle x \rangle] \rightarrow B[u]$, and, by $(\Sigma_1^0, \Sigma_1^0)-\mathsf{Bl}_M$ with 2.29(3), also $\neg \mathsf{Bar}[\underline{0}, \{u: B[u]\}]$, i.e., $\exists \alpha \forall n \neg B[\alpha \upharpoonright n]$.

Thus, only with this famous negative interpretation N, we have the following lower bound results. For the lower bounds of Σ_1^0 -Ind, Σ_1^0 -Bl_D (without (MP)) and Π_1^0 – WFT + LPO, more works are required as in the next subsections.

COROLLARY 4.9. ACA $_0$ is interpretable

- (i) Π_2^0 -preservingly in $\mathbf{EL}_0^- + \mathsf{LPO} + \Delta_0^0 \mathsf{FT}$ and in $\mathbf{EL}_0^- + \mathsf{MP} + \Sigma_1^0 \mathsf{BI}_D$;
- (ii) $\Pi_3^{\tilde{0}}$ -preservingly in $\mathbf{EL}_0^{-} + \Sigma_2^{0}$ -DNE+ Π_1^{0} -WFT; and
- (iii) Δ_0^1 -preservingly in $\mathbf{EL}_0^- + \mathsf{LPO} + \Pi_1^0 \mathsf{AC!}^{00}$.

PROOF. (i) By 4.7, 4.8(2) and 4.3(1) with n = 1. (ii) Similar. (iii) $\mathbf{EL}_0^- + \mathsf{LPO} + \Pi_1^0 - \mathsf{AC}!^{00}$ trivially includes $\mathbf{EL}_0^- + \mathsf{LPO} + \mathsf{SBAC}!$ and, by 4.7(2), also includes $\mathbf{EL}_0^- + (\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}}$. As $(\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}}$ implies $\Pi_\infty^0 - \mathsf{LEM}$ and so $\Delta_0^1 - \mathsf{LEM}$, $\mathbf{EL}_0^- + (\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}}$ proves $((\Sigma_1^0 - \mathsf{CA})^{\mathfrak{ch}})^N \wedge \Delta_0^1 - \mathsf{LEM}$, and so interprets Δ_0^1 -preservingly $(\mathbf{ACA}_0)^{\mathfrak{ch}}$ by N.

4.2. Coquand–Hofmann forcing interpretation. Gödel–Gentzen negative interpretation N yields the Π_1 conservation of **PA** over **HA**. Friedman–Dragalin translation (also known as Friedman's *A*-translation) was introduced to enhance it to Π_2 conservation, or equivalently to show the admissibility of MP-rule. We start by recalling this well-known technique:

$$C^{A} :\equiv C \lor A \text{ if } C \text{ is atomic;}$$
$$(C \Box D)^{A} :\equiv C^{A} \Box D^{A} \text{ for } \Box \equiv \land, \rightarrow, \lor$$
$$(QxC)^{A} :\equiv Qx(C^{A}) \text{ for } Q \equiv \forall, \exists.$$

For any Σ_1 formula A[x], since $\mathbf{HA} \vdash A[x]^N \leftrightarrow \neg \neg A[x]$, if $\mathbf{PA} \vdash \forall xA(x)$ then $\mathbf{HA} \vdash \neg \neg A[x]$, to which by applying A[x]-translation, we have $\mathbf{HA} \vdash (\neg \neg A[x])^{A[x]}$, i.e., $\mathbf{HA} \vdash (A[x] \lor A[x] \to A[x]) \to A[x]$ and hence $\mathbf{HA} \vdash \forall xA[x]$. However, this combination of the negative interpretation N and A[x]-translation does not necessarily preserve another Π_2 sentence $\forall xB[x]$. Thus, it does not uniformly preserve Π_2 sentences. Moreover, A-translation is not $\{\bot\}$ -preserving, unless A is equivalent to \bot , and so does not yield the consistency-wise implication. Coquand– Hofmann forcing overcomes this disadvantage, by replacing single A with a finite set of such A's. We further generalize this technique to general $\exists^0 C$ but assuming C-LEM.

Below we consider any α to code a finite set of (x, ξ) 's: e.g.,

$$(x,\xi) \in \alpha :\equiv (\exists k < \alpha(0))((\alpha \ominus 1)_k = \langle x \rangle * \xi),$$

and also (x, ξ) to code $\exists u P[x, u, \xi]$. (Thus $\exists u \operatorname{Tr}_P[u, \alpha]$ means the disjunction of all formulae "belonging to" α .) As an example, we can take *P* from Π_n^0 so that $\exists u P[x, u, \xi]$ is a universal Σ_{n+1}^0 formula.

DEFINITION 4.10 (Tr_P, \Vdash_P). (1) Tr_P[u, α] := $(\exists (x, \xi) \in \alpha) P[x, u, \xi]$. (2) $\alpha \Vdash_P A$:= $A \lor \exists u \operatorname{Tr}_P[u, \alpha]$.

Since $\operatorname{Tr}_{P}[u, \alpha]$ is $(\exists k < \alpha(0))P[(\alpha \ominus 1)_{k}(0), u, (\alpha \ominus 1)_{k} \ominus 1]$, we see that $\exists u \operatorname{Tr}_{P}[u, \alpha]$ is Σ_{n+1}^{0} if *P* is Π_{n}^{0} .

DEFINITION 4.11 (\Vdash_P). To an \mathcal{L}_F formula *B*, assign $\alpha \Vdash_P B$ as follows:

$$\alpha \Vdash_{P} B :\equiv \alpha \boxplus_{P} B \text{ for atomic };$$

$$\alpha \Vdash_{P} B \to C :\equiv (\forall \beta \supseteq \alpha)((\beta \Vdash_{P} B) \to (\beta \Vdash_{P} C));$$

$$\alpha \Vdash_{P} B \Box C :\equiv (\alpha \Vdash_{P} B) \Box (\alpha \Vdash_{P} C) \text{ for } \Box \equiv \land, \lor;$$

$$\alpha \Vdash_{P} Q \xi B :\equiv Q \xi (\alpha \Vdash_{P} B) \text{ for } Q \equiv \forall, \exists,$$

where QxB[x] is treated as $Q\xi B[\xi(0)]$.

The connection to Friedman's *A*-translation is clear in the atomic case. The extension to compound formulae is by Kripke semantics, where the monotonicity is

(1)(ii) of the next lemma. (2) in the lemma, asserting the \Vdash_P respects intuitionistic reasonings, easily follows, and (3) corresponds to the assertion that $B^A \leftrightarrow B \lor A$ if B is Σ_1 , which allowed us to show $A[x]^{A[x]} \leftrightarrow A[x] \lor A[x]$, the key fact to show MP-rule.

LEMMA 4.12. (1) \mathbf{EL}_0^- proves

- (i) $B \leftrightarrow (\emptyset \Vdash_P B)$ and (ii) $\alpha \subseteq \beta \rightarrow (\alpha \Vdash_P B \rightarrow \beta \Vdash_P B) \land (\alpha \Vdash_P B \rightarrow \beta \Vdash_P B)$.
- (2) If C intuitionistically follows from B_1, \ldots, B_n , then

 $\mathbf{EL}_{0}^{-} \vdash (\alpha \Vdash_{P} B_{1}) \land \cdots \land (\alpha \Vdash_{P} B_{n}) \rightarrow (\alpha \Vdash_{P} C).$

(3) If $C, D, \exists x \neg E, E \in C$ for all subformulae $C \rightarrow D$ and $\forall x E$ of B, then

 $\mathbf{EL}_{0}^{-}+\mathcal{C}\text{-}\mathsf{LEM}\vdash(\alpha\Vdash_{P}B)\leftrightarrow(\alpha\parallel\vdash_{P}B).$

(4) If F is built up by $\land, \lor, \forall, \exists$ from those B's which satisfy the condition of (3), then

$$\mathbf{EL}_0^- + \mathcal{C}\text{-}\mathsf{LEM} \vdash F \leftrightarrow (\emptyset \Vdash_P F).$$

(5) If B is as in (3), then

$$\mathbf{EL}_{0}^{-} + \mathcal{C} - \mathsf{LEM} \vdash \alpha \Vdash_{P} (B \to G) \leftrightarrow (B \to \alpha \Vdash_{P} G).$$

Hence, $\alpha \Vdash_P ((\forall x < y)G) \leftrightarrow (\forall x < y)(\alpha \Vdash_P G).$

PROOF. (3) By induction on *B*. The atomic case is trivial. The case of \land is by $(C \lor F) \land (D \lor F) \leftrightarrow (C \land D) \lor F$.

 $\alpha \Vdash_P C \to D$ is, by induction hypothesis, equivalent to

 $(\forall \beta \supseteq \alpha)((C \lor \exists u \operatorname{Tr}_{P}[u, \beta]) \to (D \lor \exists u \operatorname{Tr}_{P}[u, \beta])),$

to $C \to (\forall \beta \supseteq \alpha)(D \lor \exists u \operatorname{Tr}_{P}[u, \beta])$, by *C*-LEM to $\neg C \lor D \lor (\forall \beta \supseteq \alpha) \exists u \operatorname{Tr}_{P}[u, \beta]$ and to $(C \to D) \lor \exists u \operatorname{Tr}_{P}[u, \alpha]$.

By induction hypothesis, $\alpha \Vdash_P \exists x E$ is equivalent to $\exists x (E \lor \exists u \operatorname{Tr}_P[u, \alpha])$ and to $(\exists x E) \lor \exists u \operatorname{Tr}_P[u, \alpha]$. Similarly $\alpha \Vdash_P \forall x E$ is to $\forall x (E \lor \exists u \operatorname{Tr}_P[u, \alpha])$ and to $(\forall x E) \lor \exists u \operatorname{Tr}_P[u, \alpha, u]$, but by $\exists x \neg E \lor \forall x E$.

(5) If $\alpha \Vdash_P (B \to G)$ and *B* then, by (4) and (1)(ii), $\alpha \Vdash_P B$ and $\alpha \Vdash_P G$. If $B \to (\alpha \Vdash_P G)$ then, for $\beta \supseteq \alpha$, we can see that $\beta \Vdash_P B$ implies $B \lor \exists u \operatorname{Tr}_P[u, \beta]$ by (3), $(\alpha \Vdash_P G) \lor (\beta \Vdash_P \bot)$ and so, by (1)(ii) and (2), $\beta \Vdash_P G$, i.e., $\alpha \Vdash_P (B \to G)$. \dashv

COROLLARY 4.13. (1) If B is Π^0_{∞} , $\mathbf{EL}^-_0 \vdash B \leftrightarrow (\emptyset \Vdash_P B)$; (2) if B is Σ^0_{n+1} , then $\mathbf{EL}^-_0 + \Sigma^0_n$ -LEM $\vdash (\alpha \Vdash_P B) \leftrightarrow (\alpha \Vdash_P B)$.

DEFINITION 4.14 (self-forcible). A schema S is called *self-forcible for* C if, for any $P \in C$, S implies $\emptyset \Vdash_P S$.

COROLLARY 4.15. (i) $\mathbf{EL}_0^- \vdash (\emptyset \Vdash_P \mathbf{EL}_0^-)$; (ii) in $\mathbf{EL}_0^- + \Sigma_{k+1}^0$ -LEM, Σ_k^0 -Ind and Π_k^0 -Ind are self-forcible for \mathcal{L}_F .

LEMMA 4.16. Over $\mathbf{EL}_0^- + \Sigma_n^0$ -LEM, the following are self-forcible for Π_n^0 :

- (i) Π_n^0 -WFT *if* n > 0;
- (ii) $for \quad \mathcal{C}, \mathcal{D} \in \{\Sigma_{n+2k+1}^{0}, \Pi_{n+2k+2}^{0}, \Lambda_{n+2k+1,m}^{1}, \Xi_{n+2k+1,m}, \Theta_{m}^{1}\}, \text{ (a) } \mathcal{C}\text{-Ind, (b)}$ $\mathcal{C}\text{-Bdg, (c) } \mathcal{C}\text{-AC}^{0i}, \text{ (d) } \mathcal{C}\text{-DC}^{i}, \text{ (e) } (\mathcal{C}, \mathcal{D})\text{-Bl}_{M} \text{ and (f) } \mathcal{C}\text{-Bl}_{D} \text{ (if } n = 0).$

PROOF. We may assume $\exists u \operatorname{Tr}_{P}[u, \alpha] \equiv \exists l C[l, \alpha]$ with C being Π_{n}^{0} . (i) If $\alpha \Vdash_{P} (\forall \xi < \underline{2}) \exists k B[\xi \upharpoonright k]$ where B is Π_{n}^{0} , then $(\forall \xi < \underline{2}) \exists k (\alpha \amalg_{P} B[\xi \upharpoonright k])$ by 4.13(2), i.e., $(\forall \xi < 2) \exists k (B[\xi \upharpoonright k] \lor \exists l C[l, \alpha])$. Thus $(\forall \xi < 2) \exists k D[\xi \upharpoonright k]$ where

$$D[u] :\equiv B[u] \lor C[|u|, \alpha]$$

is $\Pi_n^0 \vee \Pi_n^0 \subseteq \Pi_n^0$ by Σ_n^0 -LEM. Then Π_n^0 -WFT yields *m* with $(\forall \xi < \underline{2})(\exists k < m)D[\xi \restriction k]$ and so $(\forall \xi < \underline{2})(\exists k < m)(\alpha \Vdash_P B[\xi \restriction k])$. As $\xi < \underline{2}$ is Π_1^0 , by 4.12(3)(5) with n > 0, $\alpha \Vdash_P (\forall \xi < \underline{2})(\exists k < m)B[\xi \restriction k]$.

(ii) If B is Π_n^0 , then $\beta \Vdash_P Q y_{n+2k(+1 \text{ or } 2)} \dots \exists y_{n+1} B[x, y_{n+2}, \dots]$ is equivalent to $Q \dots \exists y_{n+1} (\beta \Vdash_P B[x, y_{n+1}, \dots])$ and, by 4.13(2), also to

$$Q \dots \exists y_{n+1} \exists \ell (B[x, y_{n+1}, \dots] \lor C[\ell, \beta]).$$

By Σ_n^0 -LEM, if A is equivalently C, so is $\beta \Vdash_P A[x]$.

- (a) Assume $\alpha \Vdash_P A[0] \land (\forall x < n)(A[x] \to A[x+1])$. Then we have $\alpha \Vdash_P A[0]$ and $(\forall x < n)(\alpha \Vdash_P A[x] \to \alpha \Vdash_P A[x+1])$. Thus, by *C*-Ind, we can get $\alpha \Vdash_P A[n]$.
- (b) Assume $\alpha \Vdash_P (\forall x < m) \exists y A[x, y]$. Then $(\forall x < m) \exists y (\alpha \Vdash_P A[x, y])$ and, by C-Bdg, also $\exists u (\forall x < m) (\exists y < u) (\alpha \Vdash_P A[x, y])$. Therefore, by 4.12(5), we have $\exists u (\alpha \Vdash_P (\forall x < m) (\exists y < u) A[x, y])$.
- (c) (d) (e) Similar.
- (f) Use (e) and 2.29(3).

In the lemma, (ii)(f) seems to require n = 0: a bar $\{v: \beta(v) = 0\}$ is interpreted as $\{v: \alpha \Vdash_P \beta(v) = 0\}$, i.e., $\{v: \beta(v) = 0 \lor \exists u \operatorname{Tr}[u, \alpha]\}$, to which we cannot apply \mathcal{L}_{F} -Bl_D even if Bar[0, $\{v: \beta(v) = 0 \lor \exists u \operatorname{Tr}[u, \alpha]\}$].

The following is the central trick corresponding to that of *A*-translation, namely $(\neg \neg A[x])^{A[x]} \leftrightarrow A[x]$.

PROPOSITION 4.17. For *P* from Π_n^0 ,

 $\mathbf{EL}_0^- + \Sigma_n^0 - \mathsf{LEM} \vdash (\emptyset \Vdash_P (\neg \forall v \neg P[x, v, \xi] \to \exists v P[x, v, \xi])).$

PROOF. Π_n^0 -LEM yields $\forall v \exists u (\neg P[x, v, \xi] \lor P[x, u, \xi])$, which is equivalent to $\forall v (\neg P[x, v, \xi] \lor \exists u P[x, u, \xi])$, i.e., $\forall v (\{(x, \xi)\} \Vdash_P \neg P[x, v, \xi])$. By 4.13(2) and 4.12(3), we have $\{(x, \xi)\} \Vdash_P \forall v \neg P[x, v, \xi]$.

Thus, if $\alpha \Vdash_P \neg \forall v \neg P[v, x, \xi]$ then $\alpha \cup \{(x, \xi)\} \Vdash_P \bot$, i.e., $\exists u \operatorname{Tr}_P[\alpha \cup \{(x, \xi)\}, u]$ which is equivalent to $\exists u (\operatorname{Tr}_P[\alpha, u] \lor P[x, u, \xi])$, to $\exists u (\alpha \Vdash_P P[x, u, \xi])$, and, again by 4.13(2), to $\alpha \Vdash_P \exists u P[x, u, \xi]$.

THEOREM 4.18. There is a Π_n^0 formula P such that

 $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}-\mathsf{LEM}\vdash(\emptyset\Vdash_{P}\mathbf{EL}_{0}^{-}+\Sigma_{n+1}^{0}-\mathsf{DNE}).$

PROOF. Let $P[x, u, \xi] := \forall y_n \exists y_{n-1} \dots Qy_1(\xi(x, u, y_n, y_{n-1}, \dots, y_1) = 0)$. Fix *A* from Σ_{n+1}^0 . Take *C* from Δ_0^0 with

$$A[x,\alpha] \equiv \exists u \forall y_n \exists y_{n-1} \dots Q y_1 C[x, u, y_n, y_{n-1}, \dots, y_1, \alpha].$$

Take ξ with $(\forall x, u, \vec{y})(\xi(x, u, \vec{y}) = 0 \leftrightarrow C[x, u, \vec{y}, \alpha])$ by 2.10(d). Then we have $\forall x(A[x, \alpha] \leftrightarrow \exists uP[x, u, \xi]).$

As this argument is possible in $\mathbf{EL}_0^-, \emptyset \Vdash_P \exists \xi \forall x (A[x, \alpha] \leftrightarrow \exists u P[x, u, \xi]) \text{ by } 4.12(2)$ and 4.15(i). By 4.17 with 4.12(2), we finally get $\emptyset \Vdash_P \neg \neg A[x, \alpha] \rightarrow A[x, \alpha]$.

 \dashv

4.3. Combining negative and forcing interpretations. Coquand–Hofmann [11] and Avigad [3] combined the interpretation $A \mapsto \emptyset \Vdash_P A$ with the negative interpretation N. We follow this way, with the following enhancement. While they considered only the first order case where P in \Vdash_P is Δ_0^0 , we have considered second order cases with P being Π_n^0 but assuming Σ_n^0 -LEM.

THEOREM 4.19. (1) (a) $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM and so $\mathbf{I}\Delta_0 \mathbf{ex}$ (and \mathbf{EFA}) are Π_2^0 preservingly interpretable in \mathbf{EL}_0^- and (b) so are $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM+ Σ_1^0 -Bdg and $\mathbf{B}\Delta_0 \mathbf{ex}$ in $\mathbf{EL}_0^- + \Sigma_1^0$ -Bdg and hence in $\mathbf{EL}_0^- + \Delta_0^0$ -AC⁰⁰.

- (2) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}^{-}-\mathbf{L}\mathbf{EM}+\Sigma_{1}^{0}-\mathbf{Ind} \text{ and so } \mathbf{I}\Sigma_{1}=\mathbf{III}_{1}$ (as well as **PRA**) are interpretable (a) Π_{1}^{0} -preservingly in $\mathbf{EL}_{0}^{-}+\Pi_{1}^{0}$ -Ind and hence in $\mathbf{EL}_{0}^{-}+\Delta_{0}^{0}-\mathbf{BI}_{D}$; (b) Π_{2}^{0} -preservingly in $\mathbf{EL}_{0}^{-}+\Sigma_{1}^{0}$ -Ind and hence in $\mathbf{EL}_{0}^{-}+\Delta_{0}^{0}$ -FT.
- (3) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Σ_{2}^{0} -Ind and so $\mathbf{I}\Sigma_{2} = \mathbf{I}\Pi_{2}$ are interpretable (a) Π_{2}^{0} -preservingly in $\mathbf{EL}_{0}^{-}+\Pi_{2}^{0}$ -Ind and hence in $\mathbf{EL}_{0}^{-}+\Pi_{2}^{0}$ -DC!⁰ and in $\mathbf{EL}_{0}^{-}+\Pi_{1}^{0}$ -DC!¹ and (b) Π_{3}^{0} -preservingly in $\mathbf{EL}_{0}^{-}+\mathsf{LPO}+\Sigma_{2}^{0}$ -Ind.
- (4) \overrightarrow{ACA}_0 is interpretable (a) Π_2^0 -preservingly in $\overrightarrow{EL}_0 + \Sigma_1^0 \overrightarrow{Bl}_D$, and also in $\overrightarrow{EL}_0 + \overrightarrow{LPO} + \Delta_0^0 \overrightarrow{FT}$; (b) Π_3^0 -preservingly in $\overrightarrow{EL}_0 + \overrightarrow{LPO} + \Pi_1^0 \overrightarrow{WFT}$; and (c) Δ_0^1 -preservingly in $\overrightarrow{EL}_0 + \overrightarrow{LPO} + \Pi_1^0 \overrightarrow{AC!}^{00}$.

PROOF. (1) By 4.3(1) with n = 1, $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM is Π_2^0 -preservingly interpretable in $\mathbf{EL}_0^- + \mathsf{MP}$. The latter is Π_∞^0 -preservingly interpretable in \mathbf{EL}_0^- by 4.13(1) and 4.18 with n = 0. For (b) use additionally 4.3(2)(iii) with n = 1 and 4.16(ii)(b) with n = k = 0, where we can easily see $\mathbf{EL}_0^- + \Delta_0^0 - \mathsf{AC}^{00} \vdash \Sigma_1^0$ -Bdg.

(2) (a) $\mathbf{EL}_0^- + \mathcal{L}_F - \mathbf{LEM} + \Sigma_1^0 - \mathbf{Ind} = \mathbf{EL}_0^- + \mathcal{L}_F - \mathbf{LEM} + \Pi_1^0 - \mathbf{Ind}$ is Π_1^0 -preservingly interpretable in $\mathbf{EL}_0^- + \Pi_1^0 - \mathbf{Ind}$ by 4.3(1)(2)(i) with n = 0, and by 2.29(2) further in $\mathbf{EL}_0^- + \Delta_0^0 - \mathbf{BI}_D$.

(b) By 4.3(1)(2)(ii) with n = 1, $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM+ Σ_1^0 -Ind is Π_2^0 -preservingly interpretable in $\mathbf{EL}_0^- + \mathsf{MP} + \Sigma_1^0$ -Ind. The latter is Π_∞^0 -preservingly interpretable in $\mathbf{EL}_0^- + \Sigma_1^0$ -Ind by 4.13(1), 4.16(ii)(a) with n = k = 0 and 4.18 with n = 0, and hence in $\mathbf{EL}_0^- + \Delta_0^0$ -FT by 2.33.

(3) (a) By 4.3(1)(2)(i) with n = 1, $\mathbf{EL}_0^- + \mathcal{L}_F$ -LEM+ Π_2^0 -Ind is Π_2^0 -preservingly interpretable in $\mathbf{EL}_0^- + \mathsf{MP} + \Pi_2^0$ -Ind, and, by 4.13(1), 4.16(ii)(a) with n = k = 0 and 4.18, further in $\mathbf{EL}_0^- + \Pi_2^0$ -Ind. The latter is included in $\mathbf{EL}_0^- + \Pi_2^0$ -DC!⁰ by 2.16(3)(i), and in $\mathbf{EL}_0^- + \Pi_1^0$ -DC!¹ by 2.16(5) with $\mathcal{C} \equiv \Delta_0^0$ and 2.16(2)(v).

(b) By 4.3(1)(2)(ii) with n = 2, $\mathbf{EL}_0^- + \mathcal{L}_F^- \mathsf{LEM} + \Sigma_2^0$ -Ind is Π_3^0 -preservingly interpretable in $\mathbf{EL}_0^- + \Sigma_2^0$ -DNE $+ \Sigma_2^0$ -Ind and further in $\mathbf{EL}_0^- + \mathsf{LPO} + \Sigma_2^0$ -Ind by 4.13(1), 4.16(ii)(a) with (n, k) = (1, 0) and 4.18 with n = 1.

(4) (a)(b)(c) follow from 4.9(i)(ii)(iii), respectively, since $\mathbf{EL}_0^- + \mathsf{MP} + \Sigma_1^0 - \mathsf{BI}_D$ is interpretable Π_∞^0 -preservingly in $\mathbf{EL}_0^- + \Sigma_1^0 - \mathsf{BI}_D$ by 4.13(1), 4.16(ii)(f) with n = k = 0and 4.18 with n = 0; and so is $\mathbf{EL}_0^- + \Sigma_2^0 - \mathsf{DNE} + \Pi_1^0 - \mathsf{WFT}$ in $\mathbf{EL}_0^- + \mathsf{LPO} + \Pi_1^0 - \mathsf{WFT}$ by 4.13(1), 4.16(i) with n = 1 and 4.18 with n = 1.

With the hierarchy of $\Lambda_{n,m}^i$'s from 3.60, we can hierarchize the interpretability as in 4.20 below. For (e), $(\Pi_{n+2+m}^0)^N \subseteq \Lambda_{n+1,m}^1$ under Σ_{n+1}^0 -DNE and if m > 0 by recursive indices we can interpret $\Lambda_{n+1,m}^1$ in $\Lambda_{n+1,m}^0$. COROLLARY 4.20. Let k < n or k = n+1. We can interpret \prod_{n+2}^{0} -preservingly

- (a) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM *in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM; (b) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Σ_{k}^{0} -Bdg *in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM+ Σ_{k}^{0} -Bdg; (c) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Σ_{k}^{0} -Ind *in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM+ Σ_{k}^{0} -Ind; (d) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Π_{n+2}^{0} -Ind *in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM+ Π_{n+2}^{0} -Ind; (e) $\mathbf{EL}_{0}^{-}+\mathcal{L}_{F}$ -LEM+ Π_{n+m+3}^{0} -Ind *in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM+ $\Lambda_{n+1,m+1}^{1}$ -Ind *and hence in* $\mathbf{EL}_{0}^{-}+\Sigma_{n}^{0}$ -LEM+ $\Lambda_{n+1,m+1}^{0}$ -Ind.

In the first order setting, by letting $\exists u P[x, u]$ be universal Σ_{n+1} , we obtain the analogous Π_{n+2} -preserving interpretability results where $i\Delta_0 ex := iQex + \Delta_0$ -Ind: (a) $I\Delta_0 ex + \Sigma_{n+1}$ -Bdg in $i\Delta_0 ex + \Sigma_{n+1}$ -Bdg $+ \Sigma_n$ -LEM; (b) $I\Sigma_{n+1}$ in $i\Sigma_{n+1} + \Sigma_n$ -LEM; and (c) Π_{n+m+2} in $i\Delta_0 ex + (\Lambda^0_{n+1,m} \cap \mathcal{L}_1)$ -Ind $+\Sigma_n$ -LEM; and (d) PA in HA+ Σ_n -LEM. However, this does not work for $I\Delta_0 ex$ in $i\Delta_0 ex + \Sigma_n$ -LEM, since Σ_1 -Bdg seems necessary for universal formula.

We can go further to stronger theories, where Π_m^1 -TI₀ := ACA₀+ Π_m^1 -TI and $\Pi_{\infty}^{1} - \mathbf{T}\mathbf{I}_{0} :\equiv \bigcup_{m} \Pi_{m}^{1} - \mathbf{T}\mathbf{I}_{0}.$

THEOREM 4.21. Π_{m+1}^1 - TI_0 is Π_2^0 -preservingly interpretable in $\mathbf{EL}_0^- + \Lambda_{1,m}^1$ - Bl_D . So is Π^1_{∞} -**TI**₀ in **EL**⁻₀+ $\mathcal{L}_{\rm F}$ -Bl_D.

PROOF. By Π_1^1 normal form, we may consider $(\Pi_{m+1}^1)^N \subseteq \Lambda_{1,m}^1$ over $\mathbf{EL}_0^- + \mathsf{MP}$. Thus, by 4.3(1)(2)(iv) with n = 1 and 4.8(2), $\Pi_{m+1}^1 - \mathbf{TI}_0$ is Π_2^0 -preservingly interpretable in $\mathbf{EL}_0^- + \mathsf{MP} + \Lambda_{1,m}^1 - \mathsf{BI}_D$. The latter is interpretable Π_∞^0 -preservingly in $\mathbf{EL}_{0}^{-}+\Lambda_{1,m}^{1}-\mathsf{BI}_{D}$ by 4.13(1), 4.16(ii)(f) with $\mathcal{C} \equiv \Lambda_{1,m}^{1}$ and 4.18 with n = 0. \dashv

Actually Coquand and Hofmann [11] mentioned the combination of their interpretation of $I\Sigma_1$ into $i\Sigma_1$ further with the modified realizability of $i\Sigma_1$ in **PRA**^{ω}, the higher order version of primitive recursive arithmetic, as an alternative proof of Parson's Theorem: the Π_2^0 conservation of $I\Sigma_1$ over **PRA**. However we need cut elimination to reduce \mathbf{PRA}^{ω} to \mathbf{PRA}^{20} This kind of longer combination (of negative, forcing and realizability interpretations in this order) is called *making-a*detour method in Section 5.4.

§5. Final Remarks.

5.1. Summary of results. Corollary 5.2 below is by 3.43 and 3.53, with 2.29(1). [2] gave a Π_1^1 -preserving interpretation of WKL₀ in RCA₀, which also Π_1^1 preservingly interprets WKL^{*}₀ in RCA^{*}₀ (where we need to show that Σ_1^0 -Bdg is $\frac{1}{2}$ -forced by formalizing the argument of [46, 4.5 Lemma]). By recursive indices we can Δ_0^1 -preservingly interpret **RCA**₀ in **I** Σ_1 and **RCA**₀^{*} in **B** Σ_1 **ex**. Moreover **PRA** \vdash Con(**B** Σ_1 **ex**) and **I** Σ_1 is Π_2 reducible to **PRA** (see Section 5.2). Hence the combinations in 5.2(1) are finitistically guaranteed and those in 5.2(2) are finitistically justifiable.

²⁰Generally, there is no interpretation in the sense of f.n.3 of a finitely axiomatizable T_1 , like $\mathbf{I}\Sigma_1$, in reflexive T_2 (namely T_2 proves the consistency of any finite fragment of T_2) of the same consistency strength, since otherwise $Con(T_1)$ follows from the consistency of a finite fragment of T_2 , which T_2 proves. **PRA** is reflexive by **PRA** $\equiv_{\Pi_2^0} \mathbf{I} \Sigma_1 \vdash \operatorname{Con}(\mathbf{B} \Sigma_1(\mathcal{E}^n))$; see Section 5.2.

DEFINITION 5.1 (functionally realizable analysis \mathbf{FR}_0^* , \mathbf{FR}_0 , \mathbf{FR}_m^+ , \mathbf{FR}_m^{++}).

$$\begin{split} \mathbf{FR}_{0}^{-} &:= \mathbf{EL}_{0}^{-} + \mathsf{MP} + \mathcal{L}_{F} \{-\mathsf{CB}^{1}, -\mathsf{CC}!^{1}\}; \\ \mathbf{FR}_{0}^{*} &:= \mathbf{FR}_{0}^{-} + \mathcal{L}_{F} \{-\mathsf{AC}^{00}, -\mathsf{AC}^{01}, -\mathsf{WFT}\}; \\ \mathbf{FR}_{0} &:= \mathbf{FR}_{0}^{*} + \Sigma_{1}^{0} - \mathsf{DC}^{1} + \Sigma_{2}^{0} \{-\mathsf{Ind}, -\mathsf{DC}^{0}\} + \Pi_{1}^{0} - \mathsf{BI} + \mathcal{L}_{F} - \mathsf{FT}; \\ \mathbf{FR}_{m}^{+} &:= \mathbf{FR}_{0} + \Theta_{m}^{1} \{-\mathsf{Ind}, -\mathsf{DC}^{0}, -\mathsf{DC}^{1}\}; \\ \mathbf{FR}_{m}^{++} &:= \mathbf{FR}_{m}^{+} + (\Theta_{m}^{1}, \mathcal{L}_{F}) - \mathsf{BI}_{M} \text{ (cf. 3.60 for the definition of } \Theta_{m}^{1}). \end{split}$$

COROLLARY 5.2. (1) Both $\mathbf{FR}_0^* + \mathcal{L}_F - \mathbf{CC}^1$ and $\mathbf{FR}_0^* + \Sigma_1^0 - \mathbf{GDM}$ are $\Pi_{\infty}^0 - preservingly$ interpretable in \mathbf{WKL}_0^* .

(2) Both $\mathbf{FR}_0 + \mathcal{L}_F - \mathbf{CC}^1$ and $\mathbf{FR}_0 + \Sigma_1^0 - \mathbf{GDM}$ are Π_∞^0 -preservingly interpretable in WKL₀.

Moreover these combinations are optimal in the sense of the hierarchies of Brouwerian axioms and of semi-classical principles: by 4.19(2) with 2.16(2)(i)(3)(i), **EL**₀⁻ together with any of Π_1^0 -Ind, Δ_0^0 -Bl_D, Σ_1^0 -Ind, Δ_0^0 -DC!⁰ and Δ_0^0 -FT interprets **ID**₁ and hence is not provably consistent in **PRA**; by 4.19(3)(4)(a), **EL**₀⁻ with any of Π_2^0 -Ind, Π_2^0 -DC!⁰, Π_1^0 -DC!¹, Σ_1^0 -Bl_D and LPO+ Σ_2^0 -Ind interprets **ID**₂ and hence is not reducible to **PRA**; by 4.19(4) with 2.16(2)(iv), **EL**₀⁻+LPO with any of Π_1^0 -AC!⁰⁰, Π_1^0 -DC!⁰, Δ_0^0 -FT and Π_1^0 -WFT interprets **ACA**₀; as shown in 2.35(2), **EL**₀⁻+LLPO+ Π_1^0 -WC⁰ and **EL**₀⁻+LPO+ Π_1^0 -WC!⁰ are both inconsistent. (See also Section 2.5.5.)

Classically, $\mathbf{CFG} := \mathbf{EL}_0^- + \mathcal{L}_F - \mathbf{LEM} + \Sigma_1^0 \{-AC^{00}, -AC^{01}, -WFT, -WC^0, -WC^1\}$ is finitistically guaranteed, and $\mathbf{CFG} + \Pi_1^0 \{-BI, -Ind\} + \Sigma_1^0 \{-Ind, -DC^0, -DC^1\}$ is finitistically justifiable; and these are optimal, as seen in Section 2.5.4.

Thus we have completed Figures 1 and 2. Moreover 5.2, 3.62, 3.64, and 4.19 with the uses of \mathfrak{g} , yield the below (some pairs in (d) have stronger preserving as 4.19(4)) as Avigad's [2] method preserves Π_{2}^{0} -Ind.

COROLLARY 5.3. The following are, in each case, mutually interpretable Π_2^0 -preservingly:

- (a) $\mathbf{B}\Sigma_1 \mathbf{e}\mathbf{x}, \mathbf{F}\mathbf{R}_0^* + \mathcal{L}_F \mathbf{C}\mathbf{C}^1, \mathbf{F}\mathbf{R}_0^* + \Sigma_1^0 \mathbf{G}\mathsf{D}\mathsf{M}, \mathbf{E}\mathbf{L}_0^* \equiv \mathbf{E}\mathbf{L}_0^- + \Delta_0^0 \mathsf{A}\mathbf{C}^{00} \text{ and } \mathbf{E}\mathbf{L}_0^- + \Sigma_1^0 \mathsf{Bdg};$
- (b) $\mathbf{I}\Sigma_1$, $\mathbf{F}\mathbf{R}_0 + \mathcal{L}_F \mathbf{C}\mathbf{C}^1$, $\mathbf{F}\mathbf{R}_0 + \Sigma_1^0 \mathbf{G}\mathsf{D}\mathsf{M}$, $\mathbf{E}\mathbf{L}_0^- + \Sigma_1^0 \mathsf{Ind}$, $\mathbf{E}\mathbf{L}_0^- + \Delta_0^0 \mathsf{F}\mathsf{T}$, $\mathbf{E}\mathbf{L}_0^- + \Delta_0^0 \mathsf{D}\mathsf{C}^{10}$ and $\mathbf{E}\mathbf{L}_0^- + \Delta_0^0 - \mathsf{D}\mathsf{C}^{-1}$;
- (c) $\mathbf{I}\Sigma_2, \mathbf{F}\mathbf{R}_0^+ + \mathcal{L}_F^- \mathsf{CC}^1, \mathbf{F}\mathbf{R}_0^+ + \Sigma_1^0^- \mathsf{GDM}, \mathbf{E}\mathbf{L}_0^- + \Pi_2^0^- \mathsf{Ind}, \mathbf{E}\mathbf{L}_0^- + \Pi_2^0^- \mathsf{DC}!^0, \mathbf{E}\mathbf{L}_0^- + \Pi_1^0^- \mathsf{DC}!^1$ and $\mathbf{E}\mathbf{L}_0^- + \mathsf{LPO} + \Sigma_2^0^- \mathsf{Ind};$
- (d) \mathbf{ACA}_0 , $\mathbf{FR}_0^{++} + \mathcal{L}_F^{-}\mathsf{CC}^1$, $\mathbf{FR}_0^{++} + \Sigma_1^0 \mathsf{GDM}$, $\mathbf{EL}_0^{-} + \Sigma_1^0 \mathsf{BI}_D$, $\mathbf{EL}_0^{-} + \mathsf{LPO} + \Delta_0^0 \mathsf{FT}$, $\mathbf{EL}_0^{-} + \mathsf{LPO} + \Pi_1^0 - \mathsf{WFT}$ and $\mathbf{EL}_0^{-} + \mathsf{LPO} + \Pi_1^0 - \mathsf{ACI}^{00}$.

Moreover, so are theories in (b) with $\mathbf{EL}_0^- + \Pi_1^0$ -Ind and $\mathbf{EL}_0^- + \Delta_0^0 - \mathsf{Bl}_D$ but only Π_1^0 -preservingly.

Thus we determined the "interpretability strengths" of fragments of Brouwerian axioms for all Σ_n^0 and Π_n^0 with semi-classical principles below Σ_1^0 -GDM. For classes beyond Π_{∞}^0 , we have the following hierarchized interpretability, since Avigad's [2] preserves also $\Xi_{1,m}$ -Ind, which is interpreted in $I\Sigma_{m+2}$ by recursive indices.

COROLLARY 5.4. The following are, in each case, mutually interpretable Π_2^0 preservingly:

- (a) $\mathbf{I}\Sigma_{m+2}$, $\mathbf{F}\mathbf{R}_{m}^{+} + \mathcal{L}_{F}\text{-}\mathsf{C}\mathsf{C}^{1}$, $\mathbf{F}\mathbf{R}_{m}^{+} + \Sigma_{1}^{0}\text{-}\mathsf{G}\mathsf{D}\mathsf{M}$, $\mathbf{E}\mathbf{L}_{0}^{-} + \Lambda_{1,m}^{0}\text{-}\mathsf{Ind}$ and $\mathbf{E}\mathbf{L}_{0}^{-} + \Lambda_{1,m}^{0}\text{-}\mathsf{D}\mathsf{C}!^{i}$; (b) $\Pi_{m+1}^{1}\text{-}\mathbf{T}\mathbf{I}_{0} :\equiv \mathbf{A}\mathbf{C}\mathbf{A}_{0} + \Pi_{m+1}^{1}\text{-}\mathsf{T}\mathsf{I}$, $\mathbf{F}\mathbf{R}_{m+1}^{++} + \mathcal{L}_{F}\text{-}\mathsf{C}\mathsf{C}^{1}$, $\mathbf{F}\mathbf{R}_{m+1}^{++} + \Sigma_{1}^{0}\text{-}\mathsf{G}\mathsf{D}\mathsf{M}$ and and $\mathbf{EL}_{0}^{-}+\Lambda_{1}^{1}-\mathsf{Bl}_{D};$
- (c) Π_{m+1}^{1} -**TI**₀+ Π_{n+1}^{1} -Ind, **FR**_{m+1}⁺⁺+**FR**_{n+1}⁺+ \mathcal{L}_{F} -CC¹, **FR**_{m+1}⁺⁺+**FR**_{n+1}⁺+ Σ_{1}^{0} -GDM and $\mathbf{EL}_{0}^{n}+\Lambda_{1\ m}^{1}-\mathsf{Bl}_{D}+\Lambda_{1.n}^{1}-\mathsf{Ind};$
- (d) Π_{-}^{1} Π_{0}^{1} $\mathbf{FR}_{\infty}^{++} + \mathcal{L}_{F}^{-}$ \mathbf{CC}^{1} $\mathbf{FR}_{\infty}^{++} + \Sigma_{1}^{0}^{-}$ \mathbf{GDM} and $\mathbf{EL}_{0}^{-} + \mathcal{L}_{F}^{-}$ \mathbf{Bl}_{D} .

Note that ACA₀ is not interpretable in PA \equiv I Σ_{∞} by f.n.20. Π_{∞}^{1} -TI₀ is known to be mutually interpretable with ID_1 , **KP** and **CZF**, theories of *generalized predicativity*. (The interpretations of Π_{∞}^1 -TI₀ in ID₁ and of ID₁ in KP can be found in [42, Section 8]; that of ID_1 in Π^1_{∞} - TI_0 is in [34, Lemma 3.2]; that of **KP** in ID_1 is in [49] or [17, Section 9.2]; that of KP in CZF is in [3]; and that of CZF in KP is in [33, Theorem 7.1].) As $\mathbf{FR}_{\infty}^{++}$ contains all the Brouwerian axioms formulated in $\mathcal{L}_{\rm F}$ except $\mathcal{L}_{\rm F}$ -CC^{*i*} (see f.n.12), this could be "a marriage of Intuitionism and generalized predicativity". However, these are beyond predicativity in Feferman's [15] sense, as Π_2^1 -TI₀ \vdash Con(ATR₀) (cf. [45, Exercise VII.2.32]). With bar induction restricted to Θ_1^1 , (c) with $(m, n) = (0, \infty)$ is in the predicative bound, or "a marriage of Intuitionism and predicativism", as Π_1^1 -**TI**₀ = Σ_1^1 -**DC**₀ by [45, Theorem VIII.5.12].

For the semi-Russian axioms, 3.45 yields the first interpretability below, where by coding functions as recursive indices we interpret $\mathbf{EL}_0^- + \mathcal{L}_F^- + \mathbf{L}_F^- + \mathbf$ are proved in Corollaries 5.3 and 5.4(a). NCT is consistent with $\mathcal{L}_{F}\text{-}\mathsf{CC}^0$ which contradicts CT (see f.n.8). Thus, CT is strictly stronger than NCT and than Veldman's KA by 4.5.

DEFINITION 5.5 (semi-Russian analysis \mathbf{SR}_0^- , \mathbf{SR}_0^+ , \mathbf{SR}_0 , \mathbf{SR}_m^+).

$$\begin{split} \mathbf{SR}_{0}^{-} &:= \mathbf{EL}_{0}^{-} + \mathsf{NCT} + \mathsf{MP} + \mathcal{L}_{F} - \mathsf{CC}^{1}; \\ \mathbf{SR}_{0}^{*} &:= \mathbf{SR}_{0}^{-} + \mathcal{L}_{F} \{-\mathsf{AC}^{00}, -\mathsf{AC}^{01}\}; \\ \mathbf{SR}_{0} &:= \mathbf{SR}_{0}^{*} + \Sigma_{1}^{0} - \mathsf{DC}^{1} + \Sigma_{2}^{0} \{-\mathsf{Ind}, -\mathsf{DC}^{0}\} + \Pi_{1}^{0} - \mathsf{BI}; \\ \mathbf{SR}_{m}^{+} &:= \mathbf{SR}_{0} + \Theta_{m}^{1} \{-\mathsf{Ind}, -\mathsf{DC}^{0}, -\mathsf{DC}^{1}\}. \end{split}$$

COROLLARY 5.6. \mathbf{SR}_0^* , \mathbf{SR}_0 and \mathbf{SR}_m^+ are interpretable in $\mathbf{B}\Sigma_1\mathbf{e}\mathbf{x}$, $\mathbf{I}\Sigma_1$ and $\mathbf{I}\Sigma_{m+2}$, resp., Π^0_{∞} -preservingly.

5.2. Supplement: $I\Sigma_1 \vdash Con(B\Sigma_1 ex)$ as well as $I\Sigma_1 \equiv_{\Pi_2^0} PRA$ and $I\Sigma_2 \vdash Con(I\Sigma_1)$. To conclude that theories interpretable in WKL_0^* are finitistically guaranteed, we used a folklore result $I\Sigma_1 \vdash Con(B\Sigma_1 ex)$ (and hence $PRA \vdash Con(B\Sigma_1 ex)$ by Π_2 reducibility). I $\Sigma_1 \vdash Con(EFA)$ and the Π_2^0 conservation of $B\Sigma_1 ex$ over EFA are stated in [45, II.8.11, X.4.2], and the version without exp is proved in [18, Chapter IV, Section 4(b)]. As we cannot find a reference for the folklore, we briefly sketch a proof with some byproducts.

We formalize $B\Sigma_1 ex$ by the following rules on the base of one-sided sequent calculus (in which \neg is a syntactical operation) for classical logic, where C is Δ_0^0 and where *z* is an eigenvariable in (ind).

$$\frac{(C \text{ is an axiom of } \mathbf{iQex})}{\Gamma, C} \text{ (axiom)} \quad \frac{\Gamma, \neg C[z], C[z+1]}{\Gamma, \neg C[0], C[t]} \text{ (ind)}$$
$$\frac{\Gamma, (\forall x < t) \exists y C[x, y]}{\Gamma, \exists u (\forall x < t) (\exists y < u) C[x, y]} \text{ (bdg)}$$

By the standard partial cut elimination, we may assume that all cut formulae are Σ_1^0 , Π_1^0 or Δ_0^0 . For a (one-sided) sequent Γ , we write $\Gamma^{(n,m)}$ for the result of replacing all the unbounded quantifiers $\forall x$ and $\exists y$ by ($\forall x < n$) and ($\exists y < m$), respectively, in Γ . By induction on derivation with free variables at most \vec{x} , we can show that there is an elementary function f with $\forall n (\forall \vec{x} < n) (\bigvee \Gamma^{(n,f(n))})$. Thus, if $\mathbf{B}\Sigma_1 \mathbf{e}\mathbf{x} \vdash \bot$ then \bot .

While cut elimination increases the size of proofs by superexponential, it can be executed in $\mathbf{I}\Sigma_1$. Indices of elementary function can also be dealt with in $\mathbf{I}\Sigma_1$, and the required *f* is constructed elementarily in the sense of indices from derivation. As $\forall n (\forall \vec{x} < n) (\bigvee \Gamma^{(n,f(n))})$ is Π_1^0 , we can formalize this argument in $\mathbf{I}\Sigma_1$.

Since \mathcal{E}^n indices can also be dealt with, $\mathbf{I}\Sigma_1$ proves the consistency of $\mathbf{B}\Sigma_1(\mathcal{E}^n)$, defined similarly with function symbols for \mathcal{E}^n (cf. f.n.13). If we allow *C* to be Σ_1^0 in (ind), such *f*'s can be primitive recursive, whose indices can be used in $\mathbf{I}\Sigma_2$. Thus $\mathbf{I}\Sigma_1$ is reducible to **PRA** over Π_2 , and consistent provably in $\mathbf{I}\Sigma_2$.

It is worth mentioning that, by cut elimination, we can easily show the equivalence between first-order formulation of **PRA** and quantifier-free formulation of **PRA**: proving exactly same quantifier-free formulae with free variables. Tait's [47] identification of Hilbert's Finitism is with the latter, rather than the former.

Notice that this subsection is the only part in which we use cut elimination method, and that the results do not survive for ultrafinitism mentioned in Section 1.8 (but survive for those accepting \mathcal{E}^4 from f.n.13). Actually, it is known [18, Chapter V, 5.29 Corollary] that **B** Σ_1 **ex** cannot prove even the consistency of Robinson Arithmetic **Q**, and hence nor of the intuitionistic variant. Thus *ultrafinitistically guaranteed* parts must be even weaker.

It is interesting that forcing and realizability, which are sometimes seen as model construction methods, require only weaker meta-theories than cut elimination, the central technique in proof theory. For, it has been considered that proof theoretic arguments require weaker meta-theories than model theoretic ones.

5.3. Further problems.

- Strength of c-WFT: 4.8(1) actually shows that c-WFT, a restriction of WFT to cbars (B[u]'s of the form $\forall v(\beta(u*v) = 0)$), with $\mathbf{EL}_0^- + \Sigma_2^0$ -DNE, interprets ACA₀. Can LPO replace Σ_2^0 -DNE? c-WFT has a particular significance [6, 8], and is known to be strictly between Δ_0^0 -WFT and Π_1^0 -WFT (where the border lies; Fig. 2).
- *Hierarchy of* WWFT *and* LPO: In the constructive context, weak weak König's lemma investigated in, e.g., the first author [27], should be called *weak weak fan theorem* C-WWFT, since it is a weakened version of C-WFT rather than of C-WKL. What is the strength of C-WWFT+LPO, especially for $C \equiv \Pi_1^0$?

- $\begin{array}{l} \Pi_3^0 \ \ conservation \ of \ \ \Delta_0^0\mbox{-}FT: \ Whereas \ 4.19(4)(b) \ \ asserts \ the \ \ \Pi_3^0 \ \ conservation \ of \ \ EL_0^- + \mathcal{L}_F\mbox{-}LEM + \Pi_1^0\mbox{-}WFT \ \ over \ \ EL_0^- + \ LPO + \Pi_1^0\mbox{-}WFT, \ (a) \ \ asserts \ \ similar \ \ but \ \ only \ \ \Pi_2^0 \ one \ \ for \ \ \Delta_0^0\mbox{-}FT. \ \ Can \ it \ be \ enhanced \ to \ \ \Pi_3^0? \end{array}$
- *Effect of* WLPO: We classified the axioms of Intuitionistic Mathematics into the three categories, finitistically non-justifiable, justifiable and guaranteed ones, in the presence of any semi-classical principle beyond LPO or below Σ_1^0 -GDM. Among those in the gap is WLPO $\equiv \Pi_1^0$ -LEM. How is the classification in the presence of it? LPO seems essential in the lower bound proofs (i.e., 4.7(2), 4.12(3) and 2.35(2)(ii)).
- *Effect of Baire's category theorem*: It is mentioned in Section 1.5 that the effect of the semi-classical principle LLPO is of our special interest because of its similar status as WKL, which plays a central role in Simpson's "partial realizations of Hilbert's Program". Simpson [44] also mentioned the role of *Baire's category theorem* (BCT).²¹ What is to BCT that LLPO is to WKL? And how is the effect of it in the sense of last paragraph?

5.4. Related works.

Similar investigations in set theory. While we considered the axioms in the language $\mathcal{L}_{\rm F}$, the authors are preparing an article [30] on the same questions in the language of set theory. The abstract treatment in Section 3.2 will be helpful. The axiom of choice along functions can now be formulated without twist, and it is natural to consider also some set theoretic principles, e.g., replacement, collection, subset collection, extensionality and regularity or foundation. Whereas the first two correspond to unique and non-unique axioms of choice, respectively, the others seem specific to set theory. As we want to have ω and to stay within the strength of **PRA**, we shall consider "weak weak" set theory in the sense of the second author [37].

Independence of negated premise. Our use of realizability allowed us to add Markov's principle MP to the upper bound results, for the realizing system **CDL** was untyped. With typed systems we can add *independence of negated premise*

$$(C-\mathsf{INP}): (\neg A \to \exists x B[x]) \to \exists x (\neg A \to B[x]) \text{ for } A \text{ from } C$$

instead, from which follows Vesley's [55] alternative formalization of creative subject mentioned in f.n.14. In this way, we could have a marriage of "subjective Intuitionism" and Hilbert's Finitism. Ishihara and the first author [22] used a translation * for INP-rule in the same sense as Friedman's *A*-translation is for MP-rule. Following the way from *A*-translation to Coquand–Hofmann forcing (cf. Section 4.2), we can define, from *, a forcing interpreting *C*-INP for reasonable *C*. Avigad's forcing from [3] can be seen as such an interpretation.

Constructive reverse mathematics based on our base theories. In this article, we have introduced theories \mathbf{EL}_0^- , \mathbf{EL}_0^+ , \mathbf{EL}_0 and \mathbf{EL} , which are intended to be base

²¹A finitistic consistency proof of BCT had not, however, been given until it was given by Avigad [2] almost a decade later.

theories of constructive reverse mathematics. During unusually delayed publishing procedure of this article, the authors have conducted some studies based on these base theories, e.g., [29] and [40].

Complexity of Kleene's second model. In the context of EL, Kleene's second model \mathfrak{k} can be seen as a definable extension, as the systems are not sensitive to the complexity below arithmetic Δ_0^1 . However, if the system is sensitive (like those we considered), it cannot be seen so, since the atomic formulae $(\alpha | \beta) \downarrow$ and $\alpha = \beta | \gamma$ are not in the base complexity. Recently Jäger, Rosebrock and the second author [23] makes use of this unusual complexity, to separate: enumerable by operation; being the domain of an operation; and being the image of an operation. They are equivalent if we interpret 'operation' as 'partial recursive function'.

Making-a-detour method. We used realizability interpretations (as upper bound proofs) to embed intuitionistic systems into classical WKL_0^* and WKL_0 , and a combination of negative and forcing interpretations (as lower bound proofs) to embed classical ones into intuitionistic ones. The composition of both the directions results in an interpretation of classical ones in classical ones, of the same kind as that the second author [43] (with Zumbrunnen) and [38] introduced under the name of "making a detour via intuitionistic systems". This is the third kind of such model construction methods *for classical theories* that logical connectives are interpreted non-trivially (see Section 1.2), after Cohen's classical forcing and Krivine's classical realizability. We would like to stress that interpretations between intuitionistic ones could help studies of classical theories. In the next paper [41] in this series, the second author uses the results of the present article and the making-a-detour method, in order to get interpretations among classical theories of second order arithmetic that are standard in classical reverse mathematics. A further paper [42] follows.

Relation to Veldman's work. While we discussed the strength of fan theorem analogously to that of König's lemma in the classical setting at the beginning of Section 3.3.3, the former is not as strong as the latter. The branching $\{x: \gamma(u*\langle x \rangle) = 0\}$ of the fan γ in 4.7(1) has at most t[|u|]+2 elements, and hence is *almost-finite* and *bounded-in-number* (both from [53, Section 10.2]). With these notions Veldman looks for an axiom which is intuitionistically to (weak) fan theorem as König's lemma is classically to weak König's lemma.

Proof theoretic ordinals. In proof theory, the strength of a formal theory is measured by the so-called proof theoretic ordinal. While there are various definitions, the standard definitions 1, 2, 6 from [39, Section 1.2] assign the same ordinal to the theories that are Π_2^0 -equivalent provably in **PRA**. Particularly, ω^{ω} is assigned to the theories in Corollary 5.2(2) and in Corollary 5.3(b) as well as **SR**₀; $\omega^{\omega^{\omega}}$ to those in Corollary 5.3(c) and as well as **SR**₀⁺; and $\varepsilon_0 = \sup\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, ...\}$ to those in Corollary 5.3(d). Although these are well-known facts, the second author [39] has recently given proofs to them. The ordinal assigned to the theories in Corollary 5.2(1) as well as **SR**₀^{*} is said to be sometimes ω^2 and sometimes ω^3 (as well as ω , 0, etc.), depending on which definition of proof theoretic ordinal we take, as discussed in [39, Appendix B]. The ordinal assigned to

 $\mathbf{EL}_0^- + \Pi_1^0$ -Ind and $\mathbf{EL}_0^- + \Pi_1^0$ -BI, the other theories in Corollary 5.3, also depends, as we have only Π_1^0 -equivalence with those in Corollary 5.3(b).

Acknowledgements. The authors are deeply indebted to Timotej Rosebrock for checking and correcting the definition of Kleene's second model \mathfrak{k} , and they are very grateful to François Dorais for having an invaluable discussion with the second author about one of our main methods, van Oosten's Lifschitz-style functional realizability with weak induction. They also thank Lev Gordeev, Danko Ilik, Hajime Ishihara, Dick de Jongh, Tatsuji Kawai, Graham Leigh, Stephen Simpson, Wim Veldman and the two anonymous referees for their careful reading and invaluable comments on earlier versions of this article. Their special appreciation goes to Reinhard Kahle for his patience and kind help during the typesetting procedure.

The second author was supported by the John Templeton Foundation during revisions of this article. This publication was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

REFERENCES

[1] Y. AKAMA, S. BERARDI, S. HAYASHI, and U. KOHLENBACH, An arithmetical hierarchy of the law of excluded middle and related principles, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004, IEEE, pp. 192–201.

[2] J. AVIGAD, Formalizing forcing arguments in subsystems of second-order arithmetic. Annals of Pure and Applied Logic, vol. 82 (1996), no. 2, pp. 165–191.

[3] ——, Interpreting classical theories in constructive ones, this JOURNAL, vol. 65 (2000), no. 4, pp. 1785–1812.

[4] J. AVIGAD and S. FEFERMAN, *Gödel's functional ("Dialectica") interpretation*, *The Handbook of Proof Theory* (S. Buss, editor), North-Holland, 1999, pp. 337–405.

[5] M. J. BEESON, Foundations of Constructive Mathematics, Springer, 1985.

[6] J. BERGER, *The logical strength of the uniform continuity theorem*, *Logical Approaches to Computational Barriers, CiE 2006* (A. Beckmann, U. Berger, B. Löwe, and J. V. Tucker, editors), Lecture Notes in Computer Science, Springer, 2006, pp. 35–39.

[7] ——, A separation result for varieties of Brouwer's fan theorem, **Proceedings of the 10th Asian** Logic Conference (T. Arai, J. Brendle, C. T. Chong, R. Downey, Q. Feng, H. Kikyo, and H. Ono, editors), World Scientific, 2010, pp. 85–92.

[8] J. BERGER and D. BRIDGES, A fan-theoretic equivalent of the antithesis of Specker's theorem. Indagationes Mathematicae, vol. 18 (2007), no. 2, pp. 195–202.

[9] D. BRIDGES and F. RICHMAN, *Varieties of Constructive Mathematics*, Cambridge University Press, 1987.

[10] W. BURR, Fragments of Heyting arithmetic, this JOURNAL, vol. 65 (2000), no. 3, pp. 1223–1240.

[11] T. COQUAND and M. HOFMANN, A new method for establishing conservativity of classical systems over their intuitionistic versions. Mathematical Structures in Computer Science, vol. 9 (1999), no. 4, pp. 323–333.

[12] H. DIENER and I. LOEB, Sequences of real functions on [0, 1] in constructive reverse mathematics. *Annals of Pure and Applied Logic*, vol. 157 (2009), no. 1, pp. 50–61.

[13] F. G. DORAIS, Classical consequences of continuous choice principles from intuitionistic analysis. Notre Dame Journal of Fromal Logic, vol. 55 (2014), no. 1, pp. 25–39.

[14] M. DUMMETT, *Elements of Intuitionism*, Clarendon Press, 2000.

[15] S. FEFERMAN, Systems of predicative analysis, this JOURNAL, vol. 29 (1964), no. 1, pp. 1–30.

TAKAKO NEMOTO AND SATO KENTARO

[16] ———, Recursion theory and set theory: A marriage of convenience, Generalized Recursion Theory II (J. Fenstad, R. Gandy, and G. Sacks, editors), Elsevier, 1978, pp. 55–90.

[17] K. FUJIMOTO, Truths, inductive definitions, and Kripke-Platek systems over set theory, this JOURNAL, vol. 83 (2018), no. 3, pp. 868–898.

[18] P. HAJEK and P. PUDLÁK, *Metamathematics of First-Order Arithmetic*, Springer, 1998.

[19] H. ISHIHARA, Constructive reverse mathematics: Compactness properties, From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics (L. Crosilla and P. Schuster, editors), Clarendon Press, 2005, pp. 245–266.

[20] ——, *Reverse mathematics in Bishop's constructive mathematics*. *Philosophia Scientiæ*, vol. CS6 (2006), pp. 43–59.

[21] ———, Weak König's lemma implies Brouwer's fan theorem: A direct proof. Notre Dame Journal of Formal Logic, vol. 47 (2006), no. 2, pp. 249–252.

[22] H. ISHIHARA and T. NEMOTO, A note on the independence of premiss rule. Mathematical Logic Quarterly, vol. 62 (2016), no. 1–2, pp. 72–76.

[23] G. JÄGER, T. ROSEBROCK, and K. SATO, *Truncation and semi-decidability notions in applicative theories*, this JOURNAL, vol. 83 (2018), no. 3, pp. 967–990.

[24] U. KOHLENBACH, Effective bounds from ineffective proofs in analysis: An application of functional interpretation and majorization, this JOURNAL, vol. 57 (1992), no. 4, pp. 1239–1273.

[25] ——, Applied Proof Theory: Proof Interpretations and Their Use in Mathematics, Springer, 2008.

[26] T. NEMOTO, Determinacy of Wadge classes and subsystems of second order arithmetic. Mathematical Logic Quarterly, vol. 55 (2009), no. 2, pp. 154–176.

[27] ———, Weak weak König's lemma in constructive reverse mathematics, **Proceedings of the 10th** Asian Logic Conference (T. Arai, J. Brendle, C. T. Chong, R. Downey, Q. Feng, H. Kikyo, and H. Ono, editors), World Scientific, 2010, pp. 263–270.

[28] — , Finite sets and infinite sets in weak intuitionistic arithmetic. Archive for Mathematical Logic, vol. 59 (2020), no. 5–6, pp. 607–657.

[29] — , A constructive proof of the dense existence of nowhere-differentiable functions in C[0,1]. Computability, vol. 9 (2020), no. 3–4, pp. 315–326.

[30] T. NEMOTO and K. SATO, A Marriage of Brouwer's Intuitionism and Hilbert's Finitism II: Set Theory, in preparation.

[31] J. VAN OOSTEN, Lifschitz' realizability, this JOURNAL, vol. 55 (1990), no. 2, pp. 805-821.

[32] M. RATHJEN, *The realm of ordinal analysis*, *Sets and Proofs* (S. Cooper and J. Truss, editors), Cambridge University Press, 1999, pp. 219–279.

[33] — , *Realizability for constructive Zermelo-Fraenkel set theory*, *Logic Colloquium 2003* (J. Väänänen and V. Stoltenberg-Hansen, editors), Lecture Notes in Logic, vol. 24, Association for Symbolic Logic, 2006, pp. 442–471.

[34] ———, Constructive Zermelo–Fraenkel set theory and the limited principle of omniscience. Annals of Pure and Applied Logic, vol. 165 (2014), no. 2, pp. 563–572.

[35] C. RÜEDE, Transfinite dependent choice and ω -model reflection, this JOURNAL, vol. 67 (2002), no. 3, pp. 1153–1168.

[36] ——, The proof-theoretic analysis of Σ_1^1 transfinite dependent choice. Annals of Pure and Applied Logic, vol. 122 (2003), no. 1–3, pp. 195–234.

[37] K. SATO, The strength of extensionality I: Weak weak set theories with infinity. Annals of Pure and Applied Logic, vol. 157 (2009), no. 2–3, pp. 234–268.

[38] — , A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T_0 . Annals of Pure and Applied Logic, vol. 166 (2015), no. 7–8, pp. 800–835.

[39] — , A note on predicative ordinal analysis I: Iterated comprehension and transfinite induction, this JOURNAL, vol. 84 (2019), no. 1, pp. 226–265.

[40] ——, Bounded inductive dichotomy: Separation of open and clopen determinacies with finite alternatives in constructive contexts. Archive of Mathematical Logic (2021). https://doi.org/10.1007/s00153-021-00795-2.

[41] — , A new model construction by making a detour via intuitionistic theories III: Ultrafinitistic proofs of conservations of Σ_1^1 collection. Annals of Pure and Applied Logic, to appear.

—, A new model construction by making a detour via intuitionistic theories IV: A closer [42] connection between KP and BI, submitted.

[43] K. SATO and R. ZUMBRUNNEN, A new model construction by making a detour via intuitionistic theories I: Operational set theory without choice is Π_1 -equivalent to KP. Annals of Pure and Applied Logic, vol. 166 (2015), no. 2, pp. 121-186.

[44] S. G. SIMPSON, Partial realizations of Hilbert's Program, this JOURNAL, vol. 53 (1988), no. 2, pp. 349–363.

-, Subsystems of Second Order Arithmetic, Cambridge University Press, 2009. [45] -

[46] S. G. SIMPSON and R. L. SMITH, Factorization of polynomials and Σ_1^0 induction. Annals of Pure and Applied Logic, vol. 31 (1986), pp. 289-306.

[47] W. W. TAIT, Finitism. The Journal of Philosophy, vol. 78 (1981), no. 9, pp. 524-546.

-, Remarks on finitism, Reflections in the Foundations of Mathematic: Essays in Honor [48] of Solomon Feferman (W. Sieg, R. Sommer, and C. Talcott, editors), Lecture Notes in Logic, vol. 15, Association for Symbolic Logic, 2002, pp. 410-419.

[49] C. TAPP, *Eine direkte Einbettung von* KP ω *in* ID₁, Master's thesis, Diplomarbeit, University of Münster, 1999.

[50] A. S. TROELSTRA and D. VAN DALEN, Constructivism in Mathematics: An Introduction, vol. I, Elsevier, 1988.

[51] --, Constructivism in Mathematics: An Introduction, vol. II, Elsevier, 1988.

[52] W. VELDMAN, Two simple sets that are not positively Borel. Annals of Pure and Applied Logic, vol. 135 (2005), no. 1-3, pp. 151-209.

, Brouwer's Fan Theorem as an axiom and as a contrast to Kleene's Alternative. Archive for [53] -Mathematical Logic, vol. 53 (2014), no. 5, pp. 621-693.

[54] W. VELDMAN and M. BENZEM, Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics. Journal of the London Mathematical Society, Second Series, vol. 47 (1993), no. 2, pp. 193-211.

[55] R. E. VESLEY, A palatable substitute for Kripke schema, Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y. 1968 (A. Kino, J. Myhill, and R. Vesley, editors), Elsevier, 1970, pp. 197-207.

[56] K. F. WEHMEIER, Fragments of HA based on Σ_1 -induction. Archive for Mathematical Logic, vol. 37 (1997), no. 1, pp. 37-49.

DEPARTMENT OF ARCHITECTURAL DESIGN FACULTY OF ENVIRONMENTAL STUDY HIROSHIMA INSTITUTE OF TECHNOLOGY SAEKI-KU MIYAKE 2-1-1 HIROSHIMA 731-5193, JAPAN

E-mail: nemototakako@gmail.com

INSTITUTE OF COMPUTER SCIENCE UNIVERSITÄT BERN NEUBRÜCKSTRASSE 10 BERN 3012, SWITZERLAND

E-mail: ksato.grundlagen@gmail.com