
doi:10.1017/S0960129518000440

A general proof certification framework for modal

logic

T O M E R L I B A L† and M A R C O V O L P E‡

†The American University of Paris, Paris, France

Email: tlibal@aup.edu
‡Fortiss GmbH, Munich, Germany

Email: volpe@fortiss.org

Received 30 June 2017; revised 26 November 2018

One of the main issues in proof certification is that different theorem provers, even when

designed for the same logic, tend to use different proof formalisms and produce outputs in

different formats. The project ProofCert promotes the usage of a common specification

language and of a small and trusted kernel in order to check proofs coming from different

sources and for different logics. By relying on that idea and by using a classical focused

sequent calculus as a kernel, we propose here a general framework for checking modal

proofs. We present the implementation of the framework in a Prolog-like language and show

how it is possible to specialize it in a simple and modular way in order to cover different

proof formalisms, such as labelled systems, tableaux, sequent calculi and nested sequent

calculi. We illustrate the method for the logic K by providing several examples and discuss

how to further extend the approach.

1. Introduction

The main difficulty in having general and comprehensive approaches to proof checking

and proof certification derives from the fact that proof evidences, even for a single, specific

logic, are produced by using several different proof formalisms and proof calculi. This is

the case both for human-generated proofs and for proofs provided by automated theorem

provers, which moreover tend to produce outputs in different formats. Addressing such an

issue is one of the goals of the project ProofCert (Miller 2011). By using well-established

concepts of proof theory, ProofCert proposes foundational proof certificates (FPC) as a

framework to specify proof evidence formats. Describing a format in terms of an FPC

allows software to check proofs in this format over a small kernel.

Checkers (Chihani et al. 2015) is a generic proof certifier based on the ProofCert ideas.

It allows for the certification of arbitrary proof evidences using various trusted kernels,

like the focused classical sequent calculus LKF (Liang and Miller 2009). Such kernels

are enriched with additional predicates, which allow more control on the construction of

a proof. Dedicated FPC specifications can be defined, over these predicates, in order to

interpret the information coming from a specific proof evidence format, so that the kernel

is forced to produce a proof that mirrors, and thus certifies in case of success, the original

one.

Math. Struct. in Comp. Science c© Cambridge University Press 2019(2019), vol. 29, pp. 1344–1378.

First published online 26 March 2019

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Different kernels, though, offer different levels of confidence in the correctness of the

proof. An important quality of a kernel is that it is as small as possible. The idea behind

it – called the ‘de Bruijn Criterion’ (de Bruijn 1970) – is that small and simple kernels

offer higher trust. The kernel employed in this paper, based on LKF, consists in 93 lines

of λProlog code and is the same used in other ProofCert publications (e.g., Chihani et al.

2015, 2017; Libal and Volpe 2016)†.

The problem of the great variety of different proof formalisms and proof systems to

be considered, when dealing with proof checking, is especially apparent in the case of

modal logics, whose proof theory is notoriously non-trivial. In fact, in the last decades,

several proposals have been provided (a general account is, e.g., in Fitting (2007)). Such

proposals range over a set of different proof formalisms (e.g., sequent, nested sequent,

labelled sequent, hypersequent calculi and semantic tableaux), each of them presenting its

own features and drawbacks. Several results concerning correspondences and connections

between the different formalisms are also known (Fitting 2012; Goré and Ramanayake

2012; Lellmann 2015).

In Marin et al. (2016), a general framework for emulating and comparing existing

modal proof systems has been presented. Such a framework is based on the setting of

labelled deduction systems (Gabbay 1996), which consists in enriching the syntax of modal

logic with elements coming from the semantics, i.e., with elements referring explicitly to

the worlds of a Kripke model and to the accessibility relation between such worlds. In

particular, the framework is designed as a focused version of Negri’s system G3K (Negri

2005), further enriched with a few parametric devices. Playing with such parameters

produces concrete instantiations of the framework, which, by exploiting the expressiveness

of the labelled approach and the control mechanisms of focusing, can be used to emulate

the behaviour of a range of existing formalisms and proof systems for modal logic with

high precision.

In this paper, we rely on the close relationship between labelled sequent systems and

LKF (Miller and Volpe 2015) in order to propose an implementation of such a framework

that uses LKF as a kernel, and is developed as a module of the more general Checkers

implementation project. This work also capitalizes on (and, in a sense, generalizes) the one

in Libal and Volpe (2016), which was limited to the case of prefixed tableaux (PT). The

implementation is extremely modular and based on the use of layers that mirror quite

closely the instantiations of the framework presented in Marin et al. (2016). Concretely,

we are able to certify, via this implementation, proofs given in the formalisms of labelled

sequents, PT, ordinary sequent (OS) systems and nested sequents. We cover for the moment

only the modal logic K , but the modularity of the approach should allow for an easy

extension to other modal logics, in particular, those whose Kripke frames are defined by

geometric axioms, according to the treatment described in Marin et al. (2016). Extension

to other formalisms seems also possible; we discuss this in more detail in the conclusion.

An approach related to ours is in Benzmüeller and Woltzenogel Paleo (2015), where

the authors present a technique to generate and certify modal proofs using the Coq proof

† When calculating the size of the program, we placed each atomic predicate on a new line.

1345Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

assistant. The aim of their work is to allow interactive theorem proving over higher order

modal logics. To this end, they encode the semantics of higher order modal logics into

the system used by Coq – the Calculus of Inductive Constructions. Their work and ours

are similar in that they both certify modal logic proofs by using trusted kernels, but they

also differ in several ways. Their system targets higher order modal logics and is also

directed towards interactive theorem proving, while ours is for the moment restricted to

the task of certification for propositional modal logic. On the other hand, while their

encoding focuses on one specific proof format and calculus, we aim, via our framework,

at supporting different formalisms and proof systems.

We proceed as follows. In Section 2, we present some background on ProofCert, modal

logic and proof systems for modal logic. In Section 3, we recall the general framework

of Marin et al. (2016). In Section 4, we describe its implementation, by presenting the

FPC specifications of the different layers and by providing a few examples. In Section 5,

we discuss possible directions for future work, compare with some related approaches,

and conclude.

2. Background

2.1. Proof systems for modal logic

In this section, we review several proof systems that are among the most popular

calculi (Fitting 2007) for automated theorem proving in modal logic as well as for

manual proof generation. Before that, we recall a few key notions about modal logic and

its relation with first-order classical logic.

We remark that throughout this paper, we will work with formulas in negation normal

form, i.e., such that only atoms may possibly occur negated in them. Notice that this is not

a restriction, as it is always possible to convert a propositional formula into an equivalent

formula in negation normal form (both in classical and in modal logic).

2.1.1. Modal logic. The language of (propositional) modal formulas consists of a func-

tionally complete set of classical propositional connectives, a modal operator � (here we

will also use explicitly its dual ◊) and a denumerable set P of propositional symbols. The

grammar is specified as follows:

A ::= P | ¬P | A ∨ A | A ∧ A | �A | ◊A

where P ∈ P . We say that a formula is a �-formula (◊-formula) if its main connective is

� (◊). The semantics of the modal logic K is usually defined by means of Kripke frames,

i.e., pairs F = (W,R) where W is a non-empty set of worlds and R is a binary relation

on W . We say that a world w is accessible from a world w′ iff (w,w′) ∈ R. A Kripke model

is a triple M = (W,R, V) where (W,R) is a Kripke frame and V : W → 2P is a function

that assigns to each world in W a (possibly empty) set of propositional symbols.

1346T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

In the basic modal logic K , we define the truth of a modal formula at a world w in a

Kripke model M = (W,R, V) as the smallest relation |= satisfying

M, w |= P iff P ∈ V (w)

M, w |= ¬P iff P �∈ V (w)

M, w |= A ∨ B iff M, w |= A or M, w |= B

M, w |= A ∧ B iff M, w |= A and M, w |= B

M, w |= �A iff M, w′ |= A for all w′ s.t. wRw′

M, w |= ◊A iff there exists w′ s.t. wRw′ and M, w′ |= A.

By extension, we write M |= A when M, w |= A for all w ∈ W and we write |= A when

M |= A for every Kripke model M.

2.1.2. The standard translation from modal logic into classical logic. The following stand-

ard translation (see, e.g., Blackburn and Van Benthem 2007) provides a bridge between

propositional (classical) modal logic and first-order classical logic:

STx(P) = P (x) STx(A ∧ B) = STx(A) ∧ STx(B)

STx(¬P) = ¬P (x) STx(�A) = ∀y(R(x, y) ⊃ STy(A))

STx(A ∨ B) = STx(A) ∨ STx(B) STx(◊A) = ∃y(R(x, y) ∧ STy(A))

where x is a free variable denoting the world in which the formula is being evaluated.

The first-order language into which modal formulas are translated is usually referred to

as first-order correspondence language (Blackburn and Van Benthem 2007) and consists

of a binary predicate symbol R and a unary predicate symbol P for each P ∈ P . When a

modal operator is translated, a new fresh variable is introduced‡. It is easy to show that

for any modal formula A, any model M and any world w, we have that M, w |= A if and

only if M |= STx(A)[x← w].

2.1.3. Labelled sequent systems. Several different deductive formalisms have been used for

modal proof theory and theorem proving. One of the most interesting approaches has been

presented in Gabbay (1996) with the name of labelled deduction. The basic idea behind

labelled proof systems for modal logic is to internalize elements of the corresponding

Kripke semantics (namely, the worlds of a Kripke model and the accessibility relation

between such worlds) into the syntax. A concrete example of such a system is the sequent

calculus G3K presented in Negri (2005) (we present it here in a single-sided formulation

and refer to it as LS). LS formulas are either labelled formulas of the form x : A or

relational atoms of the form xRy, where x, y range over a set of variables and A is a

modal formula. In the following, we will use ϕ,ψ to denote LS formulas. LS sequents

have the form G Δ, where Δ is a multiset containing labelled formulas and G is a set of

relational atoms. Being LS a labelled system, we say that A is provable in LS if there is

‡ In fact, it is possible to show that every modal formula can be translated into a formula in the fragment of

first-order logic which uses only two variables (Blackburn and Van Benthem 2007). By the decidability of

such a fragment, an easy proof of the decidability of the modal logic K follows.

1347Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 1. LS: a labelled sequent system for the modal logic K .

Fig. 2. PT: a prefixed tableau system for the modal logic K .

a proof of x : A for any variable x. In Figure 1, we present the rules of LS, which is

proved to be sound and complete for the basic modal logic K (Negri 2005).

2.1.4. Prefixed tableau systems. PT can also be seen as a particular kind of labelled

deductive system. They were introduced in Fitting (1972), although the formulation that

we use here is closer to the one in Fitting (2007). Differently from LS, PT are refutation

proof systems, i.e., in order to prove a formula, we negate it and derive from it a

contradiction. A prefix is a finite sequence of positive integers (written by using dots as

delimiters). Intuitively, prefixes denote possible worlds and they are such that if σ is a

prefix, then σ.1 and σ.2 denote two worlds accessible from σ. A prefixed formula is σ : A,

where σ is a prefix and A is a modal formula in negation normal form. A prefixed tableau

proof of A starts with a root node containing 1 : A, informally asserting that A is false in

the world named by the prefix 1. It continues by using the branch extension rules given

in Figure 2. We say that a branch of a tableau is a closed branch if it contains σ : P and

σ : ¬P for some σ and some P . The goal is to produce a closed tableau, i.e., a tableau

such that all its branches are closed. Classical rules in Figure 2 are the prefixed version

of the standard ones. For what concerns the modal rules, the ◊ rule applied to a formula

σ : ◊A intuitively allows for generating a new world, accessible from σ, where A holds,

while the � rule applied to a formula σ : �A allows for moving the formula A to an

already existing world accessible from σ.

2.1.5. Ordinary sequent systems. Several ‘ordinary’ sequent systems have been proposed

in the literature for different modal logics (a general account is, e.g., in Indrzejczak (2010)

and Poggiolesi (2011)). In our treatment, we will use the formalization OS presented in

Figure 3, which is adapted from the presentations in Fitting (2007) and Stewart and

1348T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 3. OS : an ordinary sequent system for the modal logic K .

Fig. 4. NS: a nested sequent system for the modal logic K .

Stouppa (2004). The base classical system (consisting of identity, structural and classical

connective rules) is extended by a modal rule that, works on one �-formula and several

◊-formulas, bottom-up.

2.1.6. Nested sequent systems. Nested sequents (introduced by Kashima (1994), and then

independently rediscovered by Poggiolesi (2011), as tree-hypersequents, and by Brünnler

(2009)) are an extension of OS to a structure of tree, where each []-node represents the

scope of a modal �. We write a nested sequent as a multiset of formulas and boxed

sequents, according to the following grammar, where A can be any modal formula in

negative normal form: N ::= � | A,N | [N],N .

In a nested sequent calculus, a rule can be applied at any depth in this tree structure,

that is, inside a certain nested sequent context. A context written as N { } · · · { } is a

nested sequent with a number of holes occurring in place of formulas (and never inside

a formula). Given a context N { } · · · { } with n holes, and n nested sequents M1, . . . ,Mn,

we write N {M1} · · · {Mn} to denote the nested sequent where the ith hole in the context

has been replaced by Mi, with the understanding that if Mi = � then the hole is simply

removed. We are going to consider the nested sequent system (in Figure 4) introduced by

Brünnler in Brünnler (2009), that we call here NS.

2.2. A general proof checker

There is no consensus about what shape a formal proof evidence should take. The notion

of structural proofs, which is based on derivations in some calculus, is of no help as long

as the calculus is not fixed. One of the ideas of the ProofCert project is to try to amend this

problem by defining the notion of a FPC as a pair of an arbitrary proof evidence and an

executable specification which denotes its semantics in terms of some well-known target

calculus, such as the sequent calculus. These two elements of an FPC are then given to a

1349Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

universal proof checker which, by the help of the FPC, is capable of deriving a proof in

the target calculus. Since the proof generated is over a well-known and low-level calculus

which is easy to implement, one can obtain a high degree of trust in its correctness. Such

an approach seems to be applicable to a large class of proof formalisms.

The proof certifier Checkers is a λProlog (Miller 2012) implementation of this idea. Its

main components are the following:

— Kernel. The kernels are the implementations of several trusted proof calculi. Cur-

rently, there are kernels over the classical and intuitionistic focused sequent calculus.

Section 2.3 is devoted to the presentation of LKF, i.e., the classical focused sequent

calculus that will be used in the paper.

— Proof evidence. The first component of an FPC, a proof evidence is a λProlog

description of a proof output of a theorem prover. Given the high-level declarative

form of λProlog, the structure and form of the evidence are very similar to the original

proof. We specify the form of the different proof evidences we handle in Section 4.

— FPC specification. The basic idea of Checkers is to try and generate a proof of the

theorem of the evidence in the target kernel. In order to achieve that, the different

kernels have additional predicates which take into account the information given in the

evidence. Since the form of this information is not known to the kernel, Checkers uses

FPC specifications in order to interpret it. These logical specifications are written in

λProlog and interface with the kernel in a sound way in order to certify proofs. Writing

these specifications is the main task for supporting the different outputs of the modal

theorem provers we consider in this paper and they are, therefore, explained in detail

in Section 4. We mention here the existence of two different types of specifications.

The clerks, which simply perform some bookkeeping computations without using any

information from the evidence, and the experts, which, in addition, also use information

from the evidence in order to guide the kernel with regard to choices to make.

2.3. A focused sequent calculus for classical logic

Theorem provers often use efficient but non-trivial proof calculi, possibly employing

heuristics or optimization techniques, whose complexity leads to a lower degree of trust.

On the other hand, traditional proof calculi, like the sequent calculus, enjoy a high degree

of trust but are quite inefficient for proof search. In order to use the sequent calculus as the

basis of automated deduction, much more structure within proofs needs to be established.

Focused sequent calculi, first introduced by Andreoli Andreoli (1992) for linear logic,

combine the higher degree of trust of sequent calculi with a more efficient proof search.

They take advantage of the fact that some of the rules are ‘invertible,’ i.e., can be applied

without requiring backtracking, and that some other rules can ‘focus’ on the same formula

for a batch of deduction steps. In this paper, we will make use of the classical focused

sequent calculus (LKF) system defined in Liang and Miller (2009). Figure 5 presents, in

the black font, the rules of LKF.

Formulas in LKF which are expressed in negation normal form, can have either

positive or negative polarity and are constructed from atomic formulas, whose polarity

has to be assigned, and from logical connectives whose polarity is pre-assigned. The choice

1350T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

of polarization does not affect the provability of a formula, but it can have a big impact

on proof search and on the structure of proofs: one can observe, e.g., that in LKF the

rule for ∨− is invertible while the one for ∨+ is not. The connectives ∧−,∨− and ∀ are of

negative polarity, while ∧+,∨+ and ∃ are of positive polarity. A composed formula has the

same polarity of its main connective. In order to polarize literals, we are allowed to fix the

polarity of atomic formulas in any way we see fit. We may ask that all atomic formulas

are positive, that they are all negative, or we can mix polarity assignments. In any case, if

A is a positive atomic formula, then it is a positive formula and ¬A is a negative formula:

conversely, if A is a negative atomic formula, then it is a negative formula and ¬A is a

positive formula.

Deductions in LKF are done during synchronous or asynchronous phases. A synchron-

ous phase, in which sequents have the form Θ ⇓ B, corresponds to the application of

synchronous rules to a specific positive formula B under focus (and possibly its immediate

positive subformulas). An asynchronous phase, in which sequents have the form Θ ⇑ Γ,

consists in the application of invertible rules to negative formulas contained in Γ (and

possibly their immediate negative subformulas). Phases can be changed by the application

of the release rule. A bipole is a pair of a synchronous phase below an asynchronous

phase within LKF: thus, bipoles are macro inference rules in which the conclusion and

the premises are ⇑-sequents with no formulas to the right of the up-arrow.

It is useful sometimes to delay the application of invertible rules (focused rules) on some

negative formulas (positive formulas) A. In order to achieve that, we define the following

delaying operators ∂+(A) = true ∧+ A and ∂−(A) = false ∨− A. Clearly, A, ∂+(A) and

∂−(A) are all logically equivalent but ∂+(A) is always a positive formula and ∂−(A) is

always a negative one.

In order to integrate the use of FPC into the calculus, we enrich each rule of LKF

with proof evidences and additional predicates, given in blue font in Figure 5. We call

the resulted calculus LKF a. LKF a extends LKF in the following way. Each sequent now

contains additional information in the form of the proof evidence Ξ. At the same time,

each rule is associated with a predicate (for example, initiale(Ξ, l)) which, according to the

proof evidence, might prevent the rule from being called or guide it by supplying such

information as the cut formula to be used.

Note that adding the FPC definitions in Figure 5 does not harm the soundness of the

system but only restricts the possible rules which can be applied at each step. Therefore,

a proof obtained using LKF a is also a proof in LKF. Since the additional predicates

do not compromise the soundness of LKF a, we allow their definition to be external to

the kernel and in fact these definitions, which are supplied by the user, are what allow

Checkers to check arbitrary proof formats.

3. A general focused framework for modal logic

3.1. A focused labelled calculus for modal logic

In Miller and Volpe (2015), a focused labelled sequent system (LMF) for the modal logic

K has been presented. Such a calculus can be seen either as a focused version of LS or as

1351Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 5. The proof system LKF a, augmented version of LKF. Here, P is a positive formula; N a

negative formula; Pa a positive literal; C a positive formula or negative literal; and ¬B is the

negation normal form of the negation of B. The proviso marked † requires that y is not free in

Ξ,Θ,Γ, B. LKF is obtained by ignoring the blue elements in the figure.

the restriction of LKF to the first-order correspondence language of Section 2.1.2 (where

modalities are considered as synthetic connectives).

Figure 6 presents a multi-focused version (denoted LMFm) of the calculus, i.e., a variant

where it is possible to focus on several positive formulas at the same time. Such a variant

will also be considered in the rest of the paper. LMF can be read from the figure by

ignoring the elements in blue font, or, equivalently, by imposing the condition that Ω, Ω1

and Ω2 are empty in all rules.

In these systems, sequents have the form G Θ ⇓ Γ (with Γ containing exactly one

formula in the case of LMF) or G Θ ⇑ Γ, where the relational set (of the sequent) G is

a set of relational atoms and Θ and Γ are multisets of labelled formulas.

3.2. A general framework for modal logic

In the context of modal logics, labelled proof systems have been shown to be quite

expressive and encodings of other approaches into this formalism have also been presented

in the literature (Fitting 2012; Goré and Ramanayake 2012; Lellmann 2015). It seems

therefore quite natural to explore the possibility of reproducing the behaviour of modal

proof systems based on different formalisms inside LMF, by exploiting at the same time

1352T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 6. LMFm: a multi-focused labelled proof system for the modal logic K . The single-focused

version LMF is obtained by forcing Ω, Ω1 and Ω2 to be empty in all rules.

the expressivity of labelling and the control mechanisms provided by focusing. Such an

analysis has been carried out in Marin et al. (2016) and has shown that, by enriching

LMF with a few further technical devices, it is possible to get enough power to drive

construction of proofs so as to emulate the proof structure of a wide range of formalisms.

The general framework LMF∗ is presented in Figure 7. In the rest of this paper, when

talking of LMF∗ and its instantiations, a labelled formula will have the form ϕ ≡ xσ : A,

where σ is either empty or a label y. We say that x is the present of ϕ and σ is the

future of ϕ. Intuitively, the present of a formula has the usual role of labels in labelled

systems, i.e., it refers to the world where the formula holds. The future, when present, is

used to drive (bottom-up) the applications of the ◊ introduction rule, i.e., it specifies the

label to be used as a witness in the rule. An LMF∗ sequent has the form G H Θ ⇓ Ω

or G H Θ ⇑ Ω, where G is a set of relational atoms, the present (of the sequent) H is a

non-empty multiset of labels, and Θ and Ω are multisets of labelled formulas. Intuitively,

the present of a sequent specifies which labels are currently ‘active,’ in the sense that

when building a proof (bottom-up) a decide rule can only put the focus on labelled

formulas whose present is contained in the present of the sequent. Like LMFm, LMF∗ is

a multi-focused system, as one can notice by observing that we do not necessarily have a

single formula on the right of ⇓.
We refer the reader to Marin et al. (2016) for a more comprehensive explanation of

the devices introduced in LMF∗ with respect to LMF and LMFm. We just remark that

1353Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 7. LMF∗: a focused labelled framework for the modal logic K .

the framework presented here is slightly different from the one proposed in Marin et al.

(2016), since considering only the logic K allows for a few simplifications.

3.3. Emulation of modal proof systems

In order to emulate proofs given in other proof calculi by means of the focused framework

LMF∗, we need first of all to define a translation from the original modal language to the

polarized one.

When translating a modal formula into a polarized one, we are often in a situation

where we are interested in putting a delay in front of the formula only in the case when

it is negative and not a literal. For that purpose, we define A∂
+

, where A is a modal

formula in negation normal form, to be A if A is a literal or a positive formula and ∂+(A)

otherwise. We then define the translation �.� as follows:

�P � = P �A ∧ B� = �A�∂
+

∧− �B�∂
+

�¬P � = ¬P �A ∨ B� = �A�∂
+

∨− �B�∂
+

��A� = �(�A�∂
+

) �◊A� = ◊(∂−(�A�∂
+

))

1354T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

In this translation, delays are used to ensure that only one connective of the original

formula is processed along a given bipole of a focused derivation of the translated formula.

This will be useful, in our proof checking procedure, in order to keep a tight connection

between the original proof and the reconstructed one.

Finally, in order to emulate existing calculi in LMF∗, we need to give specialized

versions of the rule decideF . For LS, we do it as follows:

G L Θ ⇓ xσ : A

G L Θ ⇑ · decideLS

where

— L denotes the set of all labels;

— if A is a ◊ formula, then σ is y for some xRy ∈ G; otherwise, σ is empty.

Given the similar nature of the approaches, in the case of the logic K , the same rule

can be used also for emulating the systems PT and NS (for convenience, in the following

we will use for the same rule also the names decidePT and decideNS).

For the system OS , we specialize instead the rule decideF as follows:

G {y} Θ ⇓ Ω

G {x} Θ ⇑ · decideOS

where (in addition to the general conditions of Figure 7) we have that

1. if x �= y, then

— xRy ∈ G; and

— Ω is a multiset of formulas of the form xy : ◊A;

2. if x = y, then Ω = {x : A} for some formula A that is not a ◊-formula.

Intuitively, the specialization with respect to the general framework consists in (i)

restricting the use of multi-focusing to ◊-formulas; (ii) forcing such ◊-formulas to be

labelled with the same future. This restriction is driven by the need for reproducing the

behaviour of the OS modal rule �K .

Let X range over {LS, PT ,OS,NS}. We call LMFX the system obtained from LMF∗ by

replacing the rule decideF with the rule decideX . The following adequacy result is proved

by associating to each rule in X a corresponding sequence of bipoles in LMFX . We refer

the reader to Marin et al. (2016) for a more formal statement of the theorem as well as

for its complete proof.

Theorem 3.1. Let X range over {LS, PT ,OS,NS}. There exists a proof Π of A in the

proof system X iff there exists a proof Π′ of � {x} x : (�A�)∂
+

⇑ ·, for any x, in LMFX .

Moreover, for each application of a rule r in Π there is a sequence of bipoles in Π′

corresponding to r.

The result in Theorem 3.1 establishes a relation between the original calculi to be

emulated and LMF∗. Since our ultimate goal is to certify proofs in a kernel which consists

in LKF, we need to be able to relate LMF∗ and LKF as well. First of all, based on the

standard translation of Section 2.1.2, we refine the translation above in order to consider

also the translation of modalities into quantified formulas.

1355Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Given a variable x, we define the translation [.]x from modal formulas in negation

normal form into polarized first-order formulas as follows:

[P]x = P (x) [A ∧ B]x = [A]x
∂+ ∧− [B]x

∂+

[¬P]x = ¬P (x) [A ∨ B]x = [A]x
∂+ ∨− [B]x

∂+

[�A]x = ∀y(¬R(x, y) ∨− [A]y
∂+

) [◊A]x = ∃y(R(x, y) ∧+ ∂−([A]y
∂+

))

We observe that the translation of modalities also makes use of delays, in such a way that

the processing of a modality in the labelled calculus corresponds to a bipole in LKF, e.g.,

when in LKF we focus on a formula [◊A]x, the formula A is delayed in such a way that

it gets necessarily stored at the end of the bipole. Based on that, we define the translation

[.] from labelled formulas and relational atoms into polarized first-order formulas as

[x : A] = [A]x and [xRy] = R(x, y). Predicates of the form P (x) and R(x, y) are assigned

positive polarity. This translation will be used for all the formalisms considered in the

paper.

It is easy to notice that each proof in LMF∗ is also a proof of LMFm (just ignore the

present of a sequent, as well as the present and future of formulas). Furthermore, a proof in

the multi-focused system LMFm can always be reproduced in LMF, by breaking a multi-

focused bipole into a chain of single-focused bipoles. Finally, in Miller and Volpe (2015),

it has been shown that a strict correspondence between proofs in LMF and proofs in LKF

(restricted to the correspondence language) exists. This chain of correspondences allows

us to state the following theoretical result, on which the adequacy of the implementation

proposed in next section relies.

Theorem 3.2. Let X range over {LS, PT ,OS,NS}. There exists a proof Π of A in the

proof system X iff there exists a proof Π′ of [A]x in LKF, for any x. Moreover, for each

application of a rule r in Π, there is a sequence of bipoles in Π′ corresponding to r.

4. Certification of modal proofs

This section describes the implementation of a general framework for the certification of

modal proofs and shows how this framework can be used in order to certify proofs from

different proof systems. We will rely here on the theoretical results of Section 3.

The implementation discussed in this paper is freely accesible on Github§ or on Zenodo¶.

More information on the implementation is given in Section 4.6.

FPC (see Section 2.2 for details) form a rich language for the certification of any

proof object. This flexibility stems from connecting a trusted kernel with arbitrary λProlog

programs (called FPC specifications). The richness of the language, however, has the

downside that defining a new set of FPC specifications is, in general, a complex task – it

involves the encoding of the semantics of a system over another (represented by the kernel).

The complexity of supporting a new proof format is not unique to ProofCert. There are

but a few general proof certification tools and the effort to enable the certification of a

particular proof system is non-trivial.

§ https://github.com/proofcert/checkers/tree/dalefest
¶ https://zenodo.org/record/1325924#.W2IWPHVfgWM

1356T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Our aim in this paper is to create a certification framework which enjoys generality and

ease of use. Taking, for example, the OS system given in Figure 3,

Theorem 3.2 has established the existence of a functional transformation from OS

proofs into LMFOS , which is a restriction of LMF∗. In Miller and Volpe (2015), the

existence of a functional transformation from LMF proofs into LKF was shown to

exist.

A simple approach to the certification of OS proofs would then be the direct translation

of these proofs into LKF. Such a translation would amount to a soundness proof of the

OS calculus and would violate our two criteria mentioned above. Generalization would

be violated since the translation would target OS proofs only. Moreover, since such

translations are generally very complex and include many technical details that are

hidden in the theoretical proofs, they are not easy to implement.

In this paper, we present an approach based on the general proof checker presented in

Section 2.2. We attempt to encode the semantics of different proof systems using logical

programs (predicates), a trusted kernel and proof guidance and search. But, while defining

the semantics using logical predicates is easier than using a functional translation, we are

still left with the complexity of defining these predicates. In addition, it seems that by

writing the predicates for a particular calculus, we compromise on generality.

A way to amend the generalization problem of the two approaches above is to consider

a framework in which many different proofs can be certified. Such general frameworks

are often cumbersome to use. Therefore, in order to make the certification as easy as

possible, we would like to require the framework semantics to be as close to the semantics

of the different proof calculi as possible.

The two properties stated above seem contradictory to each other. Being general

and supporting different proof calculi and formats necessarily mean making it harder

to implement any specific calculus and format. We try to circumvent this problem by

introducing different layers in our framework. Some layers will be very general but harder

to use, while others will be simpler but would not be able to support as many formats.

In addition, the layers will be build on top of each other in such a way that using an

upper layer necessarily means using also a lower one. As we will see, the simplest and

lowest layer will be LKF. The remaining layers correspond to the systems which were

introduced in Sections 3.1 and 3.2.

It should be noted that, as long as we always use the same lower level kernel, at no

point trust is being compromised. Both the functional and the logical approaches are

based on the reconstruction of a proof in the classical first-order sequent calculus. If such

a proof is constructed for a certain (translation of the) original formula, we are assured

that the formula is valid, up to the correctness of the first-order certifier as well as of the

adequacy of the translation.

A simple layered approach would consist in using a separate kernel for each layer,

but that would compromise some of the trust we can place in the proof certifier

as well as violate the universality of the certification process, since certifications over

different kernels cannot be combined into one, foundational, proof. For this reason, we

will stick to one concrete kernel (LKF) and will simulate the different layers on top

of it.

1357Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 8. An OS proof of the axiom K .

4.1. Introducing the framework

In this section, we present an implementation of a proof certification framework based

on the general proof checker from Section 2.2 and which uses LKF as its sole kernel. As

mentioned above, such an approach enjoys the highest amount of trust.

The layers of our architecture will correspond to the implementation of systems that

were described in the previous sections and that we briefly recall here:

1. LKF : a focused sequent calculus for the first-order classical logic; presented in Liang

and Miller (2009) – see Section 2.3;

2. LMF : a focused labelled sequent calculus for the modal logic K; presented in Miller

and Volpe (2015) – see Section 3.1;

3. LMFm : a multi-focused variant of LMF – see Section 3.1;

4. LMF∗ : a framework, based on LMFm, for the emulation of modal calculi; presented

in Marin et al. (2016) – see Section 3.2.

Given, for example, the proof evidence for the OS proof in Figure 8, such a layered

architecture allows us to certify the evidence over LKF, while defining the FPC over

another layer, which is closer to the semantics of OS.

First, let us examine the information in the proof. The information contained in each

inference step of an OS proof can be summarized as follows:

— The (main) formula occurrence to which the inference is applied (in case of �OS , we

consider this to be the �-formula introduced; in case of initOS , we consider this to be

the positive literal in the couple of complementary literals).

— A possible additional list of formula occurrences:

– in case of the rule �OS , all the ◊-formula occurrences that are introduced by the

rule;

– in case of the rule initOS , the complementary negative literal.

Therefore, an adequate tree-shaped proof evidence for the above OS proof is the one

shown in Figure 9.

In the next parts of this section, we will use the above example in order to discuss the

implementation details of different aspects of the framework.

4.2. Formula indices

Our first challenge is to be able to refer to specific formula occurrences inside a proof

whose conclusion contains a single formula A. The role of the indices will be to identify

1358T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 9. The OS proof evidence for a proof of the axiom K .

Fig. 10. OS proof evidence using basic indexing.

a specific subformula of A. For example, given an index I for a conjunctive formula, the

index of the left conjunct can be defined as left(I).

Definition 4.1 (Basic indexing). Given a formula F which has an index I , we define the

following indices for the subformulas of F:

— If F = A ∧ B or F = A ∨ B, we assign the index left(I) to A and right(I) to B.

— If F = �A or F = ◊A, we assign the index left(I) to A.

Using the above basic indexing scheme and denoting the index of the theorem to prove

by �, the proof from Figure 8 will be represented by the evidence in Figure 10.

While sufficient for an OS calculus for the system K, this indexing mechanism falls

short for most other systems and calculi. The reason for that is represented by the

implicit contractions of formulas which take place in such systems (for example, in LS ,

in the introduction rule for ◊). In our representation of proofs, this amounts to the need

for indexing differently possible distinct occurrences of direct subformulas of a given

◊-formula. In order to distinguish between them, we define a correspondence between

◊-formulas and �-formulas inside a given proof. This will also allow us to capture the

idea behind labels and to therefore omit explicit label information in our framework‖.

Definition 4.2 (Modal correspondence for LMF∗). Let Π be an LMF∗ proof. We say that

a labelled formula x : ◊A corresponds in Π to a labelled formula y : �B iff

— there is a �F rule application in Π whose conclusion is a sequent containing y : �B
and whose premise is a sequent containing the formula z : B; and

‖ In fact, in a (single-sided) labelled system, the correspondence would rather be between a ◊ introduction

rule application and a specific label. However, at least in the case of the logic K , the only way to introduce

(bottom-up) a new label is by means of a � introduction rule. It is thus possible to identify each label with

the �-formula that introduces it.

1359Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 11. OS proof evidence using indexing.

— there is a ◊F rule application in Π whose conclusion is a sequent containing the

formula x : ◊A and whose premise is a sequent containing the formula z : A.

This definition can be extended to non-labelled systems such as OS and NS . For

example, upon the application of the OS inference rule �OS , all ◊-formulas in the lower

sequent corresponds to the �-formula. Similarly, for nested sequents, ◊ inference rules

result in formulas being added to nested sequents which are associated with �-formulas.

Definition 4.3 (Modal correspondence for ordinary sequents). Let Π be an OS proof. A

formula ◊A corresponds in Π to a formula �B iff

— the conclusion of a �OS rule application in Π contains both formulas.

Definition 4.4 (Modal correspondence for nested sequents). Let Π be an NS proof. A

formula ◊A corresponds in Π to a formula �B iff

— there is a �NS rule application in Π whose conclusion contains N {�B} and whose

premise contains N {[B]}; and

— there is a ◊NS rule application in Π whose conclusion contains N {◊A, [M]} and

whose premise contains N {[A,M]}, where M contains B.

We omit the definitions for LS and PT, which can be easily inferred from the one given

for LMF∗ and are anyway not used in the examples of the paper.

Using modal correspondence, we can define the indices of ◊-formulas.

Definition 4.5 (Indexing). Given a formula F which has an index I , we refine the definition

of basic indexing (4.1) and replace the indexing of direct subformulas of ◊-formulas as

follows:

— If we apply the diamond inference rule to a formula F = ◊A corresponding to a

�-formula at index J , we assign the index diaind(I, J) to A.

Using the indexing mechanism above on our example, we get the evidence in Figure 11.

4.3. Layered architecture

As mentioned in the introduction to this section, our aim is to implement a layered

framework. On the one hand, the upper you go, the more restricted system you reach in

which it is easier to define complex semantics of proof calculi. On the other hand, as you

1360T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

go down, the layer syntax and definition are simpler and might be a better fit for some

proof calculi.

No matter which layer we are using, we still wish our certification to be over our most

trusted kernel – LKF. Let us consider the layer just above it – LMF. Given a proof

evidence denoted in terms of the system of this layer, it is straightforward to define its

FPC specification over LKF. When we consider one layer above – LMFm, it becomes

more complex to define it over LKF but a relatively simpler matter to define it in terms

of LMF.

4.3.1. The LMF system layer. In the previous examples, we have seen that modal proof

evidences normally contain information about the worlds associated with � and ◊

inference rules. Our first layer is capable, therefore, of accepting proof evidences which

contain the following information:

1. At each step, on which formula we apply a rule of the LMF calculus.

2. In the case of a ◊-formula, with respect to which label (or, equivalently, as explained

in the previous section, with respect to which �-formula) we apply the rule.

3. In the case of an initial rule, with respect to which complementary literal we apply it.

For this reason, we define the proof evidence of this layer as a tree describing the

original proof. Each node is decorated by a pair containing (i) the index of the formula

on which a rule is applied, as explained in (1), together with (ii) a (possibly null) further

index carrying additional information, to be used in cases (2) and (3) above. Formulas in

the tree will drive the construction (bottom-up) of the LKF derivation, in the sense that,

by starting from the root, at each step, the LKF kernel will decide on the given formula

and proceed, constrained by properly defined clerks and experts, along a synchronous and

an asynchronous phase. The results in Libal and Volpe (2016) guarantee that at the end

of a bipole, we will be in a situation which is equivalent to that of the corresponding step

in the original proof.

As described in item (2) above, if we are applying an ∃-rule in LKF, then we need

further information specifying with respect to which term we apply the rule. This term

can be found in the additional index supplied. Similarly, in the case of an initial (3), the

additional information in the node will specify the index of the complementary literal.

This definition permits the usage of different types of nodes in the same tree, which

will allow us to smoothly move between the layers.

Using these definitions, we can now denote our example from Figure 11 in terms of

the LMF layer, as can be seen in Figure 12. The corresponding LMF proof is shown in

Figure 13. One can observe that each item in the proof evidence of Figure 12 corresponds

to a block in the derivation of Figure 13 that starts, reading the proof bottom-up, with

a decideK application and possibly uses, along the bipole, the additional information

contained in the evidence. Note that, for shortness, we use in this proof (as well as in

other examples below) derived rules for ∂+ and ∂− introduction. They can be easily

derived from other rules in the calculi.

1361Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 12. The LMF proof evidence for a proof of the axiom K .

The implementation†† of the LMF layer over the LKF kernel in our system will mainly

do the following:

— Use the index in each node of the tree to choose the right formula to decide on.

— Use the extra information for the ◊-formula when applying an ∃ rule.

— Use the extra information for the literals when applying an init rule.

A simplified version (omitting some technical details) of a part of the implementation

is given in Figure 14. Here, a definition consists of a predicate name, e.g., orNeg_c, and

a list of arguments. The predicates correspond to those introduced in LKF a (Figure 5),

and can be divided into clerks (ending with _c) and experts (ending with _e).

The role of the arguments is also the same as in Figure 5. Typically, the first and

last arguments of each predicate are the ‘input’ and ‘output’ evidence of the inference

rule, i.e., the evidence of the conclusion and the evidence of the premise, respectively.

In some cases, further arguments are present, e.g., in the some_e predicate of the

example, a second argument containing information about the witness term to be used

in the ∃-introduction application. In the implementation, an evidence of the LMF layer

is a term named lmf_cert which has two arguments: (i) a state (holding additional

information, as described below) and (ii) a tree. The tree is a regular inductively defined

tree node I O List where List is a list of sub-trees of the current node and I and O are

indices describing the current node in terms of the formula to decide on and the optional

additional information.

The first definition, for the negative disjunction, just skips the root node of the proof

tree in the evidence. Since we are in an asynchronous phase, the information in the

evidence is not required. On the other hand, the information transmitted to the clerk

from the kernel – the principal formula – is ignored by the clerk since it is not required

later. We also remark on the existence of a state variable. The state is being used in order

to propagate some information between the rule applications. It is not used in this FPC

definition.

The second definition, for the universal quantifier, does also skip the current node,

similarly to the previous definition. It does need, though, to record the eigenvariable used

†† src/fpc/modal/lmf-singlefoc.mod

1362T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 13. The LMF proof corresponding to the proof evidence of Figure 12, where

ϕ ≡ ◊(∂−(∂+(P ∧− ¬Q))) ∨− (∂+(◊ ∂−(¬P) ∨− ∂+(�Q))) is a polarized version of the axiom K ,

obtained according to the translation in Section 3.3.

1363Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 14. A simplified version of the implementation of three FPC definitions.

and stores it in a mapping in the state. This mapping associates the index of the node, i.e.,

the index of the corresponding �-formula, to the actual eigenvariable introduced by the

kernel. We store these values in the state using a list of pairs of indices and eigenvariables.

Since the predicate cannot intervene directly with the kernel in order to obtain the

eigenvariable, we have defined the second argument of this predicate as a function from

eigenvariables to proof evidences. The kernel is then responsible for applying this function

to the eigenvariable.

The last definition, which is an expert FPC definition, selects the previously stored

eigenvariable and returns it as the term witness. In order to find the correct eigenvariable,

we check for the membership of a pair of the known index and the required eigenvariable

in the list which forms the state.

4.3.2. The LMFm system layer. One can immediately see that the LMF layer is not

the most suitable for describing the semantics of OS. The reason is that the order in

which ◊-formulas are decided on, which is explicit in LMF, is not always relevant in the

corresponding OS proof.

We would like to have a layer which allows us to decide simultaneously on different

formulas in the sequent. This is obtained by multi-focusing.

The LMFm layer allows us to simulate a multi-focusing step in the kernel (which

is non-multi-focused) and corresponds to the multi-focused version of LMF defined in

Section 3.1. Our system will simulate multi-focusing by relating each inference with a

number. This number will force all inferences labelled the same to occur sequentially.

We observe that this does not simulate multi-focusing adequately in the general case;

however, for the modal proof calculi considered in this paper and due to the the fact

that we restrict to the logic K , we are ensured that this simple mechanism is enough for

encoding multi-focusing in our case. We note here that in order to support multi-focusing

in logics other than K, we would need to support a multi-focused version of LKF as our

kernel.

1364T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 15. The LMFm proof evidence for a proof of the axiom K .

A proof evidence for our running example in LMFm can be seen in Figure 15. The multi-

focus value which appears there is just an integer which is used to group simultaneous

focusing. The corresponding LMFm proof is shown in Figure 16. With respect to the LMF

proof of Figure 13, we can notice that here we have a decide step in which the focus is put

on two ◊-formulas at the same time; such formulas correspond to those indices having

the same multi-focus value in Figure 15.

4.3.3. The LMF∗ system layer. The most expressive layer is LMF∗. This layer extends

the previous one with information about worlds which are currently active (the present)

and the possible futures of formulas.

Going back to our running example, we see that we still cannot simulate properly the

semantics of OS calculus. There is no mechanism in our LMFm layer which enforces

all ◊-formulas to ‘go’ to the same world (the one introduced by the corresponding �-

formula). Essentially, we want to forbid proof evidences where ◊-formulas belonging to

the same multi-focusing step correspond to different �-formulas, because we know that

in such a case our kernel would not be simulating an OS proof. We can impose additional

restrictions based on the tools from Section 3.2, which will ensure such cases cannot

happen.

Our running example proof evidence will now look like the one in Figure 17. The nodes

of a proof evidence, as defined in Section 3.2, contain, in addition to the information

required in the previous layer, also information about the new present of the sequent and

future of formulas, denoted by labels‡‡. Essentially, the new features of this layer help us

further restrict the proof search over the previous layer by giving us the ability to avoid

‡‡ We remark that, for simplicity and since it is equivalent in the case of the systems considered, in the

implementation we attach the information concerning the future to the whole sequent, rather than to single

formulas as described in Section 3.2.

1365Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 16. The LMFm proof corresponding to the proof evidence of Figure 15, where

ϕ ≡ ◊(∂−(∂+(P ∧− ¬Q))) ∨− (∂+(◊ ∂−(¬P) ∨− ∂+(�Q))) is a polarized version of the axiom K ,

obtained according to the translation in Section 3.3.

applying the decide and ◊-introduction rules in some cases. In Figure 18, we show the

LMF∗ proof corresponding to the proof evidence of Figure 17. The proof has the same

structure as the one in Figure 16 and the way the additional ‘decorations’ (denoting the

present and the future) are used, respect the restrictions that characterize OS and make

it indeed an LMFOS proof.

1366T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 17. The LMF∗ proof evidence for a proof of the axiom K .

4.4. Polymorphic proof evidence

As we mentioned in previous sections, one of the goals of our framework is ease of use.

When implementing the integration of specific modal systems, we would like to use the

layer which is closest to the semantics of the system, e.g., the LMF∗ layer in the case of

OS . When considering the proof evidences of these two systems (Figures 11 and 17), we

notice that they are not that similar.

In this section, we present the first approach for amending this problem – ease of use

while preserving trust and universality – which we call polymorphic proof evidence. The

name stems from the fact that in order to use a layer and be able to certify over the

LKF kernel, we consider different proof evidences as being polymorphic, i.e., belonging

to different proof calculi and layers.

In the example of OS , by polymorphic proof evidence, we mean that these proof

evidences, from the implementation point of view, are both OS proofs and LMF∗ proofs.

In a similar way, we can define an LMF∗ proof as being both an LMF∗ proof and an

LMFm one. By following this approach, we will obtain that the ordinary proof evidence,

being built on top of our topmost layer, is a proof evidence of all mentioned systems.

From the certification point of view, this will allow us to certify the OS proof evidence

‘out of the box’ by just considering it as an LMF∗ evidence. From the implementation

point of view, we need to be able to define the evidence as polymorphic. λProlog, being

a logic programming language, does not support polymorphism on the object level (it

does, though, support type polymorphism similar to the one in functional programming

languages).

We overcome that by using programs which translates the evidences across layers.

The first set of programs are based on the fact that each layer is built on top of the one

below it. We will include the proof evidence of the lower layer within the proof evidence

1367Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 18. The LMF∗ proof corresponding to the proof evidence of Figure 17, where

ϕ ≡ ◊(∂−(∂+(P ∧− ¬Q))) ∨− (∂+(◊ ∂−(¬P) ∨− ∂+(�Q))) is a polarized version of the axiom K ,

obtained according to the translation in Section 3.3.

of the upper one. Polymorphism will be obtained by considering, in each layer, only the

relevant component.

The second is based on the fact that a proof evidence, like that for an OS proof, can

be denoted in terms of the proof evidence expected in one of the layers. Polymorphism is

1368T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 19. Proof evidence transformation between two layers.

obtained via a logical program which translates the evidence back and forth between the

original proof and the one of the relevant layer.

By explicitly defining these small programs, we allow users to certify proof evidence,

whose semantics are defined using one of the layers, on top of the LKF kernel.

An example of using a translation between an LMF∗ and LMFm proof evidences is

given in Figure 19.

A program which enables this ‘polymorphic’ behaviour for OS over our framework is

given in Figure 20. In order to apply the FPC specification of the LMF∗ layer, we convert

the proof evidence to the one expected by the LMF∗ layer and recursively apply the

predicate. The logic programming mechanism will use the transformed proof evidence in

order to locate the proper predicate to apply. We can, therefore, simulate polymorphism

over the proof evidences.

We can see that the essential information about the index of the formula a rule is

applied to, as well as the optional additional index (denoted I and OI in the figure) are

copied between the evidences. The information which is not part of the OS evidence – the

multi-focus index, the future and the set of presents – is being stored in a state like data

structure and is copied to the LMF∗ evidence. The state of the OS evidence is initially

empty and is being updated by the OS FPC specification.

Here, we have shown the relatively simple (abstraction over the) definition of the

orNeg c FPC specification. The one for allNeg c, for example, includes a simulation of

the application of ◊ inference rules.

4.5. Certification of different proof formats

Given the different layers in the proof system defined in the previous section, we can

easily write FPC specifications for different popular proof formats.

The process is always the same. The FPC specifications translate the evidence into the

evidence of a particular layer, as explained in Section 4.4.

In the next sections, we describe in more detail how the framework is used in order to

support specific proof formats. In all cases, in order to perform the proof reconstruction

inside LKF, the modal formula to be proved is translated according to the translation [.]

of Section 3.3.

1369Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 20. Proof evidence transformation between OS and LMF∗.

4.5.1. Labelled sequents. The treatment of labelled systems (LS) (Negri 2005) was already

implemented in the previous version of Checkers, described in Libal and Volpe (2016).

In order to get emulation of LS, we require a very simple use of the framework LMF∗,

where at each sequent the present corresponds to the set of all the labels occurring in the

proof, no use of multi-focusing is required and the future of a formula is set, in the case

of ◊-formulas, to the index of the corresponding �-formula. For simplicity, since this is

enough in the case of K , in our implementation, we rely on the lower layer LMF. Please

refer to Libal and Volpe (2016).

4.5.2. Prefixed tableaux. The popular PT proof format (Fitting 1972), which is used by

various automated theorem provers (for example, Beckert and Goré (1997)), is, in the

case of K , very close to that of LS. Therefore, support for it can be obtained in a very

similar way. Its implementation, which has been described in Libal and Volpe (2016), also

relies on LMF and mainly consists in inverting, with respect to LS the role of boxes and

diamonds in the FPC and in letting tableau closure rules behave as sequent initial rules.

This inversion is related to the fact that, despite LS, PT is a refutation method.

4.5.3. Ordinary sequents. As described in Section 2.1.5, OS systems differ in several ways

from the previous systems. First, they do not have labels and second, they treat both �
and ◊-formulas inside a single inference rule. For these reasons, the case of OS illustrates

the use of the features of the framework LMF∗ in a more significant way already for the

logic K .

In particular, the modal rule, which applies to all ◊-formulas at once, can be emulated

in our system by using multi-focusing. In addition, the relationship between the modal

operators can be used in order to restrict the futures allowed: given a modal rule, all the

◊-formulas occurring there are assigned the same future, which corresponds to the index

of the only �-formula.

1370T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 21. Nested sequent proof of axiom K .

The information required in an OS proof evidence is therefore

— for each application of a �F inference rule, a list of indices of all affected ◊-formulas;

— for the application of the initial rule, the corresponding index of the complementary

literal.

The program which translates between OS and LMF∗ proof evidence needs to compute

from the above information the relevant multi-focus indices as well as the present and

future of sequents and formulas.

An OS node contains its index as well as a list of indices. This list is empty for all

inference rules except for the modal rule, where it specifies the indices of all the ◊-formulas

that are affected, as well as for the initial rule, in which case the list contains a single

index denoting the complementary literal.

In more technical terms, upon reaching the application of a modal rule in the OS proof

evidence, the FPC program generates a proof evidence in the LMF∗ layer which contains

a new inference for each ◊ formula in the OS proof evidence. This is required since there

are no ◊ inference rules in OS . It then populates them with the same multi-focusing values

as well as with the correct futures and presents.

Section 4.4 contains more information about the FPC specification.

4.5.4. Nested sequents. A more challenging example of using our framework is supporting

nested sequent proof evidences. Here, we will also demonstrate how layers other than

LMF∗ can be used in order to support proof formats.

Figure 21 shows a proof of the same theorem we have seen so far, this time by using

the NS calculus which was mentioned in Section 2.1.6.

Unlike OS proofs, we can see a closer relationship to the LS calculus, which forms the

basis of our framework. While the OS calculus has one modal rule, the NS calculus rules

correspond, more or less to the ones in LS . This allows us to use directly the LMF layer

for the certification of NS proofs.

We note though two differences between NS and LS . Nested sequents do not use labels

and in order to index them, we need more than just the symbols right, left, diaind and

�. We now index formulas using two separate indices: The first one is just the location

of the sub-formula as before, while the second is the index of the nested sequent, as will

be explained next.

1371Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 22. An example of a nested sequent derivation and the corresponding indices.

We remind the reader that our framework is not based on labels but on correspondences

between indices. Therefore, the translation between NS and LMF will only require a

consistent mapping between the indices defined next and those of the LMF layer.

Definition 4.6 (Indexing a nested sequents). Indices of nested sequents within a sequent

are defined recursively by

— zb is an index (of the top level nested sequent);

— if ind is an index of a nested sequent containing the nested sequents S1, . . . , Sn, then

(chld i ind) is an index denoting the nested sequent at position i.

The index of a sequent in NS will then be composed of a pair containing our regular

index and the index which was just defined.

Figure 22 gives an example of a nested sequent derivation and the indices of sub-

formulas.

In order to certify nested sequent proofs in our framework, we will use, as mentioned

above, the LMF layer. We note that the NS � rule creates a new nested sequent, while

the NS ◊ rule adds the formula into an existing nested sequent. This is similar to the

correspondence between � and ◊ formulas we have defined in Definition 4.2. Our FPC

specification for NS will indeed exploit this similarity and will translate between the

indices of the two systems, NS and LMF.

Figure 23 shows the idea behind this translation. In order to keep track of the index

translations, we add to the proof evidence an empty structure which denotes its state. This

state is being updated along the certification process by the FPC specification.

In general, supporting nested sequent proof evidence for K is straightforward and does

not require any knowledge of LKF. The only thing required is to be able to translate

between the indices. Our use of the ‘polymorphic’ approach means that understanding

of the LKF inference rules is still required. In Section 5, we will discuss an alternative

approach that eliminates the need to understand the LKF calculus.

4.6. Examples

In this section, we explain how our program can be executed on different examples. The

examples described in the paper and others can be found in the testing section of the

Checkers proof certifier. Checkers can be obtained on Github§§, or on Zenodo¶¶. It

depends on the λProlog interpreter Teyjus (http://teyjus.cs.umn.edu/) and can be

executed by running in a bash terminal:

§§ https://github.com/proofcert/checkers/tree/dalefest.
¶¶ https://zenodo.org/record/1325924#.W2IWPHVfgWM

1372T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 23. Proof evidence transformation between NS and LMF.

$./prover-teyjus.sh arg

where the argument is the name of the λProlog module denoting the proof evidence one

wishes to check.

We are currently also supporting the ELPI implementation of λProlog‖‖. For running

examples using ELPI, please use

$./prover-elpi.sh arg

Unfortunately, some bugs in the implementations of λProlog forced us to associate the

different examples to specific implementations. The examples starting with ex- can be

executed with Teyjus, while the rest are better executed with ELPI.

5. Discussion and conclusion

In this paper, we have presented the implementation of a framework for certifying

propositional modal logic proofs. The framework has been developed by following the

general principles of the project ProofCert and as a module of the concrete implementation

provided by Checkers. Our approach is based on the use of a layered architecture, which

allowed us to design a modular framework capable of supporting many different proof

formats. While layers provide a high level of flexibility, we observe that the need to

translate between proof evidences in order to support proof evidence polymorphism

gets increasingly more complex, the farther we get from the kernel. In addition, FPC

specifications are still defined in terms of the LKF kernel, which requires an implementer

to be familiar with LKF. A different approach would consist in having a distinct (concrete)

kernel for each layer. However, this could compromise the trust one can place in such

‖‖ https://github.com/LPCIC/elpi

1373Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 24. Proof evidence transformation between NS and LMF, by using virtual kernels.

layers and would go against the general principle of having kernels based on simple, well-

known and low-level calculi. In addition, since different proof calculi might use different

kernels, the property of proof universality would be lost.

In Chihani et al. (2017), it has been shown how it is possible to ‘host’ the classical

calculus LKFa on an intuitionistic focused kernel, by using a translation between the

two logics. Along the lines of what has been proposed there, we are investigating the

possibility of representing the different layers as ‘virtual’ kernels, built on top of a lower

level kernel. We briefly illustrate the idea by showing how LMFa (a version of LMF

augmented with proper clerks and experts) can be ‘hosted’ on LKFa. The calculus LMFa

is shown in Figure 25. The augmentation leading from LMF to LMFa is similar in spirit

to the one going from LKF to LKFa and is obtained by adding control predicates to

the base system. We remark that in the case of relational formulas, we do not need

to store them with a significant index as we will never focus on them again. Now, we

can provide a definition of the clerks and experts of LKFa in terms of those given for

LMFa, as shown in Figure 26. Like in the approach of Section 4, and more generally in

any attempt to find a classical first-order proof for a propositional modal formula, an

adequate translation is required. The definition of Figure 26 goes therefore together with

a simple translation from the polarized propositional modal language to the polarized

first-order language, which basically maps each classical connective into the corresponding

connective (by also preserving polarity) and translates � and ◊ as in Section 3.3. We omit

a full type declaration and just remark that in Figure 26, C, C’ and C’’ stand for LMF

evidences, while mod and tns are constructors that, applied to an LMF evidence, produce

an LKF evidence. Intuitively, we use them to distinguish between two phases along the

construction of a proof: a phase dealing with connectives introduced by the translation

of � or ◊ (denoted by tns) and a ‘normal’ one that does not involve the translation of

modalities (denoted by mod). By using such an inter-definition, an external user interested

in certifying her proofs over LMF can assume that a kernel based on LMFa indeed exists

and only needs to define LMFa clerks and experts. In the context of our framework,

by relying on the same idea, we could base each kernel on the immediately lower one.

This solution would allow for keeping only one trusted kernel – LKFa – but would, at

the same time, provide virtual kernels which can be used in order to write simpler FPC

specifications for the different proof formats. As an example, Figure 24 shows how an

FPC specification can be written for the system NS , in a framework that uses virtual

kernels, and should be compared with the specification in Figure 23. As one can see, we

can now use directly the clerks and experts of the LMF layer.

Besides further investigation in this direction, there are several ways in which this

work can be extended. The design of the parametric devices of the framework has been

driven by the ambition of being as comprehensive as possible in terms of formalisms

captured. The modularity and parameterizability of the whole approach should make

1374T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Fig. 25. LMFa: a focused labelled proof system for the modal logic K .

Fig. 26. The definition of LKFa clerks and experts based on those given for LMFa.

1375Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

it possible, in fact, to consider other related approaches to modal proof theory, like

hypersequent calculi (Avron 1996), e.g., by using a present parameter that is a multiset,

representing external structural rules as operations on such a present, and viewing modal

communication rules as a combination of relational and modal rules. The focused nature

of the approach should also allow for certifying proofs coming from focused proof systems

for modal logics, like the ones in Lellmann and Pimentel (2015), Chaudhuri et al. (2016),

possibly by using a different polarization of formulas.

Orthogonally, we also aim at extending the approach to variants of the logic K. By

applying the results in Marin et al. (2016), the extension to the logics characterized by the

so-called geometric frames seems to be not too complex, although it might require some

modifications to the current implementation (e.g., in the case of a logic defined, amongst

the others, by the axiom of seriality D, a more complex notion of modal correspondence

between ◊-formulas and �-formulas, or labels, would be required).

We also notice that while this work was inspired by certification consisting in a strict

emulation of original proofs, it is sometimes the case that only partial information about

the proof to be checked is provided. We plan to complement the current implementation

with a ‘relaxed’ version of the FPCs, such that it can also deal with incomplete proof

evidences, similarly to what has been done in Libal and Volpe (2016) in order to check,

e.g., free-variable tableau (Beckert and Goré 1997) proofs.

The kind of investigation done in this work also suggests us new directions to explore,

more generally, in the context of the Checkers project. For instance, it seems interesting

to consider the application of Checkers to objects composed from proofs coming from

different proof calculi. One example of such objects are coalesced proofs, described in

Doligez et al. (2014). In this work, a proof evidence is created by using modal theorem

provers alongside first-order ones. A universal proof certifier such as Checkers, which is

based on LKF, can attempt to use the different components in order to find a composed

formal proof of the original theorem. One can also compare this goal to the one achieved

by different ‘hammers’ (Blanchette and Paulson 2018), where specialized theorem provers

are indirectly used in order to find a formal proof in a different calculus. The success

and popularity of the different hammers makes a case in favour of further extensions of

Checkers. An example of such an extension, beyond first-order and propositional modal

proofs, is the support of proofs based on theories, such as arithmetic.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments

and suggestions.

The work presented in this paper was partially funded by the ERC Advanced Grant

ProofCert. Part of the work was carried out while the authors were at INRIA Saclay.

References

Andreoli, J. M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic

and Computation 2 (3) 297–347.

1376T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Avron, A. (1996). The method of hypersequents in the proof theory of propositional non-classical

logics. In: Logic: From Foundations to Applications, European Logic Colloquium, Oxford University

Press, 1–32.

Beckert, B. and Gor, R. (1997). Free-variable tableaux for propositional modal logics. Studia Logica

69 (1) 59–96.

Benzmüller, C. and Woltzenlogel Paleo, B. (2015). Interacting with modal logics in the coq proof

assistant. In: Proceedings of the 10th International Computer Science Symposium in Russia, Lecture

Notes in Computer Science, vol. 9139, Springer, 398–411.

Blackburn, P. and Van Benthem, J. (2007). Modal logic: A semantic perspective. In: Wolter, F.,

Blackburn, P. and van Benthem, J. (eds.) Handbook of Modal Logic, Elsevier, 1–82.

Blanchette, J. C. and Paulson, L. C. (2018). ‘Hammering Away’. A Users Guide to Sledgehammer

for Isabelle. Available at: https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

Brünnler, K. (2009). Deep sequent systems for modal logic. Archive for Mathematical Logic 48 (6)

551–577.

Chaudhuri, K., Marin, S. and Straßburger, L. (2016). Focused and synthetic nested sequents. In:

Jacobs, B. and Löding, C. (eds.) Foundations of Software Science and Computation Structures,

Lecture Notes in Computer Science, vol. 9634, Springer, 390–407.

Chihani, Z., Libal, T. and Reis, G. (2015). The proof certifier checkers. In: Automated Reasoning

with Analytic Tableaux and Related Methods - 24th International Conference, Lecture Notes in

Computer Science 9323, 201–210.

Chihani, Z., Miller, D. and Renaud, F. (2017). A semantic framework for proof evidence. Journal of

Automated Reasoning 59 (3) 287–330.

de Bruijn, N.G. (1970). The mathematical language AUTOMATH, its usage, and some of its

extensions. In: Proceedings of the Symposium on Automatic Demonstration. Lecture Notes in

Mathematics 125, Springer, 29–61.

Doligez, D., Kriener, J., Lamport, L., Libal, T. and Merz, S. (2014). Coalescing: Syntactic abstraction

for reasoning in first-order modal logics. In: Proceedings of “Automated Reasoning in Quantified

Non-Classical Logics”, EPiC Series in Computing, vol. 33, 1–16.

Fitting, M. (1972). Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic

13 (2) 237–247.

Fitting, M. (2007). Modal proof theory. In: Blackburn, P., van Benthem, J. and Wolter, F. (eds.)

Handbook of Modal Logic, Elsevier, 85–138.

Fitting, M. (2012). Prefixed tableaus and nested sequents. Annals of Pure and Applied Logic 163 (3)

291–313.

Gabbay, D. (1996). Labelled Deductive Systems , Clarendon Press.

Goré, R. and Ramanayake, R. (2012). Labelled tree sequents, tree hypersequents and nested

(deep) sequents. In: Proceedings of the 9th conference on “Advances in Modal Logic”, College

Publications, 279–299.

Indrzejczak, A. (2010). Natural Deduction, Hybrid Systems and Modal Logics, Springer.

Kashima, R. (1994). Cut-free sequent calculi for some tense logics. Studia Logica 53 (1) 119–136.

Lellmann, B. (2015). Linear nested sequents, 2-sequents and hypersequents. In: Proceedings of

the 24th International Conference on Automated Reasoning with Analytic Tableaux and Related

Methods, Lecture Notes in Computer Science, vol. 9323, Springer, 135–150.

Lellmann, B. and Pimentel, E. (2015). Proof search in nested sequent calculi. In: Proceedings of

the 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,

Lecture Notes in Computer Science, vol. 9450, Springer, 558–574.

Liang, C. and Miller, D. (2009). Focusing and polarization in linear, intuitionistic, and classical

logics. Theoretical Computer Science 410 (46) 4747–4768.

1377Proof certification for modal logic

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

Libal, T. and Volpe, M. (2016). Certification of prefixed tableau proofs for modal logic.

In: Proceedings of the 7th International Symposium on Games, Automata, Logics and Formal

Verification, EPTCS Series, vol. 226, 257–271.

Marin, S., Miller, D. and Volpe, M. (2016). A focused framework for emulating modal proof systems.

In: Proceedings of the 11th Conference on ‘Advances in Modal Logic’, College Publications, 469–

488.

Miller, D. (2011). Proofcert: Broad spectrum proof certificates. An ERC Advanced Grant

funded for the five years 2012–2016. Technical description, available online at: http://www.lix.

polytechnique.fr/Labo/Dale.Miller/ProofCert/ProofCert.pdf

Miller, D. and Nadathur, G. (2012). Programming With Higher-Order Logic, Cambridge University

Press.

Miller, D. and Volpe, M. (2015). Focused labeled proof systems for modal logic. In: Proceedings of

the 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,

Lecture Notes in Computer Science, vol. 9450, Springer, 266–280.

Negri, S. (2005). Proof analysis in modal logic. Journal of Philosophical Logic 34 (5–6) 507–544.

Poggiolesi, F. (2011). Gentzen Calculi for Modal Propositional Logic, Springer.

Stewart, C. and Stouppa, P. (2004). A systematic proof theory for several modal logics. In:

Proceedings of the 5th Conference on ‘Advances in Modal logic’, King’s College Publications,

309–333.

1378T. Libal and M. Volpe

https://doi.org/10.1017/S0960129518000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000440

