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Wall cooling has substantial qualitative and quantitative effects on the development of
instabilities and subsequent transition processes in hypersonic boundary layers (HBLs).
A sequence of linear stability theory, nonlinear two-dimensional and three-dimensional
direct numerical simulations is used to analyse Mach 6 boundary layers, with wall
temperatures ranging from near-adiabatic to highly cooled conditions, where the
second-mode instability is accompanied by radiation of energy. Decomposition of
linear stability modes into their fluid-thermodynamic (acoustic, vortical and thermal)
components shows that this radiation comprises both acoustic as well as vortical waves.
Furthermore, in these cases, two-dimensional simulations show that the conventional
‘trapped’ nature of second-mode instability is ruptured. A quantitative analysis indicates
that although the energy efflux of both acoustic and vortical components increases with
wall cooling, the destabilization effect is much stronger and no significant abatement
of pressure perturbations is realized. The direct impact of these mechanisms on the
transition process itself is examined with high-fidelity simulations of three-dimensional
second-mode wavepacket propagation. In the near-adiabatic HBL, the wavepacket remains
trapped within the boundary layer and attenuates outside the region of linear instability.
However, wavepackets in the cooled wall HBLs amplify and display nonlinear distortion,
and transition more rapidly. The structure of the wavepacket also displays different
behaviour; moderately cooled walls show bifurcation into a leading turbulent head region
and a trailing harmonic region, while highly cooled wall cases display lower convection
speeds and significant wavepacket elongation, with intermittent spurts of turbulence in the
wake of the head region. This elongation effect is associated with a weakening of the lateral
jet mechanism due to the breakdown of spanwise coherent structures. These features have
a direct impact on wall loading, including skin friction and heat transfer. In moderately
cooled walls, the spatially localized wall loading is similar to those in near-adiabatic walls,
with dominant impact due to coherent structures in the leading turbulent head region. In
highly cooled walls, the elongated near-wall streaks in the wake region of the wavepacket
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result in more than twice as large levels of skin friction and heat transfer over a sustained
period of time.

Key words: boundary layer stability, compressible boundary layers, transition to turbulence

1. Introduction

The problem of managing drag and heat transfer changes associated with transition
to turbulence in hypersonic boundary layers is predicated on a detailed understanding
of the relevant instability mechanisms. Hypersonic boundary layers (HBLs) harbour
multiple instability modes, and display several possible routes to transition (Reshotko
1976). The broad range of parametric sensitivity of HBLs to perturbation evolution
introduces significant challenges. In addition to factors such as free stream conditions
and geometrical features, a key parameter governing instability growth in HBLs is the
wall thermal condition. The most unstable Mack mode (or second-mode) instability
in HBLs (Mack 1975, 1984) is particularly sensitive to the wall temperature. Cooling
destabilizes this mode, making the HBL more susceptible to transition (Mack 1975;
Stetson & Kimmel 1992). In addition, the origin of this unstable second mode shifts
from the slow acoustic spectrum to the fast acoustic spectrum (Fedorov & Khokhlov
2001). Cold wall conditions are especially relevant when interpreting results from
high-enthalpy experimental facilities, where the thermal inertia of test surfaces maintains
wall temperatures much lower than the recovery temperature.

An important feature of the second mode in the context of cold walls is the identity
and phase-speed variation of the most unstable mode. Under certain conditions this mode
could travel at supersonic speeds with respect to the free stream in outer boundary layer
regions, resulting in radiation of waves into the free stream, and oscillatory behaviour
in the corresponding eigenfunction. For example, Chang, Vinh & Malik (1997) identify
such supersonic modes in the presence of chemical equilibrium and non-equilibrium
conditions in HBLs. Supersonic modes have also been confirmed through prior theoretical
and numerical studies (Mack 1990; Bitter & Shepherd 2015; Chuvakhov & Fedorov
2016). Knisely & Zhong (2019a) provide detailed schematics and describe the wall-normal
profiles in the non-radiating and radiating modes.

Recent efforts have also made progress on understanding changes in inter-modal
dynamics as the wall is cooled. Knisely & Zhong (2019b) used direct numerical
simulations (DNS) to identify resonant-type interactions between the slow and fast discrete
modes with the slow continuous acoustic spectra. This highlights a complex set of
dynamics contributing to the genesis of phenomena, such as the supersonic mode, that
strongly motivate the augmentation of theoretical approaches with high-fidelity numerical
simulations. Chang, Kline & Li (2019) studied the evolution of supersonic modes over
an axisymmetric cone that resulted in non-acoustic radiation into the free stream, and
associated it to the phase-speed synchronization between the instability and acoustic waves
in non-parallel HBLs. A particularly interesting observation, with significant potential
practical implication, emerges from the DNS of Chuvakhov & Fedorov (2016), who
report that radiation by supersonic instability waves arising under cooled wall conditions
redistributes energy from higher to lower frequencies. This may constitute a mechanism to
mitigate instability growth, and eventually transition, in HBLs.

The generation of unstable modes with supersonic phase speeds is related to the
influence of wall cooling on the mean-flow features. In general, cooling increases
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Cooled wall hypersonic transition

gradients in the boundary layer, which can affect perturbation evolution past nonlinear
saturation and alter the associated spatio-temporal scales. The enhanced gradients, along
with baroclinicity, can also strengthen the generation of vorticity (Shadloo & Hadjadj
2017). Direct numerical simulations by Salemi & Fasel (2018) reveal that a prominent
signature of linear instability mechanisms persists even in the nonlinear evolution phase
of three-dimensional wavepackets on a wall-cooled hypersonic cone. Huang, Bretzke
& Duan (2019) showed that even under turbulent conditions, wall cooling introduces
more deviations from Boussinesq and Reynolds analogy assumptions. This resulted in
erroneous predictions of Reynolds normal stresses and turbulent transverse heat fluxes,
with implications for turbulence modelling of HBLs.

The present work builds on the above understanding of the effect of wall cooling on
HBL transition by considering a spectrum of increasingly higher-fidelity techniques on a
broad range of wall temperatures ranging from near-adiabatic to highly cooled conditions.
The primary objectives may be succinctly stated as follows.

(i) Employ linear stability theory to characterize the changes to the second mode
across the different wall temperatures, including changes in identity, phase-speed
and fluid-thermodynamic content that ultimately yield acoustic radiation.

(ii) Use two-dimensional (2-D) DNS to document the changes in the ‘trapped’
nature (Fedorov 2011) of the second-mode instability with wall cooling, and to
subsequently quantify the efflux of acoustic and vortical energy from the HBL due
to supersonic mode radiation.

(iii) Assess, through three-dimensional (3-D) DNS, the impact of supersonic modes on
the breakdown process, and identify the primary features of turbulence development
in wall-cooled HBLs.

To place the results in the proper context in the available literature, the flow field studied
corresponds to a free stream Mach number (M∞) of 6 (Chuvakhov & Fedorov 2016), and
wall to free stream temperature ratios ranging from 7 to 0.1 (§ 2).

The dynamics of HBL stability modes has been well established for the adiabatic (hot)
wall case. Wave speed synchronization of different eigenmodes of the linear stability
theory (LST) equations, has been associated with critical changes in the dynamics of
prominent instabilities. For consistency, we adopt the convention in Fedorov & Tumin
(2011), which identifies the two discrete instability modes relevant to HBLs as mode
S and mode F. These discrete modes originate from the slow and fast acoustic wave
speed limits, (1 − 1/M∞) and (1 + 1/M∞), respectively. The synchronization of mode
F and the continuous vortical/entropic spectra is associated with enhanced sensitivity of
this instability to free stream turbulence or hotspots (Fedorov & Tumin 2003). Mode F
synchronization with mode S is followed by the latter becoming unstable for the second
time (second mode) in adiabatic and warm walls (Ma & Zhong 2003). In sufficiently
cooled walls however, mode F becomes unstable following this synchronization (Fedorov
& Khokhlov 2001), and it eventually synchronizes with the slow continuous acoustic
spectra. The previously noted supersonic radiating modes appear beyond this point.

In § 3 linear theory is first utilized to quantify these observations in the cold walls under
consideration in this study. Key aspects, including changes in the identity of the most
unstable mode (F or S) with wall cooling, are identified and the corresponding effects on
the eigenfunctions are elaborated. In order to better understand the observed radiation
in cooled wall layers, these stability modes are connected to their physical nature by
decomposing their content into fluid-thermodynamic (FT) or Kovásznay-like components,
using the procedures outlined in Doak (1989), Unnikrishnan & Gaitonde (2019b).
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For reasons summarized in context below, the FT components, i.e. fluctuations having pure
vortical, acoustic and thermal character, are extracted using ρu, where ρ is the density and
u is the velocity vector. This procedure complements the mathematical insight obtained
from LST and provides novel insights into the nature of waves radiated from the supersonic
mode, such as whether, for example, the radiation is purely acoustic in nature (Salemi &
Fasel 2018).

The influence of radiation on the initial receptivity and linear growth processes cannot
be fully portrayed by the linear stability modes. A natural next step, discussed in § 4,
is to examine the growth of linear harmonic perturbations in the 2-D boundary layer.
Such simulations recreate the expected behaviour of the second-mode instability under
various cold wall conditions. The splitting into FT components is repeated in this case; the
feature that the split components of ρu represent mass fluxes having direction accrues an
immediate benefit that it can be used to examine how acoustic flux lines differ between
non-radiating and radiating boundary layers. Specifically, the anticipated change from
a compact trapped acoustic component at higher wall temperatures to a non-compact
radiating one when the wall is cooled, is examined in detail.

The FT content, while insightful, does not directly inform the question of how radiating
modes influence transition. One approach is to quantify such effects through the resulting
energy efflux from the HBL. A highly effective way to quantify this energy loss is to
examine the flux of the total fluctuating enthalpy (TFE), H′, where H is the total enthalpy
(H = cpT + u · u/2, with cp and u being the specific heat at constant pressure and the
velocity vector, respectively). The method has previously been successfully employed
to examine the sources and sinks of near-wall acoustic energy in the second mode for
adiabatic walls (Unnikrishnan & Gaitonde 2019b). In the present work, the technique is
applied to the outer part of the boundary layer for each wall condition, to provide a uniform
assessment of energy losses associated with boundary layer radiation. The discussion then
assimilates the effect of radiation on transition dynamics, and the potential for transition
mitigation.

A realistic understanding of the breakdown process following nonlinear saturation
requires a fully 3-D analysis, which can yield crucial insights on changes in fundamental
mechanisms across broad parameter ranges where transition sensitivity is observed. For
example, using DNS, Jocksch & Kleiser (2008) observed streamwise elongated tails and
slower convective speeds of turbulent spots in a moderately cooled Mach 5 boundary layer,
compared with those in HBLs with a near-adiabatic wall temperature. At similar levels
of cooling, Redford, Sandham & Roberts (2012) report spanwise coherent structures that
extend into the calmed region behind the turbulent spot in a Mach 6 boundary layer. These
structures are attributed to the destabilized second-mode instabilities that coexist with the
turbulence in the spot. In § 5 3-D DNS are performed on a range of wall temperatures; the
boundary layers are excited using wavepackets, whose features are informed by the linear
theory and perturbation analyses discussed above. In addition to changes in the physical
characteristics of the wavepacket structure as it propagates downstream at different wall
temperatures, several pertinent trends are identified in the evolution of nonlinearities and
breakdown mechanisms. The consequences on near-wall pressure signatures and wall
loading are emphasized. A detailed spectral analysis of disturbance evolution is presented
to further quantify variations in the spatio-temporal features of turbulence generation. The
consequent considerations for transition-prediction model development (see e.g. Park &
Lauchle 2009) are also summarized.

The flow field conditions employed, meshes and algorithmic details, and aspects of the
basic state at different wall temperatures are discussed in § 2. The influence of wall cooling
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on the eigenspectra obtained from the linear stability equations, and their decomposition
into FT components are presented in § 3. Two-dimensional simulation results using LST
results to inform initial and boundary conditions are probed in § 4 to understand the
pathways by which the radiating phenomena are established, and to quantify the energy
efflux associated with the supersonic mode. Finally, in § 5 features of 3-D wavepacket
propagation under different wall thermal conditions are described, including focus on the
establishment of skin friction and heat transfer.

2. Basic state features with wall cooling

A flat plate boundary layer subject to a range of wall thermal conditions is considered
at a free stream Mach number, M∞ = 6. To establish a reference with existing studies,
the flow conditions are chosen to be similar to those described for a sharp-edged plate
in Chuvakhov & Fedorov (2016). The Reynolds number based on free stream parameters,
Re = ρ∗∞U∗∞L∗/μ∗∞, is 1 × 106, where (·)∗ indicates a dimensional quantity, ρ∗∞, U∗∞ and
μ∗∞ are the free stream density, velocity and dynamic viscosity, respectively, and L∗ is a
reference length scale. A perfect gas model is adopted, with Prandtl number, Pr = 0.72,
and ratio of specific heats, γ = 1.4. The temperature dependence of viscosity is modelled
using the Sutherland law,

μ∗

μ∗∞
= T∗∞ + Su∗

T∗ + Su∗

(
T∗

T∗∞

)3/2

, (2.1)

where the free stream reference temperature T∗∞ = 300 K and Su∗ = 110.4 K.
The Cartesian coordinates, (x, y, z), represent streamwise, wall-normal and spanwise
directions, respectively, with x = 0 denoting the leading edge of the plate. Here (u, v,w)
are the velocity components in the Cartesian coordinate system, and p, ρ and T denotes
pressure, density and temperature, respectively. In the discussion below, an overbar, (·),
represents a time-averaged quantity, and a prime, (·)′, denotes a perturbation component.

The impact of wall cooling on instability properties relevant to transition in the HBL
is evaluated with LST, 2-D and 3-D DNS at eight wall to free stream temperature ratios,
TW = T∗

W/T
∗∞, summarized in the computational matrix of table 1.

Here TW = 7 corresponds to the near-adiabatic wall temperature for this free stream
flow, while the other choices result in moderately (Bitter & Shepherd 2015) and highly
(Wright & Zoby 1977; Chuvakhov & Fedorov 2016) cooled conditions discussed in the
literature. The lowest values considered aide in identifying the most impactful trends in
the evolution of stability and transition mechanisms.

The effect of wall cooling on the laminar basic state is summarized in figure 1 using
similarity profiles obtained from the Levy–Lees similarity solution (Anderson 2000).The
results are plotted at a representative streamwise location, x = 2, in the non-dimensional
physical coordinate system. Figures 1(a) and 1(b) display the velocity and temperature
profiles, respectively. Figure 1(c) shows the function F1 = (∂/∂y)((1/T)(∂u/∂y)) to
identify generalized inflection points (GIPs) in the laminar flow, which are an indication
of inviscid instability. As evident in figures 1(a) and 1(b), the hydrodynamic and thermal
boundary layers progressively become thinner as the surface is cooled and the flow
density increases. This leads to higher near-wall gradients and correspondingly higher wall
loading. These trends are also manifested in the profiles of F1; specifically, the y-location
of the peak value of the gradient appears closer to the wall with increased cooling. Prior to
breakdown, both first- and second-mode instabilities usually exhibit maximum amplitudes
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TW Analyses

7 1D-LST, 2D-DNS, 3D-DNS
5 1D-LST, 2D-DNS
3 1D-LST, 2D-DNS, 3D-DNS
1 1D-LST, 2D-DNS, 3D-DNS
0.7 1D-LST, 2D-DNS
0.5 1D-LST, 2D-DNS, 3D-DNS
0.3 1D-LST, 2D-DNS, 3D-DNS
0.1 1D-LST, 2D-DNS, 3D-DNS

Table 1. Cases studied with varying degree of wall cooling.

0.03(a)

(b)

(c)

0
0.5

u

y

y

y

T

F1

1.0

0.03

0

0.03 TW = 7.0

TW = 5.0
TW = 3.0
TW = 1.0
TW = 0.7
TW = 0.5

TW = 0.3

TW = 0.1

0

4 71

–10 000 0

TW 
↓

TW 
↓

TW 
↓

Figure 1. Effect of wall cooling shown using similarity profiles of (a) streamwise velocity, (b) temperature
and (c) function, F1. The arrows indicate the trends in the profiles with decreasing values of wall temperature.
The profiles are plotted at a streamwise location, x = 2. The vertical dashed line in (c) marks F1 = 0.

in the vicinity of this high-gradient region; thus, transition dynamics is enhanced nearer
the wall for colder surface conditions.

Zero crossings of F1 indicate the existence of GIPs. For the near-adiabatic wall, TW = 7,
a single GIP is observed at y ∼ 0.02. With moderate cooling, a second GIP appears in the
inner boundary layer, as seen for TW = 5 and TW = 3. With further wall cooling, the
upper and lower GIPs arise closer to each other, and eventually, effectively cancel each
other. For the cases reported here, profiles for TW = 1 and lower do not exhibit a GIP.
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Zhang, Liu & Luo (2016) note that the absence of a GIP does not prevent the laminar
profile from harbouring inviscid instabilities. For cold walls, a region could exist in the
boundary layer where the absolute relative Mach number, |MR|, of an instability wave
is locally supersonic with respect to the mean flow. Here MR = (u − c)/a, where c is
the phase speed of the instability and a is the local speed of sound. Note that |MR| > 1
corresponds to an inviscid instability of the Rayleigh equation (Lees & Lin 1946; Zhang
et al. 2016); in this manner, highly cooled boundary layers can support second-mode
instabilities.

3. Eigenspectra and their FT content

Laminar profile variations resulting from wall cooling profoundly affect linear instability
mechanisms in boundary layers, as noted by several researchers (see, e.g. the discussion
by Knisely & Zhong 2019a). Prior to evaluating its impact on transition pathways, it
is instructive to characterize the key mechanisms using a simplified temporal stability
analysis. For this, we first obtain the local eigenspectra for various wall temperatures
to track the evolution of the relevant unstable mode, and subsequently analyse its FT
composition.

3.1. Linear stability results
The linearized Navier–Stokes equations, under the assumption of a one-dimensional
laminar basic state, is subjected to an eigenvalue analysis. The ansatz,

φ = φ̄ + φ′, φ′ = φ̂( y) ei(αx+βz−ωt), (3.1a,b)

is utilized, where φ is any primitive variable. Here (·) and (·)′ denote time-averaged and
perturbation quantities, respectively; α and β are the (real) streamwise and spanwise
wavenumbers, respectively; ω is the (complex) circular frequency. On the wall, the
velocity and temperature perturbations are zero, due to no-slip and isothermal conditions,
respectively.

The loci of unstable discrete modes are shown in figure 2 for the different wall
temperature conditions.The horizontal and vertical axes are the real (speed, cr) and
imaginary (amplification rate, ci) components of the phase speed of the instability wave.
The horizontal dashed line marks the neutral limit while the vertical lines on the left,
centre and right mark the wave speeds (1 − 1/M∞), 1 and (1 + 1/M∞), respectively,
corresponding to the slow acoustic, entropic/vortical and fast acoustic waves in the free
stream. These results are obtained for a wave with streamwise wavelength, λ = 0.025, at
various streamwise locations in the range, 1 ≤ x ≤ 7. For the near-adiabatic wall, TW = 7,
mode S (shown green in these figures) becomes unstable as seen in figure 2(a), resulting
in second-mode instability. Mode F remains damped throughout this streamwise extent,
and is thus not shown. This feature remains similar for moderate wall cooling, as seen for
TW = 5 and TW = 3.

For the next case analysed, TW = 1, mode S is stabilized, and second-mode instability
now results from the positive growth rate of mode F (Fedorov & Khokhlov 2001), whose
locus, shown in figure 2(d), is plotted in red. All lower wall temperature values, TW ≤ 1,
show similar behaviours (figure 2d–h). Quantitative trends are clearly discernible: as the
wall is progressively cooled, the instability of mode F extends to lower phase speeds,
indicating that lower frequencies are appended into the unstable range. Figures 2( f )–2(h)
further show that for the wave parameters considered, a near-neutral mode F interacts with
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

0ci

–0.02

0.02

0ci

–0.02

0.02

0ci

–0.02

0.02

0ci

cr cr

–0.02

0.02

0

–0.02

0.02

0

–0.02

0.02

0

–0.02

0.02

0

–0.02

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2

Figure 2. Loci of the unstable discrete mode obtained for the wave with λ = 0.025. Green and red loci have
their origins near the slow and fast continuous acoustic spectra, respectively. The horizontal dashed lines mark
ci = 0. The vertical dashed–dotted lines on the left, centre and right mark the wave speeds, (1 − 1/M∞), 1 and
(1 + 1/M∞), respectively. The inset in (h) magnifies the region marked within the dashed rectangle. (a) TW =
7, (b) TW = 5, (c) TW = 3, (d) TW = 1, (e) TW = 0.7, ( f ) TW = 0.5, (g) TW = 0.3, (h) TW = 0.1.

the slow continuous acoustic spectrum. More interestingly, for TW = 0.3 and TW = 0.1,
a second zone of instability is present in the domain cr < (1 − 1/M∞), following a ‘kink’
near this speed limit, consistent with the results of Bitter & Shepherd (2015). This region
of mode F instability is highlighted in figure 2(h) using an inset. The presence of a weakly
damped or unstable mode F at phase speeds lower than (1 − 1/M∞) has been observed to
result in radiation into the free stream. For the cases reported here, this phenomena exists
in scenarios where TW ≤ 1.

To identify relevant frequencies and neutral limits associated with the instability waves,
we summarize the eigenspectra and amplification rates for the two extreme cases studied
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4(a) (b)

(c) (d )

2

0

4

2

0

–2
75 175

ωr

ω i

ω i

4

2

0

4

2

0

–2

ω i

ω i

ωr

275 75 175 275

4

x x
6 22 4 6

x ~ 0.8

λ = λ0

λ0 – 0.01

λ0 + 0.01

λ0

λ0 – 0.01

λ0 + 0.01

λ0

x ~ 2.8

λ = λ0

Figure 3. Eigenspectrum in the vicinity of the peak amplification of the second mode for (a) TW = 7 and
(b) TW = 0.1. The horizontal dashed lines mark ωi = 0. The vertical dashed lines on the left, centre and right
mark the circular frequencies corresponding to the wave speeds, (1 − 1/M∞), 1 and (1 + 1/M∞), respectively.
Variation in the amplification rate as the instability wavelength is varied uniformly in the range, λ0 − 0.01 ≤
λ ≤ λ0 + 0.01, for (c) TW = 7 and (d) TW = 0.1, in increments of 0.002.

here (TW = 7 and TW = 0.1) in figure 3. Figures 3(a) and 3(b) plot the eigenspectrum in
terms of circular frequency, (ωr, ωi), in the vicinity of the peak amplification of the second
mode for TW = 7 and TW = 0.1, respectively. The unstable mode in each case is marked by
a circle, and the wavelength chosen (λ0 = 0.025) corresponds to that used to obtain the loci
in figure 2. Figures 3(c) and 3(d) show the variation in the neutral limit of the instability
identified above, when λ is varied uniformly in the range, λ0 − 0.01 ≤ λ ≤ λ0 + 0.01, for
TW = 7 and TW = 0.1, respectively. In both cases, the streamwise region of instability
increases for larger wavelengths, although the peak amplification rate decreases. For any
given wave, the cooler wall exhibits a longer region of instability at a relatively downstream
location. The supersonic region of instability is evident in the cooler wall, particularly at
higher wavelengths.

The behaviour of the unstable eigenmode is qualitatively different prior to and after the
synchronization of mode F phase speed with 1 − 1/M∞. This is demonstrated in figure 4,
which plots the pressure eigenfunctions at two locations, x = 4.3 (before synchronization)
and x = 5 (after synchronization), for TW = 0.1 in figures 4(a) and 4(b), respectively.Prior
to the synchronization, the eigenfunction has the typical compact form with a single zero
crossing associated with the second-mode instability (Mack 1984). Once the phase speed
of the instability wave falls below (1 − 1/M∞), the outer region exhibits an oscillatory
behaviour. The phase-speed relations at these two locations are further examined in
figures 4(c) and 4(d). Profiles of mean velocity (u), fast acoustic (u + a) and slow acoustic
(u − a) speeds, and the relative Mach number (MR = (u − c)/a) are plotted together with
the phase speed of the instability wave, cr, represented by a vertical dashed–dotted line.
The profiles show that at x = 4.3, MR < 1 at all wall-normal locations. Since the wave is
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Figure 4. Absolute values of real and imaginary components of the pressure eigenfunction, R( p′), and I( p′),
respectively, plotted at (a) x = 4.3 – prior to synchronization and (b) x = 5 – after synchronization. Profiles of
various speed limits as indicated, plotted at (c) x = 4.3 and (d) x = 5. The vertical dashed–dotted lines in (c)
and (d) mark the phase speed of the corresponding unstable wave.

then subsonic relative to the mean flow in the outer boundary layer, it decays into the free
stream. However, it is supersonic relative to the mean flow near the wall (MR < −1), in
the region, 0 ≤ y ≤ 0.0052; this location is marked by the vertical arrow which indicates
the sonic limit, MR = −1. At x = 5, the lower supersonic region remains similar to that
observed prior to synchronization. The eigenfunctions below this sonic limit also appear
similar in figures 4(a) and 4(b). However, MR now exceeds the sonic limit in the outer
boundary layer as well, which is also marked by a second vertical arrow at y ∼ 0.015
(figure 4d), where MR = 1. This relative supersonic region results in wave radiation into
the free stream, consistent with the oscillatory eigenfunction.

3.2. Physical nature of eigenmodes
The above eigenspectrum analysis provides a mathematical description of the behaviour
of instabilities. In such scenarios, where the qualitative behaviour of instabilities varies
in a meaningful fashion, a physics-based interpretation can provide complementary
insights into key flow mechanisms (Tumin 2020a). For this, we adopt a Kovásznay-type
framework, which decomposes fluctuations in terms of three physical components:
vortical, acoustic and entropic, referred to earlier as FT components. This framework
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is used to study the composition of instabilities in the vicinity of synchronization; this
facilitates a better understanding of the physical changes induced in mode F due to wall
cooling. The momentum potential theory of Doak (1989) provides an effective way to
achieve the desired splitting without linearization. Specifically, it can be shown that the
‘momentum-density’ vector, ρu, can be split precisely into rotational and irrotational
mean and fluctuating components. The former represents the vortical component while
the latter can be (again exactly) further decomposed into acoustic (irrotational and
isentropic) and entropic (irrotational and isobaric) components. Details of the procedure,
and implementation for LST as well as DNS data, may be found in Unnikrishnan &
Gaitonde (2016, 2018) for free shear layers and Unnikrishnan & Gaitonde (2019b) for
wall-bounded layers. Briefly, the decomposition can be expressed as

ρu = B̄ + B′ − ∇ψ ′, ∇ · B̄ = 0, ∇ · B′ = 0, (3.2a–c)

where B̄ and B′ are the mean and fluctuating parts of the vortical component, respectively.
The irrotational component, −∇ψ ′, may be further split to obtain the acoustic (−∇ψ ′

A)
and vortical (−∇ψ ′

T ) components through the following Poisson equations (Unnikrishnan
& Gaitonde 2019b):

∇2ψ ′ = ∂ρ′

∂t
, ∇2ψ ′

A = 1
a2
∂p′

∂t
. (3.3a,b)

ψ ′ = ψ ′
A + ψ ′

T . (3.4)

Here t is time and a is the local sonic speed. For convenience, we adopt the following
notation for the FT variables in 2-D space: B′ = (B′

x,B′
y),−∇ψ ′

A = A′ = (A′
x,A′

y) and
−∇ψ ′

T = τ ′ = (τ ′
x, τ

′
y).

The decomposition of cold wall eigenfunctions shows very different behaviour from
those of the adiabatic wall previously described in Unnikrishnan & Gaitonde (2019b).
The extracted FT components of the eigenfunctions of the coldest wall, TW = 0.1, are
analysed prior to and after synchronization in figure 5, using the modulus of the streamwise
and wall-normal components. The streamwise locations correspond to those in figure 4.
The top, middle and bottom rows correspond to the vortical, acoustic and entropic
components, respectively. The left and right columns display the FT decomposition
of the eigenfunctions before and after the synchronization. The FT composition prior
to synchronization indicates that the vortical component is the dominant one in the
Mack mode instability over highly cooled walls, followed by the acoustic and entropic
components. This hierarchy is consistent with corresponding results for an adiabatic wall
(Unnikrishnan & Gaitonde 2019b). During post-synchronization however, the oscillatory
eigenfunction exhibits an acoustic component in the free stream, as seen in figure 5(d) –
this represents the observed acoustic radiation. Somewhat surprisingly, and confirmed later
with DNS results, the FT decomposition also reveals that the radiated waves in the free
stream contain a significant amount of vorticity, as seen in figure 5(b). Streamwise vortical
fluctuations are considerably higher than the wall-normal component, and this difference
amplifies in the downstream direction, as the wavefronts become increasingly inclined
towards the wall. The contribution from the entropic component to free stream radiation
remains negligible. Thus, the emission from cold HBLs resulting from supersonic phase
speeds of instabilities contains comparable amounts of vortical and acoustic waves that
propagate in the free stream. Having characterized the linear mechanisms, we next quantify
the perturbation growth and energy efflux in these HBLs, by adopting a high-fidelity
numerical approach.
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Figure 5. Modulus of streamwise and wall-normal components of (a) vortical, (c) acoustic and (e) entropic
constituents of the unstable eigenmode at x = 4.3. Plots (b), (d) and ( f ) show the corresponding results at
x = 5.

4. Analyses of linear perturbations with 2-D DNS

The above results show that wall cooling can introduce significant variations in
perturbation growth characteristics of HBLs. In this section the relative behaviour of the
different cold wall HBLs is examined for all cases listed in table 1, by adopting DNS to
capture the spatio-temporal evolution of second-mode instabilities.

4.1. Laminar and forced DNS
The simulations solve the 2-D, unsteady Navier–Stokes equations in curvilinear
coordinates. To ensure sufficient resolution, a seventh-order weighted essentially
non-oscillatory (Balsara & Shu 2000) scheme is employed to reconstruct the characteristic
variables. The inviscid fluxes are then obtained using the Roe scheme (Roe 1981), along
with an entropy fix (Egorov, Fedorov & Soudakov 2006). Fourth-order central differences
are used to discretize the viscous terms. Time integration is performed using a nonlinearly
stable third-order Runge–Kutta scheme (Shu & Osher 1988). To improve the robustness
of the solver, the high-order reconstruction is substituted by a third-order upwind scheme
in the vicinity of shocks (Bhagatwala & Lele 2009), along with the van-Leer harmonic
limiter (van Leer 1979), to minimize grid-scale oscillations.
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Figure 6. Streamwise variation of RMS values of wall-pressure perturbations for various cold walls. The
dashed circle on the horizontal axis marks the streamwise location of the actuator.

The computational domain spans 0 ≤ x ≤ 7 and 0 ≤ y ≤ 1.32, thus including the
leading edge of the plate (x = 0) in the calculations. Supersonic inflow and outflow
conditions are imposed on the upstream and downstream boundaries, respectively.
Zero-normal-gradients are imposed on the free stream boundary. Wall cooling is simulated
using isothermal conditions on the surface, as defined by TW . For each case, the basic state
is first obtained and, subsequently, perturbations are introduced in the form of harmonic
wall-normal momentum perturbations to emulate a wall blowing-suction actuator (Egorov
et al. 2006; Soudakov et al. 2016). The actuation in this set of forced DNS has the form

qw(x, t) = ρwvw = A2D sin
(

2π
x − x1

x2 − x1

)
sin(ω2Dt). (4.1)

Here, qw is the wall-normal momentum, A2D is the forcing amplitude, and x1 and x2 define
the streamwise extent of the actuator, x1 ≤ x ≤ x2. For all wall temperatures, the actuator
is placed at 0.050 ≤ x ≤ 0.075, to ensure that it is upstream of the region of second-mode
instability. The linear stability analyses of § 3.1 reveal that in the chosen streamwise
extent of the computational domain, a wave with circular frequency ω ∼ 150 exhibits
linear amplification due to second-mode instability in all cases. Hence, this frequency
is chosen to perturb all the mean flows (ω2D = 150). The forcing amplitude is chosen as
A2D = 1 × 10−4 to introduce perturbations in the linear range.

Cooling destabilizes the second mode, and the resulting higher growth rates increase
the susceptibility of the HBLs to transition (Stetson et al. 1989; Stetson & Kimmel
1992). Wall-pressure perturbations provide a means to quantify this trend in the HBLs
examined. The streamwise variation of wall-pressure perturbations is presented in terms
of root-mean-square (RMS) values in figure 6 for all eight cases.The streamwise location
of the actuator is also marked on the horizontal axis with a dashed circle. As expected, the
warmer walls experience relatively weak amplification of perturbations. The peak values
achieved increase with wall cooling, consistent with the destabilization of the Mack mode.
The region of amplification also progressively shifts downstream, due to the thinning
of the boundary layer in cooler HBLs. The peak amplitudes vary by over three orders
of magnitude across the cases. For the warmer walls, the RMS perturbations attenuate
outside the upper branch of the neutral curve. For highly cooled walls (typically TW ≤ 1),
this attenuation is weak, and the high amplitudes are sustained over a prolonged region
downstream. This could be the result of the merging of the weakly damped discrete mode
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Figure 7. Pressure perturbation contours highlighting the form of the second-mode instability for (a) TW = 5
and (b) TW = 0.1. The regions marked by the dashed rectangles in (a) and (b) are magnified in the respective
insets, (a1) and (b1). Insets (a2) and (b2) plot the space-wavenumber, x–α, variation in the pressure perturbation
signal for TW = 5 and TW = 0.1, respectively, at a wall-normal location, y ∼ 0.008. For reference, this location
is marked with horizontal dashed arrows near the y-axes of insets (a1) and (b1).

with the continuous slow acoustic spectrum, resulting in inter-modal interactions, and is
consistent with the observations in Chuvakhov & Fedorov (2016).

Key features of pressure perturbations in the second-mode instability in these HBLs are
summarized in figure 7 using the pressure perturbation fields for TW = 5 (figure 7a) and
TW = 0.1 (figure 7b). For each case, the region of second-mode amplification is displayed,
and magnified views of the waveforms are provided in the respective insets (a1) and (b1).
The warmer plate shows the classic second-mode lobes with a zero crossing near the GIP,
and a compact wall-normal profile. For the cold wall however, these waves extend into the
free stream at an acute angle relative to the plate. This angle decreases in the downstream
direction, causing the wavefronts to align increasingly towards the wall.

This behaviour is consistent with the reduction of the phase speed of the instability,
which is now more supersonic with respect to the free stream; as such, the waves
propagate further out into the far field. Since the mechanism is linear, an accompanying
continual increase in the wavenumber of the instability wave is observed. This is quantified
with scalograms provided in the second inset of each panel of figure 7, (a2) and (b2),
which track the variation in streamwise wavenumber, α = 2π/λ, with x, at a wall-normal
location, y ∼ 0.008, marked for reference by a horizontal dotted arrow on the vertical
axes in insets (a1) and (b1). Over the warmer wall, the instability wave maintains a
near-constant wavenumber throughout the unstable region. The situation is clearly very
different over the cooler wall, where the wavenumber increases as the wave amplifies in
the HBL.

915 A26-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.84


Cooled wall hypersonic transition

4.2. Radiating modes and efflux of energy
The efflux of energy from radiating HBLs may have the potential to materially impact the
growth rates of perturbations, which in turn may present options to aid transition mitigation
(Chuvakhov & Fedorov 2016). Fluid-thermodynamic dynamics is now employed to
examine this physics in the region of instability growth captured in the DNS. The
procedure followed is to first identify the physical mechanisms being affected due to wall
cooling, and to then utilize this knowledge to quantify the energy radiated from the HBL.

Mack mode instabilities relevant to this study are essentially inviscid instabilities, that
are generally accepted to exhibit a waveguide (or trapped) behaviour (Fedorov 2011) under
adiabatic wall conditions, imparting them an acoustic character. A clearer understanding
of how the properties of the trapped component changes when the wall is cooled, and the
boundary layer starts radiating, aides the subsequent energy efflux study. Prior FT analysis
of Mack modes in HBLs with adiabatic walls (Tw ∼ 7) (Unnikrishnan & Gaitonde 2019b)
has revealed that both mode F and mode S instabilities are composed of all three FT
components (vortical, acoustic and entropic). However, the above waveguide behaviour
is most clearly manifested in the acoustic component, i.e. flux lines associated with A′
display alternating monopoles along an essentially horizontal line at approximately the
height of the critical layer (where u = c). The warmer walls show the same behaviour; an
example is shown by plotting aspects of the acoustic component for TW = 5 in figure 8(a).
The streamwise extent is chosen to represent a detailed view of the corresponding cases
described previously in figure 7. The background contours represent the magnitude of the
acoustic component, ‖A′‖. The arrow heads mark the direction of the flux lines which
constitute the acoustic component of momentum fluctuations, (A′

x,A′
y), in the Mack mode.

Note that since the decomposed variable is ρu, these effectively represent mass fluxes
associated with the acoustic component. For the moderately cooled wall, TW = 5, the
acoustic flux lines are generally similar to those in the adiabatic case, with a zero-flux line
existing at y ∼ 0.02, corresponding to the critical layer of this instability wave. Clearly,
this component is effectively trapped between the wall and the critical layer, since no flux
lines cross the line joining the monopoles.

The same results for the highly cooled wall, TW = 0.1, are shown in figure 8(b). Clearly,
no zero-flux line exists here, and the arrows indicate that the supersonic mode displays flux
transport between the HBL and the free stream due to the acoustic component. This is a
manifestation of the acoustic part of the radiation associated with the supersonic mode.
Since the vortical (B′) and acoustic (A′) fluctuations educed from DNS are inherently
components of the momentum vector, they can transport energy in the flow field. These
energy considerations, and a budget equation for transport of TFE by the different FT
components, have been extensively detailed for the adiabatic HBL in Unnikrishnan &
Gaitonde (2019b) and for high-speed jets in Unnikrishnan & Gaitonde (2016).

A quantification of the efflux of fluctuating energy associated with each FT component
from the HBL requires a splitting of the TFE into those components. Such a splitting
has been provided by Jenvey (1989). Since the cold walls considered in this work
display radiating modes containing vorticity and acoustic waves in the free stream (see
figures 5b and 5d), both fluxes of the respective energies are of principal importance here.
Specifically, the transported energy variables that must be accounted for are H′

B and H′
A,

which are the vortical and acoustic components, respectively, of H′ and are defined as

H = cpT + u · u/2, H = H̄ + H′, (4.2a)

H′
B =

(
c̄
ρ̄

)
M̄ · B

′
, (4.2b)
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Figure 8. Flux lines of the acoustic component, (A′
x,A′

y), for (a) TW = 5 and (b) TW = 0.1. The contours
represent the magnitude of the acoustic field.

H′
A =

(
p′

ρ̄

) (
1 − M̄ · M̄

) −
(

c̄
ρ̄

)
M̄ · ∇ψ ′

A, (4.2c)

where M ≡ u/c is the Mach number vector. The vortical flux of TFE in the wall-normal
direction is calculated as FB = H′

BB′ · ĵ and, similarly, the acoustic flux is FA = H′
AA′ · ĵ,

where ĵ is the unit normal in the wall-normal direction.
Accurate quantitative comparisons of perturbation energy fluxes require care in

establishing consistency across all eight boundary layers examined. Indeed, use of the
DNS described above for this purpose may be misleading, since the actuators are placed at
the same streamwise location, but the neutral curves depend on the wall temperature. To
ensure that the linear amplification is initiated at similar perturbation energy levels in each
case, a second set of forced DNS is performed for all cases, with actuators placed at similar
locations relative to the lower branch of the respective neutral curve. These locations can
be identified for each mean flow using growth rates calculated from the amplitude of
wall-pressure perturbations obtained from the first set of forced DNS discussed above.
To minimize numerical noise contamination, the neutral curve is assumed to begin at the
threshold, σ = d{ln[ap(x)]}/dx ∼ 2 (Egorov et al. 2006), where σ is the numerical growth
rate and ap(x) is the wall-pressure amplitude. Thus, for this second set of forced DNS, the
streamwise extent of the actuator is defined as x1 = x0 and x2 = x1 + 0.025, where x0 is
the lower neutral limit of the respective HBLs. All other actuator parameters in (4.1) are
identical to the first set of forced DNS. To prevent superfluous computations, the domain
upstream of the neutral point is neglected by imposing corresponding laminar profiles at
the inlet boundary. The outflow boundaries are placed approximately four non-dimensional
length units downstream to ensure that the linear instability range is accommodated. The
perturbation evolution and energy fluxes are analysed over this streamwise distance.
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Figure 9. Streamwise variation of (a) vortical and (b) acoustic efflux of energy from the HBLs, for various
cold walls. The actuator is placed at the lower neutral limit.

The hydrodynamic and acoustic energy fluxes, FB and FA, thus obtained are plotted
in figure 9. Note that the streamwise direction is now represented using the displaced
coordinate, xNC = x − (x0 + Δx), with origin near the lower neutral limit. Here Δx = 0.2
is a small upstream displacement of the inlet boundary from this neutral limit, which is
included to prevent the actuator from interfering with the inflow boundary conditions. For
all cases, the fluxes are calculated at a surface located at y ∼ 0.04, which is sufficiently
outside the boundary layer. The positive values of fluxes indicate that FA and FB both
constitute a net outflow of energy from each HBL. More interestingly, both these fluxes
are of comparable magnitudes for a given wall temperature. This reinforces the observation
made in the context of LST above, that vortical and acoustic mechanisms are equally
significant in radiation processes from cooled HBLs. The radiative loss of energy is
negligible for near-adiabatic and moderately cooled walls. The energy loss increases
monotonically with wall cooling; in fact, when TW ≤ 1, the energy efflux is between five
to six orders of magnitude higher than for moderately cooled wall boundary layers. The
radiation from these highly cooled wall layers exhibits peak values slightly downstream
of the location where the amplitudes of the linear waves achieve their maximum values
on the surface. This is due to the forward inclination of the supersonic waves in the free
stream, as observed earlier in figure 7(b).

The efflux of vortical and acoustic enthalpy diverts a portion of fluctuating energy from
the primary second-mode instability mechanism. To evaluate the implication of the efflux
on transition, the RMS of wall-pressure perturbations is shown in figure 10 for this second
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Figure 10. Streamwise variation of RMS values of wall-pressure perturbations for various cold walls, with
the actuator placed at the lower neutral limit.

set of forced DNS. A main observation emerging from the figure is that the increases in
radiative losses do not have a prominent impact on wall-pressure perturbations, whose
value at any given distance increases monotonically with wall cooling. This indicates
that the efflux due to the supersonic radiating mode is a higher-order effect and may
not be sufficient to compensate for the first-order destabilizing effect of wall cooling on
the second mode. This observation is not inconsistent with recent theoretical analysis by
Tumin (2020b), who notes that the radiating component is limited to the ‘tail’ portion of
second-mode wavepackets in cooled HBLs, and do not attenuate the primary amplification
mechanism associated with the subsonic component.

5. Three-dimensional transition mechanisms in cooled HBLs

The above analysis addressed the fundamental aspects of stability modes and linear growth
through LST and 2-D DNS. The problem of breakdown associated with transition requires
a 3-D analysis; such an exercise is now conducted with fully 3-D DNS to describe the
effects of radiating modes on transition in wall-cooled HBLs. Specifically, the evolution
of spatio-temporally localized wavepackets is examined for representative cases as noted in
table 1. Below, the numerical framework is first summarized, followed by a comprehensive
qualitative and quantitative spectral and statistical description of the associated dynamics,
including effects on wall loading.

5.1. General features of 3-D response to wavepacket forcing
The 3-D Navier–Stokes equations are solved using the high-order spatial schemes
summarized in § 4.1. To facilitate feasible time-step sizes, the second-order diagonalized
(Pulliam & Chaussee 1981) implicit Beam–Warming scheme is utilized for time
integration (Beam & Warming 1978). The extent of the computational domain for each
HBL in the 3-D DNS is as follows:

x0 − Δx ≤ x ≤ x0 − Δx + 4.1, (5.1a)

0 ≤ y ≤ 0.43, (5.1b)

−0.15 ≤ z ≤ 0.15. (5.1c)
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As discussed in the context of the second set of forced 2-D DNS employed for energy
efflux considerations, x0 is the lower neutral limit of the respective HBL, and Δx = 0.2.
This design of the domain also ensures that the local boundary layer thickness for
each HBL scales suitably to harbour the second mode instability induced by the chosen
forcing parameters. The computational domain is composed of 4001, 261 and 151 nodes
in the streamwise, wall-normal and spanwise directions, respectively, for all the wall
temperatures reported here. Around 45 % of the points are clustered within the boundary
layer height of the coldest wall, TW = 0.1. A relatively finer wall spacing of ΔyW =
8 × 10−5 is utilized to ensure sufficient resolution of the cooler boundary layers, based
on prior considerations for near-adiabatic wall temperatures (Unnikrishnan & Gaitonde
2019a). The boundary conditions are similar to those used in the 2-D simulations at the
inflow, outflow, wall and far field boundaries, and the spanwise direction is assumed to
be periodic. The time-step size adopted for the 3-D simulations is sufficient to resolve
frequencies upto four times the spectral range activated by the wavepackets, as confirmed
by the following analyses. Adequacy of the above grid parameters, and time-step size, is
demonstrated through a grid study in the appendix. Three-dimensional wavepackets are
introduced through wall blowing-suction, using the following actuator model (Novikov,
Egorov & Fedorov 2016; Novikov 2017):

qw(x, z, t) = ρwvw = A3D sin
(

2π
x − x1

x2 − x1

)
sin

(
π

z − z1

z2 − z1

)
sin(ω3Dt). (5.2)

The forcing amplitude of the 3-D wavepacket, A3D = 5 × 10−2, and the streamwise extent
of the actuator is set to x1 = x0 and x2 = x1 + 0.025. The circular frequency of excitation
is ω3D = 150, and the actuator width in the spanwise direction is bounded by z1 = −0.01
and z2 = 0.01. A random background perturbation field with an RMS of O(1 × 10−4) is
also included in the actuator to enhance the stochastic nature of simulations that may reach
post-breakdown conditions (Sayadi, Hamman & Moin 2013). To localize the wavepacket
in time, the actuator is turned off after two time periods of the wave, by bounding the
perturbation input within the time interval, 0 ≤ t ≤ 4π/ω3D.

The overall effects of wall cooling and supersonic modes on transition are first
qualitatively summarized in figure 11. The eventual state of the wavepacket near the exit
of the computational domain (xNC ∼ 4) is presented for four of the wall temperatures
simulated, TW = 7, 3, 0.5 and TW = 0.1. Vortical structures as defined by the Q-criterion,
coloured by streamwise velocity, u, are used to visualize the wavepacket. The wavepacket
in the near-adiabatic wall, TW = 7, attenuates outside the region of linear instability
without tripping the HBL (figure 11a). The low value of the Q-criterion (Q = 1) reflects
this state, and the wavepacket retains the signature of 2-D waves injected into the flow by
the actuator. In the moderately cooled wall, TW = 3, the second mode is destabilized due
to wall cooling, but as observed in the context of figure 9, does not radiate. This yields
stronger amplification of the wavepacket, and it develops into a ‘young turbulent’ spot
(Sivasubramanian & Fasel 2010) by the end of the domain, as seen in figure 11(b), with
hairpin vortices trailing the leading ‘core’ region. The vortical structures in this turbulent
spot are thus highlighted using a higher threshold, Q = 100.

The cases TW = 0.5 and TW = 0.1 account for the impact of radiative efflux of energy.
Here, the second mode is even more destabilized, but also radiates vortical and acoustic
components of energy into the free stream (as seen in figure 9). Figures 11(c) and 11(d)
clearly indicate that these highly cooled HBLs undergo transition due to the amplification
and breakdown of the respective wavepacket, giving rise to well-defined turbulent spots.
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u(a)

(b)

(c)

(d )

y
x
z

1

0.55
0.1

Figure 11. Instantaneous vortical structures induced by the wavepacket, visualized using Q-criterion, coloured
by u. Results obtained when the perturbations reach the exit of the computational domain in each case. Plots
for (a) TW = 7, (b) TW = 3, (c) TW = 0.5 and (d) TW = 0.1. All panels display identical contour levels, as
indicated in (a). (a) TW = 7, Q = 1, (b) TW = 3, Q = 100, (c) TW = 0.5,Q = 100, (d) TW = 0.1,Q =
100.

Despite radiative losses, wall cooling is observed to increasingly enhance the development
to turbulence by second-mode wavepackets, resulting in elongated turbulent spots that
sustain fine-scale features. The turbulent spots also become ‘flatter’ over the cooler
walls, since they are confined to thinner boundary layers. Although 3-D simulations were
performed for TW = 7, 3, 1, 0.5, 0.3 and TW = 0.1, for brevity, key trends are summarized
in the following discussion using the most illustrative cases. For example, many of the
inferences regarding transition are reported using only the two extreme cases, TW = 3,
and TW = 0.1, where the respective HBLs trip. Additional cases are included selectively
to enhance the clarity of those trends.

5.2. Waveform evolution and spectra
The spatio-temporal evolution of the wavepacket is summarized using wall-pressure
perturbations in figure 12, for the cases, TW = 7, 3, 0.5 and TW = 0.1.In each plot the
horizontal axis spans 0 ≤ xNC ≤ 4, and the vertical axis is a relative measure of fluctuating
pressure, p′

N , which is p′ normalized by its peak value at the reference time instant,
t0 = 1. As observed in the isolevels of figure 11(a), although the actuator amplitude for
TW = 7 is large enough to introduce nonlinear perturbations in the HBL (Egorov et al.
2006; Hader & Fasel 2019), the forcing profile chosen results in eventual attenuation
in the downstream direction, without tripping the HBL. Here TW = 3 shows higher
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Figure 12. Streamwise distribution of wall-pressure perturbations at the indicated time instances for (a)
TW = 7, (b) TW = 3, (c) TW = 0.5 and (d) TW = 0.1. The dashed inclined lines in (a), L01 and L7, trace the
trailing edges of the wavepackets in TW = 7 and TW = 0.1, respectively, to estimate their convective speeds.
(a) p′

N vs. xNC,TW = 7, (b) p′
N vs. xNC,TW = 3, (c) p′

N vs. xNC, TW = 0.5, (d) p′
N vs. xNC,TW = 0.1.

amplification in the downstream direction, and by time t = t0 + 1, the wavepacket exhibits
an early signature of an amplitude modulation at its leading edge. In the following
snapshots, this leading, modulated envelope develops into a highly nonlinear region,
with rapid amplification of perturbations. The nonlinear region progressively moves away
from the trailing wavepacket, consistent with experimental observations (Glezer, Katz
& Wygnanski 1989), and eventually becomes the ‘turbulent core’ (Casper, Beresh &
Schneider 2014) of a young turbulent spot.

Qualitative differences emerge in the evolution of the wavepackets when the wall is
highly cooled. Nonlinear effects modulating the wavepacket envelopes do not clearly
demarcate a leading head and a trailing region. This demarcation weakens as the
wall is progressively cooled (see figures 12c and 12d). In these cases, significant
streamwise elongation of the wavepackets occurs, and the leading front is followed by
several intermittent turbulent regions. Cooling also decreases the convective speed of the
wavepacket, as is evident by comparing the positions of the leading and trailing edges at
different time instances for each wall temperature. A rough estimate based on the trailing
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Figure 13. Surface contours of wall-pressure perturbations at the indicated time instances. Plots (a,b,c)
correspond to TW = 3. Plots (d,e, f ) correspond to TW = 0.1. All panels display identical contour levels,
as indicated in (a). (a) TW = 3, to + 1, (b) TW = 3, to + 2, (c) TW = 3, to + 3, (d) TW = 0.1, to + 1,
(e) TW = 0.1, to + 2, ( f ) TW = 0.1, to + 3.

edge of the wavepacket in the two extreme conditions, TW = 7 and TW = 0.1, indicates
that the convective speed in the latter case is around 63 % that in the former. A graphical
comparison of these trends is provided in figure 12(a), where L7 and L01 are the loci of
the trailing edges of the wavepacket with TW = 7 and TW = 0.1, respectively. A detailed
quantification of trends in convective speeds is presented later in § 5.3.

The spanwise structure of the wavepackets is now examined using wall-pressure
perturbation contours in figure 13. To highlight the effect of cooling on wavepacket
breakdown processes, two cases, TW = 3, and TW = 0.1, are chosen at three intermediate
time instances, included earlier in figure 12. Comparing figures 13(a) and 13(d), TW = 3
exhibits relatively prominent oblique waves and a nascent head region, whereas TW =
0.1 is still dominated by 2-D second-mode waves at t = t0 + 1. At the next instant
shown (figure 13b), the warmer wall displays a clear demarcation of the head region in
the wavepacket, which bifurcates along the centre, and contains oblique waves on the
outer edges, resulting in lateral spreading. This feature was also seen in experimental
wall-pressure perturbations of early turbulent spots in a hypersonic nozzle wall by
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Cooled wall hypersonic transition

Casper et al. (2014). At the corresponding time instant in the cooler HBL (figure 13e),
the 2-D structures at the centre of the wavepacket show early signs of disintegration. At
t = t0 + 3, the head region of the warmer wavepacket has already disintegrated into a
turbulent spot as seen in figure 13(c), with significant asymmetry about the mid-span.
Oblique waves also amplify along its edges, widening the spot considerably.

When TW = 0.1, although a head region is not conspicuous at t = t0 + 3, the major
portion of the wavepacket undergoes disintegration into an elongated turbulent spot, with
little trace of the 2-D waves within (figure 13f ). However, unlike for the warmer wall,
this wavepacket contains 2-D waves outside its edges, which are prominently observed in
2 ≤ xNC ≤ 2.75. This is consistent with predictions of linear theory, according to which
2-D waves increasingly amplify with wall cooling.

The corresponding spanwise wavenumber spectra are provided in figure 14. In each
panel, only the half-plane of the spanwise wavenumber (β) axis is included due to its
symmetry. This is then augmented by a half-plane visualization of the x − z distribution
of the wavepacket (discussed above in figure 13) for easy reference. For clarity, the
instantaneous spanwise spectra are also averaged locally across a time window, t ± Δt,
where Δt = 0.038. Comparison of figures 14(a) and 14(b) confirms a stronger presence of
2-D second-mode waves over the cooler plate. Following the formation of the head region
in the warmer wavepacket, a second energy peak appears at β ∼ ±93, as indicated by
the arrow A1 in figure 14(c). This is about half the value of the streamwise wavenumber,
α, of the amplified second-mode instability (see, e.g. inset a1 in figure 7). The cooler
wavepacket displays a more continuous range of excited wavenumbers, with peaks at
β ∼ ±93 and near its superharmonic, β ∼ ±196, which is also marked by arrow A2 in
figure 14(d). At later stages of development, both the warmer and cooler wavepackets
exhibit a wider range of spanwise wavenumbers (figures 14(e) and 14( f ), respectively).
However, the cooler wavepacket has relatively more energy content at high wavenumbers,
and extends across almost twice the spanwise spectrum of the warmer wavepacket.
Consequently, the turbulent spots formed over cooler walls are expected to sustain smaller
scales of turbulence, relative to the warmer wall. This trend is further addressed below, in
the context of intermittent events in the wake of the head region.

The spatio-temporal signature of a wavepacket is relatively localized. Spectral analyses
of such signals are best accomplished by a time-frequency approach, e.g. a scalogram,
using a wavelet transformation. Yates, Tufts & Juliano (2020) have recently utilized
this technique to identify localized features of stationary cross-flow vortices over a
hypersonic cone. In addition to its localized nature, perturbations in the wavepacket
are also qualitatively different in the leading and trailing regions, which precludes
statistical stationarity (in time) of the signal. Thus, to quantify the spectral characteristics
of wavepacket evolution at different wall temperatures, the scalogram of wall-pressure
perturbations is examined at various streamwise locations along the mid-span.

The trends are summarized in figure 15 using the results for TW = 3 (left column) and
TW = 0.1 (right column).The horizontal axis is time, and the vertical axis is circular
frequency, i.e. the pseudo-frequency obtained from the scale-to-frequency conversion
relation of the Morlet wavelet used for the transformation. Contour values represent
the wavelet coefficient at a given time-frequency coordinate. For reference, the forcing
frequency (ω = 150) and its subharmonic (ω = 75) are also marked using dashed lines
in each panel. The wavepacket is essentially centred around the forcing frequency at
upstream locations closer to the actuator. Therefore, results are reported at relatively
downstream locations, xNC = 1.5, 2, 3 and xNC = 4, where nonlinear effects induce
significant variations in the spectra.
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Figure 14. Spanwise wavenumber (β) spectrum obtained as a function of streamwise distance, at the indicated
time instances. Plots (a), (c) and (e) correspond to TW = 3. Plots (b), (d) and ( f ) correspond to TW = 0.1.
In each panel, the half-plane of the spectral (vertical) axis is overlaid with the half-plane of the wall-pressure
perturbations shown earlier in figure 13. Arrows A1 and A2 highlight relevant features in respective panels. All
panels display identical contour levels, as indicated in (a).

At xNC = 1.5 (figures 15a and 15b) wavepackets at both wall conditions are still
localized, but show the presence of lower frequencies than those of the forcing. The shift
in peak energy is towards the subharmonic, ω = 75. Although localized, the cooler wall
HBL already shows early signs of higher frequencies as well, particularly at locations
of high wavepacket amplitudes. Moving downstream, the streamwise elongation in the
wavepackets is primarily observed near the subharmonic, as depicted by figures 15(c)
and 15(d). The warmer wall wavepacket appears relatively coherent, and the energy at
higher frequencies is localized in a zone (marked with arrow A1), which eventually
bifurcates into the head region. The cooler wall wavepacket is more dispersive, and
higher frequencies are excited at multiple locations, some of which are marked by arrows
A2, indicating a stronger presence of nonlinearities. At xNC = 3, figure 15(e), the head
region of the warmer wall wavepacket, i.e. that appearing earlier on the time axis, is
detached from the trailing region, and contains most of the higher broadband frequencies,
suggesting its evolution into an early turbulent spot. The peak in the higher frequencies
at ω ∼ 230 (arrow A3) is characteristic of a nonlinear interaction between the forcing
frequency and its subharmonic, resulting in the quadratic interaction, ω1 + ω2 = ω3, with
ω1 = 150, ω2 = 75 and ω3 = 225. The trailing region continues to display a harmonic
nature, with a compact frequency distribution. The cooler wall wavepacket does not
exhibit a prominent head region (figure 15f ), but contains a series of energetic events,
which have broader spectral content than the warmer wall case. This shows that wall
cooling results in more rapid development of intermittent turbulence in the wake of the
head region, and populates the fine-scale region of the spectrum. Further towards the
outflow (xNC = 4), the warmer wavepacket forms a turbulent spot in the leading region,
and accounts for most of the energetic perturbations (figure 15g). The cooler wavepacket
in figure 15(h) has a longer temporal extent with sustained turbulence in the wake of the
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Figure 15. Time-frequency signature of wavepacket evolution represented using scalograms of wall-pressure
perturbations on the mid-span, at indicated streamwise locations. Plots (a), (c), (e) and (g) correspond to TW =
3. Plots (b), (d), ( f ) and (h) correspond to TW = 0.1. The upper and lower dashed horizontal lines mark the
forcing frequency and its subharmonic,ω = 150 andω = 75, respectively. Arrows A1, A2, A3 and A4 highlight
relevant features in respective panels. All panels display identical contour levels, as indicated in (a).

leading spot. The relative dominance of the forcing frequency in the leading region of the
cooler wavepacket (arrow A4) is again consistent with the destabilization of second-mode
instability due to wall cooling. Prior high-fidelity simulations (Krishnan & Sandham 2006;
Redford et al. 2012) have observed a progressive dominance of second-mode waves in
turbulent spots with increasing Mach numbers. The current analysis shows that, even under
breakdown scenarios at hypersonic speeds, turbulence spots in cooler boundary layers
retain a stronger presence of the initiating linear instabilities, particularly in the leading
region.

The intermittently energized frequency spectrum trailing the head region also results in
spatial scale variations in the boundary layer. This is evaluated using the time-accurate
spanwise wavenumber distribution near the outlet of domain xNC = 4. Results are
provided in figure 16 for TW = 3 and TW = 0.1 using wall-pressure perturbations.The
corresponding scalograms (discussed above in figures 15g and 15h) are also reproduced
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Figure 16. Spanwise wavenumber spectrum obtained as a function of time for (a) TW = 3 and (b) TW = 0.1,
near the exit of the computational domain, XNC = 4. In each panel, the wavenumber spectrum is augmented
with the corresponding pressure scalogram on the mid-span. Contour levels displayed are indicated in (a).

again for easy reference. Note that in order to highlight the 3-D nature of the waves,
the zero wavenumber component has been removed from the spanwise signal prior to
obtaining the spectrum. Consistent with the frequency signature, the spatial scales in the
warmer wall wavepacket are most energetic and display broadband behaviour only in the
head region (figure 16a). No significant energy content is evident in the oblique waves
after the compact head region convects out of the domain. The cooler wall wavepacket on
the other hand has a longer signature on the exit plane, as seen in figure 16(b). Intermittent
spurts of energy in the frequency spectrum are accompanied by the corresponding
generation of 3-D structures in the boundary layer. The presence of higher wavenumbers in
the cooler wall wavepacket confirms the presence of fine-scale features in these boundary
layers.

5.3. Characteristic features of wavepackets
A clear understanding of formation and evolution of wavepackets is crucial to the
accurate prediction and control of transition pathways in high-speed boundary layers.
Characterization of their key features and statistics also aide in modelling their impact on
the boundary layer. For example, measured spatio-temporal correlations were used by Park
& Lauchle (2009) to model wall-pressure perturbations in transition zones of subsonic
boundary layers. We now identify some important physical features of the wavepackets
and turbulent spots generated in the cooled HBLs.
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The 3-D structures in the TW = 3 and TW = 0.1 wavepackets are shown in figure 17(a)
and 17(b), respectively.Vortical features are visualized using the Q-criterion, coloured by
the streamwise velocity component. For both cases, views of the turbulent spots from
beneath (BV), top (TV), side (SV) and front (FV), i.e. looking upstream from the outflow
boundary, are provided for clarity. Comparing SV and FV, it is evident that the turbulent
spots over warmer walls protrude higher into the free stream, due to thicker boundary
layers in the corresponding laminar profiles. As seen in the BV, both wavepackets contain
spanwise coherent structures near the wall, which have been associated with second-mode
instabilities (Jocksch & Kleiser 2008). In both wavepackets, these spanwise structures are
most dominant near the leading edge of the spot, which is consistent with the presence of
the second-mode frequency in the scalogram at the corresponding location (see discussion
of figure 15g). The lateral spreading half-angle of the turbulent spot over the warmer wall is
approximated by the dotted lines, subtending an angle of 4◦, with the horizontal axis. This
is consistent with experimental (Fischer 1972) and computational estimates (Redford et al.
2012). Although the cooler wall HBL has a longer and more slender turbulent spot, the
spreading rate is apparently reasonably well approximated by the same angle. Considering
that the wall temperature is reduced by over an order of magnitude compared with the
warmer wall, this suggests that the edge Mach number has a more prominent influence,
compared with wall thermal conditions, on the lateral spread rate. The spatial coherence
of outer boundary layer structures is also different in the two spots, as seen from the TV
images. The warmer wall tends to sustain hairpin vortices that exhibit larger spanwise
extent, compared with the cooler wall, where these vortices are disintegrated. This is also
consistent with the dominance of energy in higher β-values, observed in the spanwise
spectrum of the cooler wall HBL in figure 16(b).

A measure of the coherence in above vortical structures can be obtained from the
trends in streamwise vorticity, ωx. These also provide information about near-wall effects
of coherent structures as reported by Hader & Fasel (2019), who analysed streamwise
vorticity contours and the baroclinic vorticity production term to explain the observed
skin friction and heat transfer peaks over a hypersonic flared cone. The energetically
dominant vortical structures (as represented by streamwise vorticity) in the turbulent spots
formed in TW = 3 and TW = 0.1 are extracted using the proper orthogonal decomposition
(POD) technique (Lumley 1967).The results are provided in figure 18. Proper orthogonal
decomposition is performed on the three component velocity field on the exit plane defined
by xNC = 4, 0 ≤ y ≤ 0.05 and −0.15 ≤ z ≤ 0.15. The method of snapshots (Sirovich
1987) utilizes data on this plane during the time interval when the turbulent region in the
spot passes through. Figures 18(a) and 18(b) represent the contours of ωx on the exit plane
at xNC = 4, and its spanwise spectrum obtained at each wall-normal location, respectively,
for TW = 3. The vorticity contours are created from the leading velocity POD mode
(excluding the temporal mean), and are denoted ωx(POD1). Figures 18(c) and 18(d) are
the corresponding results for TW = 0.1. While the leading mode in TW = 3 accounts for
around 35 % of the energy content, that in TW = 0.1 constitutes approximately 25 %. This
is due to the more advanced state of the breakdown of the spot in the cooler HBL, which
shifts the system away from low-rank behaviour. The vortical structures in TW = 0.1 have
a peak energy closer to the wall (yβM ∼ 0.05) than those in TW = 3( yβM ∼ 0.1), which
can result in higher shear (discussed below) on the surface. The cooler HBL also has more
instances of high-vorticity events near the wall, as indicated by the vorticity contours. The
dominant vortical mode also contains more fine-scale features in TW = 0.1, which are
evident by comparing the spectra in figures 18(b) and 18(d). Most of the high-shear events

915 A26-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.84


S. Unnikrishnan and D.V. Gaitonde

u
0.10 0.55

BV(a)

(b)

SV

FV

y

y

z

z

x

x

y

y

z

z

x

y

z

x

y

z

x

x

TV

Q = 50

1.00

Figure 17. Physical structure of the turbulent spots generated in (a) TW = 3 and (b) TW = 0.1, as seen in
primary views, visualized using Q-criterion, coloured by u. The two dashed lines in the top view of each panel
mark a 4◦ angle with the horizontal axis. All panels display identical contour levels, as indicated in (a).

exist below the laminar boundary layer height, δ99, as marked in the figures. This confirms
the ‘flattening’ of the turbulent spot in cooler HBLs, as seen earlier in the isolevels of
Q-criterion in figures 11 and 17.

The cooler turbulent spot appears more slender and elongated in figure 17, compared
with the warmer case. This could suggest variations in the lateral spreading mechanism
active in these HBLs. Redford et al. (2012) identify near-wall regions of spanwise-velocity
peaks, which could widen the spot by forming lateral jets. The effect of wall cooling
on this mechanism is analysed in figure 19 by using spanwise-velocity variations.To
ensure statistical relevance, the associated features are obtained using the leading
spanwise-velocity POD mode, marked w(POD1). Results for TW = 3 and TW = 0.1 are
provided in figures 19(a) and 19(b), respectively. As observed in the vorticity fields above,
the spanwise velocity also contains relatively larger length scales in the warmer boundary
layer. Towards the extremities of the span (z ∼ ±0.15), TW = 3 displays coherent regions
of velocity perturbations, consistent with an outward motion from the centreline. Such a
coherent feature is absent in the cold case. Enhanced turbulent breakdown of spanwise
coherent structures and relatively high wavenumbers near the wall (see figure 18d) could
weaken this mechanism, thus generating a relatively slender spot. A detailed view of
the lateral jet (marked by the dashed rectangle in figure 19a) in the warmer spot is
provided in figure 19(c), along with the vector field, (w, v), formed by its leading POD
modes. The lateral jets originate from near the centreline of the spot and extend to its
extremities. The upwash of low-momentum fluid from near the wall to the outer edges is
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Figure 18. (a) Contours of streamwise vorticity, ωx, as observed on the exit plane, xNC = 4, in the leading
POD mode for TW = 3. (b) Spanwise wavenumber spectrum of the vorticity field, obtained as a function of
wall-normal distance. Plots (c) and (d) show the corresponding results for TW = 0.1. The horizontal dashed
lines in (a) and (c) mark the laminar boundary layer thickness, δ99. The arrows on the vertical axes in (b) and
(d) mark δ99 and the location of the peak in the spanwise spectrum, yβM . Panels (a) and (c) display identical
contour levels, as indicated in (a). Panels (b) and (d) display identical contour levels, as indicated in (b).
(a, b) TW = 3, (c, d) TW = 0.1.
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Figure 19. Contours of spanwise velocity, w, as observed on the exit plane, xNC = 4, in the leading POD mode
for (a) TW = 3 and (b) TW = 0.1. The region marked by the dashed rectangle in (a) is magnified in (c). The
vector field in (c) corresponds to (w, v), as defined in the leading POD mode. The arrow on the horizontal axis
in (c) marks a vortex beneath the lateral jet. All panels display identical contour levels, as indicated in (a).

evident in this field. Streamwise vortices exist above and beneath the lateral jet, which
are accompanied by movement of fluid into the core of the spot. The vertical arrow
marks a streamwise vortex beneath the lateral jet, resulting in the injection of near-wall
flow into the turbulent spot. This is consistent with the observations from instantaneous
ωx-snapshots by Redford et al. (2012) for a Mach 3 hot wall boundary layer.

An important feature of wavepackets and the succeeding turbulent spots is their
convective speed. Trends in this property are summarized in figure 20 using results
from TW = 3, TW = 0.5 and TW = 0.1.The chronogram of wall-pressure perturbations
along the mid-span for TW = 3 is shown in figure 20(a). The solid outline marks the
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Figure 20. Chronogram of wall-pressure perturbations on the mid-span for (a) TW = 3, (b) TW = 0.5 and
(c) TW = 0.1. The solid contour lines in (a), (b) and (c) trace the envelope of the evolving wavepackets. These
three envelopes are overlaid in (d). Arrows A1, A2, A3 and A4 highlight relevant features in respective panels.
Panels (a), (b) and (c) display identical contour levels, as indicated in (a).

envelope of the wavepacket at each time instant, using a predefined threshold, |p′| =
2 × 10−3. Figures 20(b) and 20(c) are the corresponding results for TW = 0.5 and
TW = 0.1, respectively. Figure 20(d) superimposes the envelopes from these three cases
for comparison. The leading edges of the wavepackets have smaller slopes, Δt/ΔxNC,
compared with the corresponding trailing edges, suggesting a higher convective speed
in all cases. For TW = 3, the leading and trailing edges convect at approximately
85 % and 55 % of the free stream velocity, respectively, which is consistent with prior
experimental and computational estimates (Wygnanski, Sokolov & Friedman 1976;
Wygnanski, Zilberman & Haritonidis 1982; Jocksch & Kleiser 2008).

Prior to addressing the effect of wall cooling on the propagation speed, it is essential
to account for the dynamical variations induced on the streamwise structure of the
wavepackets. The outline of the envelope for TW = 3 indicates a clear bifurcation of the
wavepacket into two zones, at (xNC, t) ∼ (2.5, 3.8), which form the head and the trailing
regions, earlier identified in the time-frequency analysis (see, e.g. figure 15c). While the
head region has a chaotic imprint due to the broadband nature of its constituent frequencies
and oblique modes, the trailing region is relatively well ordered, due to its harmonic nature,
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Figure 21. (a) Temporal evolution of spanwise averaged skin friction coefficient, cf , at xNC = 4, for various
cold walls. Instantaneous near-wall contours of streamwise velocity for (b) TW = 3 and (c) TW = 0.1. Panels
(b) and (c) display identical contour levels, as indicated in (b).

and is dominated by the subharmonic of the forcing frequency. In cooler wall HBLs, this
trailing zone is progressively curtailed, as seen from the trends in figures 20(a)–20(c). The
streaks in the turbulent head region emerge as the major component of the wavepacket
trace in the cooler walls, and exhibit a different convective speed than the precursor
harmonic wavepacket. This switch in the convective speeds is highlighted by two vertical
dashed arrows; A1 and A2 in figure 20(b), and A3 and A4 in figure 20(c). The convective
speeds of the leading edges increase by around 10 % in the cooler walls after initiation of
breakdown. The trailing edges exhibit a more dramatic increase, by over 60 %.

5.4. Wall loading
Wavepackets that cause transition in HBLs result in increased drag and thermal loads
on the surface. The impact on drag due to wall cooling is assessed in figure 21. Since
the qualitative aspects of the wavepacket evolve rapidly, the results are visualized in a
time-accurate manner near the exit plane of the computational domain, at xNC = 4, in
figure 21(a). The quantity plotted is the coefficient of skin friction, cf , defined as

cf = 2
Re
μ
∂u
∂y

∣∣∣∣
y=0

. (5.3)

The coefficient is averaged in the spanwise direction as well. To summarize the trends,
data from all the HBLs that transitioned are included here. Note that cf increases from
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the laminar values as the turbulent spot approaches the exit plane, e.g. t ∼ 4.5 in the case
TW = 3. This is also the location where the leading edge envelope intersects xNC = 4
in figure 20(a). For the cooler walls, the cf increase begins at later time instants, due
to the previously observed slower convective speeds of the respective wavepackets. The
peak cf values at TW = 3 are consistent with those observed for fully turbulent HBLs at
adiabatic conditions (Egorov & Novikov 2016). With cooling, the values of cf increase
monotonically, and peak values more than double for the highly cooled cases, TW = 0.3
and TW = 0.1. The temporal distribution of the cf peaks also changes qualitatively. For
TW = 3, the maximum is localized near the leading edge of the spot where dominant
hairpin vortices exist. Behind this region, near-wall shear weakens, and is reflected as low
values of cf . In the cooler walls the spots are slender and elongated, thus resulting in a
broader hump in cf . In addition, multiple local peaks are observed due to the intermittent
generation of turbulent zones in the wake of the leading spot. Thus, wakes of spots with
sustained generation of turbulence have greater impact on wall loading than the spatially
localized leading spot observed in the warmer walls.

The distributed impact of cooler wavepackets on the wall is confirmed in figures 21(b)
and 21(c), through the near-wall streamwise velocity contours. These velocity fields
correspond to the time instant at which vortical features are displayed in figure 17.
Compared with TW = 3 (figure 21b), the high-speed streaks in TW = 0.1 (figure 21c) are
elongated, and peaks values appear significantly downstream of the leading edge. The
higher velocities present in these streaks are evident in the contour levels, and result in
increased drag on the surface.

The effects on wall heat transfer are reported in figure 22, which plots the surface heat
transfer coefficient, ch, at xNC = 4. Here ch is defined as (Novikov 2017)

ch = Q∗
W

ρ∗∞U∗∞c∗
p(T∗

r − T∗
W)

= − μw

RePr
1

(Tr − TW)

∂T
∂y

∣∣∣∣
y=0

, (5.4)

where Q∗
W = −K∗(∂T∗/∂y∗)|y∗=0 is the wall heat transfer rate and K∗ is the thermal

conductivity. Recovery temperature, T∗
r , is calculated as

T∗
r

T∗∞
= 1 + r

γ − 1
2

M2
∞. (5.5)

Since the plots are obtained near the exit plane of the breakdown region of the spots, the
recovery factor, r = Pr1/3.

Typical ch values in the streaks formed beneath the spot for TW = 3 are about −2 ×
10−3, consistent with turbulent estimates in HBLs (Chynoweth et al. 2019). This increases
to approximately −3 × 10−3 and −4 × 10−3 for TW = 0.5 and TW = 0.1, respectively.
Note that the negative values indicate the presence of relatively warmer fluid near
the surface, resulting in heat transfer to the surface. In supersonic boundary layers at
near-adiabatic wall temperatures, Krishnan & Sandham (2006) report positive values of ch
(wall cooling) in the calmed region behind the turbulent spot. Although the near-adiabatic
case, TW = 7, did not induce a turbulent spot in the current study, we now identify
such regions in the cold wall HBLs, which displayed transition. For this, the ch flood
contours are overlaid with the ch = 0 contour using solid lines. For TW = 3 (figure 22a),
these zero-contour lines identify regions of wall cooling along the leading regions of the
turbulent spot. The ‘inrush’ (Krishnan & Sandham 2006) of relatively warm fluid in the
trailing region of these spots results in wall heating, as opposed to cooling in near-adiabatic
cases. Inspection of the topology of these turbulent spots indicates that wall cooling occurs
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Figure 22. Temporal evolution of surface heat transfer coefficient, ch, at xNC = 4, for (a) TW = 3, (b) TW =
0.5 and (c) TW = 0.1. The solid contour lines in (a) and (b) mark cf = 0. All panels display identical contour
levels, as indicated in (a).

immediately behind the near-wall spanwise coherent structures that exist near the leading
regions. It results in intense values of positive dilatation, indicating volumetric expansion
and cooling of the fluid. As the wall is increasingly cooled, the regions of zero contours
diminish as seen for TW = 0.5 and TW = 0.1 in figures 22(b) and 22(c), respectively. In
addition, the trailing streaks become more elongated with higher temperature gradients,
resulting in sustained and elevated rates of heat transfer to the surface. Thus, although the
leading region of cold wall wavepackets are energetically dominant (see figure 15h), peak
wall loading occurs in the elongated trailing region. Since the extent of the trailing region
is highly dependent on its convective velocity, modelling efforts should accurately account
for the variations in its value, as identified in figure 20.

6. Summary

Variations in linear instability mechanisms and flow features due to wall cooling in a
HBL at Mach 6 are studied, with particular emphasis on the impact on transition. The
dynamics of instability waves associated with wall cooling confirm that over sufficiently
cooled walls, the unstable mode F, after synchronizing with the slow continuous acoustic
spectrum, switches from a compact form to an oscillatory eigenfunction; this results in
supersonic phase speeds in the outer boundary layer and radiation into the free stream. A
physical analysis of this supersonic mode using momentum potential theory indicates that
radiation from cooled HBLs contains similar acoustic and vortical wave magnitudes. The
entropic component is however negligible.

Perturbation analysis of the mean flow associated with varying degrees of wall cooling,
using a high-order numerical approach, confirms the observations from linear theory
and adds further insight. While the subsonic second mode displays a near-constant
wavenumber distribution in the HBL, that in the supersonic mode gradually increases
in the outer boundary layer, as it aligns towards the wall. In moderately cooled walls
the second mode retains its trapped nature between the wall and the critical layer, as
seen previously in near-adiabatic walls. At higher levels of cooling, however, this trapped
form ruptures, resulting in efflux of energy into the free stream. This efflux is quantified
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by calculating the vortical and acoustic components of the TFE. Although wall cooling
increases the radiative loss, there is no apparent reduction of perturbation growth in
the HBLs. Increased wall cooling monotonically increases wall-pressure perturbations,
in line with the destabilization of the second mode.

The role of supersonic modes, and mean-flow variations due to wall cooling, in
inducing realistic transition scenarios are addressed through the study of 3-D wavepacket
evolution. The choice of forcing highlights the effect of wall cooling on transition; for
the near-adiabatic wall, the second-mode wavepacket of the chosen attributes attenuates
after an initial growth region. For cooled HBLs however, the same forcing induces
wavepackets that nonlinearly saturate and generate turbulent spots, despite the observed
radiative losses. Following the percolation of energy into the subharmonic of forcing
frequency, all wavepackets elongate in the streamwise direction, and display a harmonic
nature. In moderately cooled walls the next phase involves bifurcation of the wavepacket
into a dominant head region and a harmonic trailing region. The head region contains a
broadband spectrum, and increasingly displays breakdown of the HBL with wall cooling,
eventually resulting in a localized turbulent spot. The highly cooled walls exhibit a
qualitatively different scenario, where the wavepackets are significantly more elongated
in the streamwise direction. The head region, although energetically dominated by the
second-mode forcing frequency, displays a prominent wake, where intermittent local
spurts of turbulence are observed. This leads to a broader range of spatio-temporal scales
in the cooler wall wavepacket, which are quantified through spectral analyses.

Key physical features of the wavepackets including convective speeds and wall loading
are characterized, which can aide in transition model development in cold wall conditions.
The moderately cooled wavepackets conform to existing estimates of leading and trailing
edge velocities. Once turbulent regions emerge in the highly cooled cases, the convective
speed of the trailing edge increases dramatically by over 60 %. The wakes in the highly
cooled wavepackets result in significantly elongated near-wall high velocity streaks. These
induce sustained values of peak skin friction, that are about twice those reported for
adiabatic walls. Heat transfer rates also more than double in the highly cooled walls,
and primary regions of wall heating exist in the trailing region of the turbulent spots.
Thus, accurate estimates of convective speeds of turbulent spots are critical to reliable
wall loading estimates in highly cooled HBLs.
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Appendix. Grid convergence of results

Grid convergence of the results are addressed by reproducing the nonlinear evolution and
eventual breakdown of the wavepacket over the cold wall, using a relatively more refined
grid. The 3-D simulation of the coldest wall, TW = 0.1, is chosen for this, since it has
the most stringent grid requirements due to the enhanced gradients near the wall, and the
presence of finer scales in the boundary layer.
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Figure 23. Results obtained for TW = 0.1, using the finer grid, G2. Physical structure of the turbulent spot
visualized using Q-criterion, coloured by u – view from the (a) top and (b) beneath. (c) Spanwise wavenumber
spectrum obtained as a function of time, near the exit of the computational domain, XNC = 4. (d) Pressure
scalogram on the mid-span at XNC = 4.

The convergence study simulates the evolution of the wavepacket with TW = 0.1, on a
relatively finer grid, G2, compared with the one reported in § 5 (which is referred to as
G1). The grid spacing in G2 is around 15 %, 25 % and 17 % smaller in the streamwise,
wall-normal and spanwise directions, respectively, compared with G1. In addition, G2
contains around 21 % more nodes than G1 along the wall-normal direction, within the
boundary layer height near the outlet of the computational domain. To address effects of
temporal discretization, the time-step size for G2 is reduced by 25 % from that used for G1.
The results from this simulation are reported in figure 23. A qualitative visualization of
the wavepacket as it approaches the outlet of the domain is provided using Q-criterion,
coloured by streamwise velocity, in figures 23(a) and 23(b). The elongated region of
the turbulent spot, and fine-scale features near the wall, are similar to those observed
in the computations using grid G1 (see figure 17b). Quantitative spectral representations
are provided in figures 23(c) and 23(d), using the spanwise wavenumber spectrum and
time-frequency constitution of the wavepacket, respectively. The intermittent nature of
turbulence generation in the wavepacket and spectral ranges containing peak energy
are reproduced in a consistent manner across the two grids (see also figure 16b). The
differences between the instantaneous features in the two simulations primarily result from

915 A26-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.84


S. Unnikrishnan and D.V. Gaitonde

the stochastic nature of turbulence development in the wavepackets, which is promoted by
the trace amounts of random noise added in the forcing. The statistics of wall loading
(cf and ch), topology of the spots and near-wall streaks in the trailing region of the
wavepackets were also ensured to be consistently predicted across both grids. This ensures
that key inferences on the evolution of second-mode instability are not significantly
affected by the resolution of the grids adopted in this study.
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