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In a sequence of papers (Krivine 2001; Krivine 2003; Krivine 2009), J.-L.Krivine introduced

his notion of classical realisability for classical second-order logic and Zermelo–Fraenkel set

theory. Moreover, in more recent work (Krivine 2008), he has considered forcing

constructions on top of it with the ultimate aim of providing a realisability interpretation for

the axiom of choice.

The aim of the current paper is to show how Krivine’s classical realisability can be

understood as an instance of the categorical approach to realisability as started by Martin

Hyland in Hyland (1982) and described in detail in van Oosten (2008). Moreover, we will

give an intuitive explanation of the iteration of realisability as described in Krivine (2008).

1. Introduction

The interpretation of intuitionistic second-order logic in a realisability model based on

closed λ-terms is reasonably straightforward. This was studied in detail by J.-L. Krivine

and M. Parigot in the late 1980s (Krivine and Parigot 1990; Krivine 1990a). Around 1990,

following the seminal paper Griffin (1990), many researchers worked out how to give a

proof term assignment for classical logic using a λ-calculus with control operators that

serve as realisers for classical principles like reductio ad absurdum or Peirce’s law – see,

for example, Streicher and Reus (1998). Krivine was one of the first to take up Griffin’s

suggestion in his work on so-called ‘storage operators’ (Krivine 1990b). Then, in a sequence

of papers (Krivine 2001; Krivine 2003; Krivine 2009), beginning with his address to the

Logic Colloquium 2000 in Paris, Krivine developed his theory of classical realisability

for extensions of classical second-order logic and Zermelo–Fraenkel set theory. In more

recent and still unpublished work, Krivine has embarked on the long-term project of

providing a realisability interpretation for full ZFC, that is, Zermelo–Fraenkel set theory

with the full Axiom of Choice (Krivine 2008). The aim is to do this by considering

forcing interpretations within classical realisability models. Krivine (2008) has shown how

to contract this two-step model construction into a single step.

Reading through Krivine’s papers introducing classical realisability gives the impression

that his account is highly original (which it definitely is!), and it is not clear how it may

fit into the structural semantic approach to realisability as initiated by M. Hyland in

Hyland (1982) and described in detail in the monograph van Oosten (2008). In particular,

it is most puzzling that Krivine considers his classical realisability as ‘generalised forcing’
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since toposes of the form Sh(B) for a complete boolean algebra B are cocomplete, whereas

cocomplete realisability toposes are necessarily equivalent to Set. In order to clear up this

confusion, we introduce the notion of an ‘abstract Krivine structure’ (aks) and show how

to construct a classical realisability model for each such aks. Moreover, we characterise

those aks’s that correspond to forcing over meet semilattices with a distinguished set of

truth values. We then show how any aks A gives rise to an order combinatory algebra (oca)

with a filter of distinguished truth values that induces a tripos (see van Oosten (2008) and

Hofstra (2006) for explanations of these notions), which also gives rise to a model of ZF.

A pleasing aspect of triposes is that they give rise to a conceptually clear account of

iteration of model constructions, which is also explained in van Oosten (2008). We use

this framework in explaining the iterated model construction of Krivine (2008).

2. A recap of Krivine’s classical realisability

In classical realisability, as described, for example, in Krivine (2009), we consider as

realisers certain closed terms in an extension of the untyped λ-calculus. In order to realise

classical logic, we need at least the control operator cc.

Possibly open terms of this kind are given by the grammar

t ::= x | λx.t | ts | cc t | kπ

where π ranges over lists or stacks (pile in french) of terms and k is a constant turning

stacks π into terms kπ . We write Λ for the set of closed terms and Π for the set of stacks

of closed terms. A process is a pair t � π of a term and a stack. We write Λ �Π for the set

of processes. The relation � of head reduction on processes is defined inductively by

(pop) λx.t � s.π � t[s/x] � π

(push) ts � π � t � s.π

(store) cc t � π � t � kπ.π

(restore) kπ � t.π
′ � t � π .

We write � for the reflexive transitive closure of � . The first two clauses allow us to

compute weak head normal forms of λ-terms, and they constitute the core of Krivine’s

abstract machine (see Streicher and Reus (1998) for background information). The

remaining rules tell us how to evaluate calls of the control operator cc and terms of

the form kπ . It is obvious that cc is the control operator ‘call with current continuation’

since in order to evaluate cc t we apply t to kπ (the current continuation turned into a

term using k) keeping the continuation π. When applying kπ to an argument t in context

π′, we evaluate t with respect to the restored context π and discard the current context π′.

Motivation and further explanations can be found in Streicher and Reus (1998), which,

however, is based on the alternative control operator C whose meaning is given by the

rule

C t � tt � kπ
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where t is applied to the ‘current continuation’ kπ , but now in the empty context instead

of the current context π.

All this is not just a purely formal game since the above language can be interpreted

in the recursively defined domain

D ∼= ΣList(D) ∼=
∏
n∈ω

ΣD
n

where Σ is the two-point lattice ⊥ � 	. It can be shown that D ∼= Σ× DD , that is, DD is

a retract of D. By analogy with Streicher and Reus (1998)†, the semantic clauses are

[[λx.t]]ρ〈〉 = 	
[[λx.t]]ρ〈d, k〉 = [[t]]ρ[d/x]k

[[ts]]ρk = [[t]]ρ〈[[s]]ρ, k〉
[[cc t]]ρk = [[t]]ρ〈ret(k), k〉

[[kπ]]ρ = ret([[π]]ρ)

where

ret(k)〈〉 = 	
ret(k)〈d, k′〉 = d(k)

and

[[〈〉]]ρ = 〈〉
[[t.π]]ρ = 〈[[t]]ρ, [[π]]ρ〉.

It is tempting to define a relation ⊥⊥ ⊆ D × List(D) by

d ⊥⊥ k iff d(k) = 	,

which can be lifted to syntax by putting t ⊥⊥ π if and only if [[t]] ⊥⊥ [[π]]. Thus ⊥⊥ is a set of

processes that is saturated in the sense that

p � q ∈ ⊥⊥ implies p ∈ ⊥⊥,

that is, it is closed under head expansion‡.

Saturated sets of processes are an essential ingredient for defining the classical realisab-

ility interpretation for second-order logic as in Krivine (2009). For a saturated set ⊥⊥ and

subsets X and Y of Π and Λ, respectively, we define

X⊥⊥ = {t ∈ Λ | ∀π ∈ X. t ⊥⊥ π}
Y ⊥⊥ = {π ∈ Π | ∀t ∈ Y . t ⊥⊥ π}

† Streicher and Reus (1998) employed the recursively defined domain D ∼= ΣD
ω
, which is isomorphic to Σ∞,

and thus validates D ∼= DD .
‡ In fact, the relation ⊥⊥ under consideration is also closed under head reduction and even semantic equality.
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and say a set S (of terms or stacks) is biorthogonally closed if and only if S ⊥⊥ ⊥⊥ = S . We

write P⊥⊥ (Λ) and P⊥⊥ (Π) for the collections of biorthogonally closed sets of terms and

stacks, respectively. In realisability models induced by ⊥⊥, propositions A will be interpreted

as |A| ∈ P⊥⊥ (Λ). However, it will be convenient to represent |A| using a set ||A|| of stacks

with |A| = ||A|| ⊥⊥, though, in general, it will be different from |A| ⊥⊥.
For a saturated set ⊥⊥ of processes, second-order logic over a (typically countable) set

M of individuals is interpreted as follows: n-ary predicate variables range over functions

Mn → P(Π), and formulas A are interpreted as ||A||ρ ⊆ Π according to the clauses

||X(t1, . . . , tn)||ρ = ρ(X)([[t1]]ρ, . . . , [[t1]]ρ)

||A→B||ρ = |A|ρ.||B||ρ
||∀xA(x)|| =

⋃
a∈M
||A||ρ[a/x]

||∀XA[X]||ρ =
⋃

R∈P(Π)M
n

||A||ρ[R/X]

where ρ is a valuation sending individual variables to elements of M and n-ary predicate

variables to elements of P(Π)M
n

and |A|ρ = ||A||⊥⊥ρ. If A is closed, we simply write |A| and

||A|| instead of |A|ρ and ||A||ρ, respectively, since the interpretation of A does not depend

on ρ.

Note that we have

|∀xA| =
⋂
a∈M
|A[a/x]|

|∀XA| =
⋂

R∈P(Π)M
n

|A[R/X]|

since we have (⋃
i∈I
Xi

)⊥⊥
=

⋂
i∈I
X⊥⊥i

for arbitrary families X : I → P(Π).

In general, |A→B| is a proper subset of

|A|→|B| = {t∈Λ | ∀s∈|A| ts ∈ |B|}

since, in general,

ts ∗ π ∈ ⊥⊥ �⇒ t ∗ s.π ∈ ⊥⊥ ,
but it is easy to check that for every t ∈ |A|→|B|, the η-expansion λx.tx ∈ |A→B|. But, of

course, we have |A→B| = |A|→|B| whenever ⊥⊥ is also closed under head reduction, that is,

⊥⊥� p � q implies q ∈ ⊥⊥.

Krivine (1990a) gives a proof term assigment for intuitionistic second-order logic, which

we reproduce in Figure 1 for convenience, where A(F(�x)) stands for the formula obtained

from A(X) by replacing every subformula of the form X(�t) by F(�t).

As proved in Krivine (2009), for example, the following soundness result holds: if

x1:A1, . . . , xk:Ak � u : B and vi ∈ |Ai| for i = 1, . . . , k are derivable, then u[�v/�x] ∈ |B|, that
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Γ, x:A,Δ � x : A

Γ, x:A � u : B

Γ � λx.u : A→ B

Γ � u : A→ B Γ � v : A

Γ � uv : B

Γ � u : A(x)
(x not free in Γ)

Γ � u : ∀xA(x)

Γ � u : ∀xA(x)

Γ � u : A(t)

Γ � u : A(X)
(X not free in Γ)

Γ � u : ∀XA(X)

Γ � u : ∀XA(X)

Γ � u : A(F(�x))

Fig. 1. Typing rules for second-order intuitionistic logic.

is, proof terms are realisers. But, of course, there may be realisers that do not come from

proofs in intuitionistic second-order logic. For example, λx.cc x realises Peirce’s law

((A→ B)→ A)→ A,

which can be seen as follows. Suppose

t ∈ |(A→ B)→ A|
π ∈ ||A||.

We have to show that

λx.cc x � t.π ∈⊥⊥ ,
but since

λx.cc x � t.π � cc t � π � t � kπ.π,

we just need to show that kπ ∈ |A→ B|. Suppose s ∈ |A| and π′ ∈ ||B||. Then

kπ � s.π
′ � s � π ∈⊥⊥ ,

so kπ �s.π
′ ∈⊥⊥ . In particular, the term λx.cc x realises (¬A→ A)→ A where ¬A ≡ A→ ⊥

with ⊥ ≡ ∀X X. Accordingly, the term λf.(λx.cc x)(λy.fy) realises ¬¬A → A since λy.fy

realises ¬A → A whenever f realises ¬A → ⊥. Thus, untyped λ-calculus extended by cc

allows us to represent proofs of classical second-order logic as terms.

Note that if ⊥⊥ is empty for every proposition A, the set |A| is either empty (if ||A||
is non-empty) or equals Λ (if ||A|| is empty). Thus, in this case, the notion of a model

coincides with the naive two-valued one. However, if ⊥⊥ is non-empty, that is, it contains

an element t � π, then kπt ∈ |A| for all propositions A since for all π′ ∈ ||A|| we have

kπt � π
′ � t � π ∈ ⊥⊥, so kπt � π

′ ∈ ⊥⊥. This was observed in Krivine (2009), though the way

to overcome the obvious problem that all propositions are realisable by some element of

Λ was not discussed explicitly. However, it is implicit in most of Krivine’s writings, and

stated explicitly in Krivine (2010), that a proposition A has to be considered as true in a

model induced by a pole ⊥⊥ if t ∈ |A| for some t ∈ Λ not containing the constant k. Such
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terms are called quasi-proofs, and we denote the corresponding set by QP. Of course, in

order to ensure consistency, the pole ⊥⊥ has to be chosen in such a way that for every

t ∈ QP, there is a π ∈ Π with t � π �∈ ⊥⊥.

However, in order to realise non-logical axioms beyond classical second-order arithmetic

by quasi-proofs, we may have to consider extensions with additional constants. For

example, in Krivine (2003), in order to realise the axiom of countable choice, Krivine

added a constant χ∗ together with the reduction rule

χ∗ � t.π � t � nt.π

where nt is the Church numeral representation of a Gödel number for t†. This is an

instance of Krivine’s general point of view that new programming concepts should be

motivated by their need to realise important non-logical axioms. In Krivine (2008), for

example, (one-cell) memory was motivated by the need to realise Cohen forcing.

3. Abstract Krivine Structures

We saw at the end of the previous section that we cannot work with a single language. For

this reason, we need to axiomatise the kind of structure needed for performing Krivine’s

classical realisability interpretation. Such structures were axiomatised in Krivine (2008),

including a form of λ-abstraction that is technically a bit cumbersome. Instead, we will

introduce a version based on combinators, which we call an abstract Krivine structure

(aks), and which is inspired by the notion of partial combinatory algebra (pca), on which

ordinary realisability is based, as explained in detail in van Oosten (2008).

Definition 3.1 (abstract Krivine structures). An abstract Krivine structure (aks) is given

by:

— a set Λ of ‘terms’ together with a binary application operation (written as juxtaposition)

and distinguished elements K, S, cc ∈ Λ;

— a subset QP of Λ that is closed under application and contains the elements K, S and

cc as elements – the elements of QP are called ‘quasi-proofs’;

— a set Π of ‘stacks’ together with a push operation (push) from Λ ×Π to Π (written

t.π) and a unary operation k : Π→ Λ (written as kπ);

— a saturated subset ⊥⊥ of Λ×Π.

Here saturated means that ⊥⊥ satisfies the following closure conditions:

(S1) ts � π ∈⊥⊥ whenever t � s.π ∈⊥⊥
(S2) K � t.s.π ∈⊥⊥ whenever t � π ∈⊥⊥
(S3) S � t.s.u.π ∈⊥⊥ whenever tu(su) � π ∈ ⊥⊥
(S4) cc � t.π ∈⊥⊥ whenever t � kπ.π ∈⊥⊥

† The assignment t �→ nt could be considered to be a kind of quote construct as found in LISP. Thus, χ∗ may

be understood as the program λx. x(quote(x)).
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(S5) kπ � t.π
′ ∈⊥⊥ whenever t � π ∈⊥⊥.

A strong abstract Krivine structure (saks) is an aks where (S1) can be strengthened to:

(SS1) ts � π ∈⊥⊥ iff t � s.π ∈⊥⊥.

Recall that a combinatory algebra is a set A with a binary application operation (denoted

by juxtaposition) and distinguished elements k and s of A satisfying the equations

kxy = x

sxyz = xz(yz).

Note that an aks is not equationally defined but instead the axioms (S1-5) state that

⊥⊥ is ‘closed under head expansion’. In other words, the notion of an abstract Krivine

structure is free from an equality given in advance. However, we could define a notion of

observational equivalence t ∼ s on Λ by

∀π ∈ Π. t � π ∈⊥⊥ ⇔ s � π ∈⊥⊥ .

We will show in Section 5.1 that any aks can be organised into a so-called order combinatory

algebra (oca). A further difference compared with combinatory algebras is that there is

a distinguished subset of so-called ‘quasi-proofs’. Terms that are not quasi-proofs only

have an auxiliary status in the sense that they are needed for formulating the operational

semantics of cc via conditions (S4) and (S5). There is always a minimal choice of QP,

but we have to admit more comprehensive choices of QP since we may want to realise

axioms beyond classical second-order arithmetic using elements of QP†.

We will now show how any aks gives rise to a model of classical second-order logic in

a way analogous to Section 2‡. Again, a proposition A will be interpreted as a subset ||A||
of Π. The elements of

|A| = ||A||⊥⊥ = {t ∈ Λ | ∀π ∈ ||A||. t � π ∈ ⊥⊥}

† For the domain D ∼= ΣList(D) with pole ⊥⊥ = {〈d, k〉 | d(k) = 	}, a natural choice for QP is the unique Scott

closed subset F of D with

d ∈ F iff ∀k ∈ List(F).d(k) = ⊥,
which intuitively consists of the ‘error-free’ elements of D that raise an error 	 only if the input is not error-

free. The uniqueness and existence of F follows from a well-known theorem due to A. Pitts on recursively

defined predicates on recursive domains. This also extends to other kinds of domains like Girard’s coherence

spaces or observably sequential algorithms. In the latter case, QP is the set of stategies in D that do not

contain a 	, that is, that are error-free.
‡ Note that our choice of combinators does not allow us to implement functional abstraction in such a way that

β-reduction holds in the sense of weak head reduction. However, this has been achieved in recent papers by

Krivine (Krivine 2010; Krivine 2011) using a different, and more complicated, choice of combinators, which

are actually closer to Curry’s original choice. Thus, we cannot interpret implication introduction directly

using λ-abstraction, but rather have to axiomatise it (à la Hilbert) through axiom schemes realised by K and

S, respectively. However, this does not affect validity, which is our main concern in this paper.
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are called ‘potential’ realisers of A. The actual realisers of A are the elements of |A| ∩QP.

The interpretation of formulas is given by the clauses

||R(�t)|| = R
(
[[�t]]

)
||A→B|| = |A|.||B|| = {t.π | t ∈ |A|, π ∈ ||B||}

||∀xA(x)|| =
⋃
a∈M
||A(a)||

||∀XA(X)|| =
⋃

R∈P(Π)M
n

||A(R)||,

where M is the underlying set of the model and formulas are closed but may contain

(constants for) elements of M or P(Π)M
n

, respectively.

We could define propositions more restrictively by

P⊥⊥(Π) =
{
X ∈ P(Π) | X = X⊥⊥⊥⊥

}
,

and this would not change the meaning of |A| for closed formulas, though it would change

the meaning of ||A||. But as in Section 2, it turns out to be convenient to postpone the

biorthogonal closure. Note that P⊥⊥(Π) is in 1–1-correspondence with

P⊥⊥(Λ) =
{
X ∈ P(Λ) | X = X⊥⊥⊥⊥

}
via (−) ⊥⊥. Then, if the aks under consideration is strong, we have

|R(�t)| = R
(
[[�t]]

)
|A→B| = |A|→|B| = {t ∈ Λ | ∀s ∈ |A|. ts ∈ |B|}

|∀xA(x)| =
⋂
a∈M
|A(a)|

|∀XA(X)| =
⋂

R∈P⊥⊥(Λ)M
n

|A(R)|,

which allows us to redefine the realisability interpretation according to a more traditional

pattern.

Again, if the aks under consideration is not strong, then, in general, we only have

|A→B| ⊆ |A|→|B| = {t ∈ Λ | ∀s ∈ |A|. ts ∈ |B|},

but elements of |A|→|B| can be uniformly transformed into elements of |A→B| using the

combinator E = S(KI) where I = SKK.

Lemma 3.2. If t ∈ |A|→|B|, then Et ∈ |A→B|.

Proof. It is easy to check that

I � t.π ∈ ⊥⊥ ⇐ t � π ∈ ⊥⊥,

so we have

Et � s.π ∈ ⊥⊥ ⇐ KIs(ts) � π ∈ ⊥⊥ ⇐ I � ts.π ∈ ⊥⊥ ⇐ ts � π ∈ ⊥⊥ .
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Then for s ∈ |A|, π ∈ ||B||, we have Et � s.π ∈ ⊥⊥ because ts ∗π ∈ ⊥⊥ since t ∈ |A|→|B|. Thus

Et ∈ |A→B| as desired.

Thus Et is a combinator version of the η-expansion λx.tx, that is, E corresponds to the

λ-term λy.λx.yx.

4. Cohen forcing as an instance of abstract Krivine structures

Already in Krivine (2001), Krivine emphasises that he considers classical realisability

to be a generalisation of Cohen’s forcing. We will make this precise by showing that

Cohen forcing is the commutative case of classical realisability. Note that in the case of

realisability induced by a partial combinatory algebra A, this does not make sense since

if application is commutative and associative in A, we have x = kxy = kyx = y, and thus

A is trivial.

A notion of forcing is usually given by a conditional meet-semilattice, that is, a poset

with a greatest element 1 such that the infimum xy of x and y exists provided they have

a lower bound. For our purposes, we consider what at first sight appears to be the more

general situation of a meet-semilattice P together with a downward closed subset D. Such

a situation induces an aks as follows.

Lemma 4.1. Let P be a meet-semilattice and D be a downward closed subset of P . This

induces a saks where Λ = Π = P , QP = {1}, application and the push operation are given

by the meet operation of P , the constants are interpreted as 1 and

⊥⊥ = {(p, q) ∈ P × P | pq ∈ D}.

Now for such an aks, the set P⊥⊥(Π) of propositions coincides with the set of all subsets

of P of the form

X⊥⊥ = {p ∈ P | ∀q ∈ X. pq ∈ D}
for some X ⊆ P . Note that sets of the form X⊥⊥ are always downward closed and contain

D as a subset. If X ⊆ P is already downward closed, X⊥⊥ can be computed in the following

way, which is familiar from forcing.

Lemma 4.2. If X ⊆ P is downward closed,

X⊥⊥ = {p ∈ P | ∀q � p (q ∈ X ⇒ q ∈ D)}.

Proof. Suppose p ∈ X⊥⊥ and q ∈ X with q � p. Then q = pq ∈ D. For the converse

direction, suppose p ∈ P with ∀q � p (q ∈ X ⇒ q ∈ D). Then for q ∈ X, we have pq ∈ X
since X is downward closed, so pq ∈ D by assumption on p.

It is also an easy exercise to prove the following lemma.

Lemma 4.3. For downward closed X,Y ⊆ P , we have

X → Y = {p ∈ P | ∀q ∈ X. pq ∈ Y } = {p ∈ P | ∀q � p (q ∈ X ⇒ q ∈ Y )},

and thus Z ⊆ X → Y if and only if Z ∩X ⊆ Y for downward closed Z ⊆ P .
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Using Lemma 4.2, it is easy to see that for downward closed X ⊆ P , we have X = X⊥⊥⊥⊥

if and only if D ⊆ X and p ∈ X \D whenever for all q � p with q �∈ D there exists r � q

with r ∈ X \D. Thus P⊥⊥(Π) is, via (−) \D, in 1–1-correspondence with those subsets A of

the poset P↑ = P \D that are regular in the sense that p ∈ A whenever ∀q�p ∃r�q r ∈ A.

Lemmas 4.2 and 4.3 say that under this correspondence, negation and implication are

constructed as in Cohen forcing (or Kripke models).

It is immediate from Lemma 4.3 that X → Y contains a quasi-proof (that is, 1) if and

only if X ⊆ Y .

We can now characterise those aks’s that arise from Cohen forcing.

Theorem 4.4. An aks arises, up to isomorphism, from a downward closed subset of a

meet-semilattice if and only if it is strong and satisfies the following requirements:

(1) k : Π→ Λ is a bijection.

(2) The application operation endows Λ with the structure of a commutative idempotent

monoid where QP = {1}.
(3) Application coincides with the push operation when identifying Λ and Π via k.

Proof. It is clear that all these conditions are necessary, so we suppose we are given

a saks satisfying the above conditions. By condition (2), application endows the set Λ

with the structure of a meet-semilattice, which we call P . For D, we take the subset

{t ∈ Λ | (t, 1) ∈ ⊥⊥} of P = Λ. Note that D is downward closed due to condition (3). Since

the aks is strong by assumption, we have

ts ∈ D iff (ts, 1) ∈⊥⊥ iff (t, s1) ∈⊥⊥ iff (t, s) ∈⊥⊥ ,

which completes the argument.

This explains the sense in which Krivine considers forcing to be ‘commutative realisab-

ility’.

5. Classical realisability tripos and topos

In this section we will show that we can associate with any aks a tripos, the so-called

Krivine tripos, that gives rise to a model of higher-order classical logic extending the

model of second-order classical logic of Section 3.

5.1. Abstract Krivine structures as order combinatory algebras

Hofstra and van Oosten’s notion of an order partial combinatory algebra (opca) (Hofstra

and van Oosten 2003) generalises both pca’s and complete Heyting algebras (cHa’s) as

explained in van Oosten (2008). For our purposes we just need the following non-partial

version, which also covers the case of complete Heyting algebras.

Definition 5.1 (order combinatory algebra with a filter). An order combinatory algebra

(oca) is a triple (A,�, •) where � is a partial order on A and • is a binary monotone
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operation on A such that there exist k, s ∈ A with

k • a • b � a

s • a • b • c � a • c • (b • c)

for all a, b, c ∈ A.

A filter on an oca (A,�, •) is a subset Φ of A that is closed under • and contains (some

choice of) k and s (for A).

With every aks, we associate an oca with a filter as follows. The underlying set is P⊥⊥(Π),

on which we define a partial order by a � b if and only if a ⊇ b. Application is defined by

a • b = {π ∈ Π | ∀t ∈ |a|, s ∈ |b|. t ∗ s.π ∈⊥⊥}⊥⊥⊥⊥

where |a| = a⊥⊥, and similarly for b. It is obvious that a � b if and only if |a| ⊆ |b|. Note

that if the aks under consideration is strong, we have

|a • b| = {ts | t ∈ |a|, s ∈ |b|}⊥⊥⊥⊥,

which explains how we arrived at the definition of •. The filter is defined by

Φ = {a ∈ P⊥⊥(Π) | |a| ∩ QP �= �},

that is, a is in the filter if and only if |a| contains a quasi-proof.

In order to show that
(
P⊥⊥(Π),�, •

)
is actually an oca, we have to identify appropriate

k, s ∈ P⊥⊥(Λ) satisfying the following conditions for all x, y, z ∈ P⊥⊥(Π):

(1) k • x • y � x

(2) s • x • y • z � x • z • (y • z).
The most obvious choices for k and s are {K}⊥⊥ and {S}⊥⊥, respectively, because then

|k| = {K}⊥⊥⊥⊥ and |s| = {S}⊥⊥⊥⊥.
One could show by brute force that these choices of k and s validate the conditions (1)

and (2), but instead we will give a more elegant argument, which was suggested to us by

Benno van den Berg. First we define

x→ y = {t.π | t ∈ |x|, π ∈ y}⊥⊥⊥⊥

for x, y ∈ P⊥⊥(Π) and observe the following result.

Lemma 5.2. From x � y → z, it follows that x • y � z.

Proof. Suppose x � y → z. Then we have

∀u ∈ |x|.∀v ∈ |y|.∀π ∈ z. u � v.π ∈ ⊥⊥ ,

from which it follows that z ⊆ x • y. Thus x • y � z as desired.

Moreover, we also have the following result.

Lemma 5.3. If u ∈ |x| and v ∈ |y|, then uv ∈ |x • y|.

Proof. Suppose u ∈ |x| and v ∈ |y|. Let π ∈ x • y. Then u � v.π ∈ ⊥⊥, so uv ∗ π ∈ ⊥⊥ by

property (S1) of ⊥⊥.
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Later in the paper we will use the fact that the converse of the implication of Lemma 5.2

holds in the following restricted sense.

Lemma 5.4. If x • y � z, then for all t ∈ |x|, we have Et ∈ |y → z|.

Proof. Suppose x • y � z, that is,

∀t ∈ |x • y|.∀π ∈ z. t � π ∈ ⊥⊥ .

Thus, by Lemma 5.3, we have

∀u ∈ |x|.∀v ∈ |y|.∀π ∈ z. uv � π ∈ ⊥⊥ .

Since uv � π ∈ ⊥⊥ implies Eu � v.π ∈ ⊥⊥, it follows that

∀u ∈ |x|.∀v ∈ |y|.∀π ∈ z.Eu � v.π ∈⊥⊥ .

Thus

∀t ∈ |x|.Et ∈ |y → z|
as desired.

We are now ready to show that (1) and (2) hold for k = {K}⊥⊥ and s = {S}⊥⊥.
(1) To show that k • x • y � x, it suffices, by (two applications of) Lemma 5.2, to show

that k � x→ y → x. But, it is obvious that K ∈ |x→ y → x|, so

k = {K}⊥⊥⊥⊥ ⊆ |x→ y → x|.

(2) To show that

s • x • y • z � x • z • (y • z),
it suffices, by (multiple applications of) Lemma 5.2, to show that

s � x→ y → z → (x • z • (y • z)).

So we just need to show that

S ∈ |x→ y → z → (x • z • (y • z))|.

To do this, we suppose u ∈ |x|, v ∈ |y|, w ∈ |z| and π ∈ x • z • (y • z). Applying

Lemma 5.3 iteratively, we get uw(vw) ∈ |x • z • (y • z)|, and thus uw(vw) � π ∈ ⊥⊥. By

property (S3) of ⊥⊥, it follows that S ∗ u.v.w.π ∈ ⊥⊥ as desired.

We still need to show that

Φ = {a ∈ P ⊥⊥ (Π) | |a| ∩ QP �= �}

is actually a filter on
(
P⊥⊥(Π),�, •

)
. Suppose a and b are in Φ. Then there exist u ∈ |a|∩QP

and v ∈ |b|∩QP. By Lemma 5.3, we have uv ∈ |a•b|. Since QP is closed under application,

we have uv ∈ QP. Thus a • b ∈ Φ. Since S,K ∈ QP and

K ∈ {K}⊥⊥⊥⊥ = |k|
S ∈ {S}⊥⊥⊥⊥ = |s|,

it follows that k, s ∈ Φ.
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We will now collect together a few facts about an oca A endowed with a filter Φ from

van Oosten (2008) and Hofstra (2006), which we will need for verifying the construction

of the Krivine tripos in Section 5.2. For convenience, we will often write xy instead of x•y
for x, y ∈ A. A polynomial over A is a term built from elements of A and a (countable)

set of variables using the application operation •.
If A is an oca, then for every polynomial t[�x, x], there exists a polynomial λ∗x.t whose

free variables are included in the list �x such that

(λ∗x.t)a � t[�x, a]

for all a ∈ A. Moreover, if all constants of t are in Φ, then λ∗x.t ∈ Φ provided all items of

�x are in Φ. For example, k′ = λ∗x.λ∗y.y ∈ Φ.

Using these facts, we can define the following pairing and projection operations in every

oca A

p = λ∗x.λ∗y.λ∗z.zxy

p1 = λ∗z.zk

p2 = λ∗z.zk′,

which are elements of Φ and validate the laws

p1(pxy) � x

p2(pxy) � y.

5.2. The Krivine tripos

Given an oca A = (A,�, •) and a filter Φ on it, we may associate with it the following

Set-indexed preorder [−,A]Φ:

— [I,A]Φ = AI is the set of all functions from set I to A.

— This set is endowed with the entailment relation

φ �I ψ iff ∃a ∈ Φ∀i ∈ I. a • φi � ψi.

— For u : J → I , the reindexing map [u,A]Φ = u∗ : AI → AJ sends φ to u∗φ = (φu(j))j∈J .

It is easy to see that �I actually defines a preorder on AI . Let e = λ∗x.x ∈ Φ. Then for

all ϕ ∈ AI , we have ∀i ∈ I. e •ϕi � ϕi and thus ϕ �I ϕ. Suppose ϕ �I ψ and ψ �I θ. Then

there exists a, b ∈ Φ such that a • ϕi � ψi and b • ψi � θi for all i ∈ I . Then for

c = λ∗x.b • (a • x) ∈ Φ,

we have

c • ϕi � b • (a • ϕi) � b • ψi � θi

for all i ∈ I . Thus ϕ �I θ.
Suppose u : J → I is a map in Set and ϕ �I ψ. Then there exists a ∈ Φ with

∀i ∈ I. a • ϕi � ψi. Thus, a fortiori, we have

∀j ∈ J. a • ϕu(j) � ψu(j),

that is, u∗ϕ �J u∗ψ. Thus u∗ preserves entailment.
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From now on we will assume that A and the filter Φ on it is induced by an aks, as

described in Section 5.1. Under this assumption, we can give the following characterisation

of entailment, which will turn out as crucial for proving that [−,A]Φ is indeed a tripos.

Lemma 5.5. For all sets I , we have

ϕ �I ψ iff ∃t ∈ QP.∀i ∈ I. t ∈ |ϕi|→|ψi| iff ∃t ∈ QP.∀i ∈ I. t ∈ |ϕi → ψi|

for all ϕ,ψ ∈ [I,A]Φ.

Proof. Suppose ϕ �I ψ. Then there exists a ∈ Φ such that ∀i ∈ I. a • ϕi � ψi. By

Lemma 5.3, for all i ∈ I , t ∈ |a| and s ∈ |ϕi|, we have ts ∈ |a • φi| ⊆ |ψi|. Let t ∈ |a| ∩ QP.

Then for all i ∈ I , we have t ∈ |ϕi| → |ψi|.
Suppose, for some t ∈ QP, we have t ∈ |ϕi| → |ψi| for all i ∈ I . Then, by Lemma 5.4,

we have Et ∈ |ϕi → ψi| for all i ∈ I and Et ∈ QP since QP is closed under application and

contains K and S as elements.

Suppose there exists a t ∈ QP such that ∀i ∈ I. t ∈ |ϕi → ψi|. Then we have

∀i ∈ I. {t}⊥⊥⊥⊥ ⊆ |ϕi → ψi|,

so for a = {t}⊥⊥, we have

∀i ∈ I.∀u ∈ |a|.∀v ∈ |ϕi|.∀π ∈ ψi. u � v.π ∈ ⊥⊥,

from which it follows that ∀i ∈ I. a •ϕi � ψi and thus ϕ �I ψ since a = {t}⊥⊥ ∈ Φ (because

t ∈ QP and t ∈ {t}⊥⊥⊥⊥ = |a|).

The following lemma will be useful in the proof of Theorem 5.9.

Lemma 5.6. Let I be a set and ϕ,ψ, θ ∈ [I,A]Φ. We write ϕ→ψ for the family (ϕi→ψi)i∈I .
Then θ �I ϕ→ψ if and only if there exists an a ∈ Φ such that ∀i ∈ I. a • θi • ϕi � ψi.

Proof. Suppose θ �I ϕ→ ψ. Then there is an a ∈ Φ such that

∀i ∈ I. a • θi � ϕi→ψi.

By Lemma 5.2, it follows that

∀i ∈ I. a • θi • ϕi � ψi.

For the converse direction, we suppose a ∈ Φ with

∀i ∈ I. a • θi • ϕi � ψi.

Then, by Lemma 5.3, we have

∀i ∈ I.∀t ∈ |a • θi|.∀s ∈ |ϕi|. ts ∈ |a • θi • ϕi| ⊆ |ψi|,

and thus

∀i ∈ I.∀t ∈ |a • θi|.Et ∈ |ϕi→ψi|
by Lemma 5.4. Since E ∈ QP, by Lemma 5.5 there is a b ∈ Φ with

∀i ∈ I. b • (a • θi) � ϕi→ψi.
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Let c ∈ Φ with c • x � b • (a • x) for all x ∈ A. Thus for all i ∈ I , we have

c • θi � b • (a • θi) � ϕi→ψi,

from which it follows that θ �I ϕ→ψ as desired.

Furthermore, for every set I , we will need an ‘equality predicate’ eqI : I × I → A on I

defined by

eqI (i, j) =

{
{I}⊥⊥ if i = j

Π otherwise.

Note that eqI (i, i) ∈ Φ since I ∈ QP. The equality predicate has the following remarkable

properties.

Lemma 5.7. For every i ∈ I , we have I ∈ |eqI (i, i)| and eqI (i, i) • a � a for all a ∈ A. If

i, j ∈ I with i �= j, then eqI (i, j) • a � b for all a, b ∈ A.

Proof. It is obvious that |eqI (i, i)| = {I}⊥⊥⊥⊥. Thus I ∈ |eqI (i, i)| since I ∈ {I} ⊆ {I}⊥⊥⊥⊥. Let

a ∈ A. By Lemma 5.2, to show eqI (i, i) • a � a, it suffices to show that eqI (i, i) � a→a,
which holds since I ∈ |a→a| and thus {I}⊥⊥⊥⊥ ⊆ |a→a|.

Suppose i, j ∈ I with i �= j and a, b ∈ A. Then

eqI (i, j) = Π ⊇ a→b,

from which it follows that eqI (i, j) � a→b and thus eqI (i, j) • a � b by Lemma 5.2.

Lemma 5.8. Let a ∈ A and t ∈
∣∣{I}⊥⊥→a∣∣. Then:

(i) SIt ∈
∣∣{I}⊥⊥→a∣∣; and

(ii) SIt ∈ |Π→b| for all b ∈ A.

Proof. Suppose t ∈
∣∣{I}⊥⊥→a∣∣.

(i) Suppose s ∈ {I}⊥⊥⊥⊥ and π ∈ a. We have to show that SIt � s.π ∈ ⊥⊥. Since t � s.π ∈⊥⊥, we

have ts � π ∈⊥⊥. Thus I � ts.π ∈ ⊥⊥ and, accordingly, ts.π ∈ {I}⊥⊥. Thus s � ts.π ∈⊥⊥, so

Is(ts) � π ∈⊥⊥ also. Hence, by property (S3) of ⊥⊥, we have S � I.t.s.π ∈⊥⊥ and thus, as

desired, SIt � s.π also.

(ii) Suppose s ∈ Π⊥⊥ and π ∈ b. We have to show that SIt � s.π ∈⊥⊥. Since s ∈ Π⊥⊥, we have

s � ts.π ∈ ⊥⊥. Thus Is(ts) � π ∈ ⊥⊥ also. By property (S3) of ⊥⊥, we also have S � I.t.s ∈ ⊥⊥,

from which it follows that SIt � s.π ∈ ⊥⊥ as desired.

We are now ready to prove the main result of this section.

Theorem 5.9. If A and Φ arise from an aks, the indexed preorder [−,A]Φ is a tripos, that

is, we have:

— All [I,A]Φ are pre-Heyting-algebras whose structures are preserved by reindexing.

— For every u : J → I in Set, the reindexing map u∗ has a left adjoint ∃u and a right

adjoint ∀u satisfying the (Beck–)Chevalley condition.

— There is a generic predicate T ∈ [Σ,A]Φ such that all other predicates can be obtained

from T by appropriate reindexing.

Moreover, it is boolean in the sense that all [I,A]Φ are pre-boolean-algebras.
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Proof. Recall that we often denote application in the oca P⊥⊥(Π) by juxtaposition.

We will first show that [I,A]Φ has finite infima. Let

	 = {π ∈ Π | ∀t ∈ Λ. t � π ∈⊥⊥}.

This is obviously an element in P⊥⊥(Π) and satisfies a � 	 for all a ∈ A. Let 	I be

the constant family in [I,A]Φ with value 	. If ϕ ∈ [I,A]Φ, then for all i ∈ I , we have

(λ∗x.x)ϕi � |	|. Since λ∗x.x ∈ Φ, we have ϕ �I 	I . Thus 	I is a greatest element in

[I,A]Φ. To show that [I,A]Φ has binary infima, suppose ϕ,ψ ∈ AI . Let ϕ ∧ ψ ∈ AI with

(ϕ ∧ ψ)i = pϕiψi for all i ∈ I . Since ∀i ∈ I. p1(pϕiψi) � ϕi, we have ϕ ∧ ψ �I ϕ, and since

∀i ∈ I. p2(pϕiψi) � ψi, we have ϕ ∧ ψ �I ψ. Suppose θ �I ϕ, ψ. Then there exist a, b ∈ Φ

such that for all i ∈ I , we have aθi � ϕi and bθi � ψi. For c = λ∗x.p(ax)(bx) ∈ Φ, we have

for all i ∈ I that

cθi � p(aθi)(bθi) � pϕiψi = (ϕ ∧ ψ)i,

and thus θ �I ϕ ∧ ψ as desired. It is obvious that every reindexing u∗ preserves 	 and ∧.

Next we will show that all [I,A]Φ have implication. Suppose ϕ,ψ ∈ [I,A]Φ. We define

ϕ→ψ as (ϕ→ψ)i = ϕi→ψi for i ∈ I . Suppose θ �I ϕ→ψ. Then there exists a ∈ Φ with

aθi � ϕi→ψi for all i ∈ I . Then, by Lemma 5.2, we have aθiϕi � ψi for all i ∈ I . Thus we

have

a(p1(pθiϕi))(p2(pθiϕi)) � aθiϕi � ψi

for all i ∈ I . Thus, for f = λ∗x.a(p1x)(p2x) ∈ Φ, we have

f(θi ∧ ϕi) � ψi

for all i ∈ I , that is, θ ∧ ϕ �I ψ. For the converse direction, suppose θ ∧ ϕ �I ψ. Hence

there is an a ∈ Φ with a(pθiϕi) � ψi for all i ∈ I , and for f = λ∗x.λ∗y.a(pxy) ∈ Φ, we have

fθiϕi � ψi

for all i ∈ I . Thus, by Lemma 5.6, it follows that θ �I ϕ→ψ. Thus we have shown

that ϕ→ψ is actually the exponential in [I,A]Φ. It follows from ϕ→ψ �I ϕ→ψ that

(ϕ→ψ) ∧ ϕ �I ψ. Since for u : J → I we have u∗(ϕ→ψ) = u∗ϕ→u∗ψ and u∗ preserves ∧,

it follows that

(u∗ϕ→u∗ψ) ∧ u∗ϕ = u∗((ϕ→ψ) ∧ ϕ) �J u∗ψ.
Thus reindexing preserves implication.

Next we show that [−,A]Φ has universal quantification. For α : J → I and ϕ ∈ [J,A]Φ,

we define ∀u(ϕ) in [I,A]Φ by

∀α(ϕ)i =

⎛
⎝⋃
j∈J

eqI (α(j), i)→ϕj

⎞
⎠
⊥⊥ ⊥⊥

for all i ∈ I . Note that

|∀α(ϕ)i| =

⎛
⎝⋃
j∈J

eqI (α(j), i)→ϕj

⎞
⎠
⊥⊥

=
⋂
j∈J
|eqI (α(j), i)→ϕj |.
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Suppose ψ ∈ [I,A]Φ. We have to show that

α∗ψ �J ϕ iff ψ �I ∀α(ϕ).

For the if direction, suppose ψ �I ∀α(ϕ). Then there is a c ∈ Φ with

cψi � eqI (α(j), i)→ϕj

for all i ∈ I and j ∈ J . Thus, in particular, we have

cψα(j) � eqI (α(j), α(j))→ϕj

for all j ∈ J . Since c ∈ Φ, we have

ψα(j) �j∈J eqI (α(j), α(j))→ϕj

and, accordingly,

eqI (α(j), α(j)) �j∈J ψα(j)→ϕj
by that part of propositional logic we have already established for [I,A]Φ. Thus, by

Lemma 5.5, there is a t ∈ QP such that

∀j ∈ J.∀s ∈ |eqI (α(j), α(j))|. ts ∈ |ψα(j)→ϕj |,

from which it follows that

∀j ∈ J. tI ∈ |ψα(j)→ϕj |
since, by Lemma 5.7, we have I ∈ |eqI (α(j), α(j))| for all j ∈ J . Thus, we have

∀j ∈ J.∀s ∈ |ψα(j)|. tIs ∈ |ψα(j)|→|ϕj |,

from which it follows by Lemma 5.5, since tI ∈ QP, that α∗ψ �J ϕ as desired.

For the reverse direction, suppose α∗ψ �J ϕ. Hence, there exists an a ∈ Φ such that

∀j ∈ J. aψα(j) � ϕj . Then b = λ∗x.λ∗y.y(ax) ∈ Φ. Suppose i ∈ I and j ∈ J . If α(j) = i, then,

by Lemma 5.7,

bψieqI (α(j), i) � eqI (α(j), i)(aψi) � aψi � aψα(j) � ϕj.

Otherwise, again by Lemma 5.7, we have

bψieqI (α(j), i) � eqI (α(j), i)(aψi) � ϕj.

Thus we have shown that

∀i ∈ I, j ∈ J. bψieqI (α(j), i) � ϕi,

from which it follows by Lemma 5.6 that there is a c ∈ Φ with

∀i ∈ I, j ∈ J. cψi � eqI (α(j), i)→ϕj.

Thus we have

∀i ∈ I, j ∈ J. |cψi| ⊆ |eqI (α(j), i)→ϕj |,
from which it follows that

∀i ∈ I. |cψi| ⊆
⋂
j∈J
|eqI (α(j), i)→ϕj | = |∀α(ϕ)i|.
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Thus we have

∀i ∈ I. cψi � ∀α(ϕ)i,

and since c ∈ Φ, it follows that ψ �I ∀α(ϕ) as desired.

To show that ∀ satisfies the (Beck–)Chevalley condition, we suppose

P
q� J

K

p
�

β
� I

α
�

is a pullback in Set and ϕ ∈ [J,A]Φ. We have to show that β∗∀αϕ ∼= ∀pq∗ϕ. Note that

by abstract nonsense, β∗∀αϕ �K ∀pq∗ϕ does hold anyway. Thus, it suffices to show that

∀pq∗ϕ �K β∗∀αϕ. To do this, by Lemma 5.5, it suffices to show that for every k ∈ K , the

term SI ∈ QP sends elements of |(∀pq∗ϕ)k| to elements of |(β∗∀αϕ)k|. Suppose k ∈ K . We

have

|(∀pq∗ϕ)k| =
⋂
z∈P
|eqK (p(z), k)→ϕq(z)|

and

|(β∗∀αϕ)k| =
⋂
j∈J
|eqI (α(j), β(k))→ϕj | .

Suppose

t ∈
⋂
z∈P
|(eqK (p(z), k)→ϕq(z)|

and j ∈ J . Suppose α(j) = β(k). Then there is a z ∈ P with p(z) = k and q(z) = j. By

assumption on t, we have

t ∈ |(eqK (p(z), k)→ϕq(z)| ,
so

t ∈ |eqI (α(j), β(k))→ϕj |
since

eqK (p(z), k) = eqI (α(j), β(k)).

Thus, by Lemma 5.8 (i), we have

SIt ∈ |eqI (α(j), β(k))→ϕj |

since

eqI (α(j), β(k)) = {I}⊥.
Otherwise, if α(j) �= β(k), then

SIt ∈ |eqI (α(j), β(k))→ϕj |

by Lemma 5.8 (ii) since

eqI (α(j), β(k)) = Π.

https://doi.org/10.1017/S0960129512000989 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000989


T. Streicher 1252

Thus, in either case,

SIt ∈ |eqI (α(j), β(k))→ϕj | .

Next we show that there exists a generic predicate T. Let Σ = A and T = idA ∈ [A,A]Φ.

Then for ϕ ∈ [I,A]Φ, we have ϕ = ϕ∗T as desired.

It is well known that the remaining logical structure can be obtained from the already

established one by second-order encoding à la Russell–Prawitz.

Since cc ∈ QP realises reductio ad absurdum, it follows by Lemma 5.5 that all [I,A]Φ
are actually pre-boolean-algebras. Thus the tripos [−,A]Φ is boolean.

For every tripos, the equality predicate on I is given by ∃δI (	I ) where δI = 〈idI , idI〉
is the diagonal on I and ∃δI � δ∗I . We observe that this notion of equality on I coincides

with the one given by eqI .

Lemma 5.10. For every set I and ρ ∈ [I×I,A]Φ, we have

eqI �I×I ρ iff 	I �I δ∗I ρ,

and thus ∃δI (	I ) ∼= eqI .

Proof. Suppose eqI �I×I δ∗I ρ. Then, by Lemma 5.5, there is a t ∈ QP such that

∀i, j ∈ I.∀s ∈ |eqI (i, j)|. ts ∈ ρ(i, j).

Then for all i ∈ I , the term K(tI) ∈ QP sends elements of |	| to elements of |ρ(i, i)|. Thus

	I �I δ∗I ρ by Lemma 5.5.

For the converse direction, suppose 	I �I δ∗I ρ. Then there exists a ∈ Φ such that

a	 � ρ(i, i) for all i ∈ I . Thus, by Lemma 5.7, we have eqI (i, j)(a	) � ρ(i, j) for all i, j ∈ I .
Let b ∈ Φ with bxy � yx for all x, y ∈ A. Then we have

b(a	)eqI (i, j) � eqI (i, j)(a	) � ρ(i, j)

for all i, j ∈ I . Accordingly, since b(a	) ∈ Φ, it follows by Lemma 5.5 that eqI �I×I ρ as

desired.

As described in van Oosten (2008), the boolean tripos [−,A]Φ induces a boolean topos

Set
[
[−,A]Φ

]
, which we may call the classical realisability topos induced by the abstract

Krivine structure under consideration, or simply the Krivine topos.

Also as described in van Oosten (2008), for any tripos P over a topos S , there is a

‘constant objects’ functor ∇P from S to the topos S[P] induced by P. This functor sends

I ∈ S to the object
(
I, ∃δI (	I )

)
. By Lemma 5.10, this gives rise to an embedding ∇ of Set

into the classical realisability topos sending a set I to (I, eqI ).
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6. Forcing within classical realisability

Let P be a meet-semilattice. We write pq as shorthand for p ∧ q. Let C be an upward

closed subset of P . With every X ⊆ P , we associate†

|X| = {p ∈ P | ∀q. (C(pq)→ X(q))}.

Such subsets of P are called propositions. We say

p forces X iff p ∈ |X|

and want

p forces X → Y iff ∀q. (|X|(q)→ |Y |(pq))
p forces ∀i ∈ I.Xi iff ∀i ∈ I. p forces Xi

to hold. Obviously, we have

p forces X → Y iff ∀q. (|X|(q)→ |Y |(pq))
iff ∀q. (|X|(q)→ ∀r. (C(pqr)→ Y (r)))

iff ∀q, r. (C(pqr)→ |X|(q)→ Y (r))

iff p ∈ |{qr | |X|(q)→ Y (r)}|

and

p forces ∀i ∈ I.Xi iff p ∈ |
⋂
i∈I
Xi|.

As in Krivine (2008), we want to consider this construction inside a classical realisability

topos. That this gives a topos again follows from Pitts’ iteration theorem, as explained

in van Oosten (2008) and Hofstra (2008). This theorem says that for any tripos P over

a topos S and any tripos Q over S[P], the resulting topos S[P][Q] is again induced

by a tripos, provided the functor ∇Q : S[P] → S[P][Q] preserves epis, namely by the

tripos (∇Q∇P)
∗SubS[P][Q]. The requirement on ∇Q is certainly satisfied in our case because

Q is localic over S[P]. Alas, it is not obvious by general reasoning that the tripos

(∇Q∇P)
∗SubS[P][Q] is induced by an appropriate aks. Nevertheless, the fact that this is the

case was shown in Krivine (2008). Our aim now is to explain and reveal the intuition

behind his construction.

In fact, in most cases, P will not be a meet-semilattice inside a classical realisability

topos, but it will be one ‘from the point of view’ of C ⊆ P . This means that, as in

Krivine (2008), we are given an external‡ set P , a distinguished element 1 ∈ P , a binary

operation on P (denoted by juxtaposition) and a predicate§ C : P → P⊥⊥(Λ) such that the

† Traditionally, we would associate with X the set X⊥ = {p ∈ P | ∀q ∈ X.¬C(pq)}, but classically we have

|X| = (P \X)⊥.
‡ In other words, P is an object of Set.
§ This predicate induces a predicate C ⊥⊥ on P in the classical realisability topos.
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following conditions hold in the classical realisability topos:

C(p(qr))↔ C((pq)r)

C(pq)↔ C(qp)

C(p)↔ C(pp)

C(1p)↔ C(p)(
C(p)↔ C(q)

)
→

(
C(pr)↔ C(qr)

)
,

together with

C(pq)→ C(p)

expressing the requirement that C be upward closed. We may define a congruence on P

by

p ! q ≡ ∀r. (C(rp)↔ C(rq)),

with respect to which P is a commutative idempotent monoid, that is, a meet-semilattice,

inside the classical realisability topos of which C is an upward closed subset whose

complement contains at most one element.

A term t realises p forces X → Y if and only if

∀q, r.∀u∈C(p(qr)).∀s∈|X|(q).∀π∈Y (r). t ∗ u.s.π ∈ ⊥⊥ .

Thus, we may want to define a notion of a pair (t, p) realising X → Y . To do this, we

have to find a new aks whose term and stack part are Λ × P and Π × P , respectively.

The quasi-proofs of the new structure are the pairs of the form (t, 1) with t ∈ QP. The

pole ⊥⊥⊥ ⊆ (Λ× P ) ∗ (Π × P ) on the new structure is given by

(t, p) ∗ (π, q) ∈ ⊥⊥⊥ iff ∀u ∈ C(pq) t ∗ πu ∈⊥⊥

where πu is obtained from π by inserting u at its bottom. The push operation on the new

structure is given quite straightforwardly by (t, p).(π, q) = (t.π, pq), whereas application is

a bit more intricate, which is why we will postpone its definition.

Propositions with respect to this new aks are now subsets of Π × P understood as

functions from P → P(Π). Now, given such propositions X and Y , we have

(t, p) ∈ |X → Y | iff ∀(s, q) ∈ |X|.∀(r, π) ∈ Y . (t, p) ∗ (s, q).(π, r) ∈ ⊥⊥⊥
iff ∀(s, q) ∈ |X|.∀(r, π) ∈ Y .∀u ∈ C(p(qr)). t ∗ s.πu ∈ ⊥⊥

in accordance with the above explicitation of t realises p forces X → Y . The only difference

is that the realiser u of C(p(qr)) is now placed at a distinguished position, namely the

bottom of the stack.

In order to jump back and forth between

t realises p forces A

and

(t′, p) ∈ |A|,
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Krivine (2008) introduced ‘read’ and ‘write’ constructs in the original aks, namely

commands χ and χ′ whose operational semantics is given by

(read) χ ∗ t.πs ∈⊥⊥ whenever t ∗ s.π ∈⊥⊥

(write) χ′ ∗ t.s.π ∈⊥⊥ whenever t ∗ πs ∈⊥⊥ .

Using these, we can transform t into t′ and vice versa. Krivine concludes from this that to

realise forcing we need global memory.

Moreover, these two new commands allow us to give a correct definition of application.

Let α be a uniform realiser of C((pq)r)→ C(p(qr)) and α be a quasi-proof with

α ∗ t.πu ∈⊥⊥ whenever t ∗ παu ∈⊥⊥,

which may be taken as λ∗x.χ(λ∗y.χ′x(αy)). We now define application in the new aks as

(t, p)(s, q) ≡ (α(ts), pq)

for which we have

(t, p)(s, q) ∗ (π, r) ∈⊥⊥⊥ iff ∀u ∈ C((pq)r) α(ts) ∗ πu ∈⊥⊥
if ∀u ∈ C((pq)r) ts ∗ παu ∈⊥⊥
if ∀u ∈ C((pq)r) t ∗ s.παu ∈⊥⊥
if ∀u ∈ C((p(qr)) t ∗ s.πu ∈⊥⊥
iff (t, p) ∗ (s, q).(π, r) ∈⊥⊥⊥ ,

as required by condition (S1).

7. Conclusions

We have identified a notion of an abstract Krivine structure as an axiomatic account of

Krivine’s classical realisability. An important aspect of this notion is the explanation of

the role of the distinguished set QP of ‘quasi-proofs’ without which all models with a

non-empty pole ⊥⊥ would be inconsistent. This point has not been emphasised in most of

Krivine’s writings, though a notable exception is the recent Krivine (2010).

Based on this notion of an abstract Krivine structure, we have shown the precise sense

in which Cohen forcing is the commutative case of classical realisability.

We have also shown how Krivine’s work on classical realisability can be seen as an

instance of the categorical approach to realisability initiated by Martin Hyland. This has

been achieved by associating with every abstract Krivine structure an order pca A of

propositions together with a filter Φ of those propositions that we want to regard as ‘true’.

From A and Φ, we have constructed a boolean tripos giving rise to a categorical model

of classical higher-order logic. This tripos gives rise to the ensuing classical realisability

topos. This view has been helpful for us in getting a more structural understanding of

forcing within classical realisability using Pitts’ Iteration Theorem.

We leave as an open question whether techniques of Algebraic Set Theory (see, for

example, van den Berg and Moerdijk (2009)) can be used to show that every abstract

Krivine structure gives rise to a model for ZF.
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