Laser and Particle Beams (2006), 24, 223—230. Printed in the USA.
Copyright © 2006 Cambridge University Press 0263-0346/06 $16.00
DOI: 10.1017/S0263034606060320

Stochastic heating in ultra high intensity laser-plasma
interaction: Theory and PIC code simulations

D. PATIN, E. LEFEBVRE, A. BOURDIER, anD E. D’HUMIERES
Commissariat I’Energie Atomique, DAM-Lle de France, Département de Physique Théorique et Appliquée,

Bruyéres-le-Chatel, France

(RECEIVED 28 October 2005; AcCEPTED 22 December 2005)

Abstract

In the first part, the theoretical model of the stochastic heating effect is presented briefly. Then, a numerical resolution
of the Hamilton equations highlights the threshold of the stochastic effect. Finally, Particle-In-Cell (PIC) code
simulations results, for experimentally relevant parameters, are presented in order to confirm the acceleration mecha-
nism predicted by the one-particle theoretical model. This paper gives the conditions on the different experimental
parameters in order to have an optimization of the stochastic heating.
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1. INTRODUCTION

A large number of issues remain open in the study of
laser-matter interaction at very high intensities. Recently,
PIC code simulations results published by Tajima et al.
show that the irradiation of very high intensity lasers on
clustered matter leads to a very efficient heating of electrons
(Tajima et al., 2001). They have shown that chaos seems to
be the origin of the strong laser coupling with clusters. The
existence of stochastic heating was recently confirmed
(Bourdier et al., 2005; Sheng et al., 2002, 2004; Bourdier &
Patin, 2005; Patin et al., 2005). Therefore, the issue that we
will address in this paper is the stability of electron motion
in the fields of several waves. We studied this motion in a
high intensity plane wave, perturbed by one or two electro-
magnetic plane waves. The solution of Hamilton-Jacobi
equation is used to identify resonances. Above the Chirikov
threshold, and for electron trajectories with their initial
conditions in the phase-space region where resonances over-
lap, stochastic heating is evidenced by computing single
particle energy. This paper gives new results in the sense
that the two counter propagating waves is not the most
efficient system for the stochastic heating. Then, PIC code
simulations results obtained with the code CALDER are
presented in order to validate the theoretical model for
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experimentally relevant parameters. A significant enhance-
ment of laser absorption is observed for parameters where
stochastic heating is expected. The influence of the plasma
density and the ratio of the amplitude of the two counter
propagating laser pulses on the stochastic effect is evaluated.

2. THEORETICAL MODEL FOR THE ONSET
OF STOCHASTIC HEATING

2.1. Hamiltonian formulation of the system

A charged particle interacting with two electromagnetic
planes waves is considered. One has a high intensity:

do(it) :aocos(liz)g)w (1)
and the second, perturbing wave, a;, is in the same polar-
ization plane propagating at some angle « with respect to a,
(a; < ay):

a,(F 1) = a,[sinaé, — cosaé, Jsin(w, t — kjz =k, x), (2)
with k, = k, cos a and k, = k, sin a, where k; = |k, |. In the
following we willuse e =m = ¢ = 1.

The Hamiltonian of an electron interacting with both the
do and a; waves is:

H(it,P—y) =1+ [P+ ado(7 1) + d,(71)]> — v> (3)
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We rewrite H as H = Hy + H,, where H, is the integrable
part of the Hamiltonian and H, is the perturbation. In order
to write H in the action-angle variables of H,, we used the
relations (Bourdier et al., 2005; Bourdier & Patin, 2005;
Patin er al., 2005; Rax, 1992):

x=0+ - sin(¢ + ¢), 4)
PJ‘ . az .
e gy sin(¢ + @) — 8P _E) sin(2(¢ + @),
(5)
P, . a2 _
1= —¢ - P—E) asin(¢p + ¢) — 8P _E) sin(2(¢ + @),
(6)
p. =P, +acos(¢p+ ¢), (7)
P, 2
p.= P - P_E acos(¢p + @) — ) cos(2(¢ + @),
®)
P, a?
y=E- P_E acos(¢p + ¢) — ) cos(2(¢ + @),
©)

where p, (resp. p.) is the normalized momentum along the
x-axes (resp. z-axes), and H, expressed in terms of the action
angle variables (P, P,, E, 6, ¢, ) of H, (Rax, 1992).
We can notice that P, = (p,), P,=(p.) and E = (y).
One has:

2

a
Hy(P,,PLE)=1+ 3‘) + P2+ p2—E2 (10)

Neglecting the a? term:
H\(P.,P.E.0,0,¢)
:alEVNCOS[kII¢+kL0+wl¢+N(§D+¢)]’ (11)
N

where Vy = Vy(P,, P, E) is the amplitude of the Nth reso-
nant term.

2.2. Resonance condition and stochasticity
threshold

The resonance condition is found by using the standard
perturbation technics (Tajima et al., 2001; Patin et al., 2005;
Rax, 1992):

kP, +k P, —w E—NE-P)=0. (12)
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Fig. 1. Resonance in the (P, P,) plane, ap =2, w; = k; =1 and @ = 77/6.

As Hy = 0, one has:

2
a
E(P,,P) = /1+30+PE+P”2 . (13)

Using this equation and Eq. (12) allows to calculate P,
versus P,. Figure 1 displays the resonance lines for @ = 77/6,
and shows that these lines are quite far from each other in
this case. Chaos will occur when the sum of th half-widths
of two neighboring resonances, AJ, becomes larger than the
distance between them, d. This condition is known as the
Chirikov criterion (Chirikov, 1979):

R = 1 (14)
=—>1.
d

We will show below that the resonance width is weakly
dependant on the angle . Therefore, we expect that chaos
will set in easily if the resonance lines are closer, as is the
case in Figure 2 for @« = 5#/6. In order to prove this
assertion rigorously, we need to calculate the width of the
resonance. Following Rax (1992) and Tabor (1989), the
resonance width is given by:

a|Vyl
AJ =2 .
|kJ2_+ (ky + +2N)|

(15)

We note that AJ depends on « through its sine and cosine
(remembering that k, = k, cos @ and k, = k; sin a). So, the
width of the resonance is not strongly dependent on «.
Remembering that the aim is to have global stochasticity, we
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Fig. 2. Resonance in the (P, P,) plane, ap =2, w; =k; =1 and & = 57/6.

must find conditions such that the Chirikov criterion is
satisfied as widely as possible.

First, we compute the Chirikov criterion parameter in the
{a;w,} space. Figures 3 and 4 display the region in the
{a;w,} space where R > 1. In other words, it is the region
where the Chirikov criterion is satisfied and stochastic heat-
ing should be strong. Figures 3 and 4 are symmetric with
respect to the @ = 7 axis. Furthermore, the Chirikov crite-
rion is satisfied when « is close to 77 and when w is in the
range (Tajima et al., 2001; Bourdier et al., 2005).

It is also interesting to know the wave-intensity threshold
for the stochastic effect. We can know this by plotting the
Chirikov criterion parameter in the {aq;a,} space, for given
values of @ and w;. We can see clearly in Figures 5 and 6 that
there is a threshold in a, for the stochastic heating effect.

2:5 3 35 4
(04

Fig. 4. Zone (view 2) (in the («; w;) space) where the Chirikov criterion is
satisfied for resonances N= —1;N = —2 with P, =0;ap=1and a; = 0.1.

2.3. Numerical resolution of the theoretical model’s
equation

Several numerical results are presented in order to validate
the theoretical hypothesis. First,we compare the particle
energy in two different cases corresponding to an one-wave
case, and a two-wave case. Figure 7 shows the particle
energy versus the time calculated through the Hamiltonian
one-particle model in the one-wave case. Figure 8 is for the
two-wave case. In this last case, the particle has a chaotic
motion, its average energy is higher due to the stochastic
heating. It is also interesting to plot the behavior in the
(py:p-) space. Figures 9 and 10 display the motion in the

Fig. 3. Zone (view 1) (in the (@; w) space) where the Chirikov criterion is
satisfied for resonances N= —1; N = —2 with P, =0; ap =1 and a; = 0.1.
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Fig. 5. Zone (view 1) (in the (ag;a,) space) where the Chirikov criterion is
satisfied for resonances N=—1;N= —2with P, =0; w; =1 and a = 57 /6.
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Fig. 6. Zone (view 2) (in the (ag;a;) space) where the Chirikov criterion is
satisfied for resonances N= —1; N= —2 with P, =0; w; =1 and « = 57/6.

(py; p-) space. In the one-wave case (Fig. 9), the particle is
in one resonance, whereas in Figure 10, the particle can
travel from one resonance to another. Remembering that
P, = {p.), P, = (p.), we notice that the particle fills the
resonance diagram (Fig. 2). Now, we can highlight the
stochastic threshold in intensity by computing the motion in
the (p.;p.) space for two different values of a;.

Figures 11 to 14 are all for two-waves cases. Figures 11
and 13 are for a; = 0.2. Figures 12 and 14 are for a; = 0.3.
The difference is striking, with a very regular motion for the
two-wave case at low perturbing wave intensity, and the
expected chaotic behavior at larger value of a . Itis explained
by Figure 6. Indeed, in one case (a; = 0.2), the Chirikov
criterion is not satisfied and, in the other case (a, = 0.3), the
Chirikov criterion is satisfied. In consequence, the particle
is free to pass from resonance to resonance and can reach
higher energies.
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Fig. 7. Hamiltonian versus time in the one-wave case with ay = 4.02.
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Fig. 8. Hamiltonian versus time in the two-wave case with @ = 57/6, w| =
kl = 1, ap = 4.0 and ap = 0.4.

3. PIC CODE SIMULATIONS

In order to assess the potential relevance of stochastic heat-
ing in realistic situations, we need to compare its impor-
tance with that of other laser-plasma interaction mechanisms.
Particle-In-Cell (PIC) simulations are well suited for such a
comparison. In this section, we use the CALDER code
(Lefebvre et al., 2003; Pommier & Lefebvre, 2003) to
perform these simulations. CALDER is a massively paral-
lel, multi-dimensional, and fully relativistic PIC code. It
self-consistently solves Maxwell and Vlasov equations for
the electromagnetic field and plasma electrons, respec-
tively, and is therefore able to simultaneously model sto-
chastic and collective absorption processes.

3.1. PIC simulation with one particle

Before addressing the interplay between collective and indi-
vidual absorption mechanisms, we first wanted to make sure
that the stochastic behavior was correctly modeled by the
PIC code. We therefore started with simulations including a
very-low-density plasma, with only one particle. Figure 15
displays the particle energy versus time in two cases. The
black curve correspond to the one-wave case. As it is well

px[t]

pz[t]

Fig. 9. Motion in the (p,;p.) space in the one-wave case with ag = 4.02.
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pz[t]

Fig. 10. Motion in the (p,; p.) space in the two-wave case with & = 577/6,
w =k =1,ap=4.0and a; = 04.

known, the energy oscillate in the electromagnetic wave.
The red curve is for the two-wave case. In this case the
energy curve has a chaotic behavior.

The Figures 8 and 15 are of the same type. The differ-
ences come from the fact that in the PIC code simulation
we have a half-plane wave. So there is a discontinuity in
the electromagnetic field; the particle undergoes a kick.
The system is chaotic, as a consequence, a minor change
in the initial conditions or in the value of the electromag-
netic field changes the trajectories. Furthermore, the par-
ticle motion integrators in the PIC code and for the numerical
resolution of Hamilton’s equation are different. So it is not
surprising that the details of the chaotic curves are differ-
ent in Figures 8 and 15. Figure 16 displays the particle
trajectory in the (p,;p.) phase space computed with the
PIC code. Again, the motion is absolutely similar to the
one obtained in Figure 12.

3.2. Influence of the angle between the waves

To assess the relevance of stochastic heating in realistic
situations, we performed a series of two-dimensional-
simulation, where we have a, = 1 (amplitude of the high
intensity wave), a; = 0.1 (amplitude of the perturbing

px|t]
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4

Z|(t
10 20 30 40 50 pzlt]
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Fig. 11. Motion in the (p,;p.) forag =4, w; =1, a = 57/6 and a; = 0.2.
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pzt]

Fig. 12. Motion in the (p,;p.) forag =4, w; =1, a = 57/6 and a; = 0.3.

wave), 7o = 0.60 ps (last of the high intensity wave), 7, =
0.62 ps (last of the perturbing wave), 7, ; = 1 keV (initial
temperature of the electrons), and n = 0.01 n.. (density of the
plasma). Figure 17 displays the evolution of the kinetic
energy of the electrons when a = 57/6, a = 77/6, and @ = 0.
It shows that the highest energy transferred to the electrons
is when a = 577/6.

The energy of the electrons in the one-wave case is due to
the ponderomotive force. In the other two cases, the pon-
deromotive effect still exists, but a new phenomenon takes
place due to the stochastic heating effect. We can conclude
two things. First, the stochastic heating mechanism can be
readily observed with PIC code simulations. Then, the sto-
chastic heating is shown to be more efficient when the
waves are almost, but not exactly, counter propagating.
According to the theoretical model, the Chirikov criterion is
indeed achieved more easily when @ = 57/6.

3.3. Influence of w,

In the next series of two-dimensional-simulations, the param-
eters are ag = 3.922, a; = 0.784, n =10"%n,, 7o =7, = 0.3
ps, and a = 577/6. Figures 18 and 19 show that the gain is
inversely proportional to w;. Indeed, Figures 3 and 4 show

Hit]
50

t
500 1000 1500 2000

Fig. 13. Hamiltonian of the particle versus time for ap =4, w; =1, a =
5a/6 and a; = 0.2.
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Fig. 14. Hamiltonian of the particle versus time for ag =4, w; =1, a =
57/6 and a; = 0.3.

that the Chirikov criterion is less satisfied when w; is
greater. Furthermore, Eq. (15) is inversely proportional with
respect to .

3.4. Influence of ¢ = ay/a, for a given laser energy

The next simulations was performed with three waves, one
with a high intensity and two perturbating waves symmetric
with respect to propagation axis of the intense one. The
physical parameters of the two-dimensional-simulations are
n=10"%n., Na} +2a? =4, w, =1, 7= 7, = 0.62 ps, and
T,=1 keV, where n is the density of the plasma, 7, and 7, are
the length of the two pulses and 7, is the initial temperature
of the electrons. The gain is defined by:

Ek waves. -— Ek wave, f
Gain = ( : -/ ! ’/> % 100, (16)

Ekl wave, f

emps  [wO™

Fig. 15. Kinetic energy as a function of time computed with CALDER for
two sets of parameters (see text).
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Fig. 16. Motion in the (py; p,) using the code CALDER with ag =2, w; =
l,a=manda; =0.1.

where Ek3 \pes. 7 (1€8D. Ek{ \ya0e. ¢) is the kinetic energy of the
particles at the end of the simulation for the three wave case
(resp. one wave case). The kinetic energy of the electrons is
compared to the case when there is only one wave with the
same laser energy (i.e., with an a equal to \a2 + 2a?). The
relative gain and the absolute gain reach a maximum when
the two counterpropagating waves amplitude ratio is 50%
(Table 1). In this case, absorption is increased by more than
one order of magnitude compared to the one-wave case.

3.5. Influence of the density

The simulation parameters used in the simulation are ay =
3.922, a, = 0.888 (two perturbating waves), and 7, = 1 keV.

. 1078
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120 <
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aRe wave

Kinetic energy (J)
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a ] T T ] 1
a i0a ] 300 400 00 &00 oD

Time (fs)

Fig. 17. Kinetic energy versus time in three cases: & = 57/6: red curve;
a = 7r: blue curve; one wave case: green curve.


https://doi.org/10.1017/S0263034606060320

Stochastic heating in ultra high intensity laser-plasma interaction

4
U Kineric energy || o =1lLo=5x/6

oNe wave oase

)
o)

Fig. 18. Kinetic energy of the plasma.

The density is varied from 10™n, to 10~ 'n,. The relative
gain is optimum for n = 5-1072n, (cf. Table 2), but the
absolute laser absorption is highest for n = 10~! n, in the
three waves case. It is interesting to note that the energy
deposited in the plasma is larger in the three waves case at
n=>5-10"2 n, than in the one wave case at n = 10~ ! n,..

4. CONCLUSIONS

The conditions for the onset of stochastic heating was stud-
ied, in this article, within the framework of the Hamiltonian
analysis. Stochastic heating was evidenced by considering
single trajectories and calculating the energy of the charged
particle. Furthermore, PIC code simulations with one parti-
cle highlights a chaotic behavior. PIC code simulations were
also performed to confirm and optimize the occurrence of
stochastic heating in more complex setups. We clearly observe
that the energy deposition in the plasma is better when the

229

1

e 'uuL- [y

ey =3 a=5x/6

Fig. 19. Electron energy distribution.

system is composed of one high intensity wave and one (or
two) perturbing wave. At this time, we confirm some results
of Sheng er al. (2004) and go on for the optimization of this
stochastic effect. Nevertheless, an other criterion must be
found in order to prove the chaotic effect in realistic plasma.
The PIC code results highlight the fact that an optimum, for
the laser to plasma coupling efficiency, seems to exist for
each set of experimental parameter.
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