
J. Fluid Mech. (2020), vol. 888, R2, doi:10.1017/jfm.2020.58

journals.cambridge.org/rapids

On singularity formation via viscous
vortex reconnection

Jie Yao1 and Fazle Hussain1,†

1Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA

(Received 13 December 2019; revised 2 January 2020; accepted 15 January 2020)

Recognizing the fact that the finite-time singularity of the Navier–Stokes equations is
widely accepted as a key issue in fundamental fluid mechanics, and motivated by the
recent model of Moffatt & Kimura (J. Fluid Mech., vol. 861, 2019a, pp. 930–967;
J. Fluid Mech., vol. 870, 2019b, R1) on this issue, we have performed direct numerical
simulation (DNS) for two colliding slender vortex rings of radius R. The separation
between the two tipping points 2s0 and the scale of the core cross-section δ0 are
chosen as δ0= 0.1s0= 0.01R; the vortex Reynolds number (Re= circulation/viscosity)
ranges from 1000 to 4000. In contrast to the claim that the core remains compact and
circular, there is notable core flattening and stripping, which further increases with
Re – akin to our previous finding in the standard anti-parallel vortex reconnection.
Furthermore, the induced motion of bridges arrests the curvature growth and vortex
stretching at the tipping points; consequently, the maximum vorticity grows with Re
substantially slower than the exponential scaling predicted by the model – implying
that, for this configuration, even physical singularity is unlikely. Our simulations not
only shed light on the longstanding question of finite-time singularities, but also
further delineate the detailed mechanisms of reconnection. In particular, we show for
the first time that the separation distance s(τ ) before reconnection follows 1/2 scaling
exactly – a significant DNS result.
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1. Introduction

As a fundamental topology-transforming process, vortex reconnection has been
extensively studied both in classical (Melander & Hussain 1988; Kida & Takaoka 1994)
and quantum (Koplik & Levine 1993; Bewley et al. 2008; Zuccher et al. 2012)
turbulence. In addition to its physical relevance to turbulence phenomena, such as
energy cascade, fine scale mixing and noise generation (Hussain & Duraisamy 2011),
reconnection also represents a stand-alone mathematical problem related to the
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possible occurrence of a finite-time singularity (FTS), which can be stated as: can
any initially smooth velocity field of finite energy in an incompressible fluid become
singular at finite time under the evolution of the Navier–Stokes (N–S)/Euler equations?
Based on the theorem of Beale, Kato & Majda (1984), if a (strictly mathematical)
FTS occurs at time tc, then

∫ tc
0 ‖ω(x, t)‖∞ dt must go to infinity, or, in other words,

the vorticity ω=∇×u must become unbounded as t→ tc. The FTS question also has
important applications concerning the energy dissipation in turbulent flows at high
Reynolds numbers (i.e. dissipation anomaly): whether (or how) the rate of dissipation
ε= 2νΩ can remain finite in the limit of vanishing kinematic viscosity ν (Sreenivasan
1984; Kerr 2018; Moffatt 2019)? Here, Ω = 〈ω2

〉 =
∫

ω2 dV is the enstrophy, where
V is the volume.

Originally raised by Leray (1934), the FTS question has since then drawn intense
attention (see Doering (2009) and references therein). It is widely believed that
the configuration most likely to lead to a singularity consists of two interacting
vortex tubes (De Waele & Aarts 1994; Constantin, Fefferman & Majda 1996). Hence,
previous searches for a singularity mainly focus on this type of geometry. This search
was initiated by Siggia (1985) using the Biot–Savart (B–S) model, and has been
followed by many others, such as Siggia & Pumir (1985), De Waele & Aarts (1994)
and Kimura & Moffatt (2017). They found that ‘pyramid’ or ‘tent-like’ structures tend
to emerge during the interaction, and their curvatures at the tipping points increase
significantly and the associated core sizes approach zero – suggesting a possible FTS.
Note that the B–S model is based on the Euler equations (i.e. vanishing viscosity).
Also, to regularize the singular kernel of the B–S integral, a cutoff needs to be
employed. With such regularization, the B–S integration always diverges near the
singular time of reconnection (Kimura & Moffatt 2017).

Possible formation of a FTS has been extensively studied also with the aid of
direct numerical simulation (DNS) (see, for example, Boratav & Pelz (1994), Grauer,
Marliani & Germaschewski (1998), Kerr (2013)). The existence of a FTS has been
reported at times – however, most such singularities turned out to be either numerical
artefacts or incorrect predictions. For example, Kerr (1993) performed an Euler
simulation for the anti-parallel vortex tubes and suggested that this initial condition
tends to evolve towards a FTS. However, by repeating this computation with higher
resolution, Hou & Li (2006) showed that a FTS does not occur. Interestingly, by
focusing on solutions with rotational symmetry, Luo & Hou (2014, 2019) found a
class of potentially singular solutions to the three-dimensional axisymmetric Euler
equations in a radially bounded, axially periodic cylinder. Note that DNS cannot
give conclusive evidence of the existence of a FTS, because the length scale of the
phenomenon always decreases to less than the computational resolution (MK1).

Recently, Moffatt & Kimura (2019a) (hereinafter cited as MK1) have developed
a model that governs the evolution of two initially inclined circular vortices. It is
based on the argument that the behaviour near the points of closest approach of the
vortices (the ‘tipping points’) is determined solely by the curvature, the separation
and the core radius. By using the B–S law to obtain analytical expressions for the
rate of change of these quantities, they obtain a nonlinear dynamical system of
ordinary differential equations (ODEs). The solution for the ν = 0 case indicates
that a FTS can occur for the Euler flow. In a follow-up paper, Moffatt & Kimura
(2019b) (hereinafter cited as MK2) further modified the model to take into account
the reconnection process for the viscous flow. They claimed that, although a strictly
‘mathematical singularity’ does not occur, the peak vorticity amplification becomes so
large that it can be described as a ‘physical singularity’ for vortex Reynolds number
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FIGURE 1. (a) Schematic of the initial configuration for two circular rings of circulation
Γ and radius R = κ−1

0 located on inclined planes z = ±x tan α, with (b) showing the
corresponding top view. T in (a) represents the tipping point, while Ss and Sc in (b) denote
the symmetry and collision planes, respectively. The vortices have a Gaussian profile of
scale δ0 = 0.01R and the separation between the tipping points T is 2s0, with s0 = 0.1R.

Re(≡ Γ /ν) & 4000. One debatable issue for their model is whether the vortex core
remains compact and circular throughout the interaction process. Recent DNS of both
the Euler (Brenner, Hormoz & Pumir 2016) and N–S equations (Kerr 2018; Yao &
Hussain 2020, hereinafter cited as YH) have demonstrated that there is a strong core
flattening during the interaction process. MK1 argued that the core flattening does
not occur if the separation of the vortices is small compared with their radius of
curvature at the tipping points and if Re is large enough. They further claimed that
the core flattening should decrease with increasing Re, as the vortices are spinning
so rapidly that they experienced an effectively axisymmetric strain. It is of particular
interest to perform DNS for this type of initial configuration to provide insight into
this controversy.

2. Initial configuration and numerical set-up

Following MK1 and MK2, we study the interaction of two initially circular vortex
rings of radius R= 1/κ and circulation Γ (figure 1). The vortices are symmetrically
placed on planes z = ±x tan α, and are assumed to have a Gaussian cross-section
ω(r)=Γ /(4πδ2

0) exp[−r2/4δ2
0] of initial radial scale δ0. The initial separation distance

between the two tipping points T is 2s0. Time is non-dimensionalized as τ = t/(R2/Γ ).
In the present paper, we adopt the same initial values as in MK2 – namely,

R= 1/κ0 = 1, s0 = 0.1, δ0 = 0.01 and α =π/4. (2.1a−d)

Note that a similar configuration was studied by Kida, Takaoka & Hussain (1991) with
a much larger core size (i.e. δ0/R≈ 0.2) to better illustrate the reconnection process.

MK1 argued that the behaviour near the tipping points T is determined solely by
the curvature κ(τ) at those points and by the separation s(τ ) and core scale δ(τ ). On
this basis, the dimensionless equations describing their behaviour are (MK1)

ds
dτ
=−γ

κ cos α
4π

[
log
( s
δ

)
+ β1

]
,

dκ
dτ
= γ

κ cos α sin α
4πs2

,
dδ2

dτ
=

1
Re
− γ

κ cos α
4πs

δ2,

(2.2a−c)
where β1 = 0.4417 and γ = Γy/Γ (with Γy the remaining, i.e. unreconnected,
circulation in the symmetry plane). γ is incorporated to include the reconnection
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FIGURE 2. Evolution of the flow structure (represented by vorticity isosurface at 5 %
of maximum initial vorticity |ω| = 0.05ω0) near the tipping points for Re = 4000 at:
(a) τ = 0; (b) 0.25; (c) 0.35; (d) 0.4; (e) 0.43; ( f ) 0.6. Lines in the structure represent
the vortex lines that go through the peak vorticity. See the supplementary movie for the
time evolution of different Re cases.

effect when δ/s becomes O(1) and its governing equation is given as (MK2)

dγ
dτ
=−

sγ
2Re
√

πδ3
exp[−s2/4δ2

]. (2.3)

Equations (2.2) and (2.3) – a dynamical system of four coupled ODEs (hereinafter
referred to as the ‘MK model’) – can be integrated numerically with the initial
condition (2.1) to obtain the evolution of vortex interaction and reconnection.

In the present work, DNS of the incompressible N–S equations for this initial
configuration is performed using the same pseudospectral algorithm as that in YH.
The Reynolds number Re (varied by changing the viscosity ν) spans from 1000 to
4000, with the domain size 2π3 and grid points ranging from 15363 to 40963. To
suppress the symmetry-breaking (planar-jet) instability and reduce the computational
cost, two-fold symmetry regarding the symmetry Ss and collision Sc planes is further
employed – hence only a quarter of the domain (Lx = 2Ly = 2Lz = 2π) is simulated.
The adequacy of the numerical resolution has been confirmed by performing additional
simulations at lower resolution, with all quantities checked (energy, enstrophy, peak
vorticity, etc.) showing no notable difference (less than 1 %).

3. Results

Figure 2 (and the supplementary movie, available at https://doi.org/10.1017/
jfm.2020.58) shows the time progression of the reconnection (based on the vorticity
isosurface |ω|) near the tipping points T for Re = 4000. (To capture details of
the evolution, a relatively low threshold |ω| = 0.05ω0 is chosen here.) The overall
dynamics are quite similar to the previous studies on anti-parallel vortex tubes
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FIGURE 3. Evolution of the vortex core shape (represented by the vorticity iso-contours
ωy = [0.05 : 0.1 : 2]ω0) in the Ss plane for (a) Re= 1000; (b) 2000; (c) 3000; (d) 4000.
The dashed line (- - - -) in each panel denotes the vortex core trajectory and the times are
the same in all the panels. The insets in (b–d) are the zoomed-in views of the vortex
head dipole at τ = 0.4, with the dash-dotted black circle indicating the equivalent core
scale δ(τ ). See the supplementary movie for the full-time evolution of the vortex core.

(Melander & Hussain 1988, YH). Under self-induction, the curved vortex tubes
approach each other and collide (figure 2b). Then, the closest vortex lines of opposite
directions cut and connect via cross-diffusion to form two sharp cusps, which rapidly
recede away from each other through their curvature-driven self-induction. The
remnant, unreconnected vortex lines continuously approach each other and form two
parallel thin sheet-like structures (called threads). Mutual induction causes the peak
vorticity regions of the threads to advect faster than the remainder, forming head–tail
structures (figure 2c). Successive reconnected vorticity lines are similarly laid on top
of each other so that their accumulations form a transverse vortex (called a bridge,
figure 2d). In addition, at this Re, the head moves so much faster that it separates
from the tail to form a dipole at the top of the thread. Recently, YH showed that,
for the anti-parallel vortex case, a series of vortex dipoles form at higher Re, and
we expect similar structures for this configuration also. The bridges, then, retract
away from the visualized domain and the tails are diffused out (figure 2e). The
remaining thread dipoles, as they advect upwards, continuously undergo slow planar
reconnection due to cross-diffusion (figure 2e).

The spatial and temporal variations of the vortex core (represented by the vorticity
iso-contours) in the symmetry Ss plane are shown in figure 3. As expected, the
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FIGURE 4. Evolution of the bridge vortex core (represented by the vorticity iso-contours
ωz = [0.05 : 0.1 : 2]ω0) on the Sc plane for Re = 4000. The dashed line (- - - -) denotes
the vortex core trajectory; see the supplementary movie for the full-time evolution of the
vortex core for different Re cases.

collision and upward motion of the rings causes the initial circular core to deform
into a non-circular shape. As Re increases, the vortex cores move closer and upwards
faster with smaller sizes. It is clear that the core flattening and stripping, particularly
near the tail, increases with Re – contradicting the argument by MK1 that the vortex
core would be more circular. In addition, at late time, as the dipoles move upwards
as a result of mutual induction, they also separate from each other. The reason for
this apparently surprising fact is that the inward (towards each other) self-induced
velocity of each vortex is smaller (due to increased radius of curvature 1/κ) than the
outward mutual-induced velocity.

To better illustrate the process of bridge formation, figure 4 shows the evolution of
the vorticity distribution ωz in the collision plane Sc for Re= 4000. The initiation of
reconnection starts at the contact point (y = z = 0) by viscous cross-diffusion. Then
the reconnected vortex lines continuously recede away from the contact point due to
both self-induction and stretching by the unreconnected vortices. These vortex lines
are accumulated to form a thin vortex sheet (i.e. the bridge). Through roll-up at the
head of the sheet, the bridge then slowly develops into a circular shape but with non-
concentric distributions (i.e. at τ =0.5), similar to the anti-parallel thicker vortex (YH).
The vorticity distribution in the bridge core is found to become more concentric at a
later time (i.e. τ = 1).

Figure 5(a) shows the evolution of the separation s(τ ) (half the distance between
the two vortex centres in the symmetry plane) for different Re values. (Note that,
in MK2, there appears to be some error in their calculation when incorporating
the remaining circulation γ (τ) equation. As reconnection plays a role only when
δ/s is approximately O(1), it should not affect the overall behaviour during early
times (i.e. τ < 0.2). However, when comparing results without (figure 1 in MK2)
and with (figure 5 in MK2) incorporating the γ equation for the same Re (i.e.
3000), significant differences incorrectly occur; in particular, the reported critical time
τc is altered from 0.24452 to 1.93916.) As discussed above, the vortex undergoes
significant core deformation into non-circular shapes. Following Hussain & Duraisamy
(2011), we take the vorticity centroid (computed as the centroid of ωy which is above
75 % of its maximum) to be the vortex centre. For a given Re, s(τ ) first decreases
rapidly, but then slows down when approaching reconnection. For different Re cases,
s(τ ) almost collapses initially and then gradually departs for low Re through strong

888 R2-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.58


Singularity via vortex reconnection

1.00.80.6
† Re

0.40.2

1.00.80.6
†

0.40.2 1.00.80.6
†

0.40.2

3.0
(÷ 10-4) (÷ 10-4)

2.5

2.0

1.5

1.0

∂2 (†
)

s(
†)

0.5

0 4000300020001000

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

s2
min

(˚2
0/˚2)min/1000

˚2 0/
˚2 (†

)

∂2
min

1.0

0.8

0.6

0.4

0.2

0

0.10(a) (b)

(c) (d)

0.08

0.06

0.04

0.02

0

Re = 1 K
Re = 2 K
Re = 3 K
Re = 4 K
MK

0.30.20.1
†

0.010

s 2 = -0.0377(t - 0.2626)

0.008

0.006

0.004

0.002

0

s2 (†
)

FIGURE 5. Time evolution of (a) s(τ ); (b) κ2
0/κ

2(τ ); (c) δ2(τ ) for different Re cases;
(d) the minimum values for s2(τ ), κ2

0/κ
2(τ ) and δ2(τ ) as a function of Re. The dashed

line (- - - -) denotes the MK model for Re= 4000.

viscous diffusion. After reconnection, s(τ ) increases slowly with the growth rate
decreasing slightly as Re increases. In addition, the difference of s(τ ) between
different Re cases becomes smaller at higher Re, suggesting an asymptotic limit for
Re→∞ – akin to the findings by Kimura & Moffatt (2014) and YH.

The inset in figure 5(a) further shows a comparison of the early evolution (τ <
0.3) of s2(τ ) between the DNS result and the MK model for Re = 4000. For this
very thin vortex (i.e. δ/R= 0.01), s2(τ ) follows a linear scaling s2(τ )≈−0.0377(τ −
0.2626) obtained by least-squares fitting between 0<τ < 0.15. This scaling is the first
observed for viscous reconnection using DNS and is consistent with s(τ ) ∼ (Γ t)1/2
scaling based on the dimensional analysis, which has been confirmed in prior studies
for quantum reconnection (Baggaley et al. 2012; Villois, Proment & Krstulovic 2017;
Fonda, Sreenivasan & Lathrop 2019) and also for classical reconnection using the B–S
model (Kimura & Moffatt 2018). It also validates our previous argument (YH) that
the failure of satisfying 1/2 scaling observed in Hussain & Duraisamy (2011) is due
to the core size effect. Note that s2(τ ) calculated on the basis of the MK model for
Re= 4000 slightly deviates from our DNS result: larger at an early time, but smaller
near the start of reconnection. In addition, the critical time (when s→ 0) based on
the MK model, which is τc = 0.2522, is a little less than τc = 0.2632 based on the
linear scaling.

Figure 5(b) shows the time evolution of κ2
0/κ

2(τ ) at the tipping points T , along
with the calculation based on the MK model. (Note that the curvature κ(τ) is
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Re s2
min × 10−4 δ2

min × 10−5 (κ2
0/κ

2)min (ωy,p/ω0)max

1000 3.420 8.174 0.0911 0.378
2000 1.379 2.936 0.0559 0.842
3000 0.852 1.831 0.0443 1.237
4000 0.621 1.373 0.0385 1.589

TABLE 1. Reynolds number dependence of minimum/maximum values for s2
min, δ2

min,
(κ2

0/κ
2)min and (ωy,p/ω0)max.

calculated based on the vortex line crossing each tipping point T , and here T is
chosen as the position of peak vorticity ωy,p(=‖ωy‖∞) in the Ss plane. Choosing
the vorticity centroid as T produces no significant difference in κ(τ), especially for
the early evolution (i.e. τ < 0.4).) First, a strong decrease of radius of curvature is
observed for τ < 0.3, which is consistent with the MK model, although at a much
slower rate than the model. Note that as reconnection happens, κ2

0/κ
2(τ ) increases –

a feature that is missed by the MK model. The increase of κ2
0/κ

2(τ ) (or equivalently
the decrease of curvature κ) at the tipping points T is mainly due to the induced
velocity of the bridges – similar to the curvature reversal observed for anti-parallel
vortex reconnection cases (Melander & Hussain 1988). In addition, the head and tail
separate at high Re, causing circulation loss, which results in a slowdown of the
mutual upward advection; this also contributes slightly to the increase of κ2

0/κ
2(τ ).

Note that these two effects are also the main reasons for the lower peak vorticity
growth observed in our DNS (discussed later). At a later time, as the bridges move
far apart, the induced velocity by the bridges becomes weaker at the tipping points,
and hence κ2

0/κ
2(τ ) slowly decreases again.

Since the vortex in the Ss plane experiences strong core deformation, it is non-trivial
to determine the scale of the core. Here, an equivalent core scale δ(τ ) is obtained
using the following procedure. (i) We first calculate the area A in the vortex core
based on the iso-contour of the λ2 criterion (Jeong & Hussain 1995) (here, 0.1 % of
−λ2 peak is chosen as the threshold). Note that, when the tail is separated from the
head (for example, at τ = 0.4 for Re= 3000, figure 3c), only the head is considered.
(ii) An equivalent core size is calculated by equating the actual core area to that of
a circle of radius δ̃ such that δ̃ =

√
A/π. (iii) Finally, normalization is performed to

obtain δ= δ̃/2.24, based on the fact that the core size δ̃0 for a Gaussian cross-section
ω(r)∼ exp[−r2/4δ2

0] calculated using this method is 2.24δ0. δ2(τ ) (figure 5c) initially
increases almost linearly with τ due to viscous diffusion. Then it falls rapidly due to
the dominant stretching and cross-annihilation. After reconnection, it increases again,
but the growth rate now is smaller than the initial rate, due to the combined effect of
viscous diffusion and stretching. As Re increases, δ2(τ ) becomes smaller due to the
decreasing viscous effect. δ2(τ ) calculated on the basis of the MK model matches well
with the DNS result for τ <0.1; however, it drops earlier, which is the consequence of
the MK model’s overestimation of the curvature κ and the associated vortex stretching
(figure 5b).

The minimum values for s2, κ2
0/κ

2 and δ2 for different Re are summarized in table 1
and plotted in figure 5(d). All three quantities decrease with increasing Re. However,
the decay rate is much slower than that reported by MK2. For example, while δ2

min
decreases from 2.67412× 10−8 to 2.75× 10−55 based on MK2, here δ2

min only reduces
from 2.936× 10−5 to 1.373× 10−5 as Re increases from 2000 to 4000.
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FIGURE 6. Evolution of (a) γ (τ) and (b) the circulation transfer rate −dγ /dt, with
the inset showing the Re dependence of the maximum of the circulation transfer rate
(−dγ /dt)max.

During reconnection, circulation is continuously transferred from the symmetry
plane Ss to the collision plane Sc – namely, from Γy=

∫
Ss

ω ·ns dS to Γz=
∫

Sc
ω ·nc dS,

with ns and nc denoting the unit vectors normal to Ss and Sc, respectively. Figure 6(a)
shows the variation of γ (τ) = Γy(τ )/Γ and figure 6(b) shows the corresponding
circulation transfer rate −dγ /dt. During the approaching phase, γ (τ) is almost
unchanged. Then, a sudden drop in γ (τ) occurs during the reconnection process. With
increasing Re, reconnection is delayed due to the decreasing viscous effect. However,
as bridging commences, the accumulation of successive reconnected vortex lines in
the bridge is rapid, and the reconnection process is accelerated as Re increases. It can
be clearly seen in figure 6(b) that the maximum of −dγ /dt increases continuously
with Re, and the maximum occurs slightly earlier as Re increases. However, the rate
of increase for (−dγ /dt)max (inset of figure 6b) decreases with increasing Re. At the
late stage of reconnection, −dγ /dt is found to decrease with Re, again due to the
decreasing viscous effect. As a result, the total circulation transfer might decrease at
even higher Re, as already evident from γ (τ) between Re= 3000 and 4000 at τ ≈ 1
– akin to the finding by YH.

Finally, we examine the evolution of the peak vorticity ωy,p(τ )/ω0 in the symmetry
Ss plane. ωy,p(τ )/ω0 first decreases due to viscous diffusion, which is consistent with
the increase of δ2(τ ), and then increases due to the vortex stretching, reaching a
maximum almost at the same time as δ2

min. Note that the time for the maximum of
ωy,p(τ )/ω0 occurs later than the peak of −dγ /dt – similar to the finding of MK2.
Figure 7(b) (see also table 1) further shows the maximum of ωy,p(τ )/ω0 as a function
of Re. As expected, the maximum increases with Re, but with a decreasing growth
rate. Most importantly, the values are much smaller than those reported by MK2!
For example, the peak value from our DNS is only 0.842 for Re = 2000, 1.237 for
Re = 3000 and 1.589 for Re = 4000. It indicates that even the physical singularity
suggested by MK2 for Re∼ 4000 cannot occur. As discussed, the slower increase of
the maximum of ωy,p(τ )/ω0 for our DNS is because of the braking effect of the core
deformation and bridging – two essential processes missed by the MK model.

4. Concluding remarks

We performed DNS of the reconnection of two slender inclined vortex rings for
Reynolds number Re up to 4000. Compared to those based on the MK model,
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FIGURE 7. (a) Time evolution of the peak vorticity amplification ωy,p(τ )/ω0 and (b) the
Re dependence of the maximum of the peak vorticity amplification (ωy,p/ω0)max.

initially κ2
0/κ

2(τ ) decreases much more slowly, but increases during reconnection.
More importantly, the growth of the maximum of ωy,p(τ )/ω0 with Re is substantially
smaller than the exponential scaling found by MK2. Two physical processes, which
suppress the vorticity growth, were overlooked in the MK model: (1) the inevitable
core flattening and the subsequent head–tail separation at the tipping points and
(2) the braking effect of the bridges. Needless to say, despite large discrepancies with
respect to the DNS results, the MK model still has great value, as it does provide
a basis for constructing a viable physical model for better understanding vortex
interaction and reconnection. An imperative improvement of the MK model is to
include the analysis for bridge formation to better capture the reconnection process.

Several additional points deserve to be commented on when comparing vortex
reconnection of inclined rings with the standard anti-parallel tubes. First, the core
flattening and the formation of thread dipoles are quite generic, regardless of the initial
configuration. In addition, the 1/2 scaling of the separation s(τ ) for the inclined ring
case confirms our previous claim that the core size plays an important role in the
evolution of reconnection, and needs to be included for theoretical modelling. Finally,
although the peak circulation transfer rate increases with Re, the total circulation
transfer may be decreased at higher Re. It indicates that the off-centre reconnection
and subsequent formation/avalanche of secondary vortices observed by YH for the
anti-parallel case may also occur for the ring case.
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