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The physical properties of a recently proposed feedback-stabilization method of a
vortex flow in a finite-length straight pipe are studied for the case of a solid-body
rotation flow. In the natural case, when the swirl ratio is beyond a certain critical level,
linearly unstable modes appear in sequence as the swirl level is increased. Based on
an asymptotic long-wave (long-pipe) approach, the global feedback control method is
shown to enforce the decay in time of the perturbation’s kinetic energy and thereby
quench all of the instability modes for a swirl range above the critical swirl level.
The effectiveness of an extended version of this feedback flow control approach is
further analysed through a detailed mode analysis of the full linear control problem
for a solid-body rotation flow in a finite-length pipe that is not necessarily long. We
first rigourously prove the asymptotic decay in time of all modes with real growth
rates. We then compute the growth rate and shape of all modes according to the
full linearized control problem for swirl levels up to 50 % above the critical level.
We demonstrate that the flow is stabilized in the whole swirl range and can be even
further stabilized for higher swirl levels. However, the control effectiveness is sensitive
to the choice of the feedback control gain. A potentially best range of the gain is
identified. An inadequate level of gain, either insufficient or excessive, could lead to a
marginal control or failure of the control method at high swirl levels. The robustness
of the proposed control law to stabilize both initial waves and continuous inlet flow
perturbations and the elimination of the vortex breakdown process are demonstrated
through numerical computations.
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1. Introduction
The discovery of the vortex breakdown phenomenon in the leading-edge vortices

above slender wings at high angles of incidence (Peckham & Atkinson 1957)
stimulated extensive research on the dynamics of swirling flows in open or confined
configurations for over half a century (Benjamin 1962; Sarpkaya 1971; Hall 1972;
Leibovich 1978, 1984; Delery 1994; Brücker & Althaus 1995; Sarpkaya 1995; Wang
& Rusak 1997; Mattner, Joubert & Chong 2002). This phenomenon is characterized by
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a sudden and abrupt change of the flow structure when the upstream vortex flow swirl
ratio ω (the ratio of the maximum circumferential velocity over the characteristic axial
velocity) exceeds a critical value. The flow decelerates along the vortex axis and a free
stagnation point is formed, followed by a large separation zone and turbulence behind
it. The breakdown states range from spiral waves and axisymmetric bubbles that
may coexist at low-Reynolds-number flows (Re < 104) to axisymmetric, near-stagnant,
semi-infinite zones at high-Re swirling flows (Re> 5× 104).

The vortex breakdown phenomenon has either detrimental or beneficial effects on
a variety of real flow applications such as the aerodynamics of modern fighter
aircraft and missiles or flame stabilization in gas-turbine combustors. The control
of vortex breakdown is a practically important problem for these technologies, either
to prevent breakdown or to promote it. For example, the delay of breakdown in
leading-edge vortices can improve aircraft aerodynamic performance and widen their
operational envelope of flight (Delery 1994) while a stable induction of breakdown can
enhance lean-premixed combustion with low emissions (Paschereit & Gutmark 2002;
Muruganandam et al. 2005; Knole & Sattelmayer 2009). Mitchell & Delery (2001)
reviewed the various available control approaches of vortex breakdown in leading-
edge vortices. They concluded that none of the techniques has clearly demonstrated
a superior efficiency or effectiveness in controlling either the breakdown structure
or its location. They emphasized that for an effective control strategy of the vortex
breakdown phenomenon it is important to understand the stages of flow evolution
leading to a vortex breakdown state including the internal flow mechanisms that
destabilize a concentrated vortex. Similarly, Muruganandam et al. (2005) developed
an active flow control technique of a swirl-stabilized lean-premixed combustion in a
chamber and emphasized that the combustor’s nominal dynamics and flow oscillations
without control have an important impact on the effectiveness of the active control
system.

In this paper we develop a control theory of the vortex breakdown process in a pipe
flow. It is based on the physical mechanism leading to breakdown in high-Re swirling
flows in a finite-length, straight circular pipe that was established by Wang & Rusak
(1997) and Rusak et al. (2012). In this fundamental study, the base flow is assumed
to be an inviscid columnar axisymmetric swirling flow in a circular pipe with realistic
physical, non-periodic conditions specified at the pipe inlet and outlet. Fixed-in-time
profiles of the axial velocity, circumferential velocity and azimuthal vorticity are set
at the inlet and a state with no axial changes is set at the outlet. These conditions
represent a physical set-up of swirling flows in a pipe generated by a fixed-in-place
and fixed-in-time vortex generator ahead of the pipe in a steady, continuous and
smooth operation as found in the experimental set-ups of Sarpkaya (1971), Faler &
Leibovich (1977), Leibovich (1978, 1984), Garg & Leibovich (1979) and Mattner et al.
(2002). A similar set of boundary conditions is used in all numerical simulations of
the vortex breakdown (see, for example, Beran 1994, Lopez 1994, Snyder & Spall
2000 and Meliga & Gallaire 2011). In particular, Snyder & Spall (2000) demonstrated
that simulation of the flow in a pipe including the vortex generator region ahead
of it (which is based on the experimental set-up of Sarpkaya 1995) and simulation
of the flow in the pipe alone (with fixed-in-time inlet axial and circumferential
velocity profiles taken from the full apparatus simulation) give same results and show
agreement with the experimental measurements. This result supports our approach of
setting the inlet and outlet conditions.

Within this physical model, the theory of vortex breakdown was derived by Wang
& Rusak (1996, 1997). Two critical swirl ratios, denoted by ω0 and ω1 were
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identified, where ω0 < ω1. These critical swirl ratios connect between three branches
of equilibrium states. Columnar vortex flow states with 0 < ω < ω1 are asymptotically
stable while states with ω > ω1 are unstable. This instability mechanism cannot be
predicted by the classical vortex flow stability studies of Kelvin (1880) and Rayleigh
(1916). Solitary-wave states along the branch connecting between ω0 and ω1 are also
unstable. Stable breakdown states appear when ω > ω0. The vortex breakdown process
was shown to be a direct consequence of the loss of stability of the base columnar
flow related with the upstream propagation of azimuthal vorticity and circulation
waves and their interaction with the fixed inlet (upstream) state. This is followed by
a necessary and fast transition to a stable breakdown state with a long and large
separation (near-stagnation) zone around the vortex centreline when ω > ω0. The
effects of slight viscosity, weak inlet vorticity perturbations and small variations in
the pipe geometry were treated as perturbations from the base case and extended the
theory to realistic apparatuses.

The Wang & Rusak theory of vortex stability and breakdown was verified by the
numerical simulations of Rusak, Whiting & Wang (1998) and Rusak et al. (2012). It
also showed nice agreement with the direct numerical simulations of Beran & Culick
(1992), Beran (1994) and Lopez (1994). The recent bifurcation and stability studies of
Meliga & Gallaire (2011) support the theory as well. The theoretical predictions are
also consistent with the experimental results of the breakdown of vortices in pipes by
Leibovich (1984), Sarpkaya (1995) and Mattner et al. (2002) (see Rusak et al. 1998)
and in leading-edge vortices above slender delta wings by O’Neil et al. (1989) (see
Rusak & Lamb 1999).

Moreover, the recent study by Rusak et al. (2012) reveals the complicated dynamical
behaviour of the evolution of perturbations in a swirling flow when ω is around
ω1. Using a long-wave (long-pipe) approach, a nonlinear model equation has been
derived and subjected to the non-periodic inlet/outlet conditions. This approach extends
the model problem of Leibovich & Randall (1972). The computed dynamics using
this model problem shows a quantitative agreement with results from numerical
simulations that are based on the axisymmetric Euler equations for various swirl levels
around ω1 and as long as perturbations are small. Examples of the flow evolution
in response to different initial perturbations demonstrate the various stages of the
flow dynamics, specifically during the transition to vortex breakdown states. They
revealed the initial linear growth stage of perturbations with fixed growth rate and
linear mode shape followed by a weakly nonlinear growth stage of evolution of
faster-than-exponential and shape-changing modes, a nonlinear transition stage to a
breakdown state, and a stage of decay to a breakdown state. The explosive modes
during the weakly nonlinear growth stage provide the sudden and abrupt nature of the
vortex breakdown phenomenon which may be difficult to robustly control using any
method that does not account for these waves. Wang & Rusak (2011) showed that the
feed-forward interaction between the inlet radial velocity and the perturbation growth
in the bulk is the major physical mechanism for the production of the perturbation’s
kinetic energy and the formation of instability and the explosive nonlinear modes.
Also, Rusak et al. (2012) found that in near solid-body rotation flows with large
vortical cores, the perturbation dynamics is mostly in the linear stage of growth.
However, in concentrated vortices with small cores, relevant small initial perturbations
exhibit a fast weakly nonlinear growth stage from the beginning. The purpose of this
study is to identify a control method that can cut this feed forward mechanism by
actively inducing feedback control commands that reduce the inlet radial velocity and
may stabilize the flow and eliminate the breakdown process.
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The Wang & Rusak instability of columnar vortex flows when ω > ω1 followed
by the weakly nonlinear explosive modes are crucial elements in deriving a control
methodology of vortex flows in pipes. Gallaire, Chomaz & Huerre (2004) extended
the Wang & Rusak instability to higher swirl levels and showed for a solid-body
rotation flow the important fact that unstable modes appear in sequence as swirl ratio
ω is increased above ω1. Wang (2008) and Rusak et al. (2012) extended this result to
vortices with finite-size cores. It is therefore clear that to prevent the columnar base
flow from evolving to a breakdown state, it is necessary to quench all of the unstable
modes of perturbations that arise in a swirling flow when ω > ω1.

Using tools from optimal linear control theory with a certain cost function that
involves the perturbation’s size and the control power, Gallaire et al. (2004) developed
a feedback control scheme to suppress the linear development of the Wang & Rusak
instability. However, their approach is based on describing the flow perturbations from
the columnar state by a finite set of stability modes. As a result, their flow stabilization
scheme is limited to a small range (∼7%) of the swirl ratio above ω1, i.e. the higher
the swirl ratio is, the more difficult it is to suppress the instability modes that appear
in sequence, and at a certain swirl ratio, control is lost.

Recently, Meliga & Gallaire (2011) studied a passive control technique of the
axisymmetric vortex breakdown in a constricted pipe using low flow-rate jets
positioned at the pipe wall to modify the base swirling flow. Nonlinear branches
of steady near-columnar states, solitary wave states, and breakdown states connected
by two critical fold points were computed using the Navier–Stokes equations. The
linear stability modes of these states were also calculated and agree with Wang &
Rusak vortex breakdown theory. Depending on the jets position, the first appearance
of breakdown was either delayed by ∼12% with respect to the natural case or the
range of hysteresis loop was alleviated. However, this approach does not include any
dynamically active feedback stabilization of the flow.

The long-wave model of Rusak et al. (2012), which captures the essential
perturbation dynamics in a rather simple form, is a powerful tool for the study of
vortex flow control. Using this model, they have proposed and rigourously proved
a robust feedback stabilization strategy to enforce the decay of perturbations on a
swirling flow in a pipe in the linear growth stage. This method feeds back inlet radial
velocity information to the controller (for example, dynamical variation of pipe radius
or wall jet injection) and globally suppresses all the unstable modes of the flow when
ω > ω1. They also found that with sufficient control gain this active control strategy is
able to overcome the destabilizing nonlinear steepening effects and enforce the decay
of perturbations in the fast weakly-nonlinear stage of flow dynamics as well. The use
of this method for large and medium core-size vortices shows that it is applicable
to stabilizing the flows at above critical swirl levels for a wide range of swirl and
with realistic initial disturbances. For small core-size concentrated vortex flows, this
feedback control approach becomes more sensitive to realistic initial disturbances and
there is a need to increase the control gain to stabilize the flow.

In this paper, we develop a theoretical foundation of the active control methodology
proposed by Rusak et al. (2012). We focus on analytically describing the control
properties in the linear growth stage of perturbations by studying the case of a
base flow given by a solid body rotation flow. This flow case provides analytical
simplicity that is used to reveal the details of the control mechanism. The results are
directly applicable through rescaling of parameters to the control of vortices with large,
medium and small core sizes in their linear growth stage of perturbations. The results
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may also be relevant toward the control of perturbations in the weakly nonlinear
growth stage or even large perturbations (see Xu 2012).

The outline of the paper is as follows. In § 2 we present the mathematical problem
formulation for the dynamics of an inviscid, axisymmetric, swirling flow in a finite-
length pipe. In § 3.1 we derive the linear dynamics problem for a perturbation on a
solid-body rotation flow in the pipe. We also reduce the problem to the case of a
long-wave dynamics in a long pipe. In § 3.2 we show the correlation between the
long-wave linear stability modes to those of the full linear dynamics of the solid-body
flow in a finite-length pipe. In § 4.1 we first use the long-pipe model to generalize
the feedback control strategy of Rusak et al. (2012) and include a wider range of
outlet conditions relevant to various physical settings. In § 4.2 we study the effect
of the control gain on the stability growth rates of the eigenmodes of the controlled
long-wave linear problem. We show that the use of too small gain or too large gain
may cause marginal control. In § 4.3, we extend the feedback control approach to
the full linear dynamics problem in a finite-length pipe and establish a fundamental
energy identity. In § 4.4 we compute the linear growth rates according to the full linear
control problem and show that insufficient or excessive feedback control gain leads to
uncontrolled situations when swirl is increased, while a certain range of gain provides
a robust control for a wide range of swirl above critical. In § 4.5 we discuss the
relationship between the eigenmodes shape and the gain and shed light on the physical
mechanism of the proposed feedback stabilization methodology of swirling flows. In
§ 4.6 we study the robustness of the control approach to inlet perturbations. The paper
conclusions are summarized in § 5.

2. Problem formulation
2.1. Mathematical model

We consider an incompressible, inviscid and axisymmetric flow in a straight, finite-
length, circular pipe. Cylindrical coordinates (r, θ, x) are used where (u, v,w) are
the radial, azimuthal and axial velocity components, respectively. Axial and radial
distances x and r are scaled with the pipe radius and pipe non-dimensional length is
L, 0 6 x 6 L and 0 6 r 6 1. Velocity components are scaled with the characteristic
axial speed entering the pipe. Time t is scaled with the ratio of pipe radius
to inlet characteristic speed. Let y = r2/2 where 0 6 y 6 1/2. By virtue of the
axisymmetry, a stream function ψ(x, y, t) can be defined such that u = −ψx/

√
2y

and w = ψy. The reduced form of azimuthal vorticity is χ = −(ψyy + ψxx/2y) (where
the azimuthal vorticity is η = √2yχ ). The circulation function K(x, y, t) is defined as
K = rv = √2yv. The equations which relate the evolution of ψ(x, y, t), χ(x, y, t) and
K(x, y, t) are the unsteady Squire–Long equations (Squire 1960; Long 1953):

Kt + ψyKx − ψxKy = 0, (2.1a)

χt + ψyχx − ψxχy = KKx

2y2
. (2.1b)

The first equation (2.1a) is the transport equation of flow circulation along a path
line. The second equation (2.1b) describes the interaction between the convection of
the reduced azimuthal vorticity χ along a path line and vorticity stretching by the
axial gradient of the circulation. The later effect is swirl dependent and generates
swirl-driven waves that can propagate either downstream or upstream and interact with
the pipe inlet and outlet conditions. This interaction may lead to flow instability.
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We consider the dynamics of a flow governed by (2.1) under certain realistic
boundary conditions that represent a physical setting of a swirling flow in a finite-
length pipe that is generated by a vortex generator ahead of the pipe (Wang & Rusak
1997; Rusak et al. 2012). We set for all t > 0:

ψ(x, 0, t)= 0, ψ(x, 1
2 , t)= ψ0(

1
2) for 0 6 x 6 L, (2.2a)

ψ(0, y, t)= ψ0(y), ψxx(0, y, t)= 0, K(0, y, t)= ωK0(y) for 0 6 y 6 1
2 , (2.2b)

ψx(L, y, t)= 0 for 0 6 y 6 1
2 . (2.2c)

In this setting, the profiles of the axial and circumferential velocity components are
assumed to be fixed for all time t at the pipe inlet and are specified by the flow
flux stream function ψ0(y) and the circulation function ωK0(y), respectively, where
ω is the incoming flow swirl ratio. Note that the reduced azimuthal vorticity at
the inlet χ(0, y, t) is also fixed for all time since we set ψxx(0, y, t) = 0. Also, the
flow has a degree of freedom to develop at any instant an inlet radial velocity
in response to perturbations in the bulk that tend to cast such an influence. The
outlet boundary condition is set by a zero radial velocity for all time. This rather
passive condition is relevant for a sufficiently long pipe (where L� 1). A similar
set of boundary conditions is used in all of the numerical simulations of the vortex
breakdown phenomenon (see, among others, Beran 1994, Lopez 1994, Snyder & Spall
2000 and Meliga & Gallaire 2011). In the discussion in § 4 we will also consider
a fixed flux outlet condition and more general outlet conditions that may represent
realistic settings in short pipes. The problem defined by (2.1) and assumed boundary
conditions (2.2) is well posed and, using relevant initial conditions for the stream
function, circulation and azimuthal vorticity, describes the axisymmetric evolution of a
swirling flow in a finite-length pipe.

The columnar flow

ψ(x, y, t)= ψ0(y), K(x, y, t)= ωK0(y), χ(x, y, t)=−ψ0yy(y), (2.3)

is a base steady-state solution of the problem for all time t > 0 and every level of ω.
We look to describe the dynamics of disturbances on this base flow and its control.

In present paper, we focus on a base flow which is combined of solid-body rotation
and uniform axial flow. For this base flow ψ0(y) = y and K0(y) = 2y. The solid-body
rotation flow provides analytical simplicity through which the linear stability modes
of the natural flow as well as of the controlled flow can be studied and characterized
in an explicit way. In the more global scope, the solid-body rotation flow represents
the essence of the linearized dynamics of general base flow vortices with finite size
vortical cores in a finite-length pipe, see Wang & Rusak (1996) and Rusak et al.
(2012). In the special case of the long-wave linearized dynamics of perturbations, the
solution for the solid body rotation flow can be rescaled to provide the long-wave
dynamics of a general base swirling flow in the pipe. Moreover, the solid body
rotation flow can be considered as a nominal base flow for which the dynamics of
perturbation stays linear even when the perturbation size is relatively large, see Rusak
et al. (2012).

In the classical linear stability analysis, the perturbation is described by a linear
combination of sinusoidal Fourier modes. This approach is limited in scope to
a flow in an ideal, infinitely long pipe or to a finite-length pipe with periodic
inlet–outlet conditions, where translation invariance is natural. In fact, axisymmetric
perturbation on the solid-body rotation flow lacks any growth mechanism including
transient growth, see Wang (2009). This shows the limitations of the classical stability
theory and its scope of application. On the other hand, when the flow evolves in
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a finite-length pipe from a vortex generator ahead of the pipe into the pipe outlet,
the translation invariance does not exist. All experimental apparatuses that study
vortex stability and breakdown show a difference between the inlet and outlet states.
Therefore, this gives rise to a different set of stability modes that account for the
different set of the boundary conditions of the flow in finite length pipe.

3. Linear stability of the solid-body rotation flow
3.1. Linearized dynamics of the solid-body rotation flow

In the derivation of the governing equation for the linearized dynamics of the solid-
body rotation flow, we introduce

ψ(x, y, t)= y+ εψ1(x, y, t)+ · · ·, (3.1a)
K(x, y, t)= 2ωy+ εK1(x, y, t)+ · · ·, (3.1b)

where 0<| ε |� 1, and ψ1 and K1 are the stream function and circulation disturbances,
respectively. Substituting (3.1) into the governing equations (2.1) and ignoring second-
order O(ε2) terms we arrive at the linearized equations of motion:

K1t + K1x − 2ωψ1x = 0, (3.2a)

−ω
y

K1x + χ1t + χ1x = 0, (3.2b)

where χ1 is the reduced azimuthal vorticity disturbance: χ1 = −(ψ1yy + ψ1xx/2y). The
perturbations ψ1(x, y, t) and K1(x, y, t) must satisfy a set of boundary conditions
derived from (2.2):

ψ1(x, 0, t)= 0, ψ1(x, 1
2 , t)= 0 for 0 6 x 6 L, (3.3a)

ψ1(0, y, t)= 0, ψ1xx(0, y, t)= 0, K1(0, y, t)= 0 for 0 6 y 6 1
2 , (3.3b)

ψ1x(L, y, t)= 0 or ψ1(L, y, t)= 0 for 0 6 y 6 1
2 . (3.3c)

From (3.2) we find that

K1t =− y

ω
(χ1t + χ1x)+ 2ωψ1x (3.4)

and, thus, the inlet condition K1(0, y, t)= 0 is replaced by

yψ1yyx(0, t)+ 1
2ψ1xxx(0, t)+ 2ω2ψ1x(0, t)= 0. (3.5)

A manipulation of (3.2) (see Wang & Rusak 1996) leads to a linear partial
differential equation which governs the evolution of the stream function perturbation
ψ1(x, y, t):(

ψ1yy + ψ1xx

2y

)
xx

+ 2
(
ψ1yy + ψ1xx

2y

)
xt

+
(
ψ1yy + ψ1xx

2y

)
tt

+ 2ω2

y
ψ1xx = 0. (3.6)

The solution of (3.6) must satisfy boundary conditions (3.3) and (3.5).
Let Ω = 4ω2. It is a remarkable fact that (3.6) allows a solution with axial

and radial variables separated, in the form of the linear combination of the modes
ψ1n(x, y, t) = φBn(y)ϕn(x, t) (n is a positive integer). Here the function φBn(y) are the
radial modes determined by Benjamin’s (1962) eigenvalue problem:

φBnyy + ΩBn

2y
φBn = 0, (3.7a)

φBn(0)= φBn(1/2)= 0. (3.7b)
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The solution of (3.7) gives the eigenvalues ΩBn = 4ω2
Bn = (j1,n)

2, where j1,n is the nth
zero of the Bessel function J1(Z) and the eigenfunction φBn(y)=√2yJ1(

√
2ΩBny).

In the present paper we focus on the range of swirl 0 6 ω 6 3 which includes
Benjamin’s specific swirl ωB = ωB1 = 1.915855 but does not include Benjamin’s
second critical swirl ωB2 = 3.507795 and higher. In this range of swirl only the
first mode in the series ψ1(x, y, t) = φB(y)ϕ(x, t) is of interest in terms of change of
stability properties, where φB(y) = φB1(y) and ϕ(x, t) = ϕ1(x, t). In this swirl range, all
other higher-order modes are asymptotically stable with very negative growth rates
and the perturbations related to these modes quickly decay. Substituting ψ1(x, y, t) into
(3.6), we obtain the equation that describes the linear dynamics of the perturbation:

ϕxxxx + (Ω −ΩB)ϕxx + 2ϕxxxt + ϕxxtt − 2ΩBϕxt −ΩBϕtt = 0. (3.8)

The boundary conditions (3.3) and (3.5) become

ϕ(0, t)= ϕxx(0, t)= 0, ϕxxx(0, t)+ (4ω2 −ΩB)ϕx(0, t)= 0, ϕx(L, t)= 0. (3.9)

Let ε1 = 1/L2, X = √ε1x and t∗ = ε3/2
1 t. We write ϕ(x, t) in terms of the

rescaled variables, ϕ(x, t) = A (X, t∗). Then, the linear dynamics equation (3.8) can
be written as

−2ΩBAXt∗ +AXXXX + 4κωAXX + 2ε1AXXXt∗ + 4κ2
ωε1

ΩB
AXX + ε2

1AXXt∗t∗ − ε1ΩBAt∗t∗ = 0.

(3.10)

Here, κω = 2ωB(ω − ωB)/ε1. The boundary conditions for all t∗ > 0 are

A (0, t∗)= 0, AXX(0, t∗)= 0, AXXX(0, t∗)+
(

4κω + 4κ2
ωε1

ΩB

)
AX(0, t∗)= 0

and AX(1, t∗)= 0. (3.11)

In the case of a long pipe where L2� 1 we have ε1 ∼ 0. Then, when terms of order
ε1 and higher are neglected, equation (3.10) can be simplified to

2ΩBAXt∗ =AXXXX + 4κωAXX, (3.12)

and the boundary conditions (3.11) reduce to

A (0, t∗)= 0, AXX(0, t∗)= 0, AXXX(0, t∗)+ 4κωAX(0, t∗)= 0
and AX(1, t∗)= 0. (3.13)

Integrating (3.12) with respect to X and using the boundary conditions (3.13) gives the
long-wave perturbation problem:

2ΩBAt∗ =AXXX + 4κωAX, (3.14)

with the boundary conditions

A (0, t∗)= 0, AXX(0, t∗)= 0 and AX(1, t∗)= 0. (3.15)

3.2. Growth rates of linear stability modes according to problem (3.10) and (3.11) and to
the long-wave problem (3.14) and (3.15)

To study the linear stability of the solid-body rotation flow based on the problem
(3.10) and (3.11), we assume a mode A (X, t∗) = ˜A (X)eσ

∗t∗ , where ˜A (X) is the
perturbation’s mode shape function and σ ∗ = σ/ε3/2

1 is the perturbation’s rescaled
growth rate. Inserting it into (3.10) and (3.11) one obtains the linear eigenvalue

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.554


288 S. Wang, Z. Rusak, S. Taylor and R. Gong

problem

˜AXXXX + 4κω ˜AXX − 2ΩBσ
∗ ˜AX + 2ε1σ

∗ ˜AXXX

+ 4κ2
ωε1

ΩB

˜AXX + ε2
1σ
∗2 ˜AXX − ε1ΩBσ

∗2 ˜A = 0. (3.16a)

˜A (0)= 0, ˜AXX(0)= 0, ˜AXXX(0)+
(

4κω + 4κ2
ωε1

ΩB

)
ÃX(0)= 0

and ˜AX(1)= 0. (3.16b)

Similarly, the long-wave linear stability problem of the solid-body rotation flow based
on (3.14) and (3.15) becomes

ÃXXX + 4κωÃX − 2ΩBσ
∗Ã= 0, (3.17a)

Ã(0)= 0, ÃXX(0)= 0 and ÃX(1)= 0. (3.17b)

Note that the eigenvalue problem (3.16) is a fourth-order differential equation with
four boundary conditions. On the other hand, the eigenvalue problem (3.17) is a cubic
order differential equation with three boundary conditions. Only when ε1 is sufficiently
small, we can neglect the high-order terms, integrate it with respect to X and use the
third inlet condition in (3.16b) to obtain (3.17a).

The two eigenvalue problems (3.16) and (3.17) are solved by a shooting method
using a standard fourth-order accurate Runge–Kutta solver. The growth rates σ are
then calculated from the scaling relationship σ = ε3/2

1 σ ∗. The results of Gallaire et al.
(2004) for a pipe length L = 10 match with our present computation for this pipe
length.

Solutions in figure 1 for the case of a pipe with a non-dimensional length L =
6 (ε1 = 1/36) show the appearance of linearly unstable modes in sequence as swirl
is increased above the first critical level for a finite-length pipe ω1 =

√
ω2

B+π2/(16L2)
(first defined in Wang & Rusak 1996). The results from the full linear stability
problem are the same as those found analytically by Wang & Rusak (1996) in
their stability analysis. In these computations L = 6 is a typical pipe length of the
experimental apparatuses (Garg & Leibovich 1979). The results reflect the general
stability behaviour for a similar length of the pipe.

Figure 1(a) shows a comparison of the growth rates of the least stable mode
computed from the linear stability problem (3.16) and from the long-wave linear
stability problem (3.17) for the range 1.91< ω < 1.96. It can be seen that in this range
of swirl only one mode becomes unstable when ω > ω1 = 1.920. The growth rates
from both computations are real values and exhibit a very small numerical difference.
Figure 1(b) shows a comparison of the computed results of the real part of σ for the
two unstable modes that appear in the range 1.96 < ω < 2.02 with complex conjugate
values, and the three unstable modes that appear in the range 2.02 < ω < 2.15. The
difference between results increases as the swirl level increases but the growth rate
lines stay similar in the swirl range. This demonstrates the applicability of the long-
wave problem (3.14) and (3.15) to the full perturbation’s linear dynamics in a range of
swirl above the critical swirl ω1.

4. The feedback stabilization of the solid-body rotation flow
4.1. The feedback control using the long-wave linear dynamics

A feedback control strategy is proposed by Rusak et al. (2012) to quench the unstable
evolution of a perturbed columnar swirling flow in a long but finite-length pipe with
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FIGURE 1. Growth rate σ comparison: (a) the swirl ratio range with one unstable mode;
(b) the swirl ratio range with three unstable modes. The thick lines are results of the full
linear stability problem (3.16) and the thin lines, the results of the long-wave linear stability
problem (3.17). The solid lines are real growth rates and the dashed lines are the real part of
complex growth rates.

non-periodic boundary conditions. A generalization of this control law is presented
as follows. We consider a control term c(X)u(t∗), where c(X) is a fixed function
representing the control profile along the axial direction, added to the governing
equation (3.14) with modified and more general outlet conditions, i.e.

2ΩBAt∗ = AXXX + 4κωAX + c(X)u(t∗) for 0 6 X 6 1, t∗ > 0, (4.1a)
A(0, t∗)= AXX(0, t∗)= 0, c1AX(1, t∗)+ c2A(1, t∗)= 0 for t∗ > 0, (4.1b)

A(X, 0)= f (X) for 0 6 X 6 1. (4.1c)

Here c1 > 0, c2 > 0 and c1 + c2 = 1.
The control term represents control commands using swirl changes at the inlet (see

§ 4.3), pipe geometry changes from a straight pipe (see Xu 2012), or wall injection
commands. We will show that u(t∗), with a control profile function c(X)= 1−c2X, can
be determined by the inlet flow state AX(0, t∗) for all time t∗ so that the perturbation
decays in time and flow is stabilized. In appendix A we prove a fundamental theorem
for the feedback stabilization of a swirling flow in a finite-length pipe when κω > 0.
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Let

Ẽ(t∗)= 1
2

∫ 1

0
(AX)

2 dX (4.2)

be the perturbation’s kinetic energy (associated with the radial velocity) and

Ê(t∗)= 1
2

∫ 1

0
(AX)

2 dX + c2

c1
AX(1, t∗)2 (4.3)

be the extended perturbation’s kinetic energy with c1 6= 0. Then, when either c1 = 1
and c2 = 0 or c1 = 0 and c2 = 1, the following energy identity holds

2ΩB
dẼ

dt∗
=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2 + AX(0, t∗)u(t∗). (4.4)

Also, when c1 > 0, c2 > 0 and c1 + c2 = 1, the following extended energy identity
holds,

2ΩB
dÊ

dt∗
=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2 + AX(0, t∗)u(t∗). (4.5)

Note that the right-hand sides of (4.4) and (4.5) are the same. The first term on
the right-hand side of (4.4) (or (4.5)), which originates from the dispersion term in
(4.1), is always stabilizing the flow. The second and third terms on the right-hand
side of (4.4) (or (4.5)) depend on the swirl ratio with respect to Benjamin’s critical
level. The second term has a stabilizing effect when ω > ωB (κω > 0). The third
term is destabilizing when ω > ωB (κω > 0). Wang & Rusak (2011) showed that in
the natural case without control, AX(0, t∗)2 > AX(1, t∗)2 for the unstable modes when
ω > ω1. The overall combined effect of the second and third terms is destabilizing.
There is a feed-forward mechanism between the inlet and the perturbation’s kinetic
energy in the flow bulk which destabilizes the flow. For a stabilizing effect of the
control action when κω > 0, the control function u(t∗) must be sufficiently large for
all time to overcome the destabilizing effect from the third term. Assuming the active
feedback-control law

u(t∗)=−2γ κωAX(0, t∗), (4.6)

Equations (4.4) and (4.5) become, respectively,

ΩB
dẼ

dt∗
6 κω(1− γ )(AX(0, t∗))2, (4.7)

and

ΩB
dÊ

dt∗
6 κω(1− γ )(AX(0, t∗))2. (4.8)

Thus, dẼ/dt∗ or dÊ/dt∗ are negative for all t∗ > 0 when γ > 1. The active feedback
control cuts the natural feed-forward instability mechanism to stabilize the flow when
ω > ω1. This leads to the following control results for various settings of the outlet
boundary conditions.
Case 1. For boundary conditions given by

A(0, t∗)= AXX(0, t∗)= 0 and AX(1, t∗)= 0 for t∗ > 0, (4.9)

the energy Ẽ(t∗) decays for all time when we choose c(X) = 1 and apply the control
law (4.6) with γ > 1.
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Case 2. For boundary conditions given by

A(0, t∗)= AXX(0, t∗)= 0 and A(1, t∗)= 0 for t∗ > 0, (4.10)

the energy Ẽ(t∗) decays for all time when we choose c(X) = 1 − X and apply the
control law (4.6) with γ > 1.
Case 3. For boundary conditions given by

A(0, t∗)= AXX(0, t∗)= 0 and c1AX(1, t∗)+ c2A(1, t∗)= 0 for t∗ > 0, (4.11)

with c1 > 0, c2 > 0 and c1 + c2 = 1, the energy Ê(t∗) decays for all time when we
choose c(X)= 1− c2X and apply the control law (4.6) with γ > 1.

Note that the same control law for u(t∗) is used in the three cases with various
outlet conditions. The first case is applicable to long pipes. The second case may
represent a fixed flux condition at the outlet of a finite-length pipe. The third case
may fit to a wide range of physical situations with various outlet devices. The only
difference is the axial profile function c(X) adapted in each case.

In the proposed control law (4.6), we relate at all time the control command u(t∗)
to the negative of the inlet radial velocity at an off-centre position. Note that the
inlet radial velocity is the major source for the production of perturbation’s kinetic
energy associated with the axial velocity perturbation and dominates the growth of the
perturbation, see Wang & Rusak (2011) for a detailed discussion of the perturbation’s
energy production mechanism. The analysis according to the long-wave (long-pipe)
model (4.1) shows that by actively feeding back a control command that is related
at all time to the opposite sign of the evolving inlet radial velocity, the control
action opposes the gain of energy at the inlet, dissipates the energy and reduces
the production of perturbation’s kinetic energy Ẽ and its total kinetic energy, thereby
forcing the perturbation to decay in time.

4.2. Conditions on the control gain γ according to the long-wave dynamics
We consider the role of the control gain γ . The main result from the analysis below is
that excessive control with large γ does not necessarily lead to an effective control. On
the contrary, we show that either the borderline case where γ = 1 (or close to 1) or the
case where γ is sufficiently large lead to control with zero (or close to zero) growth
rate of the stability modes. Such a control suffers a narrow margin of controllability
that may be lost when pipe length is not necessary long or when nonlinear effects are
also considered.

We consider the problem (4.1) with (4.6). Let A(X, t∗) = Ãeσ
∗t∗ and u(t∗) =

−2κωγ ÃX(0)eσ
∗t∗ . Inserting it into (4.1), one obtains an eigenvalue problem for Case 1

(where c(X)= 1):

2ΩBσ
∗Ã= ÃXXX + 4κωÃX − 2κωγ ÃX(0) for 0 6 X 6 1, (4.12a)

Ã(0)= ÃXX(0)= ÃX(1)= 0. (4.12b)

We consider the situation where a neutral mode with σ ∗ = 0 exists when κω > 0. This
case poses a limit on the feedback control effectiveness. With σ ∗ = 0, the eigenvalue
problem reduces to

ÃXXX + 4κωÃX = 2κωγ ÃX(0) for 0 6 X 6 1, (4.13a)

Ã(0)= ÃXX(0)= ÃX(1)= 0, (4.13b)

which can be solved analytically. Assuming that ÃX(0) = 1 (a scaling parameter
of the linear problem) we find that Ã(X) = γX/2 solves the non-homogeneous
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problem (4.13). Also, the homogeneous problem of (4.13) has a characteristic solution
Ã= eaX where a is found from the roots of

a3 + 4κωa= 0. (4.14)

The solutions of (4.14) are a1 = 0 and a2,3 = ±2
√
κωi. The general solution for (4.13)

is given by the linear combination:

Ã(X)= C1 sin(2
√
κωX)+ C2 cos(2

√
κωX)+ C3 + 1

2γX. (4.15)

From conditions Ã(0)= 0 and ÃXX(0)= 0, one obtains C2 = 0 and C3 = 0, and

Ã(X)= C1 sin(2
√
κωX)+ 1

2γX. (4.16)

The coefficient C1 is determined from ÃX(1)= 0 and ÃX(0)= 1 (as assumed); we have

2C1
√
κω + 1

2γ = 1 and (4.17)

2C1
√
κω cos(2

√
κω)+ 1

2γ = 0. (4.18)

Then, the necessary and sufficient conditions for the solution of (4.17) and (4.18) are
given by

cos(2
√
κω)= γ

γ − 2
. (4.19)

The necessary and sufficient conditions for the existence of a neutral mode of (4.12)
are ∣∣∣∣ γ

γ − 2

∣∣∣∣6 1. (4.20)

It can be concluded from (4.20) that when γ < 1, the growth rate must change its
sign at various swirl ratios and the flow becomes uncontrollable. When γ = 1, we
have γ /(γ − 2) = −1 and there exist infinitely many neutral modes at various swirl
ratios. Thus, the control with γ = 1 is indeed at the borderline of applicability of
the control method. When γ > 1 (as required by the control law), (4.19) has no
solution and control is achieved. However, when control gain γ � 1, the effectiveness
of the feedback stabilization is reduced. In fact, γ /(γ − 2)→ 1 as γ →∞ and
this leads to the existence of near neutral modes of the eigenvalue problem (4.12)
and a marginal control. Finally, we observe that γ = 2 is the only singular point
of γ /(γ − 2) and no solution of (4.19) exists. In this sense, γ = 2 is a possibly
best gain for the feedback control. This result is useful for applying the proposed
control method. We demonstrate in § 4.4 that this is indeed the case, where the control
effectiveness is assessed in terms of the growth rate according to the full controlled
linear dynamics. Xu (2012) found from a numerical study using the long-wave model
for a Lamb–Ossen vortex that the gain γ = 2 gives the fastest decay of perturbations.

In the following section we use the control strategy developed here in the full linear
dynamics problem for case 1 and assess the effectiveness of the proposed control
method.

4.3. The control of the solid-body rotation flow using the full linear dynamics
The control approach developed in § 4.1 and § 4.2 based on the long-wave problem
is used now in the full linear dynamics problem (3.16). Here, we replace the fixed
circulation profile at the inlet and consider it to be time varying in the form

K(0, t∗)= 2ωy+ εφB(y)k(t
∗), (4.21)
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where 0<| ε |� 1 and k(t∗) is the control command in time. From the basic linearized
governing (3.2), we find that

2ωK1t =−2y(χ1t + χ1x)+ 4ω2ψ1x. (4.22)

Note that at the inlet K1t∗(0, t∗) = φB(y)kt∗(t∗). At the inlet X = 0, equation (4.22)
becomes

2ωkt∗(t
∗)=

(
AXXX(0, t∗)+

(
4κω + 4κ2

ωε1

ΩB

)
AX(0, t∗)

)
. (4.23)

The mathematical problem (3.16), after being modified with the circulation control at
the inlet defined by (4.21), takes the form

AXXXX − 2ΩBAXt∗ + 4κωAXX + 2ε1AXXXt∗

+4κ2
ωε1

ΩB
AXX + ε2

1AXXt∗t∗ − ε1ΩBAt∗t∗ = 0. (4.24a)

A (0, t∗)=AXX(0, t∗)= 0, (4.24b)

AXXX(0, t∗)+
(

4κω + 4κ2
ωε1

ΩB

)
AX(0, t∗)= 2ωkt∗(t

∗) and AX(1, t∗)= 0. (4.24c)

For the case of a long pipe ε1 = 1/L2 ∼ 0 and ω ∼ ωB, the terms in the second line of
(4.24a) are of the order ε1 or higher, and may be neglected. Then integrating it with
respect to X and using the boundary conditions in (4.24b) and (4.24c) yields

AXXX − 2ΩBAt∗ + 4κωAX − 2ωkt∗(t
∗)= 0, (4.25a)

A (0, t∗)= 0, AXX(0, t∗)= 0 and AX(1, t∗)= 0. (4.25b)

Comparing (4.25) with (4.1), we find that the control term u(t∗) can be realized by
swirl control u(t∗)=−2ωkt∗(t∗). This leads to the control law for k(t∗) as

2ωkt∗(t
∗)= 2γ κωAX(0, t∗) with γ > 1. (4.26)

It is anticipated that the perturbation on the solid-body rotation flow as described by
the full linear dynamics problem can be as well controlled by the inlet swirl control
law (4.26) for ω sufficiently close to ωB. However, when ω is beyond the initial range
where the long-wave approach is valid, it is not clear that the full linear dynamics
problem can be still stabilized by the proposed feedback methodology (4.26). Further
investigation is needed.

It is more suitable to use the following control law

2ωkt∗(t
∗)= γ

2
Ω −ΩB

ε1
AX(0, t∗), γ > 1, (4.27)

for the full linear dynamics problem, which is equivalent to (4.26) at the long
pipe limit since (Ω − ΩB)/ε1 ∼ 4κω for a long pipe. Introducing the mode analysis
A (X, t∗)= ˜A (X)eσ

∗t∗ into (4.24), one obtains an eigenvalue problem,

˜AXXXX + Ω −ΩB

ε1

˜AXX − 2ΩBσ
∗ ˜AX + 2ε1σ

∗ ˜AXXX

+ε2
1σ
∗2 ˜AXX − ε1ΩBσ

∗2 ˜A = 0, (4.28a)

˜A (0)= 0, ˜AXX(0)= 0, ˜AXXX(0)+ Ω −ΩB

ε1

˜AX(0)= γ2
Ω −ΩB

ε1

˜AX(0)

and ˜AX(1)= 0. (4.28b)
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The relationship 4κω+4κ2
ωε1/ΩB = (Ω−ΩB)/ε1 was used here. The flow controllability

requires that the real parts of the eigenvalues σ ∗ of (4.28) are all non-positive.
We rigourously prove in appendix B the following energy identity:

1
2
˜A 2
XX(1)+

1
2
(γ − 1)

Ω −ΩB

ε1

˜A 2
X (0)+

1
2
ε2

1σ
∗2 ˜A 2

X (0)+
1
2
ε1ΩBσ

∗2 ˜A 2(1)

=−σ ∗
∫ 1

0
(2ΩB

˜A 2
X + 2ε1

˜A 2
XX) dX. (4.29)

For stability modes of full linear control problem (4.28) with real eigenmodes and
growth rates σ ∗, the left-hand side of (4.29) is non-positive. Thus, we obtain the
following fundamental result for the feedback control law of the full linear control
problem:

When eigenvalues σ ∗ of problem (4.28) are real, they are always negative when the
control gain γ > 1.

Note that the last two terms in the left-hand side of (4.29), which are neglected in
the weakly nonlinear long-wave model, are non-negative and thus have a stabilizing
effect on the flow.

It is natural to ask whether or not the same conclusion can be drawn for the
complex σ ∗. The answer is in general negative. The complication arises from the terms
in the left-hand side of (4.29) with σ ∗2, whose real component may become negative
for σ ∗ complex. The numerical computations in § 4.4 show that the real component of
the complex growth rate branches can indeed become positive for some control gain
γ in a range of swirl ratio. In physics, this means that the perturbations have more
complicated behaviour due to the appearance of conjugate complex eigenmodes, which
arise as a consequence of the merging of two real eigenmodes at specific swirls.

4.4. The linear growth rate according to the full linear control problem (4.28)
The linear stability problem (4.28) using the full linear controlled dynamics is solved
by a standard shooting method. We conducted a thorough computation of the growth
rates for a flow in a pipe with L = 6 for various control gains γ and in a swirl
range ∼50 % above the first critical swirl ω1 = 1.920. The results confirm all of the
theoretical predictions developed in the previous sections, and reveal explicitly the
complicated behaviour of the feedback stabilization method.

Figure 2 shows the growth rates with control gains γ = 1.9, γ = 2 and γ = 2.4,
respectively, for the swirl range up to ω = 3. All of the growth rates have negative real
parts, which shows the decay of all perturbation modes of the full linear control
problem in the whole range of swirl, where the flow is unstable in the natural
dynamics without flow control, see figures 1 and 2. It is found that the real growth rate
branches in all of the cases computed are negative as predicted by the theory, and their
values are seen to be progressively decreasing along with the increase of the swirl.
One notices that the decrease of the real branches with γ = 2 is the fastest among the
cases, indicating best performance of the feedback control with this gain. Note from
(4.28) that for the control with gain γ = 2 we actually control ˜AXXX(0)= 0 in addition
to ˜A (0)= 0 and ˜AXX(0)= 0, which is a special physical mechanism of control.

All branches of complex growth rates bifurcate from the fold points of the real
growth rate branches. The real parts of the complex growth rates stay nearly constant
but oscillate with swirl. As shown, for example, for the case γ = 2, the value of the
real part of the least stable complex growth rate branch is oscillating in the range
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FIGURE 2. The growth rate σ versus the swirl parameter ω. The solid line indicates the
real growth rate branches and the dotted line indicates the complex growth rate branches: (a)
γ = 1.9; (b) γ = 2; (c) γ = 2.4.

between −0.0068 and −0.0095. The other complex growth rate branches oscillate in
the range of more negative values. Results indicate that flow stabilization can also be
achieved for a swirl ratio above ω = 3.

Figure 3 shows the growth rates with control gains γ = 1 and γ = 10, respectively,
for the swirl range up to ω = 3. These are two typical cases with inadequate amount
of feedback gain for the control, either insufficient or excessive. It is found that the
real growth rate branches in either case are indeed non-positive as predicted by the
theory, but their peak value at each branch is either zero (γ = 1) or close to zero
(γ = 10).

All branches of complex growth rates bifurcate from the fold points of the real
growth rate branches. The real parts of the complex growth rates become positive at
certain swirl ratios. This means instability modes develop and feedback stabilization is
lost in both cases. The long-wave control approach which predicts controllability for
every ω > ωB with γ > 1 is actually valid only when swirl ratio is slightly above ωB

up to ω = 2.11 when γ = 1 and up to ω = 2.4 when γ = 10. This is in sharp contrast
to the case with γ around 2.
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FIGURE 3. The growth rate σ versus the swirl parameter ω. The solid line indicates the real
growth rate branches and the dotted line indicates the the complex growth rate branches: (a)
γ = 1; (b) γ = 10.

The stability modes according to the full linear control problem shows the control
effectiveness is sensitive to the choice of the feedback control gain. The range gain of
γ around 2 (1.5< γ < 2.5) gives the fastest decay of the perturbation for a wide range
of swirl. However, insufficient or excessive gains lead to failure of the control method
as the swirl is increased.

At this point, we would like to clarify the difference between Gallaire et al. (2004)
control method and the present feedback stabilization method. Gallaire et al. (2004)
used the linear perturbation equations together with linear optimal control theory to
minimize a cost function that is based on the perturbation size and the control power
and to derive their feedback control rule. Their control method requires measurement
of the perturbation in the whole domain which is not easy to realize. Also, it is limited
to a relatively small range of swirl up to 7 % above ω1. On the other hand, we use a
perturbation energy identities (4.4) and (4.5), with no limit of control power, to reveal
a relatively robust feedback control law (4.6) that requires only a single measurement
of the radial velocity at an off centreline point at the inlet. Our control approach with
gain γ around 2 suppresses all natural instability modes up to 50 % above ω1, and
even more can be achieved.

4.5. The stability mode shapes and control mechanism according to the full linear problem
In this section we shed additional light on the physical mechanism of the proposed
feedback control method. We first consider the eigenmodes of the full linear control
problem (4.28) for various control gains γ and their physical implications. We focus
on the swirl range near ωB. Figure 4(a) shows only the least-stable branches of the
growth rate curves for γ = 1, 2 and 10, respectively. They are all real growth rate
branches. For γ = 1 and 10 the curve has a maximum point with negative value near
0. Also, each of the curves exhibits a fold point from which complex eigenvalues
bifurcate (see § 4.4).

Figure 4(b) shows six eigenmodes for swirl ratios equally space in the range
1.934 6 ω 6 1.952. For the case γ = 1, figure 4(c) shows six eigenmodes for swirl
ratios equally space in the range 1.940 6 ω 6 1.963. For the case γ = 10, figure 4(d)
shows six eigenmodes for swirl ratios equally space in the range 1.985 6 ω 6 2.008.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

55
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.554


On the active feedback control of a swirling flow in a finite-length pipe 297

(a) (b)

–10

–8

–6

–4

–2

0

2

1.92 1.94 1.96 1.98 2.00

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8

X
0 1.0

(d)

X
0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

(c)

X
0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

FIGURE 4. (a) The growth rate σ versus the swirl ω: the dashed line is the case γ = 1, the
solid line is γ = 2 and the dashed dotted line is γ = 10. (b) Six eigenmodes for the case γ = 1
(between the two open circles marked on the growth rate curve). (c) and (d) Similar plots for
the cases γ = 2 and 10, respectively. The arrow points to the increase of the swirl.

In these figures the linear mode shape functions ˜A (X) are rescaled such that their
maximum value is 1. It can be seen that the mode shapes are affected by the control
gain γ and thereby they influence the control effectiveness. For γ = 1, the feedback
gain is at the borderline of control. The resulting eigenmodes change shape from near
sin(πX/2) at ω = 1.934 to waves with greater relative slopes at the pipe inlet as the
swirl ratio approaches the fold point at ω = 1.952. This indicates that the control
gain γ = 1 induces relatively large inlet radial velocity perturbations which are not
sufficiently suppressed. They may even grow out of control due to nonlinear effects.

For γ = 2, the resulting eigenmodes in the range ω = 1.940 to ω = 1.963 (the fold
point) are overall similar to those for the case γ = 1 but with smaller relative slopes at
the inlet. This allows a relatively effective feedback control of the perturbations since
a moderate control gain induces relatively moderate inlet radial velocity perturbations
that are sufficiently suppressed.

When feedback gain is increased to γ = 10, the relative slopes of the eigenmodes
at the inlet decrease significantly with respect to the cases with γ = 1 and 2. This
reveals a different physical mechanism of the feedback control with a large gain γ .
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The control γ = 10 is directly related to the suppression of the radial velocity
perturbation at the pipe inlet, i.e. the feedback control is based on the inlet radial
velocity perturbation and with a too large gain it results in a too small inlet radial
velocity perturbation and, thereby, reduces the effectiveness of the feedback control.

In summary, the eigenmode slope at the inlet provides insight into the control
mechanism. When the slope is too large, the response of the flow to control command
is too soft to force the perturbation decay. On the other hand, when the inlet slope is
too small flow response to the control command is too stiff, therefore not so effective.

To complete the discussion, we provide additional quantitative analysis of the energy
identity (4.29). From (4.29) we find that the damping mechanism in the feedback
control is mainly contributed by the two terms on the left-hand side of this equation;
the first term, ˜A 2

XX(1)/2, reflects the stabilizing role of the dispersion of perturbations
and the second term, (γ − 1)((Ω − ΩB)/ε1) ˜A 2

X (0)/2, reflects the suppression of the
radial velocity perturbation at the pipe inlet by the feedback control when ω > ωB.
The other two terms on the left-hand side of (4.29) are of higher order and may be
neglected when ε1 is sufficiently small. For γ = 1, the second term on the left-hand
side of (4.29) vanishes and the perturbation’s damping mechanism is primarily from
the first term on the left-hand side of (4.29). For the feedback gain γ > 1, we calculate
the contributions of the two leading terms in (4.29) to the growth rate by splitting σ
into two respective growth rates,

σ = σ1 + σ2 + O(ε1), (4.30a)

σ1 =−ε3/2
1

˜A 2
XX(1)
2I

, (4.30b)

σ2 =−ε1/2
1 (γ − 1)

Ω −ΩB

2I
˜A 2
X (0). (4.30c)

Here

I =
∫ 1

0
(2ΩB

˜A 2
X + 2ε1

˜A 2
XX) dX. (4.31)

The computations of σ1 and σ2 and their comparisons with σ for γ = 2 and 10 are
shown in figure 5(a,b), respectively.

For γ = 2, the second term on the left-hand side of (4.29) has a significant role in
the perturbation’s damping mechanism. As shown in figure 5(a) the growth rate curve
of σ is closely followed by the σ2 curve while σ1 is much smaller. One notices that for
this case both (γ − 1) and ˜A 2

X (0) retain an order O(1) and dominate the growth rates
and its eigenmode. Thereby, the feedback control with γ = 2 is strongly engaged in
the mechanism of suppression of perturbations.

For γ = 10, the excessive feedback strongly suppresses the development of the
radial perturbation at the inlet, resulting in a mode shape with much smaller slope
at the inlet X = 0. Then, the term ˜A 2

X (0) becomes much smaller. This substantially
reduces the damping effect from the second term on the left-hand side of (4.29). As
shown in figure 5(b), the growth rate curve of σ is now closely followed by σ1 curve
whereas σ2 is much smaller. It is clear that when γ increases above 2, the radial
velocity perturbation decreases and the overall contribution from the feedback control
term to the suppression of the perturbations is reduced. In physical situations, the
feedback control with large gains γ appears to be too stiff, while the control with gain
γ = 2 is more flexible and thus more effective.
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FIGURE 5. The contributions to the damping mechanism: . (a) the case γ = 2 and (b) the
case γ = 10. The star symbols ( ) show σ1 and the plus symbols (+) show σ2.

4.6. The response of the control approach to inlet flow perturbations according to the
long-wave linear problem

We study the robustness of the proposed control method to inlet flow perturbations.
We use the long-wave (long-pipe) linear problem (4.25) and redefine k(t∗) as
k0 sin(2πft∗) + k(t∗). The first term represents inlet sinusoidal circulation perturbations
with amplitude k0 and frequency f and the second term the active control command.
Substituting this into (4.25) we obtain the problem

AXXX − 2ΩBAt∗ + 4κωAX − 4πfω cos(2πft∗)− 2ωkt∗(t
∗)= 0, (4.32a)

A (0, t∗)= 0, AXX(0, t∗)= 0 and AX(1, t∗)= 0. (4.32b)

An initial perturbation is also considered in the form of a representative wave,
A (X, 0)= δ sin(πX/2). Here δ represents the size of the initial perturbation.

The solution of this linear problem is composed of a linear combination of the
solution to the control problem (4.32) with an initial perturbation size δ = −1 and
with no inlet flow perturbation (k0 = 0) and the solution of the control problem (4.32)
with no initial perturbation (δ = 0) and with a continuous inlet flow perturbation with
k0 = 1 and f = 1. The active feedback control law (4.26) with γ = 2 is used for
each of these solutions. The problem (4.32) is solved numerically using a two-step
temporal integration method and central finite differences in X (see the details of the
technique in Rusak et al. 2012). In the following computed examples we focus on the
representative case where the incoming swirl is ω = 1.95 and the pipe non-dimensional
length is L= 6 (or ε1 = 1/36).

The natural evolution of the flow perturbation mode A (t∗) in the two cases with
no control (γ = 0) is first computed. Figure 6 presents the evolution of the mode
minimum (Amin, the solid line), maximum (Amax, the dotted line) and outlet (Aout, the
dashed line) values. Figure 6(a) is for the case with δ = −1 (an initial deceleration
wave) and k0 = 0 and figure 6(b) is for the case with δ = 0 and k0 = 1, f = 1.
Figure 6(a) shows that the initial wave first reshapes during the transient period
0 < t∗ < 0.5 to the unstable mode at ω = 1.95 and then grows in size with a constant
growth rate σ ∗ = 0.78 and a fixed shape, showing increasing deceleration along the
pipe centreline with time. This is the initiation of the vortex breakdown process
induced by an initial deceleration wave. Figure 6(b) shows the flow response to
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FIGURE 6. The natural (γ = 0) evolution of the mode minimum (solid line), maximum
(dotted line) and outlet (dashed line) values at ω = 1.95 for the cases: (a) δ = −1 and k0 = 0;
(b) δ = 0, k0 = 1 and f = 1.
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FIGURE 7. The feedback controlled evolution at ω = 1.95 with γ = 2 of the perturbation
mode: (a) the mode minimum (solid line), maximum (dotted line) and outlet (dashed line)
values for the case δ =−1 and k0 = 0; (b) the evolution of the controller kt∗ .

the continuous inlet sinusoidal perturbation. Again, the mode first reshapes during
the transient period 0 < t∗ < 3 and then grows exponentially with oscillations with
frequency 1 and with increasing deceleration perturbations along the pipe centreline.
This is the initiation of the vortex breakdown process but now induced by a continuous
inlet flow perturbation.

The controlled evolution of the flow perturbation mode in the case with δ = −1,
k0 = 0 is shown in figure 7. The exponential decay in time of the perturbation
mode minimum, maximum and outlet values and of the controller kt∗ is evident from
figure 7(a,b), respectively. The decay rate is constant, σ ∗ = −0.68. The controller is
able to cut the feed-forward natural growth of the initial wave (as shown in figure 6a)
and enforce a decay of the perturbation within t∗ < 5 and a return of the swirling
flow to a columnar state. This demonstrates the elimination of the breakdown process
induced by the initial wave as long as the controller is active.

The controlled evolution of the flow perturbation mode in the case with δ = 0,
k0 = 1 and f = 1 is shown in figure 8. The perturbation mode minimum, maximum and
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FIGURE 8. The feedback controlled evolution at ω = 1.95 with γ = 2 of the perturbation
mode: (a) the mode minimum (solid line), maximum (dotted line) and outlet (dashed line)
values for the case δ = 0 and k0 = 1, f = 1; (b) the evolution of the controller kt∗ .

outlet values and the controller kt∗ exhibit, after a short transient stage, a sinusoidal
response with no growth or decay, see figure 8(a,b), respectively. The controller is able
to cut the natural growth of the perturbation mode in response to the continuous
inlet perturbation (as shown in figure 6b) and to enforce a bounded sinusoidal
response of the perturbation when t∗ > 3 with frequency 1 as imposed at the inlet.
This demonstrates the robustness of the control law (4.26) with γ = 2 to stabilize
continuous inlet flow perturbations.

Finally, the controlled evolution of the flow perturbation mode in the combined
case with δ = −1, k0 = 1 and f = 1 is shown in figure 9. The solution is a linear
combination of the solutions presented in figures 7 and 8. The perturbation mode
minimum, maximum and outlet values and the controller kt∗ first decay over the
time period 0 < t∗ < 3 as a result of the imposed decay of initial wave by the
controller. Then, the perturbation mode and the controller are dominated by the
sinusoidal response with no growth or decay, see figure 9(a,b), respectively. This
demonstrates again the ability of the control law (4.26) with γ = 2 to overcome the
growth of both the initial wave and the continuous inlet flow perturbation, stabilize the
base flow, and eliminate the vortex breakdown process.

5. Conclusions and discussion
The theoretical foundation and the physical mechanisms of a newly proposed

feedback-stabilization method of a vortex flow in a finite-length, straight circular
pipe are established. In the natural dynamics without control, linearly unstable modes
appear in sequence as swirl ratio ω is increased beyond the critical level ω1 (see
figure 1). For an effective stabilization of the base vortex flow, all of the unstable
perturbation modes must be eliminated by applying a suitable control law. We
formulate a new active control method from an extended perturbation’s kinetic energy
analysis that is based on the long-wave (long-pipe) model. Information about the
inlet radial velocity is actively fed back to the controller, multiplied by a gain γ ,
and globally suppresses the perturbation’s kinetic energy and thereby quenches all of
the unstable modes of the flow when ω > ω1. We prove that the feedback control
methodology can be applied to various physical settings at the pipe inlet and outlet
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FIGURE 9. The feedback controlled evolution at ω = 1.95 with γ = 2 of the perturbation
mode: (a) the mode minimum (solid line), maximum (dotted line) and outlet (dashed line)
values for the case δ =−1 and k0 = 1, f = 1; (b) the evolution of the controller kt∗ .

boundaries. Essentially, this active control strategy cuts the feed-forward mechanism
between the inlet radial velocity and the growth of perturbations in the bulk revealed
by Wang & Rusak (2011) and eliminates the breakdown process. This analysis also
emphasizes the importance of the long-wave model of Rusak et al. (2012) as a
fundamental tool for clearly elucidating the major physical mechanisms leading to
vortex breakdown and for revealing the effective method of the vortex flow control.

Through a neutral stability analysis of the long-wave linear feedback control
problem, we prove that either too small control gain (γ is greater but close to 1)
or excessive control gain (γ � 1) may lead to nearly neutral modes and marginal
flow control. We also find that the control gain γ = 2 may provide the most effective
control since for this gain all of the modes of the long-wave linear control problem are
far from neutral and stable. This indicates the need for correctly identifying a range of
effective control gains to ensure flow stabilization for a wide range of swirl ratios.

To further access the applicability and properties of the proposed control
methodology at various swirl ratios and control gains, we apply it to the full linear
control problem for a swirling flow with any swirl ratio in a finite-length pipe that
is not necessarily long. We focus on the case where the base state is given by a
solid-body rotation flow. This case offers analytical simplicity and important insight
into the control strategy. We analytically derive the novel energy identity (4.29) for
the full linear control problem which connects the growth rate of the controlled flow
stability modes to the specific damping mechanisms prompted by the feedback control.
Using this energy identity, we establish that all stability modes of the full linear
control problem that have real growth rates are stable (growth rates are negative). Our
computations in figures 2 and 3 show that the complex eigenmodes of the full linear
control problem bifurcate from fold points of branches of modes with real growth rates
and are also stable within a range of swirl near the fold swirl level. However, explicit
examples show that the complex eigenmodes can become unstable (the real part of
growth rate becomes positive) when swirl is further increased and certain inadequate
control gains γ are used; when γ is around 1 or γ � 1 (see figure 3). When γ = 2
or around 2 all eigenmodes are stable (see figure 2 in comparison with figure 1).
This shows that, within the proposed methodology, the range of control gain γ ∼ 2,
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say (1.5 6 γ 6 2.5), indeed provides the most effective feedback stabilization of the
base flow for a very wide range of swirl ratios above ω1. Present computations show
flow stabilization up to 50 % above the critical swirl and indicate that this stabilization
can be further increased to much higher swirl ratios.

The analysis of the shape of eigenmodes of the least stable modes sheds light on
the special properties and the stabilization mechanism of the feedback control method
as control gain γ varies (see figures 4 and 5). It is found that the dispersion of
perturbations dominates the flow stabilization when either γ is greater but close to
1 and when γ � 1. On the other hand, when γ = 2 or around it, flow stabilization
is dominated by the feedback control command and therefore is the most effective.
We also demonstrate through numerical computations the robustness of the proposed
control law to stabilize the solid-body rotation flow in response to both initial waves
and continuous inlet flow perturbations and eliminate the vortex breakdown process
(see figure 6–9).

Although the control theory in this paper is established largely based on analysis
of the solid-body rotation flow, the present results together with Rusak et al. (2012)
results apply through rescaling to the feedback stabilization of a general swirling flow
(with any core size) in a finite-length long pipe with the swirl level close to ω1. The
feedback control is able to overcome the production of the perturbation’s energy from
both the boundaries and the bulk. Specifically, the result of the potentially best gain
γ = 2 applies for the control of all vortices and is independent of core size (see
Xu 2012). Moreover, the analysis of the control of the solid-body rotation flow in a
finite-length pipe (that is not necessarily long) using the full linear control problem is
representative of the control of vortices with medium to large size cores (where core
radius is greater than 50 % of the pipe radius; see Rusak et al. 2012). These vortices
share a similar linear evolution stage of perturbations as that in the solid-body rotation
flow with small production of perturbation’s kinetic energy in the domain. Therefore,
the present control methodology can stabilize these flows as long as linear dynamics
applies. For swirling flow in a short pipe (L < 3) with narrow vortex core size, the
radial and axial perturbations are more closely coupled and a more complicated energy
production mechanism is involved. The proposed control method may have to be
modified to regain an effective control for such cases.

Appendix A
We prove the basic energy identities (4.4) and (4.5) for the long-wave (long-pipe)

linear control problem.

THEOREM A. For the control problem (4.1),
(A.1) when either c1 = 1 and c2 = 0 or c1 = 0 and c2 = 1, the following energy

identity holds,

2ΩB
d

dt∗
Ẽ(t∗)=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2 + AX(0, t∗)u(t∗);

(A 1)

(A.2) when c1 > 0, c2 > 0 and c1 + c2 = 1, the extended energy identity holds,

2ΩB
d

dt∗
Ê(t∗)=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2 + AX(0, t∗)u(t∗).

(A 2)
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Proof. We multiply (4.1) by AXX and integrate the result over the interval 0 6 X 6 1.
The left-hand side of the resulting identity becomes∫ 1

0
AXXAt∗ dX = [AXAt∗]X=1

X=0 −
∫ 1

0
AXAXt∗ dX. (A 3)

For the case where either c1 = 1 and c2 = 0 or c1 = 0 and c2 = 1, and using (4.2), we
find ∫ 1

0
AXXAt∗ dX =−

∫ 1

0
AXAXt∗ dX =−1

2

∫ 1

0
[(AX)

2]t∗ dX =−dẼ

dt∗
. (A 4)

For the case where c1 > 0, c2 > 0, c1 + c2 = 1, we obtain∫ 1

0
AXXAt∗ dX = AX(1, t∗)At∗(1, t∗)−

∫ 1

0
AXAXt∗ dX. (A 5)

Note that in this case the boundary term does not vanish at the outlet X = 1. However,
using the outlet boundary condition in (4.1), we find that

AX(1, t∗)At∗(1, t∗)=−c1

c2
AX(1, t∗)AXt∗(1, t∗). (A 6)

Using (4.3), we find∫ 1

0
AXXAt∗ dX =−c1

c2
AX(1, t∗)AXt∗(1, t∗)−

∫ 1

0
AXAXt∗ dX =−dÊ

dt∗
. (A 7)

The right-hand side of the resulting identities contain the following terms∫ 1

0
AXXAXXX dX = 1

2
[(AXX)

2]X=1
X=0 =

1
2
(AXX(1, t∗))2, (A 8)∫ 1

0
AXXAX dX = 1

2
[(AX)

2]X=1
X=0 dX = 1

2
(AX(1, t∗))2 − 1

2
(AX(0, t∗))2, (A 9)

and ∫ 1

0
AXXc(X)u(t∗) dX = u(t∗)AX(X, t∗)c(X)|X=1

X=0 −
∫ 1

0
AXc′(X)u(t∗) dX. (A 10)

With putting these terms together we obtain

2ΩB
dẼ

dt∗
=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2

− u(t∗)AX(X, t∗)c(X)|X=1
X=0 +

∫ 1

0
AXc′(X)u(t∗) dX, (A 11)

for the case where c1 = 1 and c2 = 0 or c1 = 0 and c2 = 1; and

2ΩB
dÊ

dt∗
=−1

2
(AXX(1, t∗))2 − 2κω(AX(1, t∗))2 + 2κω(AX(0, t∗))2

−u(t∗)AX(X, t∗)c(X)|X=1
X=0 +

∫ 1

0
AXc′(X)u(t∗) dX. (A 12)

for the case where c1 > 0, c2 > 0 and c1 + c2 = 1.
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Inserting c(X) = 1 − c2X into (A 11) and (A 12) and noting that c1 + c2 = 1 and
c1AX(1, t∗)+ c2A(1, t∗)= 0, one obtains the formulas (4.4) and (4.5).

Appendix B

THEOREM B. For the eigenvalue problem (4.28), the eigenfunction ˜A and
eigenvalues σ ∗ obey the following relationship (4.29):

1
2
˜A 2
XX(1)+

1
2
(γ − 1)

Ω −ΩB

ε1

˜A 2
X (0)+

1
2
ε2

1σ
∗2 ˜A 2

X (0)+
1
2
ε1ΩBσ

∗2 ˜A 2(1)

=−σ ∗
∫ 1

0
(2ΩB

˜A 2
X + 2ε1

˜A 2
XX) dX. (B 1)

Proof. Integrating (4.28) with respect to X over the interval (0,X) and using the
boundary conditions leads to

˜AXXX + Ω −ΩB

ε1

˜AX − γ2
Ω −ΩB

ε1

˜AX(0)− 2ΩBσ
∗ ˜A + 2ε1σ

∗ ˜AXX

+ ε2
1σ
∗2( ˜AX − ˜AX(0))− ε1ΩBσ

∗2
∫ X

0

˜A (s) ds= 0. (B 2)

˜A (0)= 0, ˜AXX(0)= 0 and ˜AX(1)= 0. (B 3)

We multiply (B 2) by ˜AXX and integrate the result over the interval (0, 1). By direct
integration and application of the boundary conditions, one finds∫ 1

0

˜AXXX
˜AXX dX = 1

2
˜A 2
XX(1), (B 4)∫ 1

0

˜AX
˜AXX dX =−1

2
˜A 2
X (0), (B 5)∫ 1

0

˜AXX dX =− ˜AX(0), (B 6)∫ 1

0

˜A ˜AXX dX = [ ˜A ˜AX]10 −
∫ 1

0

˜A 2
X dX =−

∫ 1

0

˜A 2
X dX, (B 7)∫ 1

0
( ˜AX − ˜AX(0)) ˜AXX dX =

∫ 1

0

˜AX
˜AXX dX −

∫ 1

0

˜AX(0) ˜AXX dX

= −1
2
˜A 2
X (0)− ˜AX(0)[ ˜AX(1)− ˜AX(0)] = 1

2
˜A 2
X (0). (B 8)

Also integrating in parts shows that∫ 1

0

˜AXX

(∫ X

0

˜A (s)ds

)
dX =

[
˜AX

∫ X

0

˜A (s) ds

]1

0

−
∫ 1

0

˜A (X) ˜AX dX =−1
2
˜A 2(1). (B 9)

Combining (B 4)–(B 9), one obtains (4.29).
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