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Abstract

Leighton’s graph covering theorem states that a pair of finite graphs with isomorphic
universal covers have a common finite cover. We provide a new proof of Leighton’s theorem
that allows generalisations; we prove the corresponding result for graphs with fins. As a
corollary we obtain pattern rigidity for free groups with line patterns, building on the work
of Cashen–Macura and Hagen–Touikan. To illustrate the potential for future applications,
we give a quasi-isometric rigidity result for a family of cyclic doubles of free groups.

2010 Mathematics Subject Classification: 57M10 (Primary); 20E08, 20E05, 20F65
(Secondary)

Leighton’s graph covering theorem states that if X1 and X2 are finite graphs with isomor-
phic universal covers, then X1 and X2 have isomorphic finite covers. The case of k-regular
graphs was first proved by Angluin and Gardener [1] and was soon followed by Leighton’s
proof of the general case [9]. Subsequently, Bass and Kulkarni gave another proof in the
context of studying lattices in the automorphism groups of trees [3]. Walter Neumann revis-
ited both proofs and proved a generalisation for coloured graphs and partial results for what
he called symmetry restricted graphs [13]. Given the ubiquity of group actions on trees, it is
unsurprising that Leighton’s theorem has seen a number of applications [4, 7, 10].

Let Y be a finite graph. Let S be a graph given by a circle subdivided into � edges
e0, . . . , e�−1. Let γ : S→ Y be a morphism of graphs such that γ (ei ) is not equal to γ (ei+1)

with reversed orientation (subscripts considered mod �). Such a map γ is a closed combi-
natorial path with no backtracking, or alternatively an example of an immersion of graphs.
Note that γ is the unique miminal length combinatorial representative of its homotopy class
[γ ], up to reparameterisation. A graph with fins is the compact non-positively curved square
complex X obtained by taking a finite collection of closed combinatorial paths with no
backtracking {γi }ni=1, and taking the mapping cylinder of the map f :⊔n

i=1 Si→ Y , where
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f restricts to γi on Si . Note that there is the natural retraction X→ Y . We will prove the
following generalisation of Leighton’s theorem:

THEOREM 0·1. Let X1 and X2 be compact graphs with fins such that X̃1
∼= X̃2. Then

there exists isomorphic, finite index common covers of X1 and X2.

If our graph has no fins then we recover Leighton’s original theorem. Spiritually, we will
prove Theorem 0·1 by walking the same path that Leighton took in the eighties. The principal
obstacle to proving Leighton style theorems is the absence of a suitable fiber product if
both graphs don’t cover a common base. Beneath all the arithmetic employed in Leighton’s
original proof is a desire to construct something like a fiber product. The key idea in this
paper is that the numerology can be ditched and replaced with arguments involving the Haar
measure. Because the Haar measure exists for all second countable, locally compact groups,
the arguments are extremely flexible and welcoming to generalisation.

0·1. Applications to rigid line patterns in free groups

Let X be a Gromov hyperbolic space. A line pattern in X is a set of equivalence classes
of biinfinite quasi-geodesics up to bounded distance. A quasi-isometry respecting line pat-
terns φ : (X,L)→ (X ′,L′) is quasi-isometry X→ X ′ that induces a bijection between the
equivalence classes of quasi-geodesics L→L′.

Quasi-isometries respecting line patterns were first considered by Schwartz [15] in the
context of line patterns on H

n . The notion of pattern rigidity was introduced in [12], in
order to consider equivariant collections of subspaces up to quasi-isometry. Generalisations
of Schwartz’s result have been given in [5, 11] and Cashen and Macura considered line
patterns in free groups [6], studying the problem in analogy to Whitehead’s algorithm [17].

Let F be a free group and S = {g1, . . . , gn} ⊆ F is finite set of elements of F such that
g p

i �= hgq
j h−1 for 1≤ i < j ≤ n, h ∈ F , and p, q ∈Z− {0}. That is to say that the elements

in S are weakly incommensurable. The line pattern LS generated by S is the equivalence
classes given by the following set of quasi-geodesics:{

h · 〈gi 〉 | h ∈ F, 1≤ i ≤ n
}
.

The line pattern LS is rigid if F admits no cyclic splitting relative to S. See [6] for full
details. If (F,LS) is a free group with line pattern, and F ′ � F is a finite index subgroup,
then F ′ inherits the line pattern LS from F .

The following application, explained to the author by Hagen and Touikan, combines
Theorem 0·1 with previous results to prove quasi-isometric rigidity for free groups with
rigid line patterns:

THEOREM 0·2. Let (F1,LS1) and (F2,LS2) be free groups with rigid line patterns.
Suppose that φ : (F1,LS1)→ (F2,LS2) is quasi-isometry respecting the line patterns. Then
there exist finite index subgroups F ′i � Fi such that there is an isomorphism that respects the
line patterns φ′ : (F ′1,LS1)→ (F ′2,LS2).

Proof. In [6] Cashen and Macura construct a hyperbolic CAT(0) cube complex X with line
pattern L such that there is an action of Fi on (X,L) that is quasi-conjugate to the action
of Fi on (Fi ,LSi ) for i = 1, 2. In general, they remark that X is not necessarily a tree,
which would be the preferable state of affairs. In [8] Hagen and Touikan apply a technique
called panel collapses to show X can be replaced with a tree T . Alternatively, this can be
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achieved using Mosher, Sageev and Whyte’s result about cobounded quasi-actions on bushy
trees [12].

For each equivalence class in L we attach one side of the strip [0, 1] ×R along the
unique geodesic line in the class to obtain a space X̃ . Thus the action of Fi on (T,L)
becomes an action of Fi on X̃ for i = 1, 2. The actions are free and cocompact since they
are quasi-conjugate to the original left action on (Fi ,LSi ). The quotient Xi = X̃/Fi is a
graph with fins. As X1 and X2 are graphs with fins with isomorphic universal covers we
may apply Theorem 0·1. This common finite cover corresponds to finite index subgroups
F ′i � Fi identified by an isomorphism that respects the line patterns.

0·2. Applications to quasi-isometric rigidity

The following example, suggested to the author by Emily Stark, illustrates how
Theorem 0·1 can be used to obtain rigidity results.

THEOREM 0·3. Let Fi be a finitely generated, non-abelian free group for i = 1, 2. Let
wi ∈ Fi be an element such that L{wi } is a rigid line pattern in Fi . Let Gi = Fi ∗〈wi 〉 Fi ,
the amalgamated double of Fi over 〈wi 〉. If G1 is quasi-isometric to G2, then G1 is
commensurable with G2.

Proof. As the cyclic splitting given in the statement is the JSJ-decomposition for Gi , [14,
Theorem 7.1] tells us that there is a quasi-isometry respecting line patterns

φ : (F1,L{w1})−→ (F2,L{w2}).

Hence, as in the proof of Theorem 0·2 both F1 and F2 are the fundamental groups of graphs
with fins X1 and X2 with isomorphic universal covers X̃1

∼= X̃2, such that the preimages of
the fins correspond to the line patterns LSi . Let X̂ be the common finite cover of X1 and
X2 given by Theorem 0·1. We can decompose Xi as a mapping cylinder of single circle
mapping into a graph γi : Si→ Yi so

Xi = Yi  Si × [0, 1]
/ {

(x, 0)∼ γi (x)
}
.

Similarly, X̂ can be decomposed as a mapping cylinder of a finite set of circles mapping into
a graph γ̂ :⊔n

j=1 Ŝ j→ Ŷ , where Ŷ is a finite common cover of Y1 and Y2. So

X̂ = Ŷ
n⊔

j=1

Ŝ j × [0, 1]
/
{(x̂, 0)∼ γ̂ (x̂)}.

A graph of spaces Zi can be constructed for Gi by taking two copies of Xi and identifying
the ends of the cylinder Si × {1} ⊆ Xi and obtaining the double, so Gi can be identified with
π1 Xi . A common finite cover Ẑ of Z1 and Z2 is constructed by similarly taking two copies
of X̂ and identifying the ends of the cylinders

⊔n
j=1 Ŝ j × {1} ⊆ X̂ to again obtain the double.

Since X̂ covers both X1 and X2, it is immediate that Ẑ covers both Z1 and Z2. Therefore
π1 Ẑ is a common finite index subgroup for G1 and G2.

Remark 0·4. Taam and Touikan have proven have proved that a word hyperbolic group
G with JSJ-decomposition containing exclusively rigid vertex groups isomorphic to closed
surface groups is quasi-isometrically rigid [16]. Their result holds for a much wider col-
lection of groups. In particular it can be applied to all groups in the quasi-isometry class.
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Fig. 1. From left to right, a graph with hyperplanes highlighted, the polyhedrons for the graph, and 3
copies of each polyhedron used to construct a degree three cover of the original graph.

We expect that Theorem 0·3 should similarly extend to quasi-isometric rigidity of hyper-
bolic groups G with JSJ-decomposition containing exclusively rigid vertex groups that are
finitely generated, non-abelian free groups.

1. Polyhedron and finite index covers

Let X be a graph with fins. Let Y be the graph underlying X and assume we have fixed
an orientation of each edge in Y . Let H be the set of vertical hyperplanes in X , that is to
say the hyperplanes dual to the edges in Y . Let Ẋ denote the square complex obtained by
subdividing along the vertical hyperplanes.

A star is a square complex P with a distinguished 0-cube p such that P is the cubi-
cal neighbourhood of p. We can obtain stars by taking the closures of the complementary
components X −H . The resulting stars are subcomplexes of Ẋ .

A polyhedron is a star P with an isometric embedding φ : P→ Ẋ such that φ(P) is the
cubical neighborhood in Ẋ of a 0-cube in Y . A face (F, ψ) is a finite tree F that maps iso-
morphically to a vertical hyperplane in X . We say that (F, ψ) is a face of (P, φ) if (F, ψ)
is isomorphic to the restriction of (P, φ) to a subcomplex P ∩ φ−1(�) where � ∈H . Up
to isomorphism, there are only finitely many polyhedrons and faces. Each face is the face of
precisely two polyhedrons, one of the left and one on the right. The polyhedron on the left
[resp. right] is the polyhedron whose image contains the origin vertex [resp. terminal vertex]
of the edge dual to the image of the face. If (P, φ) and (P ′, φ′) are polyhedrons on the left
and right of the face (F, ψ), then the polyhedrons can be glued together along the subcom-
plexes corresponding to F to obtain a new complex P ∪ P ′ that maps into X via φ and φ′.

An n-sheeted cover of X can be constructed by taking n copies of each polyhedron and
face and then choosing a correspondence between the n-copies of a polyhedron on the left
of a face and the n-copies on the right. The polyhedron can then be glued together to obtain
an n-sheeted cover of Ẋ . Reversing the subdivisions along the vertical hyperplanes gives the
cover of X . See Figure 1.

The idea behind the proof of Theorem 0·1 is to replicate this construction on two graphs
with fins simultaneously. This requires first defining an appropriate notion of being a poly-
hedron for two spaces simultaneously and understanding how we might glue them together
appropriately. In this setting we obtain a set of gluing equations that we must solve in order
to construct our cover. We will utilise the Haar measure to find solutions to these equations.
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2. Proof of main theorem

Let X1 and X2 be graphs with fins such that X̃1
∼= X̃2. Let Yi ⊆ Xi be the underlying

graph and r : Xi→ Yi be the natural retraction. Identify X̃1
∼= X̃2 =: X̃ and Ỹ1

∼= Ỹ2 =: Ỹ . Let
pi : X̃→ Xi be the covering map. Let �i = π1(Xi). Let Hi be the set of vertical hyperplanes
in Xi .

Let G =Aut(X̃). Then there is an embedding �i � G as the group of deck transforma-
tions. Note that �i is a uniform free lattice in G. We will assume that G does not invert
hyperplanes. This can be achieved by either subdividing the vertical hyperplanes, or apply-
ing [2, Proposition 6.3] to pass to index 2 subgroups of G, �1, �2. Let X = X̃/G. There
are natural quotient maps qi : Xi→ X . As G does not invert hyperplanes, we can assign
G-invariant orientations to all the hyperplanes in Ỹ , which gives orientations of the vertical
hyperplane Hi . If S is a subset of X̃ , then GS denotes the setwise stabilizer of S, and G(S)

denotes the pointwise stabilizer of S.

Remark 2·1. The space X encodes the information that Leighton refers to as the degree
refinement. Our use more closely resembles Neumann’s use in [13], as the colouring graph.
By giving each vertex, edge and square a unique colour we obtain colourings of X1, X2 and
X̃ . The colouring of X̃ is G-equivariant. In fact, everything in this section works if G is the
full colour preserving automorphism group of a coloured graph with fins with free uniform
lattices �1 and �2.

2·1. Polyhedral pairs

A polyhedral pair is a triple (P, φ1, φ2) where each pair P, φi is a polyhedron for Xi and
the following diagram commutes:

P
φ1 ��

φ2

��

X1

q1

��
X2 q2

�� X .

We will denote a polyhedral pair with boldface: P= (P, φ1, φ2). There are only finitely
many polyhedral pairs for X1 and X2 up to isomorphism. By forgetting either φ1 or φ2

we obtain a polyhedron for either X1 or X2. We say that we obtain such polyhedron by
restricting P to either X1 or X2. See Figure 2 for an illustrated example.

Let P be a polyhedral pair. Let φ̃i : P→ X̃ be some choice of lift. Note that φ̃i is unique up
to post composition by gi ∈ �i . Then a polyhedral pair P is admissible if there exist a g ∈G
such that g ◦ φ̃1 = φ̃2. Note that this does not depend on the initial choice of lifts. Indeed, any
alternative choice of lift is of the form γi ◦ φ1 where γi ∈ �i , so (γ2gγ −1

1 ) ◦ (γ1φ̃1)= γ2φ̃2.
Let P denote the (finite) set of all admissible polyhedral pairs. All polyhedral pairs used in
this paper are admissible.

Remark 2·2. If X̃ is a tree, then all polyhedral pair are admissible. In general, this is not
true.

We can classify admissible polyhedral pairs as follows. Let (P1, φ1) and (P2, φ2) be poly-
hedron for X1 and X2 such that q1 ◦ φ1(P1)= q2 ◦ φ2(P2). Let φ̃i : Pi→ X̃ be a choice of lift
for each i = 1, 2. Let vi be the 0-cube in P̃i := φ̃i(Pi ). Let g ∈G such that g P̃1 = P̃2. Such a
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P X1

X2

X

f2

f1

q2

q1

Fig. 2. A polyhedral pair illustrated.

g exists since q1 ◦ p1(v1)= q2 ◦ p2(v2). Then the admissible polyhedral pairs which restrict
to the polyhedron (Pi , φi) are in one to one correspondence with the elements of Gv1/G(P̃1)

.
Indeed, for each g′ ∈Gv1 we obtain an isomorphism

φ̃−1
2 ◦ gg′ ◦ φ̃1 : P1 −→ P2

that allows us to identify P1 and P2 so that we obtain a polyhedral pair (P, φ1, φ2). Note
that all g′ in the same G(P̃1)

-coset give the same polyhedral pair since they correspond to
identical identifications of P1 and P2.

A face pair F= (F, ψ1, ψ2) is a tuple such that each (F, ψi ) is a face for Xi , and the
following diagram commutes:

F
ψ1 ��

ψ2

��

X1

��
X2

�� X .

Let ψ̃i : F→ X̃ be a lift of ψi . A face pair is admissible if there exists g ∈G such that
g ◦ ψ̃1 = ψ̃2. As with polyhedral pairs, admissibility of face pairs does not depend on the
choice of lifts.

We say that F is a face of P if (F, φi) is a face of the polyhedron (P, φi) for i = 1, 2.
A polyhedral pair P lies on the left [resp. right] of F if the polyhedron (P, φi) lie on the
left [resp right] of (F, ψi ). Note that if (P, φ1) lies on the left [resp. right] of (F, ψ1), then
(P, φ2) lies on the left [resp. right] of (F, ψ2), since the orientations of the edge in Yi were
obtained from G-equivariant orientations of the edges of Ỹ . Let F denote the set of all
admissible face pairs.

Unlike faces of polyhedron, face pairs can have multiple polyhedral pairs on the left (or

right). Let
←−
F and

−→
F denote the sets of polyhedral pairs on the left and right of F. Given P ∈
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←−
F and P′ ∈ −→F we can glue P and P′ together along F. That is to say, by identifying F with
the corresponding subcomplexes of P and P ′, we can glue P and P ′ together, respecting the
maps φi and φ′i to obtain the following commutative diagram:

P ∪ P ′
φ1∪φ′1 ��

φ2∪φ′2
��

X1

��
X2

�� X .

Performing the construction in Section 1 over both X1 and X2 simultaneously – thus
obtaining a finite common cover – requires taking a suitable number of copies of each admis-
sible polyhedral pair, such that the number that lie on the left of each face pair is the same
as the number that lie on the right. Then we may choose a pairing between the polyhedral
pairs on the left and right of each face pair and glue the the correponding faces together. The
resulting graph with fins will have a well defined map into both X1 and X2 that will be a
local isomorphism, and thus a covering map.

2·2. Gluing equations

We define a system of linear gluing equations. Let ω :P→R>0 denote a weight function
on the set of admissible polyhedral pairs. For each face F we have the following gluing
equation: ∑

P∈←−F
ω(P)=

∑
P∈−→F

ω(P). (2·1)

Note that since this gives a finite set of linear equations with integer coefficients, finding
a set of positive real weights satisfying all gluing equations gives a set of positive integer
weights satisfying all the gluing equations.

2·3. Solving the equation

Let μ be the Haar measure for G. As G contains a lattice – �1 for example – G is uni-
modular and μ is both left and right G-invariant. We recall that μ is positive on every open
set and finite on every compact set.

For each polyhedral pair P= (P, φ1, φ2) ∈P recall that we let φ̃i : P→ X̃ be a lift of φi

and P̃i = φ̃i (P) for i = 1, 2. Then let

ω(P)=μ
(

G(P̃1)

)
.

As μ is left and right invariant we deduce that ω(P) does not depend on the choice of lifts φ̃i .
Observe that ω(P) is a positive real number since it is a compact neighbourhood. Moreover,
after scaling μ we can assume that ω(P) ∈Z>0 since all stabilizers of finite sets in X̃ have
commensurate measures.

PROPOSITION 2·3. The weight function ω as defined, satisfy the gluing equations (2·1).

Proof. Given an admissible face F we need to enumerate the polyhedral pairs on the left
of F (and right). Let ψ̃i : F→ X̃ be a lift of ψi . Let F̃i = ψ̃i (F). Let g ∈G be such that
g ◦ ψ̃1 = ψ̃2.
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Let (Pi , φi ) be the polyhedron on the left of (F, ψi ). Let φ̃i : Pi→ X be the lift of φi such
that P̃i := φ̃i(Pi ) contains F̃i . Then each polyhedral pair to the left of P is obtained by taking
some g′ ∈G(F̃i )

and letting φ̃−1
2 ◦ gg′ ◦ φ̃1 identify P1 and P2. All g′ in the same G(P̃1)

coset
define the same polyhedral pair. Therefore we can compute that

∑
P∈←−F

ω(P)=
∑

G(F̃1)
/G(P̃1)

μ(G(P̃1)
) = μ

(
G(F̃1)

)
.

A similar equality holds on the right, so the proposition holds.

2·4. Constructing a common cover

Assuming that our weight function gives positive integer values, take ω(P) copies of each

P ∈P . Let Pω denote this multiset. Let
←−
F ω and

−→
F ω denote the polyhedrons in Pω on the

left and right of F respectively. Since ω satisfies the gluing equations, for each admissible

face F we may fix a bijection
←−
F ω→−→F ω. By gluing the corresponding admissible faces

together we obtain a graph with fins:

X̂ =
⊔

P∈Pω

P
/
∼

Then there is a covering map 
 : X̂→ Xi where 
i

∣∣
P
= φi for each P= (P, φ1, φ2) ∈Pω.

The proof of Theorem 0·1 is complete.

Acknowledgements. Thanks to Mark Hagen, Nicolas Touikan, Christopher Cashen and
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