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Abstract

Rank preference and mixture models have been employed to evaluate the ranks assigned by
consumers in taste tests of beans, cheese, crackers, salad dressings, soft drinks, sushi, animal
feed, and wine. In many wine tastings, including the famous 1976 Judgment of Paris and
the 2012 Judgment of Princeton, judges assign scores rather than ranks, and those scores
often include ties. This article advances the application of ranking and mixture models to
wine-tasting results by modifying the established use of a Plackett-Luce rank preference
model to accommodate scores and ties. The modified model is tested and then employed to
evaluate the Paris and Princeton wine-tasting results. Test results show that the mixture
model is an accurate predictor of observed rank densities. Results for Paris and Princeton
show that the group preference orders implied by the mixture model are highly correlated
with the orders implied by widely employed rank-sum methods. However, the mixture
model satisfies choice axioms that rank-sum methods do not, it yields an estimate of the
proportion of scores that appear to be assigned randomly, and it also yields a preference
order based on nonrandom preferences that tasters appear to hold in common.
(JEL Classifications: A10, C00, C10, C12, D12)

Keywords: Mixture model, preference rank, statistics, wine tasting.

I. Introduction

Rank preference and mixture models have been applied to taste tests of snap beans
(Plackett, 1975), cheese snacks (Vigneau et al., 1999), crackers (Critchlow, 1980),
salad dressings (Theusen, 2007), soft drinks (Bockenholt, 1992), sushi (Chen,
2014), animal feed (Marden, 1995), an unidentified food (Cleaver and Wedel,
2001), and, now, recently, wine. Regarding wine, Bodington (2012) posited that ob-
served wine-tasting results may have a mixture distribution with random, common
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preference and idiosyncratic preference mixture components. Cao (2014) applied a
mixture model with random-ranking and consensus-ranking components to the
results of the 2009 California State Fair Commercial Wine Competition.
Bodington (2015) applied a mixture of rank-preference models to the ranks assigned
by experienced tasters during a blind tasting of Pinot Gris, and the results implied
that common-preference agreement among tasters exceeded the random expectation
of illusory agreement.

This article seeks to test and broaden the application of a rank-preference and
mixture models to wine-tasting results expressed as numerical scores rather than
ranks and to results that include ties between scores. The 1976 Judgment of Paris
(Paris) and the 2012 Judgment of Princeton (Princeton, and together the
Judgments) are well known and analyzed wine tastings that provide data and
context for a replicable test of a mixture of rank-preference models that is
modified to handle scores, with ties, that are converted to ranks. The judges’
scores in Paris and Princeton had many ties.

The mixture of Plackett-Luce models applied to ranked data for a tasting of Pinot
Gris in Bodington (2015) is summarized in Section II. Transforming numerical
scores into ranks and choice axioms are discussed in Section III, and an addition
to the mixture model to handle ties between numerical scores appears in Section
IV. The resulting model satisfies the Luce and independence from irrelevant alterna-
tives (IIA) choice axioms, it considers ties between scores, and it can be applied to the
small sample sizes associated with most tastings. Next, in Section V, the model is
tested on hypothetical data, on the Pinot Gris tasting results and with a Monte
Carlo simulation. In Section VI, the mixture model is then applied to judges’
scores for Paris and Princeton. The mixture model results yield estimates of potential
Type I error, the proportion of tasters’ scores that appear to be assigned randomly,
and a preference order based on nonrandom preferences that tasters hold in
common. That preference order is highly but not perfectly correlated with the impli-
cations of rank-sum methods applied to the Judgments, and, unlike rank-sum
methods, it also complies with the Luce choice axiom and IIA. Conclusions
follow in Section VII.

II. Mixture Model for Ranked Wines

A mixture distribution is the result of combining the distributions of two or more
random variables. The distribution of the mixture is observable and the underlying
component distributions may be unobservable or latent. A mixture model is a math-
ematical expression of the latent distributions and their observable combination. See
McLachlan and Peel (2000), Mengersen et al. (2011) and References. As a starting
point, notation and a mixture model for ranked wine-tasting results are summarized
below.
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The names of wines (each name w with a total of W wines) assessed by a taster
(each taster t with a total of T tasters) are listed in an object vector
o ¼ o1; o2; o3; . . . ; oWð Þ, and the respective scores assigned to the wines by each
taster are listed in a score vector xt = (xt,1, xt,2, xt,3, …, xt,W). When those scores
are assigned a relative rank, or when a taster assigns ranks rather than scores, the
result is a rank vector rt = (rt,1, rt,2, rt,3, …, rt,W). Arranging the objects from most-
preferred to least-preferred yields an order vector yt= (yt,1, yt,2, yt,3, …, yt,W).
Following Marden (1995) and others, ties between scores are indicated by their
average rank and a superscript line over tied objects. Adapting notation from
Kidwell et al. (2008), ■ symbolizes a one-unit interval between observed scores in
a complete order vector yct. For example, assuming an object vector with four
wines o ¼ A;B;C;Dð Þ and that a taster assigns scores xt = (10, 15, 6, 10), the rank
vector is rt = (2.5, 1, 4, 2.5), the order vector is yt ¼ BADC

� �
, and the complete

order vector is yct ¼ B■ ■ ■ ■ AD■ ■ ■ C
� �

.

Cao (2014) employed a mixture model with two latent classes of taster, those who
appear to assign ranks randomly and those who appear to have consensus.
Bodington (2015) analyzed two similar classes, employed a Plackett-Luce probabil-
ity mass function (PMF, ft(yt|ρ)) for the latent common-preference class of tasters,
employed the mixture model in Equations (1) and (2), and tested that model on a
blind tasting of Pinot Gris. The Plackett-Luce PMF appears in Equation (1) and
ρi is the probability that wine i is selected as most preferred. See also Luce (1977)
and Marden (1995). Next, a mixture model with two classes of taster expressing
the probability of a taster’s observed order vector (f 0t ytjρ̂; π̂ð Þ) appears in Equation
(2). In Equation (2), the probability of a taster’s order vector yt equals the probability
that a taster assigns ranks randomly (πr) times the random-ranking PMF, plus, the
probability that a taster assigns ranks in accordance with common preferences
(πp) times the Plackett-Luce PMF. The π are known as mixture component
weights or mixing proportions and a hat (^) indicates that the value of a parameter
in the mixture model must be estimated.

ft ytjρð Þ ¼
YW

i¼1

ρiPW
j ¼i ρj

� � jyt; ρ
0
@

1
A ð1AÞ

0 � ρi � 1:0 and 1:0 ¼
XW

i ¼1
ρi ð1BÞ

f 0t ytjρ̂; π̂ð Þ ¼ bπr � 1
W !

� �
þ bπp � ft ytjρ̂ð Þ ð2AÞ

0 � bπr and bπp � 1:0 and 1:0 ¼ bπr þ bπp ð2BÞ

Several simple examples of mixture model results are worked by hand in Appendix
A. As a check, those results also match the results of Equations (1) and (2). The
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examples in Appendix A involve two wines and two to four tasters. Examples with
more wines and tasters become intractable to solve by hand. For three wines and
three tasters, the number of order vector combinations is (3!)3 = 216. For ten wines
and nine tasters, as there were in Paris and Princeton, the number of combinations
is (10!)9 = 1.09 × 1059.

Appendix A also provides examples of an important qualification regarding
Bodington (2015) and this article. What are labeled here for convenience as assign-
ments that appear to be random may actually themselves be a mixture of random
assignments and idiosyncratic assignments that fit together to yield the characteristic
flat shape of a uniform random distribution. As noted in the Conclusion, separating
and identifying random and idiosyncratic assignments is work for the future. Neither
of those are the common-preference assignments that are the focus of wine makers or
the determinants of a tasting group’s aggregate preference order.

Note again that the mixture model above applies to a tasting in which the protocol
did not allow ties and tasters assigned ranks rt rather than scores xt. Section III ad-
dresses transforming scores into ranks, and an addition in Section IV enables the
model to handle ties between scores.

III. Transforming Scores into Ranks and Transitivity

Transforming numerical scores into ranks by sequentially ordering the scores is a
customary practice. In application to the Judgments, Ashenfelter and Quandt
(1999), Ginsburgh and Zang (2012), Quandt (2006, 2012), and Ward (2012) em-
ployed that transformation. Two aspects of that transformation and transitivity
are discussed below.

First, although the transformation above does preserve transitivity, it may lose in-
formation. Continuing the example xt = (10, 15, 6, 10) from Section II, the ranking
transformation yields yt ¼ BADC

� �
but loses the extra information in

yct ¼ B■ ■ ■ ■ AD■ ■ ■ C
� �

. Not one judge in Paris or Princeton ranked her
or his wines with ten consecutive scores. Intervals between scores of two and three
were common, and most scored at least one wine next to an interval of four
points. For example, in Paris, Pierre Brejoux’s complete order vector was ycPB ¼
CB■F■IAD■G■HE■■■■Jð Þ: Are the intervals between those scores random?
Are they artifacts of flawed experimental design? Or, are the intervals information
about the strengths of relative preferences?

Turning to the question of randomness, the skewness (γ1) of tasters’ scores in the
Judgments shows that the intervals between scores do not appear to be random.
Only two judges had symmetric distributions of scores with γ1 = 0. Thirteen of the
judges skewed right with γ1 > 0, and the other 21 skewed left with γ1 < 0. If that
asymmetry in scores is caused by random interval ■ then the expectation of skew-
ness is zero; E(γ1) = 0. The mean skewness for the 9 * 4 = 36 observations in the
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Judgments was −0.17, and the variance in that skewness was 0.27. The Students t-
statistic for the hypothesis that E(γ1) = 0 is 0� �0:17ð Þð Þ= ffiffiffiffiffiffiffiffiffi

0:27
p

=
ffiffiffiffiffi
36

p� � ¼ 1:96.
That t-statistic has a one-tailed p-value of approximately 0.03. On that basis, the
null hypothesis that the intervals ■ are random would be rejected for a large
sample size but is marginal for a sample with 36 observations.

Next, flawed design can induce bias in any experiment. See Ashton (2014),
Filipello (1955, 1956, 1957), Filipello and Berg (1958), Mantonakis et al. (2009),
and Masson and Aurier (2015) for bias induced in wine-tasting results by the
number of wines to be judged, the tasting protocol and tasters’ expectations. See
Cicchetti (2014) for a comparison of ranking and scoring the same wine. Another
aspect of experimental design is the general guidance sometimes given to tasters
about which characteristics in wine warrant certain score totals. For example,
University of California at Davis and Jancis Robinson employ 20-point scales that
assign levels of quality to point ranges. When judges score using a numerical
point scale, do they assign scores independently according to each wine’s quality?
Or, is the scale merely a bound on judges’ assessments of relative preference?
Tasting experience implies that some judges assign a score to one wine according
to a general zone of quality and then score the remaining wines “around” that
anchor. Is the left skew found above an artifact of judges’ expectations that the
anchor score is a 15 to 17 out of 20 and then having more room for lower scores
than for higher scores? This author is not aware of research that tests the reliability
of score scales, how they may actually be used, andwhether they induce any bias. See
some of those issues discussed in Quandt (2012, p. 153) and Ward (2012, p. 159). On
that basis, the notion that the experimental design of a tasting may induce■ and bias
in scores cannot be dismissed.

The possibility remains that differential intervals between numerical scores are
information about the strengths of relative preferences. The probabilities in
Plackett-Luce have been modified (from ρi to ρ′t,i) by others to be functions of, or
to make inferences about, additional information. In an application to betting on
horse races, Benter (1994) added an exponent to capture information about the ob-
served chance that a long-shot horse could win. In an application to election results,
Gormley and Murphy (2007) made ρ′t,i an exponential function of each voter’s no-
tional distance from a candidate on various issues. In another analysis of election
results, Gormley and Murphy (2008) made ρ′t,i a logistic function of the observed
characteristics of voters. Applying those ideas to wine-tasting results seems perilous.
Wine-tasting sample sizes are small, and there are few objectively measureable covar-
iates. Moreover, disentangling strengths in relative preference from bias induced by
experimental design is likely to be difficult with statistical significance, and it risks
confusing the search for preferences that wine judges have in common.

In sum, transforming each judge’s scores into ranks by merely ordering the scores
does preserve the transitivity of preference for each judge. While that transformation
may also lead to a loss of information, the value of that lost information appears to
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be both speculative and intractable. Further analysis of that hypothesis may be more
work for the future.

The second aspect of transitivity to be addressed here concerns comparing the
ranks assigned by different judges to measure their aggregate, group, or social pref-
erence. Arrow’s (1963) impossibility theorem concerning social choice and Luce’s
(1977) choice axiom both have implications based on transitivity about aggregating
wine tasters’ scores or ranks into measures of which wine or country “won,” a pref-
erence order, and which wine or country “lost.”

Arrow’s theorem is considered here first. All of Ashenfelter and Quandt (1999),
Ginsburgh and Zang (2012), Hulkower (2009), Quandt (2006,2012), and Ward
(2012) compared the wines in the Judgments using various sums of judges’ ranks
(hereafter referred to as rank-sums methods). Quandt (2012, p. 153) explains that
rank-sums methods violate a rule of choice logic sometimes known as independence
from irrelevant alternatives (again, IIA). Quandt provides an example showing that
excluding wine G from the white wines tasted in Princeton yields a different aggre-
gate preference order for those that remain; y ¼ ADGBEIHFJCð Þ changes to
y ¼ ADBEIHFJC

� �
. A simple example involves just two tasters and three wines.

For o= (A, B), r1 = (1, 2) and r2 = (2, 1) the rank sums aggregate preference order
is the tie y ¼ AB

� �
. Adding a wine C, for r1 = (1, 2, 3) and r2 = (3, 1, 2), the rank

sums aggregate preference order is y ¼ CABð Þ. Adding wine C thus changed the ag-
gregate preference for A and B from indifference to preference. That example fails
transitivity and demonstrates Arrow’s general possibility theorem; there is no
method of combining ranked individual expressions of preference into an aggregate
that does not have logical inconsistencies. Restated without the double negative,
every method of aggregating expressions of individual ranked preference into a
measure of social preference has logical flaws (see also Marden [1995, p. 134]).
IIA is one of the four criteria for Arrow’s theorem, and it requires that aggregate
social preference for an option A over option B should be independent of and
should not be changed by individuals’ preferences for A and B compared to
option C.

Luce examined choice and IIA from a probabilistic perspective. See Luce (1977)
for a formal statement and discussion of the Luce choice axiom (LCA). Applying
the LCA to the simple example above, consider an urn containing equal numbers
of balls marked A and B. Relative preference is the relative likelihood of drawing
either A or B. With equal numbers of A and B balls, ρA= ρB and the preference
order is thus the same tie as above, y ¼ AB

� �
. Now, add just one ball marked C

to the urn. In that case, ρA= ρB > ρC thus y ¼ ABC
� �

. Next, add many more
balls marked C such that ρC> ρA= ρB and now y ¼ CAB

� �
. In both cases, transitiv-

ity is preserved, and IIA is obtained. In the formal statement of LCA, the aggregate
relative preference for two objects depends on the ratio of their probabilities alone. In
Luce (1977, p. 216), this is known as the constant ratio rule. The Plackett-Luce PMF
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employed here in Equation (1) is consistent with the LCA (seeMarden [1995, p. 134];
Plackett [1975]).

IV. Tied Scores

Ties are common in wine tastings. Every participant in Paris and Princeton assigned
the same numerical score to at least two wines. Some of the judges assigned the same
score to three or four wines. A taster may assign the same numerical score to two or
more wines when he or she cannot distinguish between wines or decides that, all
things considered, two or more wines deserve the same score. Quoting Quandt
(2006, p. 9), “the option of using tied ranks enables tasters to avoid hard choices.”
An interpretation of ties from Kidwell et al. (2008) is that a taster needs more
time or information than is available to actually differentiate between the tied wines.

Ties are often evaluated as the mean or expectation of the like objects. Spearman’s
rank correlation coefficient is calculated using the mean rank of tied objects.
Kendall’s rank correlation coefficient, the Mann-Whitney U test, and the
Wilcoxon rank-sum test also employ the mean rank of tied objects. In a rank-pref-
erence model, it is convenient to treat the probability of an order vector containing
ties as the expectation of the probabilities of the order vectors that are the permuta-
tions of the tie (each permutation m is yt,m with a total of tp tie permutations). For
example, the probability of yt ¼ BADC

� �
is the mean of the probabilities of yt,1 =

(BADC) and yt,2 = (BDAC). See Critchlow (1980, p. 73), Kidwell et al. (2008,
p. 1356), and Marden (1995, pp. 261, 269). The general form of that expectation
appears in Equation (3).

E ft ytjρ̂ð Þð Þ ¼ 1
tp

Xtp

m¼1
ft yt;mjρ̂
� �� � ð3Þ

Although Equation (3) appears straightforward, it may not be easy in practice. In
addition to the four wines that Odette Kahn scored in Paris as 12, she also assigned
a score of 2 to two other wines. The number of her tie permutations tp is thus 4! × 2!
= 48. In Princeton, Daniele Muelders assigned a score of 12 to four wines and a score
of 15 to another four wines. The total of Muelders’s tie permutations tp is 4! × 4! =
576.

Specific tests of the mixture model in Section V, including ties under Equation (3),
show that the model is an accurate predictor of both observed rank densities and the
mixture weights for random-behavior and common-preference score assignments.

V. Estimates, Tests, and Type I Error

The expectation maximization (EM) algorithm is a widely employed method of es-
timating the unknown parameters in mixture models. See Dempster et al. (1977),
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McLachlan (2000), Mengersen et al. (2011), and References. In sum, EM iterates to
climb a likelihood function. MATLAB code written by the author for the EM algo-
rithm employed here, including an integrated maximum likelihood estimator
(MLE), is available on request. Several tests of the mixture model in Equations
(1) through (3), solved using the EM algorithm, are summarized below.

Test 1: A hypothetical 18 tasters rank six wines; six of those combine to have a
random expectation, and 12 assign the same ranks to the same wines. The
mixture weight for the random class should be 6/18 = 0.33. The EM solution does
yield bπr ¼ 0:33, and the estimates of bρi imply the correct preference order.

Test 2: Again, 18 tasters rank six wines. Twelve of those combine to have a random
expectation, and six assign the same ranks to the same wines. The mixture weight for
the random class bπr should be 12/18 = 0.67. The EM solution does yield bπr ¼ 0:67;
and the estimates of bρi again imply the correct preference order. As an additional
test, the model does replicate the ranked Pinot Gris results referenced above.

Test 3: The same data in Test 1 are evaluated now as scores rather than ranks. While
the random class weight and density of the most preferredwine should be the same as
in Test 1, the order should reverse because unity is the most-preferred rank, but it is
the least-preferred score. The EM solution does yield those results. Further, the EM
solution for changing three tasters’ scores to prefer wine E the most and another
three to prefer wine F the most does yield approximately bρi ¼ 0:5 for the two
wines that are tied for most-preferred.

Test 4: The data from Test 3 are evaluated again here except that, for the eighteenth
taster alone, the scores on the most- and second-most-favored wines are tied. The
total number of order vectors should be 17 + 2! = 19. Compared to the results for
Test 3, the probability bρi for the first-place wine should go down because that
wine is now tied for second place for one taster. This is a test of Equation (3) for
ties, and the EM solution does yield those results.

Test 5: In each Judgment, nine judges assigned scores between zero and 20 to each
of ten wines. Accordingly, in this fifth test, each of nine tasters randomly assigns a
score between zero and 20 to each of ten wines in a Monte Carlo simulation with
1,000 iterations. These draws include random ties and random intervals ■
between scores. For ten wines, the expected value of the probability that each wine
is most-preferred E bρi� �

should be 1/10. That and other EM solution results are sum-
marized in Table 1. Standard deviations (SD) are also reported. The expected results
are obtained; none of the E bρi� �

are significantly different from 0.10, and their sum is
close to unity. In addition, the expectation of the mixture weight for the class of
tasters that appear to assign scores randomly E bπrð Þ is 0.882. This implies that the
probability of Type I error, false-positive illusory agreement on common preference,
is approximately 1.000− 0.882 = 0.118. See further discussion of Type I error and the
tractable examples worked in Appendix A.
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VI. Application to Paris and Princeton

The title of this article portends a test of a mixture of rank-preference models using
the scores that judges assigned in Paris and Princeton. Using the model presented
and tested above, this section now presents that test.

A. Paris 1976

Eleven wine judges met at the Intercontinental Hotel in Paris, France, on May 24,
1976. Ten white wines and ten red wines were decanted into identical plain
bottles. For each group of white and red wines, the tasting order was determined
by drawing numbers from a hat. Each judge had two wine glasses, one for wine
and the other for water. The protocol was step-by-step sequential; each judge
tasted and scored a wine before the next wine was poured. Ten white wines were
poured, then, following a break, ten reds. Each judged scored each wine on a
scale of zero to 20, and the “official” ranking was based on the sums of the nine
French judges’ scores. See Taber (2005) and the author thanks both Mr. Taber
and Mr. Spurrier for independently confirming this description of the protocol.

Among other sources, the judges’ scores are available in Hulkower (2009, tables 3
and 8) and Lindley (2006). Spurrier and many others calculated overall preference
using the total of scores for each wine. Ashenfelter and Quandt (1999) compared

Table 1
Monte Carlo Simulation Results, 1,000 Iterations

bρi
Mean SD Other

Wine
A 0.103 0.279
B 0.100 0.266
C 0.105 0.297
D 0.099 0.278
E 0.097 0.267
F 0.107 0.283
G 0.095 0.274
H 0.105 0.283
I 0.100 0.278
J 0.093 0.265

Sum 1.003

bπr
Mean 0.882
SD 0.028

Log likelihood
Mean (125.19)
SD 1.2
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the red wines using a rank-sums method. Quandt (2006) then compared the white
wines using rank sums. Cicchetti (2006) evaluated both red and white wines using
intraclass correlation coefficients to identify two classes of judges: those who
ranked consistently with each other and those whose ranks appeared to be inconsis-
tent. Hulkower (2009) reviewed the literature to date and presented another compar-
ison using rank sums. Ginsburgh and Zang (2012) compared the red wines using
rank sums and a game-theory–based measure of relative influence known as a
Shapley value. See Olkin et al. (2015) for a recent survey of rank sums and other
methods of analyzing wine-tasting data.

Mixture model results for Paris appear in Tables 2A and 2B. In addition to a pref-
erence order based on bρi; each table shows a preference order according to rank
sums; most of the evaluations referenced above calculate rank sums and consider
it superior to a sum of scores. For the white wines in Table 2A, the preference
order implied by the mixture model is very close to that implied by rank sums.
The correlation coefficient between the two is 0.94. The bρi imply very strong agree-
ment among judges on the first- and last-place wines and then much similarity in
between. The estimate bπr ¼ 0:335 implies that three of the nine judges appear to
have assigned scores randomly. The likelihood ratio statistic (LRS), compared to
the null hypothesis random-ranking Monte Carlo log likelihood result in Table 1,
is −2 * ((−125.19) – (−102.85) = 44.7 and that LRS has a chi-square p- value < 0.001.

Table 2A
White Wines, 1976 Judgment of Paris

Preference order

Mixture model results
Mixture Rankbρi ln bρi Other model sums

Château Montelena 0.997 (0.003) 1 1
Mersault Charmes 0.002 (6.177) 2 2
Chalone Vineyard 0.000 (8.404) 5 3
Spring Mountain 0.000 (8.398) 4 4
Freemark Abbey 0.000 (8.524) 6 6
Bâtard-Montrachet 0.000 (9.144) 7 7
Puligny-Montrachet 0.000 (9.837) 8 9
Beaune Clos des Mouches 0.000 (7.988) 3 5
Veedercrest 0.000 (10.080) 9 8
David Bruce 0.000 (48.209) 10 10
Sum 1.000

bπr 0.335
Log likelihood (102.85)
LRS (v. Monte Carlo) 44.7

Judges’ scores and rank-sums preference order from Borda results in Hulkower (2009).
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Results for the red wines in Paris, in Table 2B, are similar to those for the white
wines, however, the proportion of apparently random scoring as measured by bπr
increased. The preference orders implied by the mixture model and rank sums
are again similar, and their correlation coefficient is 0.86. There is much general
concordance, but specific agreement on only the second-place wine. The estimate
of bπr implies that four of the judges, one more than for the white wines, appear
to have assigned scores randomly. That increase in the number of random-
scoring judges could be due to palate fatigue, the characteristics of the red wines
themselves, that announcement of results for the first flight and discussion
among judges altered expectations, and other factors. The p-value of the LRS
remains <0.001.

Finally, concerning Paris, the analysis above is intended only as a test of the
mixture model on a famously available and analyzed set of data. The author does
not intend to put forth any opinion about which wine or which country actually
won or lost in Paris. Filipello (1955, 1956, 1957) and Filipello and Berg (1958) con-
ducted various wine taste tests using sequential protocols and found evidence of
primacy bias. Mantonakis et al. (2009) found evidence of both primacy and
recency bias with an end-of-sequence protocol even among “high-knowledge”
wine tasters. De Bruin (2005) examined singing and figure-skating competition
results and found position bias in both step-by-step and end-of-sequence sequential

Table 2B
Red Wines, 1976 Judgment of Paris

Preference order

Mixture model results
Mixture Rankbρi ln bρi Other model sums

Stag’s Leap 0.281 (1.269) 2 2
Château Mouton Rothschild 0.077 (2.565) 3 4
Château Haut Brion 0.043 (3.144) 4 1
Château Montrose 0.534 (0.627) 1 3
Ridge Monte Bello 0.002 (6.346) 7 5
Château Léoville 0.020 (3.925) 6 7
Mayacamas 0.041 (3.188) 5 6
Clos Du Val 0.000 (8.038) 10 8.5
Heitz Martha’s Vineyard 0.001 (7.253) 8 8.5
Freemark Abbey 0.001 (7.585) 9 10
Sum 1.000

bπr 0.451
Log likelihood (112.0)
LRS (v. Monte Carlo) 26.4

Judges’ scores and rank-sums preference order from Borda results in Hulkower (2009).
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judging protocols. A step-by-step sequential protocol was employed in Paris, and the
sequence of the wines has never been disclosed.1

B. Princeton 2012

Nine judges met on June 8, 2012, at Prospect House on the campus of Princeton
University. Ten white wines and ten red wines were bagged and out of tasters’
sight in another room. For each group of white and red wines, the tasting order
was determined by drawing letters from a hat. In sharp contrast to the sequential
protocol in Paris, in Princeton, there were ten glasses in front of each judge and
each judge could taste and re-taste the wines in any order. Ten white wines were
tasted and scored in a first flight, then ten red wines in a second. Water was available.
Each judge scored each wine on a scale of zero to 20. See a description of the protocol
and judges’ scores in Ashenfelter and Storchmann (2012) and Taber (2012). Bodington
(2012) showed that the “open” protocol employed in Princeton, in contrast to the
sequential protocol employed in Paris, is not prone to sequential or flight position bias.

Mixture model results for Princeton and again the preference orders implied by
rank sums appear in Tables 3A and 3B. Quandt (2012) compared the wines using
rank sums. Ward (2012) calculated and offered caution about comparing the raw
scores, ranks, centered, standardized, heterogeneous, and Friedman’s test statistics.
Ginsburgh and Zang (2012), as they did for Paris, compared the red wines using
rank sums and Shapley values.

For the white wines in Princeton, results in Table 3A show that the preference
orders implied by the mixture model and ranks sums are similar. The correlation
coefficient between the two orders is 0.86. The estimates of bρi for the common-pref-
erence class of taster imply their strong preference for first-place Clos des Mouches
and strong preference against the last-place Ventimiglia. Those findings are
consistent with those in Quandt (2012) and Ward (2012). In addition to preference-
order implications that are similar to those of others, the mixture model implies
substantial randomness in tasters’ scores. The random mixture weight isbπr ¼ 0:670, and the LRS is 0.2.

Results for the red wines in Princeton, shown in Table 3B, are similar to those for
the white wines. There is general concordance between the mixture model and rank-
sums results, and the correlation coefficient between the two orders is 0.78. The es-
timates of bρi for the common-preference class of taster imply their strong preference

1Patricia Gallagher had a list with the tasting order and gave it to Taber (Taber, 2005, p. 200). In addition
to a literature search, the author contacted George Taber, Steven Spurrier, an associate of Gallagher, and
Jancis Robinson and posted an inquiry in the Purple Pages in an attempt to find the 1976 sequence. Other
than that Puligny-Montrachet was the first white poured, both Spurrier (personal communication via
e-mail, March 28, 2014) and Taber (personal communication via e-mail, April 22, 2014) conveyed to
the author that the order is lost to history.
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Table 3A
White Wines, 2012 Judgment of Princeton

Preference order

Mixture model results
Mixture Rankbρi ln bρi Other model sums

Heritage 0.326 (1.122) 2 3
Unionville Pheasant 0.032 (3.444) 3 2
Puligny Montrachet 0.026 (3.660) 5 5
Clos des Mouches 0.567 (0.567) 1 1
Silver Decoy 0.031 (3.486) 4 4
Bellview 0.005 (5.278) 7 6.5
Ventimiglia 0.000 (19.044) 10 9
Mersault Charmes 0.006 (5.137) 6 10
Amalthea 0.004 (5.592) 9 8
Bâtard Montrachet 0.004 (5.507) 8 6.5
Sum 1.000

bπr 0.670
Log likelihood (125.1)
LRS (v. Monte Carlo) 0.2

Rank-sums preference order from Quandt (2012).

Table 3B
Red Wines, 2012 Judgment of Princeton

Preference order

Mixture model results
Mixture Rankbρi ln bρi Other model sums

Château Montrose 0.000 (15.834) 4 4
Château Mouton Rothschild 0.992 (0.008) 1 1
Silver Decoy 0.000 (17.617) 7 8
Heritage Estate 0.008 (4.817) 2 3
Bellview Lumière 0.000 (16.708) 5 7
Tomasello 0.000 (10.312) 3 5
Château Léoville 0.000 (18.323) 9 6
Amalthea Europa 0.000 (17.993) 8 9
Four JG’s 0.000 (54.772) 10 10
Château Haut-Brion 0.000 (17.184) 6 2
Sum 1.000

bπr 0.778
Log likelihood (123.0)
LRS (v. Monte Carlo) 4.4

Rank-sums preference order from Quandt (2012).
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for Château Mouton Rothschild and strong preference against Four JG’s. Again,
that finding is consistent with those in Quandt (2012) and Ward (2012). As for the
white wines, in addition to preference-order implications that are similar to those
of others, the mixture model results also imply substantial randomness in tasters’
scores. bπr ¼ 0:778, and the LRS is 4.4. Again, as it did in Paris, bπr increased for
the second wine flight due to palate fatigue or other factors.

Standing back from the specific results and comparisons above, the test of the
mixture model in Equations (1) through (3) using Paris and Princeton data has
several implications. First, although the mixture model satisfies the Luce choice
axiom that rank-sums methods do not, the mixture model’s findings about aggregate
preference order are similar but not identical to those of rank-sums methods.
Second, in bπr, the mixture model implies and quantifies an increase in the appear-
ance of random score assignments between the first and second wine flights that
may be due to palate fatigue or other factors.

VII. Conclusion

A mixture of rank-preference models, including a Plackett-Luce PMF, was tested on
the scores assigned by judges in the 1976 Judgment of Paris and the 2012 Judgment
of Princeton. The aggregate- preference order implied by that mixture model complies
with the Luce choice and IIA axioms, and it is also generally consistent with other pub-
lished results. The mixture model has the added benefit of an estimate of Type I error,
an estimate of the proportion of judge’s scores that appear to be based on random-
scoring behavior, and an estimate of judges’ nonrandom common-preference order.

Although rank-preference and mixture models have been applied to taste tests of
beans, cheese, crackers, salad dressings, soft drinks, sushi, and animal feed, applica-
tion of the models to the unique challenges of wine-tasting results remains at an early
stage. An analysis of alternatives to Plackett-Luce seems worthwhile. Restating the
mixture to allow different proportions of common-preference agreement on different
wines, changing πp to πp,i, seems realistic. While the mixture model presented above
does parse observed tasting results into random and common-preference compo-
nents, tasters’ nonrandom but idiosyncratic preferences may account for much of
the variance in observed scores. Some like more fruit than others, some like more
acid, there are many examples. Future work is needed to identify and quantify
those idiosyncratic preferences. Finally, the fundamental question of whether a
zero to 20 point-score protocol induces ■ and bias in scores may be worth testing.
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Appendix A: Examples of Mixture Model Results and Type I Error

Several simple examples of mixture model results and Type I error appear below.
Examples with two wines and two to four tasters are tractable to work out by
hand as shown. As a check, the EM solutions to Equations (1) and (2) do match
the results below.

Wines/
Tasters

Combinations of
permutations

Observed
probability
A is first cρA bπr E( bπr)

Type I
Error E
(cπp)

AB, AB 1.00 1.00 0.00
2/2 AB, BA 0.50 0.50 1.00 2/4 = 0.50 0.50

BA, AB 0.50 0.50 1.00
BA, BA 0.00 0.00 0.00
AB, AB, AB 1.00 1.00 0.00

2/3 AB, AB, BA 0.67 1.00 0.67 4/8 = 0.50 0.50
AB, BA, AB 0.67 1.00 0.67
AB, BA, BA 0.33 0.00 0.67
BA, AB, AB 0.67 1.00 0.67
BA, AB, BA 0.33 0.00 0.67
BA, BA, AB 0.33 0.00 0.67
BA, BA, BA 0.00 0.00 0.00
AB, AB, AB, AB 1.00 1.00 0.00

2/4 AB, AB, AB, BA 0.75 1.00 0.50 10/16 = 0.625 0.375
AB, AB, BA, AB 0.75 1.00 0.50
AB, AB, BA, BA 0.50 0.50 1.00
AB, BA, AB, AB 0.75 1.00 0.50
AB, BA, AB, BA 0.50 0.50 1.00
AB, BA, BA, AB 0.50 0.50 1.00
AB, BA, BA, BA 0.25 0.00 0.50
BA, AB, AB, AB 0.75 1.00 0.50
BA, AB, AB, BA 0.50 0.50 1.00
BA, AB, BA, AB 0.50 0.50 1.00
BA, AB, BA, BA 0.25 0.00 0.50
BA, BA, AB, AB 0.50 0.50 1.00
BA, BA, AB, BA 0.25 0.00 0.50
BA, BA, BA, AB 0.25 0.00 0.50
BA, BA, BA, BA 0.00 0.00 0.00

Note that if the observed distribution has the exact “flat” form of a random distribution, the estimates of bπr and bρi are indeterminate because
the observed distribution of ranks in that case is homogeneous and thus does not appear to be a mixture. The author has never observed that
pattern in actual tasting results. See also discussion of Type I error in Bodington (2015).
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