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Abstract
The paper models the unorganized chaining behavior, where humans need to walk in a chain due to a constrained
environment. Detection and tracking are done using a 3D LiDAR, which has the challenges of environmental noises,
uncontrolled environment, and occlusions. The Kalman filter is used for tracking. The trajectories are analyzed and
used to train a behavioral model. The modeling has applications in socialistic robot motion planning and simulations.
Based on the results, we conclude that the trajectory prediction by our approach is more socialistic and has a lesser
error when compared to the artificial potential field method.

List of symbols

Symbols Description

Detection

P(t) Input point cloud at time t
P′(t) Processed point cloud using a pass-through filter
p(px, py, pz) Single point in the input point cloud
[Xmin ,Xmax], [Ymin ,Ymax], [Zmin ,Zmax] Range in X, Y, and Z coordinates for a pass-through filter
Moving (t) Points corresponding to moving people at time t
d() Distance function
η Distance threshold between consecutive frames, above which

an entity is called moving
Moving’(t) Moving points after outlier removal
δ (p) neighborhood function (k-nearest neighbors)
D (pi) Average distance of point pi with neighbors
D and σ (D) Average distance and standard deviation of all points in the

point cloud with their neighbors
α Maximum Z-score after which a point is called an outlier
C Set of clusters (moving people)
fixed(p) Point is a part of a cluster?
c Candidate cluster
E Distance threshold for inclusion of points in the Euclidean

clustering
zj (t) Centroid of the jth cluster at time t
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Symbols Description

Tracking and Kalman filter
κ (i) Correspondence function
zκ(i) (t) Observation
Si (t) Updated estimate/state after observation
pi (t) Process covariance matrix after observation
Ŝi (t) Predicted state before observation
A and A′ State transition matrix and its transpose
p̂i (t) Process covariance matrix before observation
W (t) Gaussian motion noise
Ki (t) Kalman gain
H and H ′ Observation matrix and its transpose
R (t) Process noise covariance
I Identity matrix
T Time-annotated trajectories of all persons
K Set of all Kalman trackers for all detected persons
� Predicted positions of all persons using respective tracker
A Distance threshold for correspondence matching
tlast Last time when the person was observed
B Maximum invisibility time after which a person is said to have

left
Learning and modeling
Si, Si

ahead,1 and Si
ahead,2 Position of the ith person, first, and second person ahead of

person i
Si

ahead All persons ahead of Si
θi, θi,1 and θi,2 Current orientation of person i, angle of first and second

person ahead of person i relative to θi
αij Angle of person j relative to the walking direction of person i
vi, vi,1 and vi,2 Linear speed of the ith person, first, and second person ahead

of person i
ωi, ωi,1 and ωi,2 Angular speed of the ith person, first, and second person ahead

of person i
θi,goal Angle to goal of person i
Support Vector Regression
fmotion Motion feature
W Weight
B Bias
y, O(fmotion) Output produced by SVR
Lϑ () Loss function
ϑ Error tolerance
Performance
τi,predicted Predicted trajectory
τi,actual Actual trajectory
d

(
τi,predicted , τi,actual

)
Average distance error

χ
(
τi,predicted , τi,actual

)
Prediction accuracy

E (a, b) Distance between a and b less than a threshold ε?
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1. Introduction

The classic problem of robot motion planning asks the robot to go from the current place to the goal,
while avoiding obstacles and optimizing against the objectives of path length, smoothness, etc. Despite
the success in the field, the robots are still not considered safe for operating amidst humans as they do
not consider the social conventions expected by humans. A human expects an oncoming robot or a robot
ahead to give way by drifting at a socially compliant side, while also not coming too close even if that
is otherwise safe.

The paper has an application in social robot motion planning. Robots are now operating in workspaces
amidst humans, and therefore should obey the same social etiquette as humans. Humans often expect
each other to act in a certain way and if a human does something contradictory, it causes social discom-
fort. Therefore, robots must understand and display the same conventions. If the robots are to operate
amidst humans, they must adhere to social conventions. Our long-term aim is to make a navigation
model, where robots show social etiquette learned from humans. Our focus is on modeling rare behaviors
that are often neglected, and therefore cannot be learned from a general database of human trajectories.
The learned model will be loaded on a robot that will act socially when moving alongside humans.

In addition to this, it is important to predict the future trajectory of each person in real time. The pre-
dicted trajectories are useful for performing safe navigation of the robot. A robot must know the intention
and the trajectories of all dynamic entities for planning. In the case of multiple robots, the trajectories
can be communicated. However, for humans, the trajectories and intent must be guessed by the robot.
The guess must incorporate the social conventions as displayed by humans.

Another common application is crowd simulation, where a study of human behavior enables mea-
suring the efficiency of crowd management systems, possible situations in case of an emergence,
scheduling events to avoid congestion, etc. Simulations enable computing time within which the facility
can be vacated, congestion levels at different times, average speeds possible, etc. This requires socially
modeling the different agents and simulating them using learned models.

With the advancement of technology, detection and tracking are widely used in the area of robotics
to extract the trajectory of humans and to model the walking patterns, human behaviors while mov-
ing, etc. Robots must learn the observed human navigation characteristics. In the context of robotics,
it is essential to calculate the present and future location of each person with respect to the robot for
collision-free and socially compliant navigation. In various applications, pedestrian detection and their
future location prediction can be used for discovering abnormal activity or safety purposes. Autonomous
vehicles are getting more attention recently because their driving is more secure [1] and for transportation
efficiency [2].

In general, the problem of learning the behavior from such data are hard because each person has
a different behavior that depends upon the situation, person, and also the behavior of the neighbors.
Our approach here is to separately learn and model the different atomic behaviors while accepting that
the choice of the displayed behavior may be a personal endeavor and hard to model. As an example,
in a situation, some people may prefer overtaking a person, and some may prefer following the person.
In a situation, some people may prefer waiting for an oncoming person, while others may aggressively
walk in.

The choice of behavior here is an unorganized chain in dense environments. Consider the situation
where many people are attempting to get downstairs, which has a limited capacity. Hence, a queuing
will happen and the people will follow an organized queue. The difference between an unorganized
queue and an organized queue is that in an unorganized queue some lateral movement is possible and
the people may not necessarily be exactly behind one another. Similarly, such a behavior develops while
navigating in dense environments within corridors, walkways, entry points, etc. Such behavior is rarely
studied, though it forms a dominant behavior faced by humans in everyday lives.

3D object detection plays an essential role in the visual perception system of robots. In general,
the robots are equipped with several sensors such as lidar, cameras. Unlike many popular pieces of
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literature, a 3D LiDAR is used for tracking human behavior for learning instead of a video camera
to limit the noises coming from the projection of a 2D camera into 3D. The laser scanner provides
accurate depth information, which increases the performance and accuracy. We aim at highly accurate
3D localization of humans in the real world. The people typically may have small distances between
themselves in situations and noises can be highly dangerous in such scenarios. Some recent approaches
draw 3D window in voxel grid and use CNN [6, 7]. Also, a stereo camera is not used because it typically
has a highly limited field of view.

We had some past experience collecting such data using actors. However, the behavior of the actors
was observed to be highly biased toward the instructions given, which does not display a natural
behavior. Several other works have been done for replicating the movement of mobile agent such as refs.
[3]–[5], but these models are applicable for simple movements and are not good enough for modeling the
motion of the mobile user in natural scenarios, that’s why these are not practical in real environments.
Our approach deals with the natural environment of the crowd, and to model their behavior using their
trajectory with their social interactions. Hence, for this paper, all data are collected from natural envi-
ronments, which also pose the problems of occlusions, noises, and limited field of view that had to be
dealt with by detection and tracking algorithms.

The recorded human motion is then subjected to learning. Conventional approaches attempt to regress
the parameters of algorithms like the social potential field for the modeling of human behavior. However,
human behavior may have characteristics that are not represented in the model and thus are never dis-
played. Therefore, a learning-based approach is used for the modeling, where the behavior is a function
of the distances and angles of the neighbors and the intended direction of motion. Many learning-based
approaches aim to learn a complete navigation function, which is highly dependent upon the person and
context, and hence the model generalizes only to situations similar to the training data. Furthermore,
the learned model may not learn the rare behaviors that occur infrequently and may mostly learn the
behaviors of avoiding the neighboring people and obstacles. Here, we instead learn a specific behavior
of motion within an unorganized chain.

In this paper, we deal with a densely crowded place on our university campus, where people are
moving toward their class and some of them are leaving the class after completion of lecture. All people
move naturally, and a natural behavior is observed here. Here, an unorganized chaining behavior is
observed and analyzed when people go in a bunch toward the same goal. Each individual has slightly
different dynamics, constraints, and behaviors. While moving, a homogenous interaction corresponds
to how two persons in close proximity affect each other’s motion.

It is observed that the trajectory predicted by the model is correct and closer to the ground truth.
We also compare the performance of our approach. The performance is compared with the artificial
potential field method. It is observed that the learned model is much better than the potential field
method. The trajectory predicted by our approach is more natural, including modeling the turns, and
gives an overall smaller average distance error when compared to the potential field method.

Main Contributions: The main contributions of the approach are as follows:

(i) Unorganized chaining behavior is introduced and analyzed. This behavior is observed when a group
of people moves together toward the same goal, for which they need to pass through a gate or
corridor with a limited capacity. A chain is formed automatically so that people can pass through
without any collision, here referred to as the unorganized chain. The behavior is different from an
organized chain where every person follows the person in front, for which a lot of work has been
done in the literature.

(ii) The unorganized chaining behavior is modeled in a data-driven approach and following learning-
based modeling. Data are collected by a Quanergy 3D LiDAR and using the same data, all moving
people are detected and tracked. While tracking, we deal with the challenges of occlusions and
correspondence matching due to a large crowd density. Kalman filter is used for preparing the
trajectory database, which is used for training the model.
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(iii) The study is done by observing the natural motion of the humans in natural spaces, without incor-
porating actors who are specifically briefed for the task. Many socialistic studies use human actors
who behave synthetically and behave as per the briefing given that result in non-socialistic results.
In this study, the humans displaying the explicit behavior are tracked while they were moving
naturally as per their daily routine.

(iv) The results demonstrate better performance when compared to the widely used potential field
approach. The trained model can predict a person’s future trajectory better when compared to the
artificial potential field method.

Limitation. It is also good to consider the major limitations of the work, which are as follows:

(i) The paper analyzes a single behavior only. Humans display a wide range of behaviors that must
all be modeled for a realistic overall simulation and planning. While a lot of literature is available
on obstacle avoidance, goal-seeking, and other behaviors, it cannot be ascertained that these are
the only behaviors in human navigation. Further, the boundary cases between the unorganized
chaining behaviors and the other behaviors are yet to be identified. Specifically, the interaction
between unorganized chaining, obstacle avoidance, and interaction between different unorganized
chains are interesting aspects to study in the future.

(ii) The proposed work does not exhaustively cover all types of unorganized chaining possible. The
human spaces are easy to classify as narrow resulting in chaining and sufficiently wide spaces
where no chaining takes place, and the models are generalizable to most narrow spaces that can
result in unorganized chaining. However, studying human behavior across different geographical
conditions and maps can uncover new patterns of unorganized chaining.

(iii) In the assessment of socialistic behaviors like overtaking, goal-seeking, etc., the behavior of the
person is largely affected by the social interaction with the neighbors. Friends generally keep a
small socialistic distance from each other while moving, while the distance increases in the case
of a lack of acquaintance between people. Similarly, the speed is larger in case of urgency. The
unorganized chaining behavior is specifically lesser prone to such factors as the chain moves much
slower and the distances maintained between people are reasonably smaller. This is attributed to
the fact that everybody following a chain intends to move out as quickly as possible. The effects of
human personal attributes and acquaintance level still need to be formally studied.

(iv) The overall aim of the work is to make a robot behave socially accounting for the same etiquettes as
displayed by humans. Robots may have different constraints and social acceptance and such factors
affect modeling, which needs to be studied in the future.

(v) The learned model is tested on simulations, which needs to be extended to real mobile robots
operating amidst humans. The work assumes a fairly accurate knowledge of the people ahead of
the robot, which will require vision algorithms that have not been developed yet.

2. Literature survey

2.1. Pedestrian detection and tracking using a 3D LiDAR

3D LiDAR provides the data in the form of a point cloud and most of the existing approaches encode
the point cloud into voxel grid representation. In Vote3D [6] and Sliding Shape, [8] geometric features
were extracted from the point cloud and then an SVM classifier was applied on 3D grids, which were
encoded with the geometric feature. It used depth information for overcoming the major difficulties such
as occlusion, variation in texture, shape, viewpoint, clutter, sensor noise, and illumination. Recently,
Convolutional Neural Network (CNN) is widely used in the area of object classification and detection
due to its accuracy in the result. Here, we have mentioned some state-of-the-art CNN-based approaches
for object detection in the 3D point cloud. In a recent approach, CNN [7, 9, 10] was used to improve
the feature representation, but it required a high computation. This computational cost can be improved

https://doi.org/10.1017/S0263574721000679 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000679


Robotica 549

by projecting the point cloud in an image plane [11] or ground plane [12, 13]. Here, the data were
represented in a 2D point map and a single 2D fully convolutional network was used for predicting the
full 3D bounding box [11]. 3D LiDAR provides a dense point cloud, which contains more information
about the environment when compared to other camera and also provides rich information about the
person’s location. In literature, [14, 15, 16], pedestrians were detected using 3D LiDAR and the result
analysis showed its effectiveness and accuracy of detection. Lidar generates a point cloud of the object,
but when the object goes away, then its point cloud density reduces. This is a challenging problem
because it directly affects the result of detection and that’s why density enhancement can solve this
issue and easily detect the human in a long range [14]. These dense point clouds can help to detect and
localize the pedestrians more reliably. In another approach [17] a new feature for human classification in
a sparse and long-range point cloud was used from tracking and trajectory analysis. It can be utilized for
classification so that in case of a sparse point cloud, all humans are detected correctly, even those who
are far away from the laser scanner. Recent approaches such as PointPillars, [18], Frustum PointNets,
[19], AVOD, [12] and MV3D [13] are based on deep neural network architecture that takes Lidar point
clouds and RGB images as input for generating complex features of the object from 3D point cloud and
predict oriented 3D bounding boxes. These methods achieve a high detection performance. In MV3D,
[13], the sparse 3D point cloud was encoded with multiple view representation and the network was
formed by two subnetworks. The first was for object proposal generation, which was used for generating
a 3D candidate box and the second one was for multi-view feature fusion that combines features from
multiple views.

Tracking has also been applied to detect humans for estimating their position. Recently, various
approaches have been proposed for tracking such as Kalman filter, [20], Particle filter, joint probabilistic
data association [21, 22]. In this paper, we have used the Kalman filter for tracking. It was also used to
solve the correspondence problem and to separate the trajectory of each person. Similarly, several stud-
ies are there in the area of tracking in suburban districts where the background is simple and sometimes
occlusions occur [23, 24, 25].

In a recent work, Dequaire et al. [26] proposed an end-to-end trainable framework that predicted a
fully un-occluded occupancy grid from the raw input. This framework learned the model in an unsuper-
vised manner. This approach was based on deep tracking [27]. Here, the framework focused on learning
to track in a real situation where the sensor can be static or dynamic. Methods based on deep tracking
perform better than the traditional approaches and predict the location of the human, car, and cyclist
accurately even in case of complete occlusion. Tracking pedestrian in traffic is a challenging problem
because of the cluttered background and high occlusions. Gao et al. [28] proposed a layered graph model
for reliable multi-pedestrian tracking using RGB-D image. To solve the high 3D occlusion, a new strat-
egy was proposed. Real-time tracking is a challenging problem and most of the algorithms suffer from
low accuracy and uncertain background. Held et al. [29] proposed an approach for real-time tracking,
namely annealed dynamic histograms. In this approach, 3D shape, colors, and motion cue information
were combined so that the tracker becomes capable of tracking all moving objects more accurately than
using one or two cues. Recently, Lee et al. [30] proposed a method of tracking based on the road pedes-
trians using multiple moving camera recordings. It also determined whether a person belonged to one
or more cameras using an associated likelihood of a tracked person, which was computed based on the
motion cue and appearance feature of the tracked person.

The approach of object detection in 3D LiDAR is only applicable for detecting their location in point
cloud, but this is not enough for various applications such as trajectory prediction, intent recognition,
and social interaction. Pedestrian orientation from a single frame image was estimated by considering
this problem as a multi-classification problem, where orientation was discretized into a fixed number of
bins [31, 32]. Approach in ref. [31] consisted of three steps. Initially, it had a bounding box, which was
defined in terms of histogram features, its aspect ratio, and size. Then, the viewing angle was predicted
under the assumption that the object instance is contained in the bounding box. Finally, a single classifier
was used to tune the viewpoint so that it can confirm that the object exists in the estimated bounding
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box. Another approach considered pedestrian orientation as a regression problem [33, 34] and estimated
the pedestrian pose.

The different approaches are also summarized in Table I. The tracking presented in this paper has
the unique challenges of a very small amount of data, high occlusion, a low-resolution lidar sensor,
and a further small resolution of data due to distant people; because of which it is neither possible to
learn data-rich models, nor to use conventional detection techniques. Hence, the aim is to complement
detection with tracking for accurately extracting the trajectories from the point cloud data.

2.2. Prediction algorithm

Human motion has been widely studied, and based on research in motion analysis, several models are
proposed that are used to mimic the movement of the mobile agents and to simulate their mobility
patterns using algorithms such as Monte Carlo Simulation, [35], Levy walk mobility model, [5], Gauss–
Markov mobility [36]. These approaches are not applicable for the real-world scenario, but there are
several efforts that have been tried for making these models applicable for real worlds. Another widely
used approach of trajectory prediction based on Markov models is the Hidden Markov Model. In ref.
[37], a specific rule was proposed for moving from one place to the other. Later, its performance was
improved by adding the user behavior of the particular situation [38].

Machine learning and deep learning are also involved in improvements. Recent approaches based on
deep learning perform a multiuser multistep trajectory prediction [39]. LSTM network has been used
to understand the mobility pattern of the mobile agent from a historical trajectory, and then it is used
to predict the future trajectory. Another approach based on deep learning is that it extracts the visual
feature of the target object and sequential position information about the object. Information combined
was used to predict the future trajectory [40]. Understanding the activity of the people in the real world
and identifying their coherent behavior makes the prediction of the trajectory more reliable. In earlier
work, a framework was proposed where multiple individuals were tracked and their activity such as
walking, interaction was observed by isolating them. These coherent behaviors make the prediction of
the trajectory more effective and natural. We have applied a similar idea in our paper. First, we track
all people walking in natural scenarios and their activity was analyzed. Then, we obtain a natural unor-
ganized chain formed by a group of people moving from one place to another, followed by trajectory
prediction.

Most of the models learn the movement pattern using a trajectory database for specific behavior.
Trajectory for specific behaviors is clustered, which is used by the models [41, 42] to predict the future
location of the person. In a recent work, the recurrent neural network was successful for sequence pre-
diction and social LSTM [43] based on handcrafted functions such as social force was proposed that
learned the human movement pattern and then predicted the future route. Trajectory prediction algo-
rithms are also involved in robotics [44, 45, 46, 47]. These approaches make a mobile robot capable of
finding safe navigation in a crowded environment without any collision.

Unlike the approaches, the aim here is to learn a specific behavior that is neither actively studied, nor is
observed in generic navigation to be naïvely observed. Unlike the discussed approaches, synthetic means
to generate a large volume of data were rejected to make the data realistic, while the learning was done
on a limited amount of data collected on the specific behavior. The approach hence does not surrender
to mere parameter optimization on known motion models that may not capture hidden behaviors, uses
simple learning techniques so as not to require a very large amount of data, and is modeled on a specific
behavior to make it easier to learn as a machine learning problem.

2.3. Social robot motion planning

Even though the focus of the paper is for modeling human behavior, the social robot motion planning
techniques are very briefly discussed since they form a dominant application area. Mobile robots have
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Table I. A summary of the literature on pedestrian detection and tracking using a 3D LiDAR.

S.No. Paper Description

1 [6] 3D object detection using a sliding window approach. Sparse searching with a voting scheme was used for algorithmic speedup,
equivalent to that obtained for a sparse CNN

2 [7] 3D object detection using CNN. Sparse convolution using a voting scheme (similar to ref. [6]) was used for a speedup creating a
new benchmark

3 [8] 3D object recognition using depth maps and SVM. The training was done using synthetic depth maps created from CAD models.
The model showed higher average precision when compared to DPM and RCNN

4 [9] CNN-based approach including Region Proposal Network for geometric features and 2D image features for a 2D+3D joint object
recognition network. Two-hundred times faster than sliding shapes

5 [10] 3D fully convolutional network for 3D detection. The performance was verified on the vehicle detection problem using the KITTI
datasets

6 [11] An improvement over [10]. The approach presents the data in a 2D point map and uses a single 2D fully convolutional network for
predicting the full 3D bounding box and object confidence score

7 [12] Recognition using point cloud and RGB image for generating sharable features. Region Proposal Network and second stage detector
were used for category classification and 3D bounding box prediction for road scenes

8 [13] Multi-view 3D network for 3D object detection in road scene using both lidar point cloud and image. An object proposal network
generated a 3D candidate box and a multi-view feature fusion network encapsulated features from multiple views

9 [14] Density enhancement in the point cloud (as far-away objects in a lidar have a poor resolution) with an evaluation metric of the local
coordinate system to select good shape parameters and RBF-based interpolation. The approach also checked for object geometric
shape fitting

10 [15] Fast object extraction and classification in lidar point cloud by utilizing a deep learning-based object appearance model and
contextual scene analysis to separate between façade and short objects

11 [16] KAIST multi-spectral dataset was provided for autonomous vehicle scenarios in driving in all time slots such as morning, evening,
and night

12 [17] Online learning approach based on 3D LiDAR cluster detector, multi-target tracker, human classifier, and sample generator for
detecting humans by a mobile robot. The detections were used to further train the network

13 [18] 3D object detector by representing point cloud features organized in a vertical column or Pillar to be usable by a standard 2D
convolutional detector for predicting a 3D bounding box. This approach could run at a speed of 62 Hz

14 [19] Object detection technique by using a mature 2D detector to reduce the search space in the point cloud. Advanced 3D deep learning
was used for localization in the presence of occlusion or a sparse point cloud
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Table I. continue.

S.No. Paper Description

15 [20] A mathematical model was proposed for studying the motion of any object. Our work uses a similar technique for tracking humans
based on point cloud data

16 [21] Single target tracking was performed by using a filter-based approach and nearest-neighbor association technique for data association

17 [22] Joint Probabilistic Data Association was used for multi-target tracking, with accurate detection in noisy and occluded environments.
The approach showed a better performance in molecular application and pedestrian tracking

18 [23] Pedestrian detection in a busy zone using depth and appearance-based information from the video. Ground plane estimation was
also done. The approach was unable to provide accurate 3D information

19 [24] Stereo image-based pedestrian detection, localization, and tracking from a moving vehicle. The region of interest was segmented,
and features extracted were used for classification. Tracking was used to estimate the velocity of the person, which is useful for path
planning

20 [25] Multi-cue vision system for pedestrian detection and tracking. Cascade module with a tight integration of stereo-based ROI
generation, shape-based detection, textured classification, and dense stereo-based verification was used

21 [26] Tracking buses, cars, cyclists, and pedestrians in both static and dynamic platforms using RNN for estimating the state of the object.
The RNN could predict an un-occluded occupancy grid directly from the raw point cloud

22 [27] End-to-end object tracking that is deep tracking. It could directly map the raw sensor input to the object tracking in the sensor space.
It could work with occluded objects, which is done as a deep learning task

23 [28] A layered graph model in RGB-D image for real-time multi-pedestrian tracking. Depth and vision data were integrated with layer
level constraints and formed a layer level graph. The approach could handle occlusions and give correct data associations

24 [29] Tracking objects in real time by combining color, 3D shape, and motion cue features using a probabilistic framework to robustly
track objects against several factors of variation and occlusions

25 [30] Pedestrian tracking from multiple moving vehicles. The approach determined whether the tracked person belongs to one or multiple
moving camera fields of view using associated likelihood

26 [31] 3D multi-view object detection and localization in multiple viewpoints that change the feature values and handling a variation in
the aspect ratio and size of the object

27 [32] The paper compared 2D and 3D object recognition. Features were extracted from detected bounding boxes using modern encoding
and in most of the cases performed better than the state-of-the-art methods that contain 3D information

28 [33] Multi-view object model of different object categories for extracting any virtual image features. 2D appearance was represented as
a distribution of low-level, fine-grained image features in the number of discrete viewpoints

29 [34] Node-splitting approach for regression tree training and its integration with a regression forest framework for accurately estimating
the pose and direction of the object
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become popular among people. So, for making it acceptable to society, it is necessary that the robot
should be aware of the environment and should guarantee human safety and comfort. The real envi-
ronment is uncertain, dynamic, and crowded. To ensure human safety, several approaches have been
proposed [48, 49] so that robot the becomes aware of the human. Furthermore, path planning method
has been developed for motion planning, which is also goal-oriented [53]. In the real world, people inter-
act with each other while walking. This information makes the motion planning algorithm more reliable
and makes the robot socially acceptable. Gap detection is also useful for the robot’s safe navigation and
3D information of the unconstrained environment helps the robot for gap detection [55].

In a recent approach, six harmonious rules were proposed [50] that a mobile robot should follow for
safety purposes in the presence of humans or other robots, but this approach does not include social inter-
action information between the persons. Early work used this social information for making a mobile
robot able to interact with the human in a social complaint way. Kretzschmar et al. [51] proposed an
approach that models cooperative human navigation behavior and using the pedestrian trajectory, the
robot learned how to replicate the specific behavior in a certain situation. Learning for pedestrian trajec-
tory makes the robot socially acceptable because while moving in a crowded place, it follows the pattern
that the human used which is completely natural and safe. To make a safe robot navigation, the robot
slowing down behavior [54] is also useful for motion planning. Similarly, Truong et al. [52] proposed
a proactive social motion model that enabled the mobile robot to consider the social interactive infor-
mation that is characteristics of the human and human group, while navigating safely and socially in a
crowded and uncertain environment.

3. Overall approach

In this paper, we observe the natural behavior of humans in a crowded environment and model this
behavior. The model is used by our framework for trajectory prediction so that the mobile robot can
plan a collaborative and socially compliant collision-free trajectory. Primarily, the scenario of a group of
students leaving their class when the lecture gets over and moving toward the building exit is considered.
Due to a large crowd and a limited walking space, a chain is formed automatically, which is referred to
as an unorganized chain. The behavior is generic to any such queuing by the humans, which happens in
many situations, primarily because the walking space at several places is restricted to narrow corridors
for indoor scenarios.

The overall approach is summarized in Fig. 1. The main focus of this paper is the use of a 3D LiDAR
for capturing data. Here, we detect all the moving people in a 3D point cloud. The detection of the
pedestrian is performed by spatial changes in successive point clouds frame. These point clouds are rep-
resented in an octree data structure and recursive comparison is performed for spatial change detection,
which is represented as a difference in voxel configuration. Later, a clustering algorithm is applied for
isolating each person and its centroid value represents each person. The centroid value of all persons is
passed to a Kalman filter for accomplishing the tracking. Since the data are recorded in a real environ-
ment, the density of people is often very large, and the people move in close proximity. Due to this, we
are unable to isolate each person for all point clouds. Also, some portion of the trajectory of a person
may be erroneously assigned to another person’s trajectory leading to wrong results, commonly referred
to as the correspondence problem.

The Kalman filter is used for removing the limitations and tracking, which is also used to solve
the correspondence problem. For each person tracker, we predict its location for tracking. For dealing
with the correspondence problem, all trackers predict the future position (without using observation).
After predicting, the location of all people is compared with the observation. An observation is mapped
to the tracker that has the closest distance and subject to an additional threshold, which is calculated
experimentally. Every instance of tracker provides a trajectory for each person correctly. The trackers
are used to build a trajectory database, which is later used to model human behavior in an unorganized
chain.
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Figure 1. Workflow model.

After the trajectory database is prepared, each trajectory is analyzed. In doing so, homogenous inter-
action is considered. For this, some important features are extracted from the trajectories such as velocity,
spatial distance from neighbors, angle of goal, which are used to train a behavior model. These features
are fed into a support vector regression model to learn the behavior. Since the robot would constantly
track and correct the trajectory of the humans, only a short-term prediction is required. This predicted
trajectory is useful for the mobile robot in a crowded place so that the robot can plan safe navigation
and behave socially while moving with humans.

4. Detection and tracking

4.1. Dataset pruning

Since the data are collected in a natural scenario of moving people, hence there are many noises present
in the dataset. Many times, people come very close to each other. While walking, the people swing their
hands and legs and it touches the other person. This leads to an error in detection. Our primary objective
is to find the spatial relation that humans keep while walking in natural scenarios. In detection, more
than one pedestrian can get assigned to the same cluster. This problem is solved by dataset pruning. The
human head is stationary when compared to other body parts and that’s why the point cloud is passed
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through a pass-through filter. The point cloud P(t) is processed by this filter based on a filter field. In our
case, height is used as the field and its value is calculated experimentally, which improves the accuracy
of the clustering algorithm. Point cloud after applying a pass-through filter is given by Eq. (1) for the
input point cloud P(t).

P′(t)= {p ∈ P (t) :Xmin ≤ px ≤ Xmax ∧ Ymin ≤ py ≤ Ymax ∧ zmin ≤ pz ≤ zmax} (1)

Here, Xmin and Xmax is the range of X coordinate, Ymin and Ymax is the range of Y coordinate, Zmin and
Zmax is the range of Z coordinate that has to be accepted by the pass-through filter. The resultant cluster
is treated as space occupied by the person.

4.2. Detecting dynamic entities

We have a dataset of moving pedestrians in the point cloud format and detection of all moving persons is
the next step of trajectory extraction. An octree is a tree-based data structure that organizes the 3D data.
The 3D space is produced by recursively subdividing it into eight octants, where each internal node has
exactly eight children. Indexing of 3D point cloud data using octree is performed by dividing the 3D
boundary into eight octants, which are further recursively subdivided until the octant consists of a single
point or it reaches a certain threshold or a maximum depth.

To detect the motion, background subtraction is applied by taking a difference of the consecutive
frames, and for this, the first octree representation is used for the point cloud data. Once octree of the
current point cloud frame P′ (t) and previous frame P′ (t − 1) is built, spatial change is detected by
recursively comparing the tree data structure of the octree and this is represented by a difference in the
voxel configuration. Points corresponding to the moving people are calculated as given by Eq. (2)

Moving (t)= {
p ∈ P′ (t):minq∈P′(t−1)d (p, q) > η

}
(2)

Here, d is the distance function and η is the threshold. If P′ (t) is {(xi, yi, zi)} , now the equation will be
given by Eq. (3).

Moving (t)= {
(xi, yi, zi) ∈ P′ (t):minj∈P′(t−1)d

(
(xi, yi, zi) ,

(
xj , yj , zj

))
> η

}
(3)

4.3. Statistical outlier removal

Raw 3D point clouds obtained from a 3D scanner are often contaminated with noise and outliers. These
are the consequence of a mistake in data collection, sensor imperfection, occlusion, or some other mis-
handling. Usually, the outlier is a point that is far away from the other observations in the dataset. There
are several points in our dataset whose homogeneity is not matched with surrounding neighbors. These
types of points are referred to as the outlier. The outliers are responsible for reconstructing a wrong geom-
etry, which leads to corruption in the results. This is why these irregularities should be removed so that all
points are distributed in a regular manner. Here, we use a simple and efficient method based on the geo-
metric characteristics for removing outlier. Local density information is one geometrical characteristic
that is used here because the outlier point is usually inconsistent with the local point density.

In this method, we calculate the mean distance of a point with all of its neighbors. We assume that the
resulting distribution is Gaussian with a mean and standard deviation. All those points are considered as
an outlier whose mean distance is outside a certain interval defined by the mean and standard deviation.
These points are removed from the point cloud.

In Algorithm 1, Moving(t)) is the result of spatial change detection. It contains a point cloud of all
moving people along with noise and forms an input to the algorithm. Algorithm 1 removes noise from
the input, which can corrupt the result. Line 1 takes an empty set, Moving’(t), as the prospective output
that is incrementally populated. Line 2 loops through all points in the input point cloud. Line 3 computes
δ (p), the set of k neighboring points of point p. Line 4 computes D (pi), the mean distance of point pi
with k neighbors. Line 5 uses D as the average distance of all D (pi) with a standard deviation of σ (D).
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Algorithm 1. Statistical Outlier Removal Algorithm
Input: Point clouds with outliers (Moving(t))
Output: Point clouds without outliers

1: Let Moving’(t) = Empty set representing inliers
2: for all point pi in Moving(t)
3: find set δ (p), set of k-nearest neighbors of point pi

4: calculate average distance of pi with all the neighbors D (pi)=
∑

q∈δ(pi) d(q,pi)

k
5: if D (pi)≤D+ α σ (D)

6: then add pi to Moving’(t)
7: end for
8: return Moving’(t)

Algorithm 2. Euclidean Clustering
Input: Point cloud Moving’(t)
Output: Clusters C

1: C← ∅
2: fixed(p)← no ∀ p∈P
3: for p∈P : fixed(p)=no
4: c← {p}//Seed point is added
5: while true
6: R- ← {� : minq∈cd(�,q) ≤ ε ∧ fixed(�)=no }// Compute all points belonging to the same

cluster
7: if R- = ∅, break
8: c← c

⋃
R- //Computed points added to the cluster

9: fixed(�)=yes ∀ �∈R- //Points belonging to the same cluster are marked as processed
10: end while
11: add cluster c to C
12: end for

If the mean distance of a point pi lies under D+ α σ (D), then the point is considered as an inlier and
added to Moving’(t) in line 6, otherwise, the point is an outlier and is rejected. α is an algorithmic
parameter.

4.4. Cluster segmentation

Now we have the point clouds of all detected humans without outliers. It is essential to classify and
extract each individual from the point clouds for trajectory extraction. Clustering is one of the most
famous techniques to find homogenous subgroups in the dataset, such that the data point belong to
subgroups are of the same type according to a similarity measure. Therefore, Euclidean distance-based
clustering algorithm and region growing is applied for performing the task of separating the human from
the point cloud.

This algorithm starts from a set of random seed points representing the clusters and then builds its
kd-tree for the nearest neighbor calculation. Cluster size increases by adding neighboring points to the
cluster and this insertion of point stops when there are no points left in the Euclidean space of seed
points. The complete procedure is described in Algorithm 2.

Algorithm 2 explains the steps of Euclidean clustering, where Moving’(t) is the point cloud of all
moving people after removing noise, taken as an input. Line 1 initializes C, the set of all clusters as an
empty set that will be iteratively populated. Line 2 initializes fixed(p), representing whether the point p
is processed or not, as initially unprocessed for all points. Line 3 loops through only the non-processed
points in the point cloud. Every such point p is taken as a set of a new cluster c. The loop in Lines 5–10
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Algorithm 3. Kalman Filter
Input: Si(t − 1), pi(t− 1),zκ(i) (t)
Output: Si (t),pi (t)

1: Ŝi (t)= ASi (t − 1)

2: p̂i (t)= Api (t − 1) A′ +W (t)
3: Ki (t)= p̂i (t) H ′/(Hp̂i (t) H ′ + R (t) )
4: Si (t)= Ŝi (t)+Ki (t) (zκ(i) (t)−HŜi (t) )
5: pi (t)= (I −Ki (t) H) p̂i (t)

iteratively grows this cluster. At any time, the set of all points unprocessed that lie at a distance of less
than ε to any point in the cluster c is computed, called R in Line 6. Here, ε is the distance threshold for
clustering. Since these points are reasonably close to an existing point in the cluster, they are added to the
cluster c in Line 8. Line 7 is the condition where the cluster can no longer be expanded, and therefore
the loop breaks. Line 9 marks all the added points as processed. Line 11 adds the grown cluster c to
the set of all clusters C. C is the output of the clustering algorithm that contains clusters of all moving
persons separately.

Subsequently, the centroid of the cluster is calculated, which is used to represent the position of the
person, given by Eq. (4).

zj (t)=
∑

p∈cj (t) p

size(cj (t) )
(4)

Here, cj(t)∈C(t) is the jth cluster (person) and the area of the cluster is the space acquired by the human,
which may change according to the situation like space availability. The person is represented by the
centroid zj(t). The detection is shown in Fig. 2.

4.5. Kalman filter

Once all the moving people are detected, then tracking is performed. Kalman filter is applied for tracking.
This is a recursive predictive filter based on the state-space technique. This filter doesn’t store previous
measurement detail. Due to its less computational time and optimal results, the filter is widely used in
the majority of the fields. The filter assumes that the uncertainties are Gaussian in nature. The algorithm
is structured in two distinct phases, namely motion update and measurement update.

The motion update phase is also known as the predictor state, where the next state Ŝi (t) is predicted
using a linear model and the current state Si (t − 1) and process covariance matrix p̂i (t) is also calculated
using the model and uncertainty of the process model. Here, we represent the state by the XY coordinates
and the velocity in these coordinates, Si (t)= [xi (t) yi (t) ẋi (t) ẏi (t)]′.

In the measurement update phase, the predicted value Ŝt is corrected based on the difference
between the actual measured value and the expected measured value from the measurement model.
Its mathematical form is shown in Algorithm 3.

Here, W (t) is a Gaussian motion noise. Ki (t) is the Kalman gain. zκ(i) (t) is the observation where
κ (i) is the correspondence function. R (t) is the process noise covariance. A is the state transition matrix
given by Eq. (5). H is the observation matrix given by Eq. (6).

A=

⎡
⎢⎢⎣

1
0
0
0

0
1
0
0


t
0
1
0

0

t
0
1

⎤
⎥⎥⎦ (5)

H =
[

1 0 0 0
0 1 0 0

]
(6)
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Figure 2. Procedure of moving pedestrian detection using a 3D LiDAR.

In Algorithm 3, Line 1 uses the motion model to update the mean state of the ith person Si(t-1) using
the motion matrix A. Line 2 similarly updates the covariance matrix pi(t-1) using the motion matrix A
and the process noise W (t). Line 3 computes the Kalman gain (Ki(t)) using the updated covariance along
with the observation matrix H and the observation noise R(t). Line 4 further updates the state using the
computed Kalman gain along with the new observation zκ(i) (t) with the correspondence matching func-
tion given by κ (i). Line 5 further updates the covariance matrix using the Kalman gain and observation
matrix.

Figure 3 shows how the tracker reads the points and starts tracking. Here, a 3D LiDAR sensor is used
for generating the point cloud and on each frame, the human detection algorithm is applied, which gives
the clusters corresponding to all moving people in the frame. Once the clusters have been generated,
then its centroid is calculated. The centroid represents the location of the people in a 3D space, which
is the input for the Kalman filter.
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Figure 3. Block diagram of people tracking using the Kalman filter.

There is one tracker for every person. The person can arrive or disappear at any frame and occlusion
may occur. Therefore, we can’t estimate the number of trackers at the beginning of the algorithm. The
number of trackers changes along with frames. Consequently, all trackers have to be managed in each
frame so that each person is correctly tracked and one can extract their trajectory.

We proposed our own algorithm. When a person disappears for a few frames, then the tracker can
predict their position to complete the trajectory. Correspondence is handled by assigning every observa-
tion to the closest predicted position in the people being tracked, subjected to a distance threshold (α).
If a person is not observed in several consecutive frames (β), then the tracker stops tracking. If corre-
spondence for an observation fails, a new tracker is initialized. The approach is explained stepwise in
Algorithm 4.

Line 2 initializes the Kalman trackers (K) as an empty set and Line 3 initializes the output database
(T ) with another empty set. Both are incrementally populated. C is the set of initially visible people
(Line 1), who are directly assigned a Kalman filter in Lines 4–6. Line 4 loops through all such peo-
ple, Line 5 assign a Kalman track and Line 6 makes an entry in the output trajectory database (T ).
Line 7 is the main loop. Line 8 detects new people as the current observation. The first problem tack-
led therein is correspondence matching. Line 9 initializes � to store the current predicted positions for
all persons, which is calculated in Line 10. Loop in Line 11 tries to find a correspondence match for
every observed person (c). Line 12 assigns a person (c) to the closest track (ψ) using the Euclidean
distance between the observed position of a person to its expectation using the Kalman filter prediction.
Line 13 additionally checks that the least distance should be less than α to avoid far-off people passing
the correspondence matching in case of the detection of a new person. Line 14 computes the last time
the same person (ψ) was observed by consulting the entries in the trajectory database (T ). If it was seen
at the immediately preceding frame, Lines 15–16 apply the standard Kalman filter correction and add
the same to the trajectory database. Otherwise, if it has been a while that the person was previously
detected, Lines 18–19 predict the motion of the person for all the missing frames and add it to the trajec-
tory database, before applying a correction using the new observation in Line 20. Line 17 additionally
necessitates that a person who has not been visible for a very long time (β) should be regarded as ceased
to exist and such a person should not be tracked irrespective of the new observation. Lines 21–23 handle
the situation wherein a new person enters the system, detected either by a failed correspondence match-
ing (distance more than α) or that the system indicates a person was visible after time β, in which case it
is probably a new person. Line 22 initializes a new Kalman filter for the person, while Line 23 appends
the observation to the trajectory database.

The human detection logic is delicate and is prone to both False Positives and False Negatives, which
are essentially handled by the Kalman filter. A False Positive may occur from the points on the wall
detected by the lidar. As the human walks, there is some temporal change in segments of the wall as
it gets occluded during the human motion. If a detected dynamic object consistently appears for some
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Algorithm 4.
Input: Detected people in all frames
Output: T, tracked locations of all people

1: C← Detect all people at first frame //pass all the centroids of the first frame calculated from the
point cloud

2: K← ∅ //Kalman trackers of all persons in the dataset, initially empty
3: T← ∅ //time-annotated trajectories of all persons in the dataset, initially empty
4: for all c∈C, //for each centroid, a Kalman filter is instantiated
5: append Kalman Filter (c) to K
6: append {<c,0>} to T
7: while not end of recording, for all times t
8: C← Detect all people at current frame
9: �←∅ //predicted positions of all people being tracked, temporarily stored for correspondence

10: for all κ ∈ K, add predict (κ) to �

11: for all c∈C,
12: ψ = arg minψ∈� d(ψ,c)
13: if d(ψ,c)= α, // α is a distance threshold used for solving the correspondence problem
14: tlast←maxtT(ψ).t //last time person was seen
15: if current frame time – tlast=1, //no occlusionoccurred
16: add correct(K(ψ),c) to T(ψ)
17: if current frame time – tlast= β

18: for t from tlast to current frame time //correct for occluded frames
19: add predict (<K(ψ),t>) to T(ψ)
20: add correct (K(ψ),c) to T(ψ)
21: if d(ψ,c) > α or current frame time – tlast>β\\a new person entered the system
22: append Kalman Filter (c) to K
23: append {<c, current frame time >} to T

seconds, only then it is tracked as a human, otherwise, it is taken as a False Positive. The parameter was
set based on the observed data.

The False Negatives are also handled by the Kalman filter. When humans walk in a queue and for
some time, the human speed is very slow, and in that case, the spatial change detection cannot detect
the near-stationery human. The Kalman filter continues tracking for some time even when the person is
not visible, where the parameter is set based on the observed data. It is assumed that the slow speed of
the humans is temporary, and the motion soon continues that gives observations to the Kalman filter.

5. Learning and simulation

When all people have been detected and tracked, then the trajectory of each person is analyzed. In
this section, we propose our approach for performing future trajectory prediction in a natural scenario,
especially when the human walks in a chain that is neither organized nor centrally managed. Everyone
moves toward the same goal at the same time and thus it is their own decision of how much distance
they maintain with the others.

Therefore, it is essential to understand the unorganized chaining behavior for performing the task
of trajectory prediction, which will be useful for motion planning in this situation. Here, features are
extracted from the trajectory of each person for behavior analysis and trajectory prediction.

5.1. Feature extraction

Kalman filter is applied for tracking and it also provides the trajectory of all persons individually. These
trajectories are put under the process of feature extraction. The reactive motion of an individual is a
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function of the nearby obstacles and people, and the relative position with respect to the goal. The people
far away do not affect the trajectory instantly, however, may affect the trajectory only when the person is
closer to them. Similarly, the people at the back have a little influence on the trajectory, which is largely
affected by the people ahead only. In an organized chain, the behavior of a person depends upon the
person ahead only. However, here the chain is unorganized and there may be a lateral disarrangement
between and hence the behavior is said to be affected by the nearest two people ahead. Taking more
people will increase the model complexity, requirement of data, and is prone to overfitting where the
system performs well only on scenarios similar to the training data. To find out the closest people ahead,
the person’s trajectory is compared with all others.

The features selected are the distance between the two closest persons, the angle to the nearest two
people, the velocity of the closest two persons, and the angle to goal. These features are used for creating
a training dataset so that the model can learn the behavior and can predict the future trajectory. The
creation of a training dataset is one of the most important steps of trajectory prediction because the
accuracy of any approach depends on the quality of the training data.

To calculate the features for the person Si, the first requirement is to consider all the people who are
ahead of pi (Eqs. (7)–(8)), out of which close two closest people are identified (Eqs. (9)–(10)).

Si
ahead =

{
Sj :cos

(
αij

)
> 0

}
(7)

cos αij = (Si (t)− Si (t −�t)) .
(
Sj (t)− Si (t)

)
/N

= (
(Si (t) .x− Si (t −�t) .x)

(
Sj (t) .x− Si (t) .x

)
+ (Si (t) .y− Si (t −�t) .y)

(
Sj (t) .y− Si (t) .y

))
/N (8)

Si
ahead,1 =

(
rankSj∈Si

aheadSj �=Si

(
d

(
Sj , Si

))= 1
)

(9)

Si
ahead,2 =

(
rankSj∈Si

aheadSj �=Si

(
d

(
Sj , Si

))= 2
)

(10)

Here, N is the norm of the two vectors in the dot product that does not affect the sign and hence neglected,
i,j is the person and t is the time frame, d is the distance function on the X and Y values.

The distance that people maintain with each other while walking is an important aspect and plays a
vital role while learning the trajectory. A person may not wish to be too close to another to maintain
a social etiquette, while the distance may not be very large to make the chain inefficient. The distance
features are given by d

(
Si, Si

ahead,1
)

and d
(
Si, Si

ahead,2
)

The direction of one person with respect to another person is another crucial information for a model
while understanding the motion pattern of people in a particular scenario and trying to predict the future
position of a person. The person typically attempts to go toward the closest person in a chain. This is
unlike an obstacle avoidance behavior where the intent is to go away from the person aiming for an
overtaking. The angle is given by Eqs. (11)–(12)

θi,1 = atan2
(
Si

ahead,1 (t) .y− Si (t) .y, Si
ahead,1 (t) .x− Si (t) .x

)− θi (11)

θi,2 = atan2
(
Si

ahead,2 (t) .y− Si (t) .y, Si
ahead,2 (t) .x− Si (t) .x

)− θi (12)

Here, θi is the current orientation of the person calculated from a derivative of the trajectory. The angle
computed is modified to lie within the range (−π ,π ].

Accomplishing the task of future trajectory prediction of a person requires the direction of the goal.
The first person in the queue only moves toward the goal, while the others tend to align toward the goal
in case the people ahead highly deviate. The angle to goal is given by Eq. (13)

θi,goal = atan2
(
Gy − Si (t) .y, Gx − Si (t) .x

)− θi (13)
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While understanding the motion pattern of any situation, the velocity (linear and angular) is one of the
most important pieces of information. Here, the velocity of the closest two people ahead is calculated
in each frame and fed into the model so that it can learn the trajectory. The velocity of the person ahead
directs the ideal speed that the person should keep. A similar reasoning can also be given for the angular
speed.

The target output is the linear and angular speed of the person being planned. The outputs are supplied
to the simulated person, who implements the linear and angular velocities, which make it move suitably
in the simulation setup.

For any person i in the simulation system, the inputs are outputs of SVR are given as follows:

Inputs:

• Distance to closest person and second closest person ahead, d
(
Si, Si

ahead,1
)

and d
(
Si, Si

ahead,2
)
,

• Angle to closest person and second closest person ahead (θi,1 and θi,2),
• Linear speed of closest person and second closest person ahead (vi,1 and vi,2),
• Angular speed of closest person and second closest person ahead (ωi,1 and ωi,2),
• Angle to goal (θi,goal).

Outputs:

• Linear speed of the person (vi) and
• angular speed of the person (ωi).

5.2. Support vector regression

Support Vector Machine (SVM) was designed as a pattern recognition tool and later, a few functionalities
were added such as the ability to solve regression problems, building a multidimensional strip, and
solving a linear equation. Considering its importance in statistical learning, SVMs were made more
generic for statistical learning. When SVMs solve pattern recognition problems, it can also find decision
rules in feature space with great generalization. It can find optimal separating hyperplane, by using a
subset of training data, referred to as Support Vectors (SVs). Increasing the range between classes and
training data can be an alternative approach for optimizing the cost function, such as mean square error
and it provides useful features to SVMs so that make it can automatically tune the classification function,
using a small subset of data representation for classification. Therefore, SVMs able to summarize the
information contained in the dataset.

Support Vector Regression (SVR) takes multiple inputs and produces single output that is, many to
one system. It can support several inputs as a feature vector and output a single target value calculated
by the decision function. Training algorithm for SVR requires fmotion motion features as a parameter of
objective function, which is shown by Eq. (14)

y=O ( fmotion)= < w, fmotion >+ b (14)

The task of the learning algorithm is to find the value weights w and bias b, which represents the optimal
separating hyperplane. SVR also provides an alternative loss function which includes distance measure,
known as ∈−insensitive loss function. It is a penalty tool used to define the range between the actual
value and predicted value. If |y−O ( fmotion)|> ϑ then a penalty will be added, which is shown by
Eq. (15). ϑ parameter can affect the smoothness of the response and the number of support vectors.

Lϑ (y, O ( fmotion))=
{

0 |y−O ( fmotion)| ≤ ϑ

|y−O ( fmotion)| − ϑ otherwise (15)

Here, SVR is used to model the human walking behavior in a natural scenario so that robot can use it for
motion planning. As a feature, several walking characteristics are computed from the person’s trajectory,
which is used to understand the motion pattern.
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Once the SVR learns these features, it is used to predict the future trajectory of all persons. Hence,
a robot can use this model for its own path planning. After predicting the person’s future trajectory, a
robot can calculate the optimal and collision-free paths.

The learned model is then used for the simulation of the behavior. The initial state is loaded from the
observed natural trajectories of the humans. The features are extracted from the trajectory and given to
the SVR for the prediction of the future state. The future state is again used to compute the new features,
which guide the next motion of the humans. The SVR hence forms a reactive controller that can be used
to estimate the human motion in unorganized chains starting from any hypothetical situation.

Most of the recent works in the literature use deep learning approaches. Deep learning can perform
this task, but we know that if we want to perform some task by deep learning, then training the deep
learning model requires a huge amount of data. In our model, the data are observed from real-life tra-
jectories of humans and the data are extremely limited. Further, it is not possible to collect a lot of data
from different scenarios. Therefore, generalizing ability needs to be high. This is only possible when
well-crafted features are used that can generalize to new scenarios, without requiring large training data.
Unlike many approaches in the literature, we do not resort to using simulation systems for the creation
of a large amount of training data that can be non-socialistic. Therefore, in our approach, we tracked the
people using a Kalman filter followed by preparing a trajectory database, and after this few important
features are calculated separately which are used by the SVR.

6. Results

In this paper, we analyze human motion in a natural environment and extract the individual trajectory,
which is used for the training of our model. Here, we collected the data using a Quanergy’s M8 outdoor
3D LiDAR scanner for data collection, and it has a range capacity of 200 m, 5–20 Hz frame rate, 360◦
and 20◦ horizontal, vertical field of view respectively, range of angular resolution is 0.03◦ − 0.2◦.

First, we had placed this sensor in a big classroom where people move randomly or any specific
pattern. We collected the data after that the trajectory of each person was extracted. But when these
trajectories were analyzed, then it was found that these trajectories are free from natural characteristics,
which are crucial for understanding human walking behavior in the real-world scenario. The subjects
largely moved as instructed. That is why the next time we placed it in an open space in our campus, where
moving people were not aware of this data collection, they all moved in their own way and self-decided
where to go.

While collecting data, an interesting behavior was obtained as an unorganized chain of moving
people. This situation occurs when the lectures get over or begin. Then all students are found coming
in or out. All of them maintain distance from each other. None of the students was intimated or briefed
about the recording so as not to bias the behavior. The lidar scanner was placed at a distance, where
unorganized chaining often happens due to a large number of students attempting to leave the building
as quickly as possible after the classes. The density typically varies from sparing initially and at the end,
to a high density in the middle phases, as the students leave. A challenge was that most places where
such unorganized chaining happens are narrow and congested and placing a lidar in the vicinity is not
possible. Further, many sites have mostly occluded data and visibility is primarily at the exit point alone,
where the behavior analysis is not possible. The identification of the site was based upon the metrics of
a large field of view, low occlusion, and getting enough visibility to track and study the behavior.

The detection algorithm was applied to the recorded data for finding out the human in the 3D point
cloud. Once the humans were detected in each frame, then the tracker was applied for tracking all persons
and also for extracting the trajectories of all persons. Now, these trajectories were used by our model for
learning to perform this some important features was extracted from the trajectory.

Once the model gets trained, then it was used for the person’s future trajectory prediction. We compare
our approach with a widely used approach, the artificial potential field. The potential field is a very
natural and intuitive way to model the problem. The algorithm has a fewer number of parameters that
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can be set to replicate a dataset based on a few iterations of trial and error. The parameters are themselves
intuitive to set. Hence, the approach has a large generalization ability. However, the method may not
represent all possible interactions, which have to be modeled as forces.

6.1. Trajectory prediction

The prediction of the trajectory is shown in Fig. 4. The simulation was done based on the initial settings
taken from the recorded data. For each person, three different trajectories appear. The first trajectory is of
the color blue and denotes the ground truth. The second one is the trajectory predicted by the proposed
approach. It is shown by the green color. The last trajectory is represented by the red color, which is
produced by the artificial potential field method. The direction of motion in the simulation is denoted
by an arrow. From the simulation, it is observed that the predicted trajectory by our approach is much
closer than the artificial potential field method, and the shape of taking the turn also similar to the actual
trajectory. These simulations give an idea about the environment and direction of the persons in the
future.

In scenario 2, the average distance error is maximum when compared to the other scenarios because
the number of persons in this chaining is the maximum. When there are multiple people spread in a
characteristic manner, humans must choose primarily which human they are following. In an organized
chaining behavior, one only follows the immediate leader. In this unorganized chaining behavior, we
enabled the model to consider two people ahead. In scenario 2; however, there was enough gap that
exposed three people ahead. The person used that gap and displayed an aggressive behavior of following
a distant person ahead, while the SVR did not see that person as it is restricted to two people only. For
such exceptional cases, considering three people ahead will solve the problem, which will however affect
the generalizability. It must be stressed that such gaps are rarely seen in unorganized chains in a small
corridor.

The artificial potential field method is based on a goal. All people using the potential field algorithm
try to go straight to the goal and feel repulsion from each other which avoids collisions. The approach
hence cannot model the behaviors where a follower sees a leader (or a few leaders) as the goal, along
with the ultimate goal.

6.2. Performance

Using the proposed method, the future location of the person is predicted using support vector regres-
sion. Its performance is measured by comparing the predicted location with the ground truth. The error
between the actual and the predicted trajectory for each scenario is used as a performance metric. We
have the predictions for the person i as τi,predicted =

[
τi,predicted (s)

]
and actual route available as a ground

truth as τi,actual =
[
τi,actual (s)

]
.The distance error between them is measured as given by Eq. (16)

d
(
τi,predicted , τi,actual

)= 1
len

(
τi,predicted

) ∑len(τi,predicted)

s=1
d

(
τi,predicted (s), τi,actual (s)

)
(16)

Prediction accuracy is another performance metric. It is the ratio of correctly predicting the location
to the total number of predictions in each trajectory. Prediction accuracy for trajectories τi,predicted and
τi,actual is defined as Eq. (17).

χ
(
τi,predicted , τi,actual

)= 1
len

(
τi,predicted

) ∑len(τi,predicted)

s=1
E

(
τi,predicted (s), τi,actual (s)

)
(17)

E(pi, gi) is used to match the predicted location with the actual one given by Eq. (18)

E
(
τi,predicted (s), τi,actual (s)

)=
{

1 if
(
τi,predicted (s), τi,actual (s)

)
< ε

0 otherwise (18)
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5

Figure 4. Simulation of predicted future trajectory of unorganized chaining behavior.

Our method of future trajectory prediction is compared with another approach that is, artificial potential
field method and it is observed that our approach gives a natural trajectory in which natural charac-
teristics of human walking also exist. To compare this approach, average distance error and prediction
accuracy is computed for both methods and the outcome of this comparison reveals that our approach
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Table II. Comparison of the results.

Scenario Avg distance Avg distance Prediction accuracy Prediction accuracy
error (Proposed) error (APF) (Proposed) (APF)

1 0.33 0.60 0.96 0.27
2 0.54 2.45 0.84 0.19
3 0.25 0.61 0.94 0.37
4 0.25 0.47 0.923 0.62
5 0.44 0.48 0.88 0.69

Figure 5. Comparing average distance error in all scenarios.

is better than the artificial potential field due to a less average distance error and a higher prediction
accuracy. The results are shown in Table II.

Trajectory predicted by both the methods is also simulated and it is found that the trajectory of the
proposed method is similar to ground truth when compared to the artificial potential field method.
Comparison and performance of both methods can be understood by a graph between time and dis-
tance error with the actual location of all scenarios, as shown in Fig. 5. In the graph, red represents
the artificial potential field approach and the green line denotes the proposed approach. For each
time frame, the distance error is plotted and from the graph, one can derive that the performance of
the proposed approach is closer to the ground truth and less error than the artificial potential field
approach.

For completeness of the study, a macroscopic variable of density is also analyzed, which is most
interesting. Here, we considered a point, where a large number of people move. We counted the number
of persons who are passing per second from this point on different distance ranges. Figure 6 shows the
average number of persons in different distance ranges (in meters) from the exit point. The crowd density
is lowest at the exit as the outflow rate is very high while the inflow rate is limited. The crowd density
is highest at the end, where queuing starts. The intermediate density is nearly constant.
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Figure 6. Crowd density per second of our datasets.

7. Conclusion

The unorganized chaining behavior is a dominant behavior widely found especially because of situations
like corridors, where the difference between the rates of entry and exit can cause queuing, while there
may be no physical infrastructure to maintain a strict queue. Humans have a peculiar behavior of slowly
following the people ahead and moving toward a common goal. The behavior has not been appreciably
studied in the literature and this paper made efforts in the same direction.

We considered dense human crowds and use a 3D LiDAR for capturing the movement of the humans.
Here, a moving people detection algorithm in point clouds is applied. A Kalman filter is used to perform
tracking, which also solves the problem of occlusion and correspondence and generates the trajectory
database. The trajectories were used to learn a motion model that imitates the behavior of the people
when displaying the unorganized chaining behavior.

We compared the performance with the artificial potential field method and our approach pro-
vided better results when compared to the potential field. The learning algorithm aims to model the
behavior without requiring a large amount of training data and not overfitting the data. The features
were carefully chosen to meet the same requirements. In contrast to the potential field, the algorithm
was able to model latent intents not modeled by the potential field, while generalizing to the testing
sequences.

There are some limitations of the paper that need to be addressed in the future. The paper analyzes
a single behavior only and the work needs to be extended to all behaviors that near exhaustively cover
all perspectives of human motion. The cases where multiple behaviors interact are of special interest.
Similarly, it is important to cover different diverse scenarios, where unorganized chaining is found to
exhaustively learn the model. Similarly, it needs to be seen if different personal attributes and social
groups affect the behavior of the human, in which case the same may have to be included in the modeling.
Finally, the paper aims to make a robot that navigates socially. The translation to a real robot needs to
be done in the future. The model may need adaptation as the robots may have different constraints and
social acceptance in contrast to humans.
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