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1. Motivation and overview of results

The notion of alternating knots has been around since knot theory began more than
100 years ago with attempts to list the few simplest knots and to prove that they
are distinct. The concept acquired major importance in the field, a highlight being
the solution of Tait’s conjectures a century after they were formulated [20,25,32,52].
Positive knots have gradually become relevant, apparently not so much because of
the combinatorial property that describes them, but because they were found to be
related to a series of different subjects, including dynamical systems [5], algebraic
curves [35, 36] and singularity theory [6]. Positive knots also play some role in four-
dimensional quantum field theories [22], and in relation to the recent link homolog-
ical concordance invariants. Let us note that the intersection of both classes are the
special alternating knots studied extensively by Murasugi (see, for example, [31] or
also [33,44]).

The concept of braiding sequences [53] was originally used in relation to Vassiliev
(finite degree) invariants [1,2,4,55,56]. Braiding sequences were later related to positive
and alternating knots [39,50] by means of the fact that the set of positive (respectively,
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alternating) knot diagrams on which the Seifert algorithm gives a surface of given genus
decomposes into finitely many such sequences. Our objective here will be to derive further
consequences of this circumstance for the properties of positive and alternating links.
This paper is a continuation of the first part [46] that focused on the study of braiding
sequences with regard to Vassiliev invariants. It extended the proof (originally given by
Bar-Natan and independently by Stanford) of a conjecture of Lin and Wang [24] on
the polynomial growth (in the crossing number) of Vassiliev invariants of knots to links,
tangles and graphs (see Theorem 2.10).

In §§ 3 and 4 we prove growth estimates on alternating knots of given genus [39] for
special evaluations of the derivatives of the Brandt–Lickorish–Millett–Ho Q [7,15] and
Jones V [17] polynomial (Theorems 3.1 and 4.2). They belong to a class of invariants,
extending those of finite degree from the braiding sequence point of view (in a sense
that we make precise below; see Definition 3.5). Such invariants grow (in the norm)
polynomially on a fixed braiding sequence, and some of them behave polynomially or
periodically polynomially on them. Some similar estimates are then derived for positive
knots. Some of the results on Vassiliev invariants obtained via braiding sequences carry
over to the larger class, as was discussed in [46].

The evaluations of the Jones polynomial we consider are interesting in several ways.
The values of V at roots of unity were studied by Jones in [18] and have special features
in the C∗-algebra approach to the definition of V . When Vassiliev invariants became pop-
ular, the values V (n)(1) were recognized as instances of such. Later, V (n)(−1) received
some attention due to a certain geometric significance in relation to knot sliceness. The
value V ′(−1) occurs most prominently in Mullins’s formula for the Casson–Walker invari-
ant λ2(K) of the 2-fold branched cover of S3 over a knot K [28]. As a small application,
an estimate of λ2 for positive knots is derived in terms of their genus and crossing number
(see Proposition 4.7).

As a special case of our estimates we obtain the following finiteness property for the
Jones, HOMFLY (or skein) P [13, 23] and Kauffman F [21] polynomials (see Corol-
lary 5.3 and Theorem 5.11).

Theorem 1.1. All coefficients (for fixed degree in all variables) of V , P and F are
bounded (that is, admit only finitely many values) on positive links.

For the Jones and HOMFLY polynomial this statement in fact holds for a somewhat
larger class (described by a relation between Bennequin numbers and the genus; see
Theorem 5.1). These results are proved in § 5.

In contrast to the other polynomials, the coefficients of the Conway polynomial grow
unboundedly on positive links. This topic will be discussed in a separate part of the
work, which will also combine with Theorem 1.1 to give more applications to geometric
invariants.

We will mostly concentrate on knots, only occasionally remarking how to modify the
arguments for links (as in Remark 5.13).
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2. Preliminaries, notation and conventions

2.1. Generalities

The symbols Z, N, Q, R and C denote the integer, natural, rational, real and complex
numbers, respectively. We will also write i =

√
−1 for the imaginary unit, in situations

where no confusion (with the usage as index) arises. For a set S the expression |S|
denotes the cardinality of S. In what follows the symbol ⊂ denotes a not necessarily
proper inclusion.

We next need some notation related to polynomials, which are understood in the
broader sense as Laurent polynomials (i.e. variables are allowed to occur with negative
exponents). Let [X]ta = [X]a be the coefficient of ta in a polynomial X ∈ Z[t±1]. For
X �= 0 let CX = {a ∈ Z : [X]a �= 0} and let

min deg X = min CX , max deg X = max CX and spanX = max deg X − min deg X

be the minimal degree, maximal degree and span (or breadth) of X, respectively. Simi-
larly, one defines for X ∈ Z[x1, . . . , xn] the coefficient [X]A for some monomial A in the
xi, and min degxi

X, etc.
We use the following abbreviations: ‘w.l.o.g.’ for ‘without loss of generality’, ‘r.h.s.’

for ‘right-hand side’, ‘l.h.s.’ for ‘left-hand side’ and ‘w.r.t.’ for ‘with respect to’. Further
notation will be introduced when appropriate.

2.2. Links and diagrams

We say that a link diagram D is l-almost positive if it has exactly l negative crossings,
that is, in the notation of § 2.4, w(D) = c(D) − 2l. A knot is l-almost positive if it has
an l-almost positive diagram, but no (l − 1)-almost positive one. In what follows, we will
abbreviate ‘0-almost positive’ to ‘positive’ and ‘1-almost positive’ to ‘almost positive’.
(This applies to both knots and diagrams.) The procedure of changing the crossings in
a diagram so that they become positive is called positification; a diagram thus obtained
is positivized. Negative links and diagrams are defined as mirror images of positive ones.

Remark. Unlike the majority of publications, for example, [9,11,33,36,43,51,57],
some authors (for example, [26,54]) confusingly call ‘positive knots’ the (narrower) class
of knots with positive braid representations.

A crossing in a diagram D is reducible if it is transversely intersected by a simple closed
curve not meeting D anywhere else. If D has a reducible crossing, it is called reducible,
otherwise it is reduced. To avoid confusion, unless otherwise stated, in what follows all
diagrams are assumed to be reduced.

2.3. Genera

In the following we denote by g(D) the genus of a diagram D, this being the genus of the
surface coming from the Seifert algorithm applied on this diagram. More conveniently, if
D is a link diagram, we use instead of g(D) the notation χ(D) for the Euler characteristic
of the Seifert surface given by the Seifert algorithm.
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By g(L) we denote the genus and by χ(L) the Euler characteristic of a link L, which
are the minimal genus and the maximal Euler characteristic, respectively, of an orientable
spanning (i.e. Seifert) surface for L. By gc(L) we denote the canonical genus of L, which
is the minimal genus g(D) of some diagram D of L. Similarly, χc(L), the canonical Euler
characteristic of L, is the maximal χ(D) for all diagrams D of a link L.

Theorem 2.1 (Cromwell [9], Crowell [12] and Murasugi [29,30]). The Seifert
algorithm applied on an alternating or positive diagram gives a minimal genus surface.

Thus, the genus g(L) of an alternating/positive link L coincides with the genus g(D)
of an alternating/positive diagram D of L, given by

g(D) =
c(D) − s(D) + 2 − n(D)

2
, (2.1)

with c(D), s(D) and n(D) = n(L) being the number of crossings, Seifert circles and
components of D, respectively (see § 2.4.1). The preceding theorem implies that for alter-
nating/positive links, g = gc.

Definition 2.2. The notation below is important and will be used throughout the
rest of the paper. Let

An,g := {K an alternating knot : c(K) � n, g(K) = g},

Pn,g := {K a positive knot : c(K) � n, g(K) = g}.

We recall two main ways of estimating from below genera of arbitrary knots. One
comes from the signature (see (4.5)). The other, here more important, source of estimate
comes from Bennequin’s inequality [3, Theorem 3] and its subsequent improvements.

We define the Bennequin number r(D) of a diagram D of a link L to be

r(D) := 1
2 (w(D) − s(D) + 1). (2.2)

Then it is known (see [36]) that

1 − χ(L) � 2r(D), (2.3)

which is called Bennequin’s inequality.
A consequence is the following. Let D be an l-almost positive diagram of a knot K.

By comparison of (2.1) (with n(D) = 1) and (2.2), we then have

r(D) = g(D) − l. (2.4)

Bennequin’s inequality (2.3) becomes

g(D) − l = r(D) � g(K) � gc(K) � g(D). (2.5)

In particular, for positive diagrams (l = 0) all inequalities become equalities. This leads
to a part of Theorem 2.1.
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∞ 0 –1 41

Figure 1. The Conway tangles.

2.4. Link polynomial invariants

As for polynomial invariants, our notation is fairly standard: V is the Jones polynomial
[17], P is the HOMFLY (or skein) polynomial [13,23], F is the Kauffman polynomial [21]
and Q is the Brandt–Lickorish–Millett–Ho polynomial [7,15].

2.4.1. Skein (HOMFLY) polynomial

The skein (HOMFLY) polynomial P is a Laurent polynomial in two variables l and m

of oriented knots and links, and can be defined by the skein relation

l−1P
( )

+ lP
( )

= −mP
( )

, (2.6)

and normalized so as to be 1 on the unknot. With this relation we use the convention
for P of [23], but with l and l−1 interchanged.

A skein triple D+, D−, D0 is a triple of diagrams, or of their corresponding links L+,
L−, L0, equal except near one crossing, where they appear as in (2.6) (from left to right).
The replacement L± → L0 is called smoothing (out) the crossing in L±. The crossing in
D+ is called positive, the one in D− negative. The sum of the signs of all crossings of D

is called the writhe of D and will be written w(D).
Let D be an oriented knot or link diagram. We denote by c(D) the crossing number of

D. We use n(D) = n(L) to denote the number of components of D or its link L. We write
s(D) for the number of Seifert circles of a diagram D (the loops obtained by smoothing
out all the crossings of D).

2.4.2. Brandt–Lickorish–Millett–Ho and Kauffman polynomial

Recall that the Brandt–Lickorish–Millett–Ho Q polynomial is a Laurent polynomial in
one variable z for links without orientation, defined by being 1 on the unknot and the
relation

Q(L1) + Q(L−1) = z(Q(L0) + Q(L∞)), (2.7)

where Li are unoriented links with equal diagrams except a spot with an i-tangle (as in
Figure 1). Note that Q is sometimes called ‘absolute polynomial’. This name will not be
used in this paper.

There are a few special values of the Q polynomial, already observed in [7]. We shall
use two of them.

We have QL(1) = 1 for any link L. To justify this claim, observe that for z = 1, setting
all Q polynomials in (2.7) to 1 would satisfy the relation. And since this relation uniquely
determines Q (and Q(1)), the observed solution (for z = 1) is the only one.
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In a similar way one can argue that QL(−2) = 2n(L)−1. Notice that exactly one of the
two links on the r.h.s. of (2.7) has the same number of components as the links on the
l.h.s. For the other link on the r.h.s. the number of components differs by ±1.

The Kauffman polynomial [21] F is usually defined via the regular isotopy invariant
Λ(a, z) of unoriented links. For F we use the convention of [21], but with a and a−1

interchanged. In particular, we have for a link diagram D the relation

F (D)(a, z) = aw(D)Λ(D)(a, z). (2.8)

The writhe-unnormalized version Λ of F is given in our convention by the properties

Λ(L1) + Λ(L−1) = z(Λ(L0) + Λ(L∞)), (2.9)

Λ
( )

= a−1Λ
( ∣∣∣ )

, Λ
( )

= aΛ
( ∣∣∣ )

, Λ
(
©

)
= 1.

Thus, the positive (right-hand) trefoil has min degl P = min dega F = 2.
The Q polynomial is a substitution of the Kauffman polynomial: Q(z) = F (1, z).
Note that for P and F there are several other variable conventions, differing from each

other by possible inversion and/or multiplication of some variable by some fourth root
of unity.

2.4.3. Jones polynomial

The Jones polynomial V is a Laurent polynomial in one variable t of oriented knots
and links, and can be defined by being 1 on the unknot and the relation

t−1V (D+) − tV (D−) = (t1/2 − t−1/2)V (D0) (2.10)

for a skein triple of diagrams D+, D− and D0.
The Jones polynomial is obtained from P and F (with our conventions) by the sub-

stitutions (with i being the complex unit; see [23] or [21, § III])

V (t) = P (it, i(t1/2 − t−1/2)) = F (−t3/4, t1/4 + t−1/4). (2.11)

The Jones polynomial also has a few special values. Some discussion can be found
in [18, § 12]. We have

VL(e±2πi/3) = 1 (2.12)

for all L, and
VL(1) = (−2)n(L)−1. (2.13)

In particular, for knots VL(1) = 1. Moreover, in this case V ′
L(1) = 0.

Let c(L), the crossing number of a link L, be the minimal crossing number c(D) over all
diagrams D of L. One main application of the Jones polynomial is the following solution
to an old conjecture of Tait.
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Theorem 2.3 (Kauffman [20], Murasugi [32] and Thistlethwaite [52]). If D

is a reduced alternating diagram of a link L, then c(D) = c(L).

Additionally, Kauffman and Thistlethwaite show that for an alternating diagram D

the coefficients of V alternate in sign.
The situation for positive links is somewhat different. The 4-crossing diagram of the

trefoil already shows that a positive reduced diagram need not have minimal crossing
number. In fact, there may be no minimal crossing positive diagram at all [41]. Thus,
determining the crossing number of a positive knot remains a non-trivial problem. How-
ever, the following was proved in [49] using the Kauffman polynomial.

Theorem 2.4. If D is a reduced positive diagram of a link L, then c(L) � c(D)+χ(D).

This will enable us to work with the crossing number of a positive link, even without
being able to calculate it exactly.

2.5. Generating functions and asymptotics

Here we recall a few elementary facts about generating functions, which we will use
(but skip elaborating on) later.

Given a sequence (an)∞
n=0 of real numbers, one can build the generating series

f(x) =
∞∑

n=0

anxn.

When the series converges (in a neighbourhood of 0), f(x) is called the generating function
of an.

In our case, f will always be a rational function, i.e. the quotient of two polynomials:
f(x) = p(x)/q(x). It is very well known that the sequences whose generating function is
rational are precisely those satisfying linear recurrences:

an = c0 +
k∑

i=1

cian−i

(when n � k′ for some k′ � k, and with k, k′ ∈ N and ci ∈ R independent of n).
Whenever xi ∈ C, i = 1, . . . , s, are the zeros of q, of multiplicity mi > 0, there is a

partial fraction decomposition

p(x)
q(x)

= p̃(x) +
s∑

i=1

mi∑
j=1

ci,j

(x − xi)j
(2.14)

for a polynomial p̃ and (complex) constants ci,j (with ci,mi �= 0).
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For two sequences (an)∞
n=1 and (bn)∞

n=1 (of real or complex numbers, as appropriate),
let us in the following say that

an � bn if lim
n→∞

an

bn
exists (in C),

an ∼ bn (an, bn ∈ R) if 0 < lim inf
n→∞

an

bn
� lim sup

n→∞

an

bn
< ∞,

an � bn, bn � an (an, bn ∈ R) if lim sup
n→∞

an

bn
< ∞,

an = O(bn), ‘an is (of asymptotics) O(bn)’ if lim sup
n→∞

∣∣∣∣an

bn

∣∣∣∣ < ∞, i.e. |an| � |bn|.

In certain cases, to avoid confusion, we will index the asymptotic relation symbol, respec-
tively, write On(bn) to indicate the variable going to ∞ (while all other variables are kept
fixed).

An expression of the form an → ∞ abbreviates limn→∞ an = ∞. Analogously, anm →
∞ means the limit for m → ∞, etc.

The form of (2.14) determines the asymptotic behaviour of an for n → ∞. Note that

1
(x − xi)j

=
∞∑

n=0

bnxn,

where bn �n x−n
i nj−1.

The case we will be mostly interested in is when all (complex) roots xi of q(x) are
roots of unity. This means that q(x) divides (and can w.l.o.g. be assumed equal to) a
power of a cyclotomic polynomial xc − 1. The sequences (an) occurring in this case have
the following feature.

Call (an) almost periodically polynomial (a.p.p.) if there are a c (period), a d (initial
number of exceptions), and polynomials P1, . . . , Pc ∈ R[n] with

an = Pn mod c(n) for n � d. (2.15)

If d = 0, call an periodically polynomial (p.p.).
As indicated, it is not too hard to observe that

(an) a.p.p. ⇐⇒
∑

n

anxn =
R(x)

(xc − 1)k
, R ∈ R[x],

where c is a period of an, as in (2.15). Moreover (still referring to (2.15)), we have d = 0
(i.e. an is p.p.; the case we will almost exclusively deal with) if max deg R < c · k, and
d � 1 − c k + max deg R otherwise. Also, k � 1 + maxi max deg Pi.

We mention as an illustration the following example. It will not be used later, but is
directly related to some other considerations that follow (around Theorem 2.9). Recall
Definition 2.2.

Theorem 2.5 (Stoimenow [39]). For fixed g, the sequence an = |An,g| is a.p.p.
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Similar arguments apply (and will be used) for multi-indexed sequences am,n, al,m,n,
etc. Then every running index will have a corresponding variable in the generating
function.

Additionally, we will work with an and an,..., which are polynomials. In this case
attention must be paid to which variables of the generating function are inherited from
the polynomials (polynomial variables), and which reflect a (and which) running index
(running variables).

One goal we will repeatedly have is to specify values for the polynomial variables so
that the resulting denominator of the generating function will have only roots (in the
running variable) that are roots of unity.

2.6. Braiding sequences and genus generators

Now, let us recall from [39,45] some basic facts concerning knot generators of given
genus. We will set up some notation and conventions used below. This is discussed in
much more detail in [47]. Cromwell offers in his recent book [10, § 5.3] an introductory
exposition on the subject.

We start by defining ∼-equivalence of crossings. A reverse clasp is, up to crossing
changes, a tangle like

If exactly one strand is reversed, we have a parallel clasp. We call a clasp trivial if its two
crossings have opposite signs. Such a clasp can be eliminated by a Reidemeister II move.

Definition 2.6. Let D be a link diagram and let p and q be crossings. We call p and q

∼-equivalent and write p ∼ q if smoothing out one renders nugatory the other. We write
t(D) for the number of ∼-equivalence classes of crossings of D.

Another (and more commonly used elsewhere) way of expressing p ∼ q is to say that p

and q can be made to form a reverse clasp after flypes. A minor argument will convince
one that this is indeed an equivalence relation.

Definition 2.7. A ∼-equivalence class consisting of one crossing is called trivial, a
class of more than one crossing is called non-trivial. A ∼-equivalence class is reduced if
it has at most two crossings, otherwise it is non-reduced. A diagram is called generating,
or a generator, if all its ∼-equivalence classes are reduced.

Let D be an oriented link diagram and let P be a set of crossings in D, which we call
marked and number c1, . . . , cn. We explain now, following [38], how to define a family of
diagrams D = B(D, P ), called a braiding sequence (or series).

Consider the family of diagrams

D = {D(p1, . . . , pn) : p1, . . . , pn ∈ Z odd}. (2.16)
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or

Figure 2. Two ways to do a twist at a crossing: the replacement of the crossing
by the first tangle is called a t̄2 twist; by the second one a t̄′

2 twist.

Herein, the diagram D(p1, . . . , pn) is obtained from D by replacing the crossing ci by a
tangle consisting of |pi| reverse half-twists of sign sgn(pi):

pi = –3 pi = 3pi = 1pi = –1
(2.17)

Following [38] we will call D the (reverse) braiding sequence associated with (D, P ) and
denote it by B(D, P ). If P is omitted, the set of all crossings of D is used by default.

Note that B(D, P ) does not in fact depend on how crossings in P are switched. In
particular, when considering sequences B(D) we can assume w.l.o.g. that D is alter-
nating. Sometimes it is better to work with the positive generating diagrams, i.e. the
positifications of D.

We call a (positive, respectively, negative) t̄′2 twist (or reverse twist) the replacement
of the tangle for pi = ±1 in (2.17) by the one for pi = ±3 (with the same sign). This
move does not change the canonical genus: when D′ is obtained from D by a t̄′2 twist,
then g(D′) = g(D). Thus, g(D′) = g(D) is constant for all D′ ∈ B(D). As it turns out,
some kind of converse of this property is true for fixed g(D), up to finite indeterminacy.

Theorem 2.8 (Stoimenow [39,47]). The set of knot diagrams on which the Seifert
algorithm gives a surface of given genus, regarded up to crossing changes and flypes,
decomposes into a finite number of reverse braiding sequences Bi = B(Di) for generators
Di. The same is true for link diagrams of fixed number of components.

We will be particularly interested in the case of knots. We have then for a knot diagram
D of genus g,

t(D) � dg := 6g − 3. (2.18)

The notation dg will be used often below. (In [50], Stoimenow and Vdovina established
that this inequality is the best possible.) Note that thus for a generator, c(D) � 2dg =
12g − 6 (the exact bound is 10g − 7 for g > 1 [47,50]).

Similarly to t̄′2, one can consider a t̄2-twist (parallel twist), creating a parallel clasp near
a crossing. The difference is shown in Figure 2. Similarly, there is an unoriented twist in
unoriented diagrams. One then has braiding sequences of parallel (or mixed parallel and
reverse) or unoriented twists (see [38]).

An application of Theorem 2.8 is the following asymptotic statement.

Theorem 2.9. With (2.18) and Definition 2.2 we have, for fixed g as n → ∞,

|An,g| �n |Pn,g| �n ndg . (2.19)
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For alternating knots the theorem follows easily from a more detailed property of
|An,g \ An−1,g|, proved in [39] (up to the subsequent identification (2.18) of the value
of dg, which first occurred in [50]). The statement was later extended to positive knots
in [49].

A fundamental feature, studied in [38], of any Vassiliev invariant v is that for each
braiding sequence D as in (2.16) (with parallel or antiparallel braidings), the map

(x1, . . . , xn) → v(D(x1, . . . , xn)) (2.20)

is a polynomial function in xi; we call this the braiding polynomial of v on D. The
degree of v (as Vassiliev invariant) is equal to the maximum of the degrees of all its
braiding polynomials. Herein, degree is taken w.r.t. all variables together, i.e. according
to deg

∏n
i=1 xpi

i =
∑n

i=1 pi.
In close relation to this property is the polynomial growth of Vassiliev invariants, a

proof of a conjecture of Lin and Wang (see [24,46]).

Theorem 2.10. If v is a Vassiliev invariant of degree k, then

max{|v(D)| : c(D) � n} �n nk.

3. Some evaluations of the Q polynomial

3.1. Bounds for evaluations of the Q polynomial

The aim of the following sections is to extend the polynomial growth bounds for Vassiliev
invariants from [46] in the special case of positive and alternating knots of given genus
to a larger class of invariants. We first study the Q polynomial. We continue to use the
quantity dg of (2.18).

Theorem 3.1. For k, g ∈ N and z ∈ [−2, 2] there are constants Ck,g,z depending on
k, g, z, but not on n, such that

max
K∈An,g

|Q(k)
K (z)| � Ck,g,zn

dgqz(k) and max
K∈Pn,g

|Q(k)
K (z)| � Ck,g,z(n + 2g − 1)dgqz(k)

with

qz(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2k + 2, z = 2,

2k, z = −2,

2k + 1, z = 0,

max(0, k − 1), z = 1,

k, z ∈ (−2, 2) \ {0, 1}.

Remark 3.2. We reiterate (see § 2.4.3) that for a positive knot K the crossing number
c(K) is not necessarily attained in a positive diagram. Theorem 2.4, however, allows us
to circumvent this obstacle.
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We start with a formula allowing us to calculate Q on knots with many twists from
those with few twists. Before stating the formula we fix the following notation, which
will be valid until the end of § 3. We denote by Li (i ∈ Z ∪ {∞}) links that possess
diagrams equal except in one room, where an i-tangle, in the Conway sense, is inserted;
see Figure 1. The appearance of the diagrams outside this room is kept fixed.

We remark then that the defining relation (2.7) for Q can be written as

Q(L1) + Q(L−1) = z(Q(L0) + Q(L∞)). (3.1)

Lemma 3.3. With the above notation we have

Q(Ln) = (z2 − 1)(Q(Ln−2) − Q(Ln−4)) + Q(Ln−6). (3.2)

Proof. This is straightforward from (3.1). For an explicit derivation of the result,
see [45, Lemma 8.1]. �

3.2. An extension of Vassiliev invariants

To put our observations into a cleaner language, we establish some more terminology.

Definition 3.4. A function f : Zn → Z is called periodically polynomial with period
d ∈ N if there are polynomials Pd1,...,dn

∈ Q[x1, . . . , xn] for 0 � di < d such that

f(x1, . . . , xn) = Px1 mod d,...,xn mod d(x1, . . . , xn)

for all xi ∈ Z. The degree deg f of f is given by the maximal degree of all Pd1,...,dn
.

Definition 3.5.

(1) Call a knot invariant v extended Vassiliev of degree less than or equal to k if it
induces on any braiding sequence B(D, P ) via (2.20) a polynomial whose degree
in any single variable (but not necessarily in all variables altogether) is at most
k. That is, all monomials (without coefficients) of this polynomial should divide∏n

i=1 xk
i .

(2) Call the invariant periodically extended Vassiliev if the function (2.20) is a period-
ically polynomial function.

(3) Call the invariant polynomially bounded if and only if its norm has an upper bound,
which is a polynomial in the parameters of the braiding sequence.

Example 3.6. The Alexander polynomial Δ is an extended Vassiliev invariant of
degree 1 when one considers braiding sequences of t̄′2 twists only. For braiding sequences
of both t̄2 and t̄′2 twists, it is well known that the determinant Δ(−1) behaves linearly,
but only up to sign. Unfortunately, it is not obvious how to fix the sign so as to make
it an extended Vassiliev invariant of degree 1, but certainly one can consider the square
(Δ(−1))2, which is then an extended Vassiliev invariant of degree 2.
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Theorem 3.7. The invariant Q(k)(z) is polynomially bounded for z ∈ [−2, 2]. If
z = 2 cos 2πv for a rational v, then it is periodically extended Vassiliev. It is an extended
Vassiliev invariant of degree less than or equal to 2k if z = −2, and of degree less than
or equal to 2k + 2 if z = 2.

Proof. Taking the kth derivative w.r.t. z in (3.2) we obtain, setting Q
(k)
n := Q(k)(Ln),

Q(k)
n = (z2−1)(Q(k)

n−2−Q
(k)
n−4)+2kz(Q(k−1)

n−2 −Q
(k−1)
n−4 )+k(k−1)(Q(k−2)

n−2 −Q
(k−2)
n−4 )+Q

(k)
n−6.

Hence, considering for fixed z the generating series

fk = fk(z, x) :=
∞∑

n=0

Q
(k)
2n (z)xn,

we find

fk = ((z2−1)x(1−x)+x3)fk +2kzx(1−x)fk−1+k(k−1)x(1−x)fk−2+Ak +Bkx+Ckx2.

The extra term Ak := Q
(k)
0 (z), and Bk and Ck can be expressed as certain linear com-

binations (with coefficients in Z[z]) of Q
(k−j)
2i (z) for 0 � i, j � 2. Rewriting this, we

obtain

fk =
2kzx(1 − x)fk−1 + k(k − 1)x(1 − x)fk−2 + Ak + Bkx + Ckx2

1 − ((z2 − 1)x(1 − x) + x3)
for k � 0,

with f−1 = f−2 = 0.
If all the zeros of the denominator (regarded as a polynomial in x) have norm 1, by

partial fraction decomposition (based on the principle of [37, p. 14, Theorem 1.12]), we
obtain that Q

(k)
2n is a polynomial in n whose maximal degree is one less than the highest

multiplicity of a (complex) zero in the denominator. (Also, the formula for fk preserves
the radius ρ = 1 of convergence of the series representation of fk.) If some zero had norm
smaller than 1, then we would only have an exponential bound for Q

(k)
2n in n.

Now, Y (x) = 1 − ((z2 − 1)x(1 − x) + x3) always has the zero x = 1, and dividing by
1 − x we obtain Z = 1 + (2 − z2)x + x2. We are interested only in the situation that
the zeros x0 and x1 of Z satisfy |x0|, |x1| � 1. (If min |x0|, |x1| < 1, then we cannot have
a polynomial bound.) Since we have x0x1 = 1, we obtain that x0, x1 ∈ S1, and they
are (complex) conjugates. Hence, 2 − z2 = −x0 − x1 ∈ [−2, 2], and so z ∈ [−2, 2]. The
polynomial Z, and equivalently Y , has a multiple zero x = −1 if z = 0, and x = 1 if
z = ±2. We shall first discuss these cases separately.

Case 1 (z = −2). From the relation for the Q polynomial, we have for knots Q(−2) ≡
1 (cf. § 2.4.2). So f0 = 1/(1 − x). By induction it follows that

fk =
Pk(x)

(1 − x)2k+1

with degx Pk(x) � 2k, and hence Q
(k)
2n (−2) = O(n2k).

https://doi.org/10.1017/S0013091515000498 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000498


1050 A. Stoimenow

Case 2 (z = 2). By [7], we have Q(2) = (Δ(−1))2 (cf. Example 3.6), which cannot
be hoped to grow less than O(n2). Hence,

f0 =
A0 + B0x + C0x

2

(1 − x)3

and, inductively,

fk =
Pk(x)

(1 − x)2k+3 .

Therefore, Q
(k)
2n (2) = O(n2k+2).

Case 3 (z = 0). Then

f0 =
A0 + B0x + C0x

2

(x + 1)2(x − 1)

and, inductively,

fk =
Pk(x)

(x + 1)2k+2(x − 1)
,

hence Q
(k)
2n (0) = O(n2k+1).

Case 4 (z ∈ [−2, 2] outside of {0, −2, 2}). For z ∈ [−2, 2] outside of {0,−2, 2}
we have distinct zeros, and so we obtain

fk =
Pk(x)

(x − 1)(x − x0)k+1(x − x1)k+1 .

Hence, Q
(k)
2n (z) = O(nk). But at least for z = 1 the order can be reduced by one.

Case 5 (z = 1). By the relation for the Q polynomial, we have, as explained,
Q(1) ≡ 1. Hence, f0 = 1/(1 − x), and thus the factors x − e±2πi/3 do not occur in the
denominator of f0, and hence always appear with one power less than for general z. Thus,
Q

(k)
2n (1) = O(nmax(0,k−1)).

This argument shows the fact for one variable and for positive n, but the same argument
works for negative n and for many variables, replacing the step from k to k + 1 by a
nested induction on the variables. Moreover, if z = 2 cos 2πv for a rational v, then the
formula cos 2z = 2 cos2 z − 1 shows that 2 − z2 is of the same form. Then x0 and x1

are roots of unity and Q
(k)
2n (z) are periodically polynomial in n, the same being true for

the multivariable case. Then the same polynomial expression holds for negative n: just
prove it the same way for n � 2 and use that the values at 0, 1, 2 uniquely determine
the extensions. The trivial periodicity for z = ±2 follows because then the denominators
of fk are powers of 1 − x. �
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Proof of Theorem 3.1. Theorem 3.1 is directly linked to Theorem 3.7.
First, we have Theorem 2.1, which says that for alternating or positive knots of genus g

we need to look only at (alternating or positive) diagrams of genus g. Next, Theorem 2.8
allows us to restrict ourselves (up to some finite indeterminacy, which does not affect the
existence of constants) to a single (reverse) braiding sequence. Thus, we return to the
situation examined in the proof of Theorem 3.7.

Next, we use Theorems 2.3 and 2.4, which for alternating (respectively, positive) knots
of crossing number n restrict us to working with diagrams of n (respectively, n, . . . , n +
2g − 1) crossings.

In the proof of Theorem 3.7 we studied in detail the growth of |Q(k)
K (z)| on a braiding

sequence with one parameter, and established that

|Q(k)
K (z)| = O(nqz(k)).

As remarked there, on a braiding sequence with d parameters n1, . . . , nd the same con-
siderations apply to each parameter.

Thus, on a braiding sequence of diagrams of genus g with d parameters,

max
K∈Pn,g

|Q(k)
K (z)|1/qz(k) = O(n1 · · · · · nd),

where ni indicate the number of twists corresponding to parameter i. Therefore,

max
c(D)=n

|Q(k)
D (z)|1/qz(k) = O(nd)

for diagrams D on this braiding sequence. Letting d := dg, that is, taking the maximal d

over all braiding sequences of diagrams of genus g (see (2.18)), we obtain the statements
in the theorem. �

4. Some evaluations of the Jones polynomial

4.1. Bounds for evaluations of the Jones polynomial

For the Jones polynomial, orientation of the components (for links) is relevant, so con-
sider just reverse braiding sequences (of t̄′2 twists). Accordingly we make the following
definition.

Definition 4.1. Call a knot invariant extended Vassiliev of degree less than or equal
to k, periodically extended Vassiliev of degree less than or equal to k or polynomially
bounded under t̄2 (or t̄′2) twists, if it is so in the sense of Definition 3.5, but just on
braiding sequences associated with the diagram by performing t̄2 (or t̄′2) twists at the
crossings.

We then have the following theorem. Here and below S1 will denote the set of complex
numbers of unit norm.
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Theorem 4.2. The invariant V (k)(t) for t ∈ S1 is polynomially bounded under t̄′2
twists. If t is a root of unity, it is periodically extended Vassiliev under t̄′2 twists. Moreover,
the following inequalities hold (for values of t where the r.h.s. is defined):

max
K∈An,g

|V (k)
K (t)| � Ck,g,tn

dgpt(k) and max
K∈Pn,g

|V (k)
K (t)| � Ck,g,t(n + 2g − 1)dg p̃t(k)

with

pt(k) =

⎧⎪⎨
⎪⎩

k + 1, t = −1,

max(0, k − 1), t = e±2πi/3,

k, t ∈ S1 \ {−1, e±2πi/3},

and

p̃t(k) =

{
pt(k), t ∈ S1,

0, |t| < 1.

Remark 4.3. The condition of alternation or positivity (in addition to fixing the
genus) is necessary, because one can show, for example, that the Whitehead doubles of
n-fold iterated connected sums of trefoils have unit norm values of V growing exponen-
tially in n. In all likelihood, similar examples can be also given for V (k) and Q.

As was done previously for the Q polynomial, we start with a simple but helpful for-
mula. Denote by V

(k)
n the kth derivative of the Jones polynomials of links with diagrams

equal except in one room. In that room a tangle of n half-twists (with antiparallel orien-
tation, as rendered by t̄′2 moves) is inserted. Write Vn for V

(0)
n . We then have the following

lemma.

Lemma 4.4.

Vn = (t2 + 1)Vn−2 − t2Vn−4 = t2(Vn−2 − Vn−4) + Vn−2. (4.1)

Proof. It is straightforward from (2.10). �

Remark 4.5. Formulae (3.2) and (4.1) came up in a practical context: the quest for
interesting examples as presented in [45, §§ 9 and 10] required us to calculate V and Q

on braiding sequences of diagrams of genus 2 from some initial data. For V as initial
data it suffices to take the polynomials of all crossing changed versions of the generating
diagram, while for Q at any crossing one twist additionally needs to be made.

Proof of Theorem 4.2. Differentiating the identity (4.1) k times w.r.t. t, we obtain

V (k)
n = t2(V (k)

n−2 − V
(k)
n−4) + 2kt(V (k−1)

n−2 − V
(k−1)
n−4 ) + k(k − 1)(V (k−2)

n−2 − V
(k−2)
n−4 ) + V

(k)
n−2.

So, setting, for fixed t,

fk = fk(x, t) :=
∞∑

n=0

V
(k)
2n (t)xn,
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we have

fk(x, t) = t2x(1 − x)fk + 2ktx(1 − x)fk−1 + k(k − 1)x(1 − x)fk−2 + xfk + Ak + Bkx,

with Ak and Bk being certain constants. (Specifically, Ak = V
(k)
0 (t) and Bk = V

(k)
2 (t) −

(t2 +1)Ak − 2ktAk−1 − k(k − 1)Ak−2, but these expressions will not be relevant.) Hence,

fk =
2ktx(1 − x)fk−1 + k(k − 1)x(1 − x)fk−2 + Ak + Bkx

1 − (t2 + 1)x + t2x2 for k � 0, (4.2)

with f−1 = f−2 = 0.
Assume first that t �= 0. Then the zeros of the denominator are 1 and 1/t2. This

time having |1/t2| > 1 prevents us from extending the series to negative twists (because
changing the sign of the crossings basically takes t to 1/t). Hence, we consider |t| < 1
only for positive knots (but not for alternating, where negative twists may occur).

For alternating knots the zeros are simple unless t = ±1.

Case 1 (t = 1). One has the well-known Vassiliev invariants of the Jones polynomial.
The conclusion V

(k)
2n (1) = O(nk) follows already by Theorem 2.10. But it can be also

deduced by using the property V (1) ≡ 1 (see below (2.13)), which gives f0 = 1/(1 − x),
and inductively showing that fk = Pk(x)/(1 − x)k+1.

Case 2 (t = −1). One has f0 = (A0 + B0x)/(1 − x)2, as V (−1) = Δ(−1) is the de-
terminant (in Example 3.6), which does not grow slower than O(n). Hence, by induction,
fk = Pk(x)/(1 − x)k+2 and V

(k)
2n (−1) = O(nk+1).

Case 3 (the rest of S1). One has distinct zeros, and V
(k)
2n (t) = O(nk) as before.

Case 4 (t = e±2πi/3). The identity (2.12) divides out one of the powers of x−e±2πi/3

in the denominator of f0. Therefore, V
(k)
2n (e±2πi/3) = O(nmax(0,k−1)).

For t ∈ S1 (and both alternating knots and positive knots) this proves the assertions.
For positive knots it remains to consider the cases in which |t| < 1, i.e. |1/t2| > 1. If
t �= 0, then from (4.2) we see inductively over k that the partial fraction decomposition
of fk yields terms of the form Pk/(1 − x)l only for l = 1. The series coefficients of the
other partial fraction decomposition terms are quotients of polynomials in n divided by
an exponential in n, and hence V

(k)
2n (t) are bounded when n → ∞. If t = 0, then (4.2)

turns into
fk = k(k − 1)xfk−2 +

Ak + Bkx

1 − x
,

so by induction fk = Pk(x)/(1 − x). �
Remark 4.6. If needed, Ck,g,t (and similarly Ck,g,z in Theorem 3.1) can be estimated

explicitly. For this one can use the inequalities in [42].

4.2. An application of Mullins’s formula

Now consider the Casson–Walker invariant λ2(K) of the 2-fold branched cover of S3

over a knot K. Mullins [28] proved that

λ2(K) = − V ′
K(−1)

6VK(−1)
+

σ(K)
4

, (4.3)
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where σ is the signature [31]. A consequence of this formula and our previous inequalities
is an estimate for λ2(K) of a positive knot K. (The proof is constructive, so that the
numbers C1 and C2 occurring in (4.4) can be made explicit with some work, if needed.)

Proposition 4.7. There are constants C1, C2 > 0 such that for any positive knot K

of genus g(K) and crossing number c(K) we have

|λ2(K)| � (C1c(K))C2g(K). (4.4)

Proof. The σ term in (4.3) is not problematic: due to Murasugi [31], we have

|σ(K)| � 2g(K) � c(K) (4.5)

for every knot K. Thus, there is no difficulty in incorporating the signature term into an
estimate of the type of (4.4).

The point of the proposition is the estimate of the first term on the right of (4.3). The
denominator is the determinant of K (from Example 3.6), which is an odd integer and
can again be ignored.

For V ′(−1) we use Theorem 4.2. Note that now t = −1 and k = 1 are fixed, as is
p̃t(k) = 2.

We can obtain (4.4) by proving that

C1,g,−1 = O(Cg
3 )

for a constant C3, and that, with n = c(K),

(n + 2g − 1)2dg = O((C4n)C5g).

Now, 2g(K) � c(K), and thus n + 2g − 1 � 2n, which yields C4 = 2. The property that
dg is linear in g (see (2.18)) yields C5.

To show that C3 exists, we must show that C1,g,−1 in Theorem 4.2 is exponentially
bounded in g. Now, C1,g,−1 is a finite maximum (for each braiding sequence of genus g)
over some linear combination of terms V (−1) and V ′(−1) evaluated on diagrams D̃ of
genus g with, say, at most four crossings in a ∼-equivalence class.

For a one-parameter braiding sequence, the values VD̃(−1), V ′
D̃

(−1) were designated
as A0, B0, A1 and B1 in the proof of Theorem 4.2. The coefficients of their linear combi-
nation are fixed for one parameter, thus they multiplicatively accumulate at most to an
exponential in the number of parameters. This number is at most dg, which is linearly
bounded in g. The coefficients are thus exponentially bounded in g, and it is enough to
look at the values VD̃(−1), V ′

D̃
(−1) themselves.

The diagrams D̃ have at most four crossings in a ∼-equivalence class, and the number of
such classes is at most dg. Thus, c(D̃) is linearly bounded in g. Next, VD̃(−1), V ′

D̃
(−1) can

be estimated from the coefficients of V (D̃) (and its degrees, which are linearly bounded in
c(D̃)). To conclude, it is thus enough to notice that every coefficient of V is exponentially
bounded in c(D̃). This follows from rather standard arguments (see, for example, [42]).

�
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Remark 4.8. For alternating knots, the same argument clearly applies. However, from
the fact that the coefficients of V alternate (see the remark below Theorem 2.3), we have
that

|V ′
K(−1)| � max(|max deg VK |, |min deg VK |)|VK(−1)|,

leading to a much better estimate. (Of course, for positive K, similar properties of V do
not hold in general.)

5. Finiteness properties for link polynomial coefficients

In this section we record some consequences of the previous theorems for positive knots.

5.1. The coefficients of the Jones and HOMFLY polynomial

The value t = 0 in Theorem 4.2 is of special interest, since it gives the coefficients of
the Jones polynomial themselves. Using our work we can prove that any coefficient on the
Jones polynomial takes a finite number of values on knot diagrams D whose Bennequin
number r(D) (recall § 2.3) is not too small in comparison to their genus g(D).

Theorem 5.1. Let f : N → N be a function with

lim inf
n→∞

(
f(n) − n

2

)
= ∞. (5.1)

Let

Df := {D : r(D) � f(g(D))} and Df,c := {D : r(D) � f(g(D)), c(D) = c}. (5.2)

Define, for some k ∈ Z,

Vk,f := {[VD(t)]tk : D ∈ Df} and Vk,f,c := {[VD(t)]tk : D ∈ Df,c}. (5.3)

Then all Vk,f are finite. More precisely, Vk,f,c stabilizes in c mod 2 when c → ∞. That
is, there is a c0 = c0(k, f) such that Vk,f,c+2 = Vk,f,c for c � c0.

Both statements remain true if we replace [V ]tk by [P ]ljmk for any j, k ∈ Z, and condi-
tion (5.1) by lim infn→∞ f(n) = ∞. Also, the stability statement (for both polynomials)
holds if one replaces ‘r(D) � f(g(D))’ in (5.2) by ‘r(D) = f(g(D))’.

Remark 5.2. If we count coefficients relative to the degree, i.e. for V replace ‘k’ by
‘k + min deg V ’, the theorem is surely already false for positive D and k = 1 (in [48] the
meaning of this coefficient is explained), and nothing similar makes sense for P or F .

Corollary 5.3. Any coefficient of the Jones and skein polynomial takes only finitely
many values on positive knots.

Proof. Indeed, for a positive diagram D we have w(D) = c(D), and thus f(n) = n in
(5.1) will do. �

We will later show that this corollary also holds for the Kauffman polynomial.
For the proof of Theorem 5.1 we recall a lemma from [44].
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Lemma 5.4 (Stoimenow [44]). For any l � 0 and any l-almost positive link diagram
D we have

min deg V (D) � 1 − χ(D)
2

− 2l + sgn(l). (5.4)

(For l = 0 equality holds.)

We will use the following simple technical argument, which will be needed repeatedly,
and thus is separated. We consider an infinite sequence of diagrams

Di = D(p1,i, . . . , pn,i) (5.5)

in one braiding sequence D = B(D). By a subsequence we mean {Dij } for an increas-
ing sequence {ij}. By reordering indices in (5.5) we mean the application of a fixed
permutation ρ ∈ Sn to the first subscripts:

D(pρ(1),i, . . . , pρ(n),i).

Lemma 5.5. For (5.5), we may w.l.o.g., by reordering indices and going over to
an (infinite) subsequence, assume that there is a d satisfying 1 � d � n such that
pd+1,i, . . . , pn,i are constant (in i), and

pk,i+1 > pk,i (5.6)

for all i > 0 and k = 1, . . . , d.

Proof. Assume first that for some 1 � k � n the set {pk,i}∞
i=1 is finite. Then reorder

indices so that k = n and fix a value of pn,i for which infinitely many Di occur. Repeat
this argument for 1 � k � n − 1, and we can fix pn−1,i, etc. Thus, for some d we can
choose Dij so that pk,ij is constant in ij for k = d + 1, . . . , n, while {pk,ij }∞

j=1 is infinite
for 1 � k � d. Clearly, d � 1. Replace {Di} by {Dij }.

When for fixed 1 � k � d there are infinitely many values {pk,i}i, up to going over to
a subsequence, we may assume that pk,i is strictly increasing in i. By doing this d times
for all 1 � k � d, we obtain (5.6) for all k = 1, . . . , d. �

Proof of Theorem 5.1. First consider the Jones polynomial.
By assumption, we deal with diagrams D for which r(D)−g(D)/2 becomes (arbitrarily)

large when g(D) is (sufficiently) large. Let l be the number of negative crossings in D.
Recall from (2.4) that r(D) = g(D) − l. Thus, g(D)/2 − l becomes large when g(D) is
large. Now, for knots in (5.4) we have (1 − χ(D))/2 = g(D). Thus, we obtain that for
g(D) large, min deg V (D) also becomes large.

Let us now, for the rest of the proof, fix the degree k in which we are interested
in the Jones polynomial coefficient [V (D)]tk . The argument we made on min deg V (D)
means that, in order to evaluate [V (D)]tk (to something different from 0), it is enough to
consider diagrams D of bounded (from above) genus g(D). Then the number l of negative
crossings of D is also bounded, since r(D) in (2.4) is bounded from below.

Now it follows from (5.4) that min deg V (D) has a lower bound; call it s = s(k),
independent of the crossing number of D. It is thus enough to study one (reverse) braiding
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sequence D = B(D̂, P ) with positive t̄′2 twists. Let p1, . . . , pn be the parameters of D. We
assume n = |P | and pi odd. From now on, k, s and D are fixed.

The proof of Theorem 5.1 will centre around the following claim.

Claim 5.6. For each 1 � d � n and fixed pd+1, . . . , pn there is a number ω =
ω(pd+1, . . . , pn) � k + 1 such that when p1, . . . , pd � ω, for all k � k′ � s the coef-
ficient

Vk′(D̂(p1, . . . , pd, pd+1, . . . , pn)) := [V (D̂(p1, . . . , pd, pd+1, . . . , pn))]k′

does not depend on the values of p1, . . . , pd.

Let us first clarify how this claim will prove Theorem 5.1. The theorem states two
properties; the stability assertion (Vk,f,c stabilizes modulo 2 when c → ∞) implies the
finiteness assertion (Vk,f =

⋃
c Vk,f,c is finite). We thus consider only the stronger state-

ment and prove it by contradiction, assuming that it is false.
If the stability assertion of the theorem is false, we have Vk,f,ci �= Vk,f,ci+2 for some

sequence of ci → ∞. For
Di = D̂(p1,i, . . . , pn,i) ∈ Df,ci

write
Dj,±

i := D̂(p1,i, . . . , pj−1,i, pj,i ± 2, pj+1,i, . . . , pn,i) ∈ Df,ci±2.

(The inclusion for the negative sign holds when pj,i � 3.) If

Vk,f,ci
\ Vk,f,ci+2 �= ∅, (5.7)

choose Di ∈ Df,ci so that Vk(Di) �∈ Vk,f,ci+2. Since Dj,+
i ∈ Df,ci+2 for all 1 � j � n, we

have in particular that
Vk(Di) �= Vk(Dj,+

i ). (5.8)

Otherwise, if not (5.7), we must have Vk,f,ci+2\Vk,f,ci
�= ∅, and we choose Di ∈ Df,ci+2

so that Vk(Di) �∈ Vk,f,ci . Then in particular, for all 1 � j � n (with pj,i � 3),

Vk(Di) �= Vk(Dj,−
i ). (5.9)

By using a subsequence, we can fix the generator D = D̂ of all Di to indeed be the
same. Thus, we have a sequence of diagrams Di as in (5.5) for which either (5.8) holds
for all 1 � j � n or (5.9) holds for all 1 � j � n. Let us argue using (5.9); for property
(5.8) the reasoning is analogous.

Now, by Lemma 5.5, we may assume, after reordering indices, that pd+1,i, . . . , pn,i are
fixed, while p1,i, . . . , pd,i are increasing in i. We compare with property (5.9), which is
enough to use only for j = 1. But by Claim 5.6, after excluding finitely many p1,i, . . . , pd,i

(and i), we have that Vk does not change for p1,i large enough, which contradicts both
(5.8) and (5.9) (for j = 1). This shows that Claim 5.6 proves Theorem 5.1.

We will prove Claim 5.6 by induction on d. We will first do the induction step, assuming
the basis of induction (d = 1), which we will justify later.
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Assume thus that Claim 5.6 holds for d − 1 � 1. We consider

D̂(p1, . . . , pd, pd+1, . . . , pn)

for pd+1, . . . , pn fixed and p1, . . . , pd increasing.
We use (4.1) with n = pd. (Here the assumption enters that we perform only positive

t̄′2 twists.) One consequence of this identity is that for s � k′ � k,

Vk′(D̂(p1, . . . , pd, pd+1, . . . , pn)) (5.10)

is determined by

Vk′′(D̂(p1, . . . , pd−1, 1, pd+1, . . . , pn)) and Vk′′(D̂(p1, . . . , pd−1, 3, pd+1, . . . , pn))
(5.11)

for s � k′′ � k′; cf. (5.14).
Now by the induction assumption there are numbers ωi = ω(i, pd+1, . . . , pn) for i = 1, 3.

Then for ω̂ = max(ω1, ω3) we have that the expressions in (5.11) do not depend on
p1, . . . , pd−1 � ω̂. This means that neither does (5.10).

We still have to remove the dependence of (5.10) on pd. Again by the basis of induction,
we can consider

D̂(p) := D̂(p1, . . . , pd−1, p, pd+1, . . . , pn), (5.12)

where pd+1, . . . , pn had been fixed a priori, and now p1, . . . , pd−1 are fixed to some (imma-
terial) values equal to or above ω̂. The assertion for d = 1 will yield some stabilization
limit

ω0 = ω(p1, . . . , pd−1, pd+1, . . . , pn) = ω(ω̂, . . . , ω̂, pd+1, . . . , pn) (5.13)

for Vk′(D̂(p)) when p � ω0. Precisely speaking, the expression (5.13) for ω0 is only valid
after renumbering the dth parameter to become the first. Thus, in fact, the induction
for Claim 5.6 should be done over the assertion that allows reordering indices. (This
assertion is formally wider, but in fact equivalent, and we chose not to roll it out in this
form to save notation overhead.)

With this justification of (5.13), we can now take

ω(pd+1, . . . , pn) := max(ω0, ω̂) � k + 1

and complete the induction step needed for Claim 5.6.
It remains to prove the basis of induction, i.e. the case that d = 1. That is, we must

prove for a one-parameter (reverse) braiding sequence D̂(p) as in (5.12) that there is an
ω such that for p � ω and all s � k′ � k the coefficient Vk′(D̂(p)) does not depend on p.

By induction over k′ � s, we see that it is enough to prove this stability for
[(t2 − 1)V [p]]k′ , where we abbreviate V [p] := V (D̂(p)) and p = p1. But a consequence of
(4.1) is

V [2k + 1] = t2kV [1] +
t2k − 1
t2 − 1

(V [3] − t2V [1]) (5.14)

(cf., for example, the proof of Theorem 9.3 in [45]). This implies the desired sta-
bility easily. By Lemma 5.4, we have min deg V [p] = g(D̂) > 0, and we see that
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ω = ω(p2, . . . , pn) � k + 1 is sufficient for p = p1 odd. This completes the proof of
Theorem 5.1 for the Jones polynomial.

For the skein polynomial a similar argument applies, only that instead of Lemma 5.4
one uses the inequality for min degl P of Morton [27]. One also needs to develop an
appropriate version of Claim 5.6, but everything is completely analogous. For example,
(5.14) becomes (with suggestive notation)

P [2k + 1] = (−l2)kP [1] − (−l2)k − 1
l2 + 1

(P [3] + l2P [1]), (5.15)

and again ω � k + 1 will suffice. �

Remark 5.7. Theorem 5.1 allows several modifications. It remains true if we consider
diagrams D of fixed genus g(D) in (5.3). Furthermore, a result of Gabai (see [14, Corol-
lary 2.4] and also [45, Remark 11.1]) shows that the genus g(K) of the knot K represented
by D (and not only of the diagram D itself) is constant with at most one exception on
any one-parameter t̄′2 twist sequence. Then, similarly to [45], one can also place the con-
dition ‘K is of genus g(K) = g(D)’ in (5.3). One can also fix D to be alternating (in
which case we always have g(K) = g(D); see [9]).

Corollary 5.8. Fix k, l ∈ N and consider

Pc := {K : K has an l-almost positive diagram of c crossings}

and

Vc := {[VK(t)]tk : K ∈ Pc}.

Then Vc is almost everywhere 2-periodic in c, that is, there is a c0 = c0(k, l) ∈ N with
Vc+2 = Vc for all c � c0.

The same result holds if we modify the definition of Pc by only considering l-almost
positive alternating diagrams of c crossings, and/or considering knot diagrams of given
genus.

In particular, the corollary says: if some (value of a) coefficient of V occurs for infinitely
many positive knots, then the set of all knots realizing this coefficient (value) has positive
diagrams of almost all even and/or odd crossing numbers.

Remark 5.9. Note that reduced alternating almost positive diagrams do not exist.
(We use this fact in [44] to show that alternating almost positive knots do not exist.)

Corollary 5.10. The set {[VK(t)]tk : K an l-almost positive knot} is finite for any k

and l.

Both Corollaries 5.8 and 5.10 of course also hold (in appropriate form) for the skein
polynomial.
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5.2. The coefficients of the Kauffman polynomial on positive knots

In this section we give a proof of the following theorem, which extends the previously
exhibited coefficient finiteness property also to the Kauffman polynomial. For its proof
we require the work of Yokota [57].

Theorem 5.11. Each coefficient [F (K)]zkal (for fixed k and l) of the Kauffman poly-
nomial admits only finitely many values on positive knots K.

It is also possible to prove some related results in the spirit of the previous paragraphs
(and also possibly to prove the theorem for l-almost positive knots, by extending Yokota’s
results to such knots), but we shall not repeat the arguments here.

Again we consider the generating series associated with the polynomials of a certain
(one-parameter) braiding sequence and find that the local relation for F makes it into
a rational function. This time, however, as F (a, z) (in general) contains negative powers
of a, all series will be Laurent series in a.

Proof of Theorem 5.11. Recall (from § 2) our convention for F , differing from [21]
by the interchange of a and a−1. Then the relation between F and its writhe-unnormalized
version Λ = Λ(a, z) becomes (2.8), and from the defining relation (2.9) of Λ we have

Λn = zΛn+1 + za−(n+1)Λ∞ − Λn+2,

with Λi := Λ(Di) and Di diagrams of links Li as in (3.1). If we consider again

f = f(a, z, x) =
∞∑

i=0

Λix
i,

which is a Laurent series in a of bounded minimal degree, then we obtain

f =
P (a, z, x)

(1 − a−1x)(x2 − zx + 1)

for some P ∈ Q[x, a, a−1, z]. This is a rational function in a, z and x divided by a power
of a, and hence converges as a Laurent series in a for |x| < |a|, |z| < 1.

As we are just interested in the Taylor x-coefficients of the series for i even (for i odd
we obtain certain two-component links), we build

f̃(a, z, x) =
∑

i even

F (Di)xi =
ak1

2
[f(a, z, xa) + f(a, z,−xa)]

=
P1(a, z, x)

(1 − x2)(a2x2 − azx + 1)(a2x2 + azx + 1)

for some k1 = w(D1) ∈ Z and P1 ∈ Q[x, a, a−1, z]. Since P1(a, z, x) = P1(a, z,−x), in
fact we have P1 ∈ Q[x2, a±1, z]. From the r.h.s. we again see that this series is rational in
all variables, and hence converges as a Laurent series in a neighbourhood of the origin,
in particular, for |x|, |a|, |z| < 1.
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Applying ∂k/∂zk|z=0 on f̃ , we obtain

P2(a, x)
(1 − x2)(a2x2 + 1)k+2

for some P2 ∈ Q[x2, a±1], so that

f̂(a, x) :=
∑
i�0

[F (D2i)]zkxi =
P3(a, x)

(1 − x)(a2x + 1)k+2 ,

with P3(a, x) = (1/k!)P2(a,
√

x). Now, by Yokota’s theorem [57] we know that (with the
present convention) min dega F (D2i) > 0 if D2i are positive. Then f̂ converges without
singularity at (0, 0) and we can differentiate l times in a the left-hand (and therefore,
also the right-hand) side, and set a = 0. The denominator collapses to 1−x. To see this,
consider the denominator factor 1−x as a constant in a and apply the quotient rule. Then
again the previous arguments together with Yokota’s result min dega F (K) = 2g(K) for
K positive complete the proof. �

Remark 5.12. It is worth remarking that Przytycki’s invariance criteria [34] of certain
evaluations of F (and analogously of the other link polynomials) under k-moves can also
be deduced from these rational function expressions. It would take us aside to follow it
here, but briefly, we would have to examine for which values of a and z the denominator
has only zeros in x that are distinct kth roots of unity. This has been (again implicitly)
investigated in [40] for the Q polynomial in the language of H1 of the double branched
cover.

Remark 5.13. The material from § 3 until here can be generalized straightforwardly
to links. Then the genus must be replaced by the Euler characteristic χ, and one must
use the fact that the Euler characteristic bounds the number of components n � 2 − χ.
Theorems 2.1 and 2.8 hold analogously. One needs to introduce, in correspondence to
Definition 2.2, sets An,χ and Pn,χ and numbers dχ. Then again, similarly to (2.18),
dχ = −3χ by [47].

6. Concluding questions and problems

We conclude this exposition with a few general remarks. One results from the desire to
link the two different parts of this work.

Problem 6.1. Which extended (but not genuine) Vassiliev invariants satisfy (more)
global polynomial growth bounds, and (how) can the idea of the proof of the Lin–Wang
conjecture in [46] be adapted to show these bounds?

It is clear that not all invariants satisfy such bounds. Consider the determinant square
Q(2) on connected sums of trefoils: it grows exponentially.

One discrepancy between the Vassiliev and extended Vassiliev part lies in the following
important difference. In the Vassiliev case, in a braiding polynomial with sufficiently many
variables a top degree monomial does not contain most of the variables. This is decisively
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used to find recursive relations, and such an approach fails in the generalized case. One
consequence is that the various dimension upper bounds for Vassiliev invariants cannot
be (straightforwardly) generalized to extended Vassiliev invariants.

Problem 6.2. How can one obtain upper dimension bounds for the proposed gener-
alizations of Vassiliev invariants of given degree?

Problem 6.3. Are [Q(z − 2)]zk for k � 0 Vassiliev invariants (where for links we
consider Q(z − 2) as a power series in z)?

For k = 0 this coefficient is constantly 2n−1 on n-component links, and for k = 1 the
problem was solved positively by Kanenobu [19]. The answer appears negative, though,
for k � 2. But note that these are extended Vassiliev invariants. Thus, direct calculations
as in [16,53] will not prove that they are not Vassiliev invariants. See also [8].
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4. J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math.

111 (1993), 225–270.
5. J. S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems, I,

Lorenz’s equations, Topology 22(1) (1983), 47–82.
6. M. Boileau and C. Weber, Le problème de J. Milnor sur le nombre gordien des nœuds
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