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This paper is devoted to the investigation of the G-network with multiple classes of posi-
tive and negative customers. The purpose of the investigation is to analyze such a network
at a transient regime, to find the state probabilities of the network that depend on time.
In the first part, a description of the functioning of G-networks with positive and negative
customers is provided, when a negative customer when arriving to the system destroys a
positive customer of its class. Streams of positive and negative customers arriving at each
of the network systems are independent. Services of positive customers of all types occur
in accordance with a random selection of them for service. For nonstationary probabilities
of network states, a system of Kolmogorov’s difference-differential equations (DDE) has
been derived. A method for their finding is proposed. It is based on the use of a modified
method of successive approximations, combined with the method of series. It is proved
that successive approximations converge with time to a stationary probability distribu-
tion, the form of which is indicated in this paper, and the sequence of approximations
converges to the unique solution of the DDE system. Any successive approximation is rep-
resentable in the form of a convergent power series with an infinite radius of convergence,
the coefficients of which satisfy recurrence relations, which is convenient for computer
calculations. A model example illustrating the determination of the time-dependent prob-
abilities of network states using this technique has been calculated. The obtained results
can be applied in modeling the behavior of computer viruses and attacks in information
and telecommunication systems and networks, for example, as a model of the impact of
some file viruses on server resources. variable.

Keywords: combined with the method of series, G-network, method of successive approxima-
tions, multiple classes of positive and negative customers, transient regime

1. NETWORK DESCRIPTION. FORMULATION OF THE PROBLEM

Consider an open G-network of queueing with n single-line queueing systems (QS), in which
arrive positive and negative customers of r classes. In i-th QS from the external environment
arrives a simple stream of ordinary customers (positive) with the rate λ+ and an additional
flow of negative customers, which is also the simplest with the rate λ−, i = 1, n. All arriv-
ing streams are independent. Each positive customer of the input stream independently
of other customers is sent to the i-th QS as a customer of class c with probability p+

0ic,
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∑n
i=1

∑r
c=1 p+

0ic = 1. Duration of service of positive customers in the i-th QS c-class are
distributed according to the exponential distribution with parameter μic, i = 1, n, c = 1, r.

The network circulates not only positive customers but also negative ones. Each negative
customer of the input stream, independently of other negative customers, is sent to the i-th
QS as a negative customer of class c with probability p−0ic,

∑n
i=1

∑r
c=1 p−0ic = 1 and destroys

one positive customer of the same class. After the end of the service of the positive customer
of class c in the i-th QS, it is sent to the j-th QS with probability p+

icjs again as a positive
customer of class s, and with probability p−icjs as a negative customer of class s, and with
probability pic0 = 1 −∑n

j=1

∑r
s=1

(
p+

icjs + p−icjs

)
leaves the network, i, j = 1, n. We assume

that customers to the service are randomly selected, i.e. if in the i-th QS there are kis

customers of class s, then the probability that to the service in it will be a customer of class
c is kic∑ r

s=1 kis
, i = 1, n, c = 1, r.

Under the network state at time t we mean the vector (�k, t) = (k11, k12, . . . , k1r, k21,
k22, . . . , k2r, . . . , kn1, kn2, . . . , knr, t), where kic, – the number of positive customers of class
c in the i-th QS which forms a homogeneous random Markov chain with continuous time
and a countable number of states. It is required to find the state probabilities of the network
at a transient regime, depending on the time.

It should be noted that in [2–4] the basic G-network with positive and negative cus-
tomers of the same class [1] was generalized to the case of several classes of positive and neg-
ative customers under the assumption that the number of classes of both types of customers
is the same. It is shown that the stationary probabilities of the states of such a network have
a multiplicative form (product form). In each of these studies, various options are considered,
it is established how the effect of negative customers with their classes is correlated. Thus,
in [2] it is assumed that negative customers of a fixed class affect only positive customers
of the same class. In [3] is used a random selection of positive customers, i.e. if a negative
customer arrives at the i-th QS in which there are ki > 0 of positive customers (without
taking into account their class), then with the probability (kic/ki) a positive customer of
class c will be destroyed. In such a G-network, we will explore in this paper, the transitional
regime. In [4] the G-network with a variety of disciplines is considered: FIFO – service in
the order of arrival, PS – processor separation and LIFO/PR – inversion order of service
with service interruption. A positive customer is destroyed in accordance with the service
discipline established in the QS, while in the i-th SMO, a negative customer of class s can
destroy a positive customer of class claim with a probability Kisic. In [5], instead of negative
customers of multiple classes in the G-network, signals of multiple classes were considered.

It should also be noted that the finding of nonstationary probabilities of states of a
Markov G-network with signals and the group removal of customers by the method of
successive approximations combined with the method of series has been presented in [6];
stationary state probabilities of such network in the product form has been found in [7],
and for a network with triggers – in [8].

2. A SYSTEM OF KOLMOGOROV DIFFERENCE-DIFFERENTIAL EQUATIONS
(DDE) FOR THE NETWORK STATES PROBABILITIES

Let us consider Iic – a vector of dimension n × r, consisting of zeros, with the exception of
the components with the number r(i − 1) + c, which is equal to unity, I00 –n × r a vector

consisting of zeros, P (�k, t) – state probability �k (t); u(x) =

{
1, x > 0
0, x ≤ 0

– Heaviside function.
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The following transitions of our Markov chain to the state (�k, t + Δt) in time Δt are
possible:

(1) from the state (�k − Ijs, t), in this case in the j-th QS in time, Δt a positive customer
of class s will arrive with a probability λ+p+

0jsu(kjs)Δt + o(Δt), j = 1, n, s = 1, r;

(2) from the state (�k + Iic, t), in this case in the i-th QS in time, Δt a negative
customer of class c will arrive or after the end of the service, a positive cus-
tomer of class c leaves the network or transfer to the j -th QS as a negative
customer of class s, but does not find there positive customers of this class

with probability

⎛
⎝λ−p−0ic + μic

kic+1
r∑

s=1
kis+1

pic0 + μic
kic+1

r∑
s=1

kis+1
p−icjs(1 − u(kjs))

⎞
⎠Δt +

o(Δt), i = 1, n, c = 1, r;

(3) from the state (�k + Iic − Ijs, t), in this case from the i-th in time Δt a positive
customer of class cafter servicing transfer to the j-th QS as a positive customer of
class s with probability μic

kic+1∑ r
s=1 kis+1p+

icjsu(kjs)Δt + o(Δt), i, j = 1, n, s, c = 1, r;

(4) from the state (�k + Iic + Ijs, t), in this case from the i-th in time, Δt a positive
customer of class c after servicing transfer to the j-th QS as a negative cus-
tomer of class shaving destroyed a positive claim of this class with probability
μic

kic+1∑ r
s=1 kis+1p−icjsΔt + o(Δt), i, j = 1, n, s, c = 1, r;

(5) from the state (�k, t), in this case for a period of time, Δt the network state did not
change with probability

1 −
[
λ+ + λ− +

n∑
i=1

r∑
c=1

μicu(kic)

]
Δt + o(Δt), i = 1, n, c = 1, r;

(6) from other states with probability o(Δt).

Using the full probability formula, we can write:

P (�k, t + Δt) =

(
1 −

[
λ+ + λ− +

n∑
i=1

r∑
c=1

μicu(kic)

])
P (�k, t)Δt

+
n∑

j=1

r∑
s=1

λ+p+
0jsu (kjs) P (�k − Ijs, t)Δt

+
n∑

i=1

r∑
c=1

⎛
⎜⎜⎝λ−p−0ic + μic

kic + 1
r∑

s=1
kis + 1

pic0 + μic
kic + 1

r∑
s=1

kis + 1
p−icjs(1 − u (kic))

⎞
⎟⎟⎠

P (�k + Iic, t)Δt +
n∑

i,j=1

r∑
s,c=1

μic
kic + 1

r∑
s=1

kis + 1
p−icjsP (�k + Iic + Ijs, t)Δt

+
n∑

i,j=1

r∑
c,s=1

⎛
⎜⎜⎝μicp

+
icjs

kic + 1
r∑

s=1
kis + 1

u(kjs)

⎞
⎟⎟⎠P (�k + Iic − Ijs, t)Δt + o (Δt) .
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Dividing both sides of this relation by Δt and passing to the limit with Δt → 0, we obtain
that the nonstationary state probabilities of the considered network in this case satisfy the
following DDE system:

dP (�k, t)
dt

= −
[
λ+ + λ− +

n∑
i=1

r∑
c=1

μicu(kic)

]
P (�k, t)

+
n∑

j=1

r∑
s=1

λ+p+
0jsu (kjs) P (�k − Ijs, t)

+
n∑

i=1

r∑
c=1

⎛
⎜⎜⎝λ−p−0ic + μic

kic + 1
r∑

s=1
kis + 1

pic0 + μicp
−
icjs (1 − u (kic))

⎞
⎟⎟⎠P (�k + Iic,t)

+
n∑

i,j=1

r∑
s,c=1

μic
kic + 1

r∑
s=1

kis + 1
p−icjsP (�k + Iic + Ijs, t)

+
n∑

i,j=1

r∑
c,s=1

⎛
⎜⎜⎝μic

kic + 1
r∑

s=1
kis + 1

p+
icjsu (kjs)

⎞
⎟⎟⎠P (�k + Iic − Ijs, t). (2.1)

3. FINDING THE STATE PROBABILITIES OF G-NETWORK BY THE METHOD OF
SUCCESSIVE APPROXIMATIONS

The DDE system (2.1) can be represented as:

dP (�k, t)
dt

= −Λ(�k)P (�k, t) +
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)P (�k + Iic − Ijs, t)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)P (�k + Iic + Ijs, t), (3.1)

where

Λ(�k) = λ+ + λ− +
n∑

i=1

r∑
c=1

μicu(kic),Φ++
icjs(�k) = μic

kic + 1
r∑

s=1
kis + 1

p−icjs,

Φ+−
icjs(�k) = δ0jδs0

⎛
⎜⎜⎝λ−p−0ic + μic

kic + 1
r∑

s=1
kis + 1

pic0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝μic

kic + 1
r∑

s=1
kis + 1

p−icjs (1 − u (kic))

⎞
⎟⎟⎠

+ δ0iδc1λ
+p+

0jsu(kjs) + δ0iδc0λ
+p+

0jsu (kjs)

+ μic
kic + 1

r∑
s=1

kis + 1
picjs (kjs) , δij =

{
1, i = j

0, i �= j
.
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From (3.1) it follows that

P (�k, t) = e−Λ(�k)t

⎛
⎝P (�k, 0) +

t∫
0

eΛ(�k)x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)P (�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)P (�k + Iic + Ijs, x)

⎞
⎠ dx

⎞
⎠ . (3.2)

Lets Pq(�k, t) – an approximation P (�k, t) at the q-th iteration, Pq+1(k, t) – solution of the
system (3.1) obtained by the method of successive approximations. Then it follows from
(3.2) that

Pq+1(�k, t) = e−Λ(�k)t

⎛
⎝Pq(�k, 0) +

t∫
0

eΛ(�k) x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)Pq(�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(�k)Pq(�k + Iic + Ijs, x)

⎞
⎠ dx

⎞
⎠ . (3.3)

As an initial approximation, we take the stationary distribution P0(k, t) = P (k) =
lim

t→∞P (k, t), which satisfies the relation

Λ(�k)P (�k) =
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(�k)P (�k + Iic − Ijs) +

n∑
i,j=1

r∑
c,s=1

Φ++
icjs(�k)P (�k + Iic + Ijs).

(3.4)
For successive approximations, the following assertions are true.

Theorem 1: Successive approximations Pq(�k, t), q = 0, 1, 2, . . . , converge t → ∞ to a sta-
tionary solution of the system (3.1).

Theorem 2: Sequence
{

Pq(�k, t)
}

, q = 0, 1, 2, . . . , built according to the scheme (3.4), for

any bounded by t zero approximation P0(�k, t), 0 ≤ P0(�k, t) ≤ 1, converges m → ∞ to the
unique solution of the system (3.1).

Theorem 3: Any approximation Pq(�k, t), q ≥ 1 can be represented as a convergent power
series

Pq(�k, t) =
∞∑

l=0

d+−
ql (�k)tl, (3.5)

whose coefficients satisfy the recurrence relations:

d+−
q+1l(�k) =

−Λ(�k) l

l!

{
P (k, 0) +

l−1∑
u=0

(−1)u+1
u!

Λ(�k)u+1
D+−

qu (�k)

}
, l ≥ 0,
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d+−
q0 (k) = P (�k, 0), d+

0l (k) = P (�k, 0)δl0, (3.6)

D+−
ql (�k) =

n∑
i,j=1

[
r∑

s,c=1

Φ+−
icjs(�k)d+−

ql (�k + Iic − Ijs) + Φ++
icjs(�k)d+−

ql (�k + Iic + Ijs)

]
.

4. MODEL EXAMPLE

Consider a network consisting of n = 6 QS, in which positive and negative customers of
three types arrive. Let arriving probabilities of customers to i-th QS be, respectively, equal

p+
0i1 = 0,06; p+

0i2 = 0,06; p+
0i3 = 0,08; i = 2,5; p+

011 = 0,03;

p+
012 = 0,03; p+

013 = 0,04; p+
061 = 0,03;

p+
062 = 0,03; p+

063 = 0,04; p+
032 = p+

042 = p+
052 = 0,06; p+

033 = p+
043 = p+

053 = 0,04; p−0i1 =
p−0i2 = p−063 = 0,05; i = 1,6; p−0i3 = 0,07, i = 1,5; and

∑6
i=1

∑3
c=1 = 1;

∑6
i=1

∑3
c=1 p−0ic =

1. Let the arriving rates of positive and negative customers be respectively equal λ+ =
100 I λ− = 90.

Suppose, that service rates of customers in QS are equal:

μ11 = 50;μ12 = 30;μ13 = 20; μ21 = 50;μ22 = 40;μ23 = 20;μ31 = 50;μ32 = 40;μ33 = 20;

μ41 = 50;μ42 = 40;μ43 = 20, μ51 = 50;μ52 = 30; μ53 = 20;μ61 = 45;μ62 = 45;μ63 = 30.

Let transition probabilities of positive and negative customers between QS be equal:

p+
i111 = 0,04; p+

i112 = 0,03; p+
i113 = 0,03; p+

i121 = 0,08;

p+
i122 = 0,06; p+

i123 = 0,06; p+
i131 = 0,1p+

i132 = 0,05; p+
i133 = 0,05;

p+
i141 = 0,1; p+

i142 = 0,07; p+
i143 = 0,03; p+

i151 = 0,12;

p+
i152 = 0,04; p+

i153 = 0,04; p+
i161 = 0,06; p+

i162 = 0,02; p+
i163 = 0,02;

p+
i211 = 0,06; p+

i212 = 0,02; p+
i213 = 0,02; p+

i221 = 0,1;

p+
i222 = 0,05; p+

i223 = 0,05; p+
i231 = 0,08 p+

i232 = 0,08; p+
i233 = 0,04;

p+
i241 = 0,12; p+

i242 = 0,04; p+
i243 = 0,04; p+

i251 = 0,12;

p+
i252 = 0,04; p+

i253 = 0,04; p+
i261 = 0,04; p+

i262 = 0,03; p+
i263 = 0,03;

p+
i311 = 0,04; p+

i312 = 0,04; p+
i313 = 0,02; p+

i321 = 0,1;

p+
i322 = 0,07; p+

i323 = 0,03; p+
i331 = 0,12 p+

i332 = 0,04; p+
i333 = 0,04;

p+
i341 = 0,1; p+

i342 = 0,05; p+
i343 = 0,05; p+

i351 = 0,12;

p+
i352 = 0,04; p+

i353 = 0,04; p+
i361 = 0,04; p+

i362 = 0,04; p+
i363 = 0,02;

Let we need to find, for example, state probability P (�k, t),�k = (1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2,
2, 3, 3, 2, 1, t), on the condition that state (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) was the
initial. Solving the problem by using the C# programming language, at ε = 10−6, we obtain
the dependence shown in Figure 1.
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Figure 1. State probability (1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 2, 1, t)
on the time interval [0; 8].

The number of terms of the series, calculated according to the formula (3.5) was found
using relations

∣∣∣d+−
ql (k∗)

∣∣∣ ≤ ε, where k∗ : d+−
ql (k∗) = max

�k
d+−

ql (�k), and number of itera-

tions is q, using inequality |Pq+1(1, 1, 1, 2, 2, 2, 3, 3.3, 2, 2, 1, 2, 2, 3, 3, 2, 1, t) − Pq(1, 1, 1, 2, 2,
2, 3, 3.3, 2, 2, 1, 2, 2, 3, 3, 2, 1, t)| ≤ ε. We have obtained that the number of iterations q∗ = 70,
and the terms of the series l∗ = 63.

5. CONCLUSIONS

In this paper, an investigation of the Markovian G-network with multiple classes of positive
and negative customers has been conducted in the case when a negative customer can
destroy one positive customer of its class. For this network, non-stationary state probabilities
were found by the method of successive approximations, combined with the method of series.

Further studies in this direction may be related to the finding with the help of this
method of nonstationary probabilities of the states of queueing networks used in solving
practical problems, for example, for the network described in [9], as well as finding expected
revenues in various networks with revenues and customers with multiple classes.
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APPENDIX A: PROOF OF THEOREM 1

Proof: Spend a proof by induction. We write the expression for the first approximation

P1(�k, t) = e−Λ(�k) t

⎛
⎝P0(�k, 0) +

t∫
0

eΛ(�k)x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)P0(�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)P0(�k + Iic + Ijs, x)

⎞
⎠ dx

⎞
⎠

= e−Λ(�k) t

⎛
⎝P0(�k, 0) +

t∫
0

eΛ(�k)x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)P (�k + Iic − Ijs)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)P (�k + Iic + Ijs)

⎞
⎠ dx

⎞
⎠

= e−Λ(�k) t

⎛
⎝P0(�k, 0) +

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)P (�k + Iic − Ijs)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)P (�k + Iic + Ijs)

⎞
⎠ t∫

0

eΛ(�k)xdx

⎞
⎠

= e−Λ(�k) t

⎛
⎝P0(�k, 0) +

1

Λ(�k)

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)P (�k + Iic − Ijs)

+

n∑
i,j=1

r∑
c,s=1

Φ++
icjs(

�k)P (�k + Iic + Ijs)

⎞
⎠(

eΛ(�k)t − 1
)⎞⎠

−→
t→∞

1

Λ(�k)

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)P (�k + Iic − Ijs)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs

(
�k
)

P (�k + Iic + Ijs)

⎞
⎠ .

It follows that when q = 1 theorem holds. Suppose that the theorem is true until q-th iteration.
Then from (3.3), (3.4) and L’Hospital rule, we shall have:

lim
t→∞Pq+1(k, t) = lim

t→∞

Pq(�k, 0) +
t∫
0

eΛ(�k)x

(
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)Pq(�k + Iic − Ijs, x)

eΛ(�k) t

+

n∑
i,j=1

r∑
c,s=1

Φ++
icjs(

�k)Pq(�k + Iic + Ijs, x)

)
dx

eΛ(�k)t
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= lim
t→∞

eΛ(�k) t

(
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)Pq(�k + Iic − Ijs, t) +
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)Pq(�k + Iic + Ijs, t)

)

Λ(�k) eΛ(�k) t

= lim
t→∞

1

Λ(�k)

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)Pq(�k + Iic − Ijs, t) +
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)Pq(�k + Iic + Ijs, t)

⎞
⎠

= P (�k).

�

Thus the theorem is valid for q + 1. Therefore, using the method of mathematical induction,
we obtain the theorem.

APPENDIX B: PROOF OF THEOREM 2

Proof: Because P0(�k, t) limited in t function, then by virtue of (3.3) P1(�k, t) is also limited, so

∣∣∣∣P1(
⇀

k , t) − P0(�k, t)

∣∣∣∣ ≤ C(�k). (B.1)

We shall show that following inequality holds

∣∣∣Pq(�k, t) − Pq−1(�k, t)
∣∣∣ ≤ C∗ (α∗

1 + α∗
2

)q−1 tq−1

(q − 1)!
, (B.2)

where

max
�k

α1(�k) = α∗
1, max

�k
α2(�k) = α∗

2,

α1(�k) =

n∑
i,j=1

r∑
c,s=1

Φ+−
icjs(

�k), α2(�k) =

n∑
i,j=1

r∑
c,s=1

Φ+ +
icjs(

�k),

max
�k

C(�k) = C∗. (B.3)

As it was shown previously, a series ϕ1(�k) converges. Under q = 1, according to (B.1) this
inequality is satisfied. Assume that it is performed when q = N , and we will show, using (3.3), it
holds when q = N + 1. We have:

∣∣∣PN+1(�k, t) − PN (�k, t)
∣∣∣

=

∣∣∣∣∣∣e−Λ(�k)t

⎛
⎝PN (�k, 0) +

t∫
0

eΛ(�k) x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)PN (�k + Iic − Ijs, x)

| +
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)PN (�k + Iic + Ijs, x)

⎞
⎠ dx

⎞
⎠
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− e−Λ(�k) t

⎛
⎝PN−1(�k, 0) +

t∫
0

eΛ(�k) x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)PN−1(�k + Iic − Ijs, x)

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)PN−1(�k + Iic + Ijs, x)

⎞
⎠ dx

⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣∣e−Λ(�k)t

⎛
⎝ t∫

0

eΛ(�k) x

⎛
⎝ n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)
∣∣∣PN (�k + Iic − Ijs, x) − PN−1(�k + Iic − Ijs, x)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣e−Λ(�k) t

⎛
⎝ t∫

0

eΛ(�k)x

(
α∗

1C∗ (α∗
1 + α∗

2

)N−1 tN−1

(N − 1)!
+ α∗

2C∗ (α∗
1 + α∗

2

)N−1 tN−1

(N − 1)!

))∣∣∣∣∣

≤
∣∣∣∣∣∣e −Λ(�k) t

⎛
⎝ t∫

0

eΛ(�k)xC∗ (α∗
1 + α∗

2

)N xN−1

(N − 1)!
dx

⎞
⎠
∣∣∣∣∣∣ .

Because e−Λ(�k)teΛ(�k) x ≤ 1 at x ∈ [0, t], the

e−Λ(�k)t

t∫
0

eΛ(�k)x xN−1

(N − 1)!
dx ≤

t∫
0

xN−1

(N − 1)!
dx =

tN

N !
(B.4)

From (B.3) follows that the inequality (B.1) occurs.
Because

lim
q→∞Pq(�k, t) = lim

q→∞

(
P0(�k, t) +

m−1∑
n=0

(
Pq+1(�k, t) − Pq(�k, t)

))

= P0(�k, t) +
∞∑

q=0

(
Pq+1(�k, t) − Pq(�k, t)

)

≤ P0(�k, t) + C∗
∞∑

q=0

(α∗
1t + α∗

2t) q

q!
= P0(k, t) + C∗eα∗

1t+α∗
2t,

i.e. the limit of the sequence
{

Pq(�k, t)
}

, q = 0, 1, 2, . . . , exists, denote it by P∞(�k, t). If we substitute

P∞(�k, t) to (3.3) instead of P (�k, t), we see that P∞(�k, t) is a solution of equation (2.1), satisfying

the initial conditions P∞(�k, 0) = P (�k, 0) according to the conditions of the previous theorem.
Let’s prove the uniqueness of the solution. Assume that there is another solu-

tion P ∗(k, t), then we have (3.2), if we replace in it P (�k, t), P (�k, 0), P (�k + Iic − Ijc),

P (�k + Iic + Ijc), respectively by P ∗(�k, t), P ∗(�k, 0), P ∗(�k + Iic − Ijs), P
∗(�k + Iic + Ijs). Therefore,

using (3.3) we obtain:

∣∣∣Pq(�k, t) − P ∗(k, t)
∣∣∣ ≤ e−Λ(k) t

∣∣∣Pq(�k, t) − P ∗(�k, t)
∣∣∣+ e−Λ(�k) t

t∫
0

eΛ(�k)x

×
t∫

0

eΛ(�k)x
n∑

i,j=1

r∑
c,s=1

Φ+−
icjs(

�k)
∣∣∣Pq(�k + Iic − Ijs, x) − P ∗(�k + Iic − Ijs, x)

∣∣∣

+
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)
∣∣∣Pq(�k + Iic + Ijs, x) − P ∗(�k + Iic − Ijs, x)

∣∣∣ dx.
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Similarly, as in the proof of inequality (B.2), we can show that∣∣∣Pq(�k, t) − P ∗(�k, t)
∣∣∣ ≤ M(α∗

1 + α∗
2)q(tq/q!). The right side of this inequality tends to zero

as the general term of a convergent series
∑∞

q=0 M(α∗
1 + α∗

2)
q tq

q! = M(�k) e (α∗
1+α∗

2)t, Therefore

lim
q→∞Pq(�k, t) = P ∗(�k, t). Previously we received that lim

q→∞Pq(�k, t) = P (�k, t), it means P ∗(�k, t) =

P (�k, t), which proves the uniqueness. �

APPENDIX C: PROOF OF THEOREM 3

Proof: Let us prove that the coefficients of the power series (3.5) satisfy the recurrence relations
(3.6). We substitute successive approximations (3.5) in (3.3). Then with

e
−Λ

(
⇀
k

)
t

t∫
0

eΛ(�k)xxldx =

[
1

Λ(�k)

]l+1

l !
∞∑

j=l+1

[
−Λ(�k)

]l
j!

, l = 0, 1, 2, . . . ,

we obtain

∞∑
l=0

d+−
ql (�k)tl = e−Λ(�k) tP (�k, 0) +

∞∑
l=0

n∑
i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs (�k) d+−

ql (�k + Iic − Ijs)

+ Φ++
icjs (�k)d+−

ql (�k + Iic + Ijs)

⎤
⎦ .

Using the notation (3.6), this series can be written as

∞∑
l=0

d+−
ql (�k)tl = e−Λ(�k) tP (�k, 0) +

∞∑
l=0

D+−
ql (�k)

[
1

Λ(�k)

]l+1

l!

∞∑
u=l+1

[
−Λ(�k)

]u
u!

tu.

Interchanging summation indices and expanding e−Λ(�k)t to series in powers t, we get

∞∑
l=0

d+−
ql (�k)tl =

∞∑
l=0

[
−Λ(�k)

]l
l!

⎧⎪⎨
⎪⎩P (�k, 0) +

l−1∑
u=0

(−1)u+1 u![
Λ(�k)

]u+1
D+−

qu (�k)

⎫⎪⎬
⎪⎭ tl. (C.1)

Equating the left and right side of the expression (C.1) the coefficients of tl, we obtain (3.6) for
the coefficients of the series (3.5).

To find the radius of convergence of the power series (3.11) we use the Cauchy-Hadamard

formula (1/(R(�k)) = lim
l→∞

l

√∣∣∣dql(�k)
∣∣∣.

From (C.1) it follows that
∣∣∣d+−

q+1l(
�k)
∣∣∣ =

Λ(�k) l

l!

∣∣∣∣P (�k, 0) +
∑l−1

u=0
(−1)u+1u!

Λ(�k)u+1
D+−

qu (�k)

∣∣∣∣ ,
l ≥ 0.
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We shall show that
∣∣∣D+−

qu (�k)
∣∣∣ , q ≥ 1, u = 0, l − 1, limited to a finite value C1(�k). From the

boundedness of P (�k, 0) and determination of D+−
qu (�k) follows

D+−
00 (�k) =

n∑
i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs(

�k)d+−
00

(
k + Iic − Ijs, t

)
+ Φ++

icjs(
�k)d+−

00

(
k + Iic + Ijs, t

)⎤⎦ ,

≤ C+−
00 (�k),

where C+−
00 (�k) – some bounded value, and all D+−

0l (�k) = 0, l = 1, 2, . . . Because the D+−
q−10(

�k) =

D+−
q−20(

�k) = . . . = D+−
10 (�k) = D+−

00 (�k) then from (3.6) follows D+−
q−10(

�k) < C+−
00 (�k), q ≥ 1.

By induction, we show that

∣∣∣D+−
q−1l(

�k)
∣∣∣ ≤ C+−

q−1l(
�k)

l!
, l = 1, 2, . . . (C.2)

For l = 1 we have:

D+−
q−11 (k) =

n∑
i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs(

�k) d+−
q−11(

�k + Iic − Ijs) + Φ++
icjs(

�k) d+−
q−11(

�k + Iic + Ijs)

⎤
⎦

=
n∑

i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs(

�k) (−Λ(�k + Iic − Ijs) P (�k + Iic − Ijs, 0)

+ D+−
q−10(

�k + Iic − Ijs)) +
n∑

i,j=1

r∑
c,s=1

Φ++
icjs(

�k)

× (−Λ(�k + Iic + Ijs) P (�k + Iic + Ijs, 0) + D+−
q−10(

�k + Iic + Ijs))

≤
C+−

q−11(
�k)

1!
,

where C+−
q−11(

�k) – a certain bounded value. Suppose that (C.2) holds for l-1, i.e.

∣∣∣D+−
q−1l−1(

�k)
∣∣∣ ≤ C+−

q−1l−1(
�k)

(l − 1) !
, l = 1, 2, . . . (C.3)

Let us prove the validity of inequality (C.2) for l. Using (C.1), we get

D+−
q−1l(

�k) =
n∑

i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs(

�k) d+−
q−1l(

�k + Iic − Ijc) + Φ++
icjs(

�k) d+−
q−1l(

�k + Iic + Ijc)

⎤
⎦

=

n∑
i,j=1

⎡
⎣ r∑

c,s=1

Φ+−
icjs(

�k) ×
[
−Λ(�k + Iic − Ijs)

]l
l!

×

⎛
⎜⎝P (�k, 0) +

l−1∑
u=0

u! (−1)u+1[
Λ(�k + Iic − Ijs)

]u+1
D+−

q−1l−1(
�k + Iic − Ijs)

⎞
⎟⎠
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+

n∑
i,j=1

⎡
⎣ r∑

c,s=1

Φ++
icjs(

�k)

[
−Λ(�k + Iic + Ijs)

]l
l!

×
⎛
⎝P (�k + Iic + Ijs, 0) +

l−1∑
u=0

u! (−1)u+1[
Λ(�k + Iic + Ijs)

]
u+1

D+−
q−1l−1(

�k + Iic + Ijs)

⎞
⎠.

Let’s C1(�k) = max
q,l

C+−
ql (�k), then

D+−
q−1l(

�k) ≤
n∑

i,j=1

⎡
⎢⎣ r∑

c,s=1

Φ+−
icjs(

�k) ×
[
−Λ(�k + Iic − Ijs)

]l
l!

×

⎛
⎜⎝P (�k, 0) +

l−1∑
u=0

u![
Λ(�k + Iic − Ijs)

]u+1

C1(�k + Iic − Ijs)

u!

⎞
⎟⎠
⎤
⎥⎦

+
n∑

i,j=1

⎡
⎢⎣ r∑

c,s=1

Φ++
icjs(

�k)

[
−Λ(�k + Iic + Ijs)

]l
l!

×

⎛
⎜⎝P

(
�k + Iic + Ijs, 0

)
+

l−1∑
u=0

u![
Λ(�k + Iic + Ijs)

]u+1

C1(�k + Iic + Ijs)

u!

⎞
⎟⎠
⎤
⎥⎦

≤ 1

l!

n∑
i,j=1

⎡
⎢⎣ r∑

c,s=1

1∑
η,ν=0

Φicjs(�k)
[
−Λ(�k)

]l ⎛⎜⎝P (�k, 0) + C1(�k + Iic − Ijs)

l−1∑
u=0

1[
Λ(�k)

]u+1

⎞
⎟⎠
⎤
⎥⎦

≤
C+−

q−1l(
�k)

l!
,

where C+−
q−1l(

�k) – the expression in the curly brackets, i.e., inequality (C.3) holds.
Consider the expression

1

R(�k)
= lim

l→∞
l

√√√√Λ(�k) l

l!

∣∣∣∣∣P (�k, 0) +

l−1∑
u=0

(−1)u+1 u!

Λ(�k)u+1
D+−

qu (�k)

∣∣∣∣∣
≤ Λ(�k) lim

l→∞
l

√√√√ 1

l!

∣∣∣∣∣P (�k, 0) +

l−1∑
u=0

(−1)u+1 u!

Λ(�k)u+1

C+−
q−1u(�k)

u !

∣∣∣∣∣
≤ Λ(�k) lim

l→∞
l

√√√√ 1

l !

∣∣∣∣∣P (�k, 0) + C1(�k)

l−1∑
u=0

(−1)u+1

Λ(�k)u+1

∣∣∣∣∣
≤ Λ(�k) lim

l→∞
l

√
1

(l − 1) !
lim

l→∞
l

√√√√(
P (�k, 0)

l
+

C1(�k)

l

l−1∑
u=0

1

Λ(�k)u+1

)
. (C.4)

Because the

Sl−1(�k) =

l−1∑
u=0

1[
Λ(�k)

]u+1
=

⎧⎪⎪⎨
⎪⎪⎩

1 −
[
Λ(�k)

]−l

(Λ(�k) − 1)
, Λ(�k) �= 1

l, Λ(�k) = 1

,
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To

lim
l→∞

Sl−1

l
=

⎧⎨
⎩

0, Λ(�k) > 1

1, Λ(�k) = 1
. (C.5)

It was shown in [6] that lim
l→∞

l

√
1

(l−1)!
= 0.

Under 0 < Λ(�k) < 1, using (C.5) on the right side (C.4), we have:
l−1∑
u=0

1[
Λ(�k)

]u+1 =

1−
[
Λ(�k)

]−l

(
Λ(�k)−1

) = al−1
1−a , where a = (1/Λ(�k)) > 1, therefore,

lim
l→∞

l

√
1

l!
lim

l→∞
l

√√√√√P (�k, 0) + C1(�k)

l−1∑
u=0

1[
Λ(�k)

]u+1
= lim

l→∞
l

√
1

l!
lim

l→∞
l

√
P (�k, 0) +

C1(�k)

1 − Λ(�k)

(
al − 1

)
,

But
l
√

b + cal ≤ l
√

b +
l
√

cal = l
√

b + a l
√

c, therefore lim
l→∞

l
√

b + cal ≤ lim
l→∞

b
1
l + a lim

l→∞
c

1
l =

1 + a – a bounded quantity. Then, considering that lim
l→∞

l

√
1
l! = 0, we obtain that (1/R (�k)) = 0.

Therefore, the radius of convergence of the power series (3.5) is equal to +∞. �
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