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Abstract

We show that, for finitely generated groups, the property of admitting a coarse median
structure is preserved under relative hyperbolicity.

1. Introduction

In [Bo2], we introduced the notion of a “coarse median group”. This is a finitely gener-
ated group whose Cayley graph admits a “coarse median” as defined below. The existence
of such a median can be thought of as a coarse non-positive curvature condition. Examples
of such groups are hyperbolic groups, right-angled Artin groups, mapping class groups (see
[BeM, Bo2]), and direct products of such groups. One can also define a notion of “rank” for
such groups. For example, coarse median groups of rank 1 are precisely hyperbolic groups,
and the “rank” of a mapping class group is the same as the maximal rank of a free abelian
subgroup. Various applications of these notions are discussed in [Bo2] and [Bo3]. For ex-
ample, the rank bounds the dimension of a quasi-isometrically embedded euclidean space;
groups of finite rank have rapid decay, etc. It implies that the group is finitely presented, and
has a quadratic Dehn function. We also note that the existence of a coarse median structure
is quasi-isometry invariant.

The main result of this paper is:

THEOREM 1·1. Suppose that the group � is hyperbolic relative to the finitely generated
subgroups, �1, �2, . . . , �n. If each �i is coarse median of rank at most ν, then so is �.

Here ν ∈ N � {∞}, and we will deem the statement “of rank at most ∞” to be vacuous.
To accomodate the case of a hyperbolic group, when n = 0, or when all the �i are finite, we
should assume that ν � 1.

The notion of relative hyperbolicity was defined in [Gr]. For other accounts, see [F, Bo1,
O]. Note that Theorem 1·1 implies for example that geometrically finite kleinian groups and
Sela’s limit groups are coarse median.

Although we have expressed the result in terms of groups, it is more naturally a statement
about geodesic metric spaces, which we will formulate as Theorem 2·1. In view of the fact
that the existence of coarse median is quasi-isometry invariant, we can assume our space
to be a connected graph with the combinatorial metric. To define the terms used in these
theorems, we need the notion of a finite median algebra. For the purposes of this paper, we
can define a finite median algebra in terms of cube complexes. Only very basic properties
will be required here.
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Let ϒ be a finite CAT(0) cube complex (see, for example, [BrH]). Let ϒ0 and ϒ1 be the 0
and 1-skeletons of ϒ and let ρϒ be the combinatorial path-metric on ϒ1. Given x, y, z ∈ ϒ0,
there is a unique w ∈ ϒ0 which minimises ρϒ(w, x) + ρϒ(w, y) + ρϒ(w, z). This is the
median of x, y, z, denoted μϒ(x, y, z). A finite median algebra is a finite set, �, with a
ternary operation, μ�, such that there is a (necessarily unique) finite cube complex, ϒ ,
and an identification of � with ϒ0, such that μ� = μϒ . One can equivalently express
this in simple axiomatic terms, see for example, [BaH, R, Bo2]. We just note here that
μ�(x, y, z) = μ�(y, z, x) = μ�(y, x, z) and μ�(x, x, y) = x for all x, y, z ∈ �. We
define the rank of � to be the dimension of ϒ . Note that the rank is 1 if and only if ϒ is a
simplicial tree.

Let (G, ρ) be a geodesic space, that is, a metric space in which every pair of points are
connected by a geodesic. (In this paper, G will always be a connected graph, and ρ will
be the combinatorial metric assigning each edge unit length.) A coarse median on G is a
ternary operation satisfying:

(C1): there are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ G we have

ρ(μ(a, b, c), μ(a′, b′, c′)) � k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0),

and

(C2): there is a function, h : N −→ [0, ∞), with the following property. Suppose that
A ⊆ G with 1 � |A| � p < ∞, then there is a finite median algebra, (�, μ�) and maps
π : A → � and λ : � → G such that for all x, y, z ∈ � we have:

ρ(λμ�(x, y, z), μ(λx, λy, λz)) � h(p)

and

ρ(a, λπa) � h(p)

for all a ∈ A.

We refer to k, h as the parameters of (G, ρ, μ).
We say that G has rank at most ν if in (C2) we can always choose � to have rank at

most ν.
We refer to (G, ρ, μ) as a coarse median space (of rank at most ν), and to k, h as the

parameters of (G, ρ, μ).
We note that the existence of a coarse median on a geodesic space is a quasi-isometry

invariant. Moreover (after modifying μ up to bounded distance), we can assume that
μ(a, b, c) = μ(b, c, a) = μ(b, a, c) and that μ(a, a, b) = a for all a, b, c ∈ G. We
will always assume these properties to hold in this paper.

If G is a graph, then it enough to have μ defined on the vertex set, V (G). We can assume
that μ(V (G)3) = V (G). Moreover, in this case, we can equivalently replace (C1) by the
simpler statement:

(C1′): if a, b, c, d ∈ V (G) with c, d adjacent, then

ρ(μ(a, b, c), μ(a, b, d)) � h0

for some fixed h0 > 0.

We recall the definition from [Bo2]:
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Definition. A coarse median group (of rank at most ν) is a finitely generated group whose
Cayley graph with respect to a finite generating set admits a coarse median (of rank at
most ν).

In view of quasi-isometry invariance, it does not matter which finite generating set we
choose. Indeed we could take any locally finite graph on which the group acts properly
discontinuously with finite quotient.

2. Hyperbolic graphs

In this section, we formulate a statement about graphs which implies Theorem 1·1.
Given a graph H , we will write V (H) and E(H) for the vertex and edge sets. (We will

assume there are no loops or multiple edges.) We usually think of H as realised as a metric
1-complex with each edge of unit length. We write ρH for the induced combinatorial metric.
(If H is not connected, this may take infnite values.)

A retraction, θ : G → K , is a surjective map to a graph, K , which sends each edge of
G either to a vertex or to an edge of K . Let E0(G) ⊆ E(G) be the set of edges which get
mapped to edges. Given t ∈ V (K ), write G(t) ⊆ G for the subgraph, θ−1(t). Note that

V (G) =
⊔

t∈V (K )

V (G(t))

and that

E(G) = E0(G) �
⊔

t∈V (K )

E(G(t)).

We will assume that G is connected, and abbreviate ρ = ρG . We write ρt = ρG(t) for
the path metric induced on G(t). Clearly, ρ(a, b) � ρt(a, b) for all a, b ∈ G(t). We will
assume:

(G1): K is k-hyperbolic for some k � 0.

(G2): there is some function F1 : N → N such that for all t ∈ V (K ) and for all a, b ∈ G(t),
we have ρt(a, b) � F1(ρ(a, b)).

(G3): there is some F2 : N → N with the following property. Suppose that p ∈ N and
that H ⊆ K is any 2-vertex connected subgraph with |E(H)| � p, then the ρ-diameter of
E0(G) � θ−1(H) is at most F2(p).

Thus, (G2) is saying that the graphs G(t) are uniformly uniformly embedded in G. Here
the second “uniformly” refers to the standard notion of “uniform embedding” of one metric
space in another, and the first “uniformly” means that the relevant parameters are independ-
ent of t . We can take (G1) and (G2) to retrospectively imply that G is connected (without
needing to take this as hypothesis).

In (G3), E0(G)� θ−1(H) is the set of edges of E(G) which map to edges of H . The term
“2-vertex connected” means connected and without a global cut vertex. By this definition,
a single edge is 2-vertex connected, so this implies that E0(G) � θ−1(e) has bounded ρ-
diameter for all e ∈ E(K ). In fact, in (G3), it’s enough to consider only those H which are
circuits or single edges. This follows, for example, by noting that in a 2-vertex connected
graph, any two distinct edges lie in a circuit.

The main result of this paper can now be stated as:
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THEOREM 2·1. Suppose that θ−→K is a retraction of graphs satisfying (G1), (G2) and
(G3). Suppose that G(t) is a coarse median space (of rank at most ν) for each t ∈ V (K ).
Then G is a coarse median space of rank at most ν.

In other words, we are assuming that (G(t), ρt) admits a coarse median, μt , where the
parameters, k, h are independent of t . We will construct a coarse median, μ, on (G, ρ)

whose parameters depend only on those of G(t) and the hypotheses, (G1)–(G3).
We relate the above to relatively hyperbolic groups via the following observation:

LEMMA 2·2. Suppose that � is hyperbolic relative to the finitely generated subgroups,
�1, �2, . . . , �n, where n > 0. Then there are connected graphs, G, K , and a retraction,
θ : G → K satisfying (G1)–(G3) above, together with �-actions on G and K such that θ

is equivariant, G is locally finite, � acts freely on G, G/� is finite, and such that the vertex
stabilisers of K are precisely the �-conjugates of �1, . . . , �n.

In other words, {�1, . . . , �n} is a �-conjugacy transversal of {�(t) | t ∈ V (K )}, where
�(t) = {g ∈ � | gt = t}.

In fact, the above gives a characterisation of finitely generated relatively hyperbolic
groups, though we only need one direction here. We can weaken the statement that � acts
freely to say that edge stabilisers are finite. In what follows, we will asssume that each of the
�i is infinite. (Otherwise we would be in the case of a hyperbolic group, which is median of
rank 1.)

There are several ways one can relate the above to the standard notion. For example, we
recall the following notion from [Bo1].

We say that a connected graph, K is fine if every edge lies in only finitely many circuits
of a given length. If there is a bound on this number in terms of the length, we say that K is
uniformly fine. A group � is hyperbolic relative to �1, . . . , �n if and only if it acts on a fine
hyperbolic graph with finite edge stablisers and finite quotient, and such that �1, . . . , �n is
a conjugacy transversal of the set of vertex stabilisers, {�(t) | t ∈ V (K )}. In such a case, K
is necessarily uniformly fine. We want to construct G and θ : G → K satisfying (G1), (G2)
and (G3). (It’s not hard to see that conversely these conditions imply that K is uniformly
fine, though we won’t need that direction here.)

Suppose then that � acts on a fine hyperbolic graph K as above. Given t ∈ V (K ), let
G(t) be any Cayley graph of �(t), and let Ĝ = ⊔

t∈V (K ) G(t). We can assume this to be

equivariant with respect to a �-action on Ĝ, so that for all g ∈ �, G(gt) = gG(t). Thus,
g�(t)g−1 acts on G(gt). One way to achieve this is to choose a finite generating set Si for
each �i and let Gi be the (disconnected) “Cayley graph” of � with respect to Si . (That is,
V (Gi) ≡ � and g, h ∈ V (Gi) are adjacent if g−1h ∈ Si .) Now let Ĝ = ⊔n

i=1 Gi . This
comes equipped with a �-action. By construction, the setwise stabiliser of each connected
component of Ĝ is a �-conjugate of one of the �i , and is therefore also the stabiliser of a
unique vertex of K . This gives us a canonical, �-equivariant surjection, θ : Ĝ → V (K ).

Now let E ′ ⊆ E(K ) be a finite �-transversal of edges. For each e, we add an edge, f (e),
from a vertex of G(t) to a vertex of G(u), where t, u ∈ V (K ) are the endpoints of e. We
now extend this �-equivariantly to give us a connected graph G ⊇ Ĝ, and a �-equivariant
extension θ : G → K .

Property (G1) is given, and (G2) is easily verified. For (G3), note that in a fine graph there
are only finitely many 2-vertex connected graphs of any given cardinality containing any
given edge. (Note that any two distinct edges of a 2-vertex connected graph are contained
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in a circuit.) In our situation, we see that there are only finitely many �-orbits of 2-vertex
connected graphs of any given cardinality. We also note that if e ∈ E(K ) then E0(G) �
θ−1(e) is the (�(t) � �(u))-orbit of a single edge, where t, u ∈ V (K ) are the endpoints of
e. In particular, this is finite. Property (G3) now follows easily.

We will prove Theorem 2·1 in the remainder of this paper. We first make some preliminary
observations. First, there is no loss in assuming:

(G4): θ : E0(G) → E(K ) is bijective.

To see this, we select one edge from the preimage of each e ∈ E(K ) and delete the rest.
It follows from the fact that such a preimage has bounded diameter that the inclusion of
the resulting graph into the original is a quasi-isometry. (Here we are using (G3) applied
to a single edge of K , as well as (G2).) Moreover, the existence of a coarse median on a
space is quasi-isometry invariant. (Note that this process does not need be carried out in an
equivariant fashion.)

We introduce the following notation. We will write ρ̂ for the (possibly infinite) path metric
on Ĝ. In other words, ρ̂(x, y) = ρt(x, y) if there is some t ∈ V (K ) with x, y ∈ G(t), and
ρ̂(x, y) = ∞ otherwise.

Given e ∈ E(K ), we write ẽ ∈ E0(G) for its preimage under θ . Suppose that α is a
non-trivial path in K . We write ε(α) for the initial edge of α, and ε̃(α) for its preimage in
E0(G). We write q(α) = ε̃(α) � G(t) ∈ V (G(t)), where t is the initial vertex of α.

If μ is any ternary operation on a set, we refer to a subset closed under μ as a subalgebra
(without making any assumptions on μ). We refer to a map respecting ternary operations as
a homomorphism. We define epimorphism and isomorphism in the obvious way.

3. Trees of spaces

We first prove Theorem 2·1 in the case where K = T is a finite simplicial tree. Given
t, u ∈ V (T ), write [t, u] for the unique arc from t to u. Then V (T ) has the structure of a
median algebra, where the median, μT is defined by [t, u] � [u, v] � [v, t] = {μT (t, u, v)}.
In other words, μT (u, v, w) is the centre of the “tripod” spanned by t, u, v. We also note
that if M ⊆ V (T ) is any subalgebra, then we can identify M as the vertex set, V (TM), of
another tree TM obtained from T as follows. First, take the tree, T ′, spanned by M (i.e. the
smallest subtree containing M). Then remove, from T ′, each degree-2 vertex of T ′ that is
not in M and coalesce the incident edges to give us TM . The median μTM agrees with μT

on M .
Suppose now that G is a connected graph with a map, θ : G → T , satisfying (G4) above.

In this case, properties (G1), (G2) and (G3) are automatic. In particular, ρt agrees with ρ on
each G(t).

If t ∈ V (T ), then there is a well defined nearest point retraction, φt : G → G(t). In fact,
if a ∈ V (G(t)), then φt(a) = a, and if a ∈ V (G) \ V (G(t)), then φt(a) = q(α), where
α = [t, θ(a)].

Now given a, b, c ∈ V (G), let μ(a, b, c) = μt(φt a, φt b, φt c), where t = μT (θa, θb, θc).
Then μ : V (G)3 → V (G). By construction, we have θμ(a, b, c) = μT (θa, θb, θc) for all
a, b, c ∈ V (G). (In other words, θ is a homomorphism.)

For future reference, we note that if M ⊆ V (T ) is a subalgebra, we can define a retraction
of graphs, θM : G M → TM , as follows. We take the span T ′ of M in T as above. This gives
us θ : θ−1(T ′) → T ′. We now collapse to a point each graph G(u) for u ∈ V (T ′) \ M .
Each such vertex u has degree 2 in T ′, so we can coalesce the two edges in E0(G)� θ−1(T ′)
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meeting G(u). This gives us our graph G M , with a natural map, θM : G M → TM . This
satisfies (G4). Moreover, the nearest point retraction φt : G M → G(t) defined intrinsically
to G M agrees with the map induced from G. In particular, if a, b, c ∈ G M , then the median
μ(a, b, c) lies in G M , and agrees with that defined intrinsically to G M .

We will show in this section that μ is a coarse median on G. In fact, we can make a
stronger assertion. Recall that ρ̂ is the (possibly infinite) metric on Ĝ = ⊔

t∈V (τ ) G(t) ⊆ G.

LEMMA 3·1. Let θ : G → T be a tree of spaces satisfying (G3) and (G4), and such that
(G(t), ρt) admits a coarse median, μt , with uniform parameters (independent of t). Let μ

be the ternary operation defined as above. Then:

(CT1): there is some h0 � 0 such that if a, b, c, d ∈ V (G) with c, d adjacent, then
either ρ̂(μ(a, b, c), μ(a, b, d)) � h0 or c, d are the endpoints of an edge of E0(G) and
μ(a, b, c) = c and μ(a, b, d) = d; and

(CT2): in (C2) we make the stronger statements that

ρ̂(λμ�(x, y, z), μ(λx, λy, λz)) � h(p)

and that ρ̂(a, λπa) � h(p).

Note that (CT1) implies (C1′) which implies (C1), and that (CT2) implies (C2).
The statement of Lemma 3·1 is taken to imply that if each (G(t), μt) has rank at most

ν > 0, then so does (G, μ).
We first note:

LEMMA 3·2. Lemma 3·1 holds if T consists of a single edge.

Proof. Let E(T ) = {e} and V (T ) = {t1, t2}. We write Gi = G(ti) and μi = μti . Let
qi = Gi � ẽ. Thus G is obtained from G1 � G2 by connecting q1 ∈ G1 to q2 ∈ G2 by a
single edge ẽ. Thus, V (G) = V (G1) � V (G2).

Suppose that a, b, c ∈ V (G). By construction, if a, b, c ∈ G1, then μ(a, b, c) =
μ1(a, b, c) and if a, b ∈ G1, c ∈ G2 then μ(a, b, c) = μ1(a, b, q1). All other cases arise by
permuting a, b, c and/or swapping G1 and G2.

We claim that μ satisfies the conclusion of Lemma 3·1
For (CT1) suppose that a, b, c, d ∈ V (G), with c, d adjacent. If c, d ∈ G1, then (C1′)

in G1 tells us that ρ̂(μ(a, b, c), μ(a, b, d)) is bounded. This holds similarly if c, d ∈ G2.
Thus, we can suppose that c ∈ G1 and d ∈ G2, so that c = q1 and d = q2. If a, b ∈ G1, then
μ(a, b, c) = μ(a, b, q1) = μ(a, b, d), and similarly, if a, b ∈ G2. If a ∈ G1 and b ∈ G2,
then μ(a, b, c) = μ(a, q1, q2) = μ1(a, q1, q2) = q1 = c and μ(a, b, d) = μ(b, q1, q2) =
μ2(b, q1, q2) = q2 = d.

For (CT2), suppose that A ⊆ V (G), with |A| � p. Let Ai = A � V (Gi), so A = A1 � A2.
Let B1 = A1 � {q1} and B2 = A2 � {q2}. Let πi : Bi → �i and λi : �i → V (Gi) be the
maps given by (C2) for Gi . Let vi = πi (qi ) ∈ �i . Let B = B1 � B2.

Now �i = V (ϒi), where ϒi is a finite CAT(0) cube complex. Let ϒ be the cube complex
obtained from ϒ1 �ϒ2 by adding an edge from v1 to v2. This is also a CAT(0) cube complex
whose dimension is the maximum of 1 and those of ϒ1 and ϒ2. Thus, � = V (ϒ) is a finite
median algebra, with � = �1 � �2, and with �i a subalgebra.

We define π : A → � and λ : � → G by combining the maps π1, π2 and λ1, λ2.
Note that if a ∈ B, then ρi (a, λiπi a) � h(p). In particular, if a ∈ Ai , then ρ̂(a, λπa) �

h(p). Also ρi (qi , λvi) � h(p).
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Suppose now that x, y, z ∈ �. We want to bound ρ̂(λμ�(x, y, z), μ(λx, λy, λz)). If
x, y, z ∈ �i , then the result follows directly from the statement for Gi . Thus, without
loss of generality, we can assume that x, y ∈ �1 and z ∈ �2 so that λx, λy ∈ V (G1),
λz ∈ V (G2). Now, by construction, μ�(x, y, z) = μ�(x, y, v1) and μ(λx, λy, λz) =
μ1(λx, λy, q1). But by (C2) in G1, ρ1(μ(λx, λy, λv1), μ(λx, λy, q1)) is bounded, and by
(C1) in G1, ρ1(λμ�(x, y, v1), μ(λx, λy, λv1)) is bounded. Putting these together, we bound
ρ̂(λμ�(x, y, z), μ(λx, λy, λz)) as required.

Proof of Lemma 3·1. First, we prove a slightly weaker version in that we allow the func-
tion in (CT2) to depend on n = |E(T )| as well as on the parameters of G(t) and (G1)–(G3).
That is, we have a bound hn(p), where hn : N → N.

Let t1 ∈ V (T ) be an extreme (degree-1) vertex. Let e ∈ E(T ) be the incident edge, let
t2 ∈ V (T ) be the adjacent vertex, and let T0 ⊆ T be the subtree T0 = T \ e. Let θ0 : G → e
be defined by sending ẽ to e, G(t1) to t1 and θ−1(T0) to t2. Thus, θ0 : G → e is a tree
of spaces of the sort described by Lemma 3·1, and so it satisfies (CT1) and (CT2). Also,
by induction, we can assume these also hold for θ : θ−1(T0) → T0. Putting these together
now gives us (CT1) and (CT2) for θ : G → T , though the constants of (CT2) may have
increased, giving us our dependence on n.

To remove dependence on n, we make the following observation. Suppose A ⊆ V (G)

with |A| � p. Let M ⊆ V (T ) be the median algebra generated by θ(A). Then |M | � 2p−2.
Let θM : G M → TM be the corresponding tree of spaces. Now apply (CT2) to A ⊆ V (G M).
This gives us π : A → � and λ : � → V (G M) satisfying (CT2) with the bound h2p−2(p).
But now the definitions of μ and ρ̂, intrinsic to G M , agree those obtained by restricting the
definitions in G. Thus, (CT2) follows in G where we set h(p) = h2p−2(p).

We will use the idea of the last paragraph of the proof again in Section 4. One could give
a proof of Lemma 3·1 without using induction, by constructing � as the vertex set of a tree
of cube complexes, though this seems more complicated to write out formally.

4. Hyperbolic spaces

Let (K , ρK ) be a k-hyperbolic graph (see [Gr], [GhH]). We write hd(P, Q) for the Haus-
dorff distance between P, Q ⊆ K .

Definition. Given l � 0, we say that a path, α, in K is l-taut if length(α) � ρ(u, v) + l,
where u, v are the endpoints of α.

Note that any subpath of an l-taut path is l-taut, and that a 0-taut path is the same as a
geodesic.

LEMMA 4·1. Given l, s � 0, there is some r1 = r1(l, s, k) with the following property.
Suppose that α, α′, are l-taut paths with endpoints u, v and u′, v′ respectively, and that
ρK (u, u′) � s and ρ(v, v′) � s. Then hd(α, α′) � r1.

Proof. Note that taut paths are quasigeodesic, so the lemma is a simple consequence of
the “fellow travelling” property of quasigeodesics in a hyperbolic space.

Definition. An l-taut tree is a simplicial tree, T , embedded in K such that each arc in T
is l-taut in K .

LEMMA 4·2. There is a function, l0 : N → N such that if B ⊆ K with |B| � p < ∞,
then there is an l-taut tree, T , embedded in K , with l = kl0(p).
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Proof. This is just a rephrasing of a standard fact due to Gromov [Gr].

We view T as a subgraph of K , so V (T ) = T � V (K ). (It may have lots of degree-2
vertices.)

Note that there is no loss in assuming that T is spanned by B (i.e. is the minimal subtree
containing B).

Definition. A tripod is a tree τ ⊆ K consisting of three arcs, α1, α2, α3, each starting at a
single vertex, t , in V (K ).

We refer to t = t (τ ) as the centre of the tripod, and to the other endpoints, u1, u2, u3 of
the arcs α1, α2, α3 as its feet. We assume that these are also vertices of K . (We allow the
αi to be trivial. Note, however, that if the ui are distinct, then at most one of the αi can be
trivial.)

Writing l3 = kl0(3), we see that any three points are feet of some l3-taut tripod in K .

LEMMA 4·3. Given l � 0, there is a constant, r2 = r2(l, k) � 0 with the following
property. Suppose that t, u ∈ V (K ) are distinct, and that α, α′ are l-taut arcs connecting t
to u, with edges, e and e′ incident on t. Then either e = e′, or else there is a (possibly empty)
arc δ in K and initial segments, β, β ′ of α, α′, respectively, such that γ = β � δ � β ′ is an
(embedded) circuit in K of length at most r2.

Proof. Suppose that e � e′. By Lemma 4·1, hd(α, α′) � r1 = r1(l, k). Let v ∈ V (α) be
the first vertex of α also contained in V (α′). If ρK (t, v) � r1, we set δ = � and set β, β ′ to
be the respective initial segments ending at v. Note that these have length at most r1 + l, so
length(γ ) � 2(r1 + l).

Now suppose that ρK (t, v) > r1. Let w0 ∈ V (α) be the first vertex of α with ρK (t, w) =
r1 + 1. Let w′ ∈ V (α′) be the nearest vertex of α′ to w0. Let δ0 be any geodesic in K from
w0 to w′. Let w ∈ V (α) � V (δ0) be the last vertex of V (α) along δ0, and let δ ⊆ δ0 be the
segment of δ from w to w′. Let β, β ′ be the respective intitial segments of α, α′ ending at w

and w′, and let γ = β � δ � β ′. Then length(γ ) � 2(r1 + 1 + l) + r1 = 3r1 + 2l + 2, so we
set r2 = 3r1 + 2l + 2.

Note that if e � e′, then t ∈ γ \ δ, so e, e′ are edges of γ .

LEMMA 4·4. Given l, s � 0, there is some r3 = r3(l, s, k) with the following property.
Suppose that t, t ′, u ∈ V (K ) with t � t ′, and ρK (t, t ′) � s. Let ζ be any geodesic from t to
t ′. Suppose that α, α′ are l-taut paths which connect t and t ′ respectively to u. Then there is a
(possibly empty) arc δ in K with δ � ζ = �, and initial segments, β, β ′ of α, α′ respectively,
such that γ = β � δ � β ′ is an arc from t to t ′ of length at most r3.

Proof. This follows by a similar argument to Lemma 4·3. Note that hd(α, α′) � r1 =
r1(l, s, k). We let v be the first vertex of V (α)� V (α′) along α, as before. This time, we split
into two cases depending on whether or not ρK (t, v) � r1 + s, and proceed as before to give
us a path γ = β � δ � β ′. This time, we set r3 = 2(r1 + s + 1 + l) + r1 = 3r1 + 2s + 2l + 2.

Now suppose that θ : G → K satisfies (G1)–(G4) as defined in Section 2. We recall
the notations, ẽ, α̃, q(α) from there. In what follows, the various constants, or functions,
we refer to will be implicitly assumed to depend on the parameters of the hypotheses (G1)–
(G3).
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LEMMA 4·5. Given l � 0, there is some r4 = r4(l) with the following property. Suppose
that α, α′ are l-taut arcs in K with the same endpoints t, u ∈ V (K ), where t � u. Then
ρt(q(α), q(α′)) � r4.

Proof. Let e, e′ be the incident edges. If e = e′, then q(α) = q(α′), so we assume
e � e′. Let γ be the circuit given by Lemma 4·3. Now, e, e′ ∈ E(γ ), so by (G3), ρ(ẽ, ẽ′) �
F2(r2(k, l)). By definition, q(α) = ẽ � G(t) and q(α′) = ẽ′ � G(t), so by (G2) we have
ρt(q(α), q(α′)) � F1(F2(r2(l, k))).

Suppose that a1, a2, a3 ∈ V (G). Let ui = θ(ai ) ∈ V (K ). Suppose that τ = α1 � α2 � α3

is a tripod with feet at u1, u2, u3. Let t = t (τ ) be the centre of τ . If ui = t , set qi = ai ,
otherwise set qi = q(αi). Thus, q1, q2, q3 ∈ G(t). Let μ(a1, a2, a3; τ) = μt(q1, q2, q3) ∈
G(t).

In the rest of this section, we will use the abbreviation “a” to denote (a1, a2, a3) etc. Thus,
for example, we can rewrite the above as μ(a; τ) = μt(q).

LEMMA 4·6. There is some r5 = r5(l) with the following property. Suppose that
a1, a2, a3 ∈ V (G), and suppose that τ, τ ′ are each l-taut spanning tripods with feet
θ(a1), θ(a2), θ(a3). Then ρ(μ(a; τ), μ(a; τ ′)) � r5.

We will split the proof into two cases. The first gives a slightly stronger statement in the
case where t (τ ) = t (τ ′).

LEMMA 4·7. There is some r6 = r6(l) with the following property. Suppose that a, τ, τ ′

are as in Lemma 4·6, and that t = t (τ ) = t (τ ′). Then ρt(μ(a; τ), μ(a; τ ′)) � r6.

Proof. Let qi , q ′
i ∈ G(t) be as in the definitions of μ(a; τ) and μ(a; τ ′) respect-

ively. By Lemma 4·5, we see that ρt(qi , q ′
i ) � r4. Thus, by (C1) in G(t), we see that

ρt(μ(a; τ), μ(a; τ ′)) is bounded.

For the case where t (τ ) � t (τ ′), we will need the following two general lemmas about
tripods in K . Note that in this case, the feet, ui = θ(ai) must all be distinct.

Suppose that τ = α1 � α2 �α3 and that τ ′ = α′
1 �α′

2 � α′
3 are l-taut tripods each with feet

at u1, u2, u3 ∈ V (G). Let t = t (τ ) and t ′ = t (τ ′).

LEMMA 4·8. If τ, τ ′ are l-taut, then ρ(t, t ′) � s1, where s1 = s1(l, k) depends only on l
and k.

Proof. This is a simple consequence of hyperbolicity. Note that each of the paths αi � α j

and α′
i � α′

j are l-taut, and therefore remains a bounded distance from any geodesic which
connects the same endpoints. It follows that t and t ′ are each a bounded distance from the
centre of any geodesic triangle in K with vertices at u1, u2, u3.

We suppose that t � t ′, so that the ui are all distinct. Let ζ be any geodesic from t to t ′.
Let γi = βi � δi � β ′

i be the arc from t to t ′ given by Lemma 4·4 (with α = αi , α′ = α′
i

and u = ui ). Thus δi � ζ = �, and length(γi) � r7(l), where r7(l) = r4(l, s1(k, l), k). Let
L ⊆ K be the image of ζ � γ1 � γ2 � γ3 in K . Note that |E(L)| � s1(k, l) + 3r7(l).

LEMMA 4·9. L is 2-vertex connected.

Proof. Suppose that v ∈ L were a cut point of L . Since ζ and each γi is an arc, v must
separate t from t ′ in L . Thus, v ∈ ζ \ {t, t ′}, and so v � δi . For each i , we have v ∈ γi \ δi =
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βi � β ′
i ⊆ αi � α′

i . It follows that v must lie in at least two of the αi or at least two of the α′
i .

We respectively arrive at the contradictions v = t or v = t ′.

Now suppose that a, τ, τ ′ are as in the hypotheses of Lemma 4·6. Let ui = θ(ai ), and
let qi , q ′

i be as in the definitions of μ, so that μ(a; τ) = μt(q) and μ(a; τ ′) = μt ′(q′). We
suppose that t � t ′.

LEMMA 4·10. There is some r8 = r8(l) such that ρ(μ(a; τ), μ(a; τ ′)) � r8(l).

Proof. Let L = ζ � γ1 � γ2 � γ3 as above. By Lemma 4·9, L is 2-vertex connected. Note
that if βi = {t}, then since δi �ζ = �, we must have δi = �, and so t ∈ β ′

i . This can hold for
at most one i . In other words, at most one of the βi can be trivial, so we can suppose that β1

and β2 are non-trivial. Let e1 and e2 be the initial edges of β1 and β2. Since e1 and e2 ∈ E(L),
by (G3), we see that ρ(ẽ1, ẽ2) � s2, where s2 = s2(l) = F2(s1(k, l) + 3r7(l)). By definition,
q1 = ẽ1 � G(t) and q2 = ẽ2 � G(t), so ρ(q1, q2) � s2 + 2, and so, by (G2), ρt(q1, q2) �
F1(s2 + 2). By (C1) applied to μt , we get that ρt(q1, μt(q)) � s3 and ρt(q2, μt(q)) � s3,
where s3 = s3(l) depends only on l (and the parameters of the hypotheses).

Now, without loss of generality, we also have β ′
1, β

′
j non-trivial, where j ∈ {2, 3}. Thus,

by a similar argument applied to τ ′, we get ρt ′(q ′
1, μt ′(q′)) � s3. Moreover, e1, e′

1 ∈ E(L),
where e′

1 is the initial edge of β ′
1. Thus, we also get ρ(q1, q ′

1) � s2 + 2. This therefore places
a bound on ρ(μt(q), μt ′(q′)) as required.

Lemmas 4·7 and 4·10 together give Lemma 4·6.
We can now define medians in G.
Given a1, a2, a3 ∈ V (G), choose τ to be any l3-taut tripod with feet at θ(a1), θ(a2), θ(a3).

We set μ(a1, a2, a3) = μ(a) = μ(a; τ). Note that, by Lemma 4·6, this is well defined up to
a bounded distance r9 = r5(l3), depending only on the parameters of the hypotheses.

Note that in the case where K is a tree, τ is unique. Moreover, in this case, qi = φt(ai),
where t = t (τ ). Thus, this definition agrees with that given for trees in Section 3.

Now suppose that T ⊆ K is an embedded l-taut tree. Suppose that M ⊆ V (τ ) is some
median subalgebra of V (T ). Then we can identify M = V (TM) for the tree, TM , described in
Section 3. Moreover, we have θ : θ−1(T ) → T , and θ : G M → TM , with Ĝ M = ⊔

t∈M G(t).
Note that ρ̂M agrees with ρ̂ on Ĝ M .

As discussed in Section 3, we have a median, μM , defined on G M , satisfying (CT1) and
(CT2).

LEMMA 4·11. Suppose that T ⊆ K is an l-taut tree, and that M ⊆ V (T ) is a me-
dian subalgebra. Let μM be the median defined on G M . If a1, a2, a3 ∈ V (G M), then
ρ(μ(a), μM(a)) � r5(l).

Proof. We can suppose that l � l3. Let ui = θ(ai ). Let τ ⊆ K be the tripod used in the
definition of μ, that is, μ(a) = μ(a; τ). Let τ ′ ⊆ T be the tripod spanned by u1, u2, u3. This
is l-taut in K . By construction of μM we have μM(a) = μ(a; τ ′). Lemma 4·6 now tells us
that ρ(μ(a; τ), μ(a; τ ′)) � r5(l) as required.

Proof of Theorem 2·1. We prove (C1′) and (C2).

(C1′) Let μ be the median defined on V (G) as above. Suppose that a, b, c, d ∈ V (G),
with c, d adjacent. Let t = θ(a), u = θ(b), v = θ(c) and w = θ(d). Suppose first that
v = w. Let T ⊆ K be an l3-taut tripod spanning {t, u, v}. Let M ⊆ V (T ) be the median
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algebra spanned by {t, u, v} (so that |M | � 4), and let θM : G M → TM be the correspond-
ing tree of graphs as in Lemma 4·11. Thus, ρ(μ(a, b, c), μM(a, b, c)) � r9 = r5(l3) and
ρ(μ(a, b, d), μM(a, b, d)) � r9. Lemma 3·1 tells us that (CT1) holds in G M , and so

ρ(μM(a, b, c), μM(a, b, d)) � ρ̂(μM(a, b, c), μM(a, b, d)) � h0.

Thus, ρ(μ(a, b, c), μ(a, b, d)) � h0 + 2r9.
The case where c, d are the endpoints of an edge, ẽ ∈ E0(G) is similar. Let e = θ(ẽ) ∈

E(K ). This has endpoints v, w ∈ V (K ). We can easily construct an (l3 + 2)-taut tripod
T ⊆ K , with t, u, v, w ∈ V (T ) and with e ∈ E(T ). (Start with an l3-taut tripod for {t, u, v},
and suppose that it does not already contain e. If it does not contain w, then add in e. If it
does contain w, we can assume that w lies in the arc from t to u, and we can divert this
to pass through e using a leg of the tripod. In this case, we end up with an arc from t to u
containing v and w.) Let M ⊆ V (T ) be the median algebra spanned by {t, u, v, w} (so that
|M | � 5). Let θM : G M → TM be the corresponding tree of graphs. By construction, c, d
are also adjacent in G M . We now proceed similarly as before, applying (CT1) to G M .

(CT2): let A ⊆ V (G), with |A| � p. Let B = θ(A) ⊆ V (K ) and let T ⊆ K be a (kl0(p))-
taut tree with B ⊆ V (T ), as given by Lemma 4·2. Let M ⊆ V (T ) be the median algebra
generated by B. Let θM : G M → TM be the associated tree of graphs. Let π : A → �

and λ : � → V (G M) ⊆ V (G) be the maps given by (CT2) for G M as in Lemma 3·1 If
x, y, z ∈ �, then

ρ(λμ�(x, y, z), μM(λx, λy, λz)) � ρ̂(λμ�(x, y, z), μM(λx, λy, λz)) � h(p).

By Lemma 4·11, ρ(μ(λx, λy, λz), μM(λx, λy, λz)) � r5(kl0(p)), and so ρ(λμ�(x, y, z),
μ(λx, λy, λz)) � h(p) + r5(kl0(p)) which depends only on p and the parameters.

Finally, if a ∈ A, then ρ(a, λπa) � ρ̂(a, λπa) � h(p).
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