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In this work we investigate limiting values of the lift and drag coefficients of profiles in

the Helmholtz–Kirchhoff (infinite cavity) flow. The coefficients are based on the wetted arc

length of profile surfaces. The problem is to find global minimum and maximum values

of the drag coefficient CD under a given lift coefficient CL. We reduce the problem to a

constrained problem of calculus of variations and solve it analytically. In so doing we do not

only determine extremals but also strictly prove that these extremals realize global extrema.

The proofs are based on non-trivial application of Jensen’s inequality. The solution of the

problem allows us to construct the domain of possible variations of coefficients CL and CD

and define maximum and minimum values of the lift-to-drag ratios CL/CD for a given CL.

Key words: Extremal problem, Ideal fluid, Potential flows, Helmholtz–Kirchhoff model, Cavity

flows, Lift-to-drag ratio

1 Introduction

In the theory of aero and hydrofoils there are known two classical models for studying

flows past a profile. For the first model the flow is continuous (Figure 1a), and for the

second one the flow is separated with the formation of an infinite wake (Figure 1b).

If we assume that the flow is steady, irrotational and incompressible, then for the first

model the drag force D = 0 (d’Alembert’s paradox) and the lift force L are defined by the

well-known Kutta–Joukowskii theorem:

L = −ρv0Γ , Γ =

∫ l

0

(v · τ ) ds. (1.1)

Here ρ is the density of the fluid, v0 is the velocity at infinity, Γ is the circulation around

the profile, l is the perimeter of the profile surface, s is the arc abscissa of the profile

contour, reckoned from the trailing edge point A, (v · τ ) is the dot product of the velocity

vector v at the point on the profile surface and the tangential unit vector τ , directed

towards increase of s.

For the continuous model, point B with the arc abscissa s = l coincides with point A

for which s = 0. If l1 is the arc abscissa of the stagnation point O and v = |v|, then

(v · τ ) = −v(s) for 0 � s � l1, (v · τ ) = v(s) for l1 � s � l. (1.2)
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Cavity
(Wake)

Figure 1. (a) Continuous flow over an aerofoil. (b) Helmholtz–Kirchhoff flow with an infinite

cavity past a profile.

As one can see from (1.1) and (1.2), to compute the lift force for the continuous model

one needs only to know the velocity distribution v(s) along the profile surface and the

arc abscissa l1 of the critical point O. Moreover, if v(s) is known, the contour of the

profile can be restored by means of solving the so-called inverse boundary-value problem

of aerodynamics [1]. The Kutta–Joukowskii theorem played an outstanding role in the

theory of aerofoils and was used many times for aerodynamic shape optimization (see,

for example, [1, 2]).

Consider now the second classical model with an infinite wake. Initially, Kirchhoff [6]

introduced this model in order to overcome d’Alembert’s paradox, i.e. to have a non-

zero drag force. In doing so, Kirchhoff used essentially the free streamline theory of

Helmholtz [5]. Nowadays the Helmholtz–Kirchhoff model is treated as a limiting case of

cavity flows, when the pressure in the cavity tends to the incident pressure, and the size

of the cavity becomes infinitely large. In this paper we adhere to this treatment and call

the model as the Helmholtz–Kirchhoff or infinite cavity flow. According to this model the

flow detaches from the profile surface at points A and B, and an infinite cavity (wake)

with a constant pressure, equal to the incident pressure, forms behind the profile. The

velocity on the free streamlines AI and BI is constant and equals the incident velocity v0.

As previously, the stagnation point is denoted by O and the arc abscissa s is reckoned

from point A (Figure 1b).

For the Helmholtz–Kirchhoff flow, formulae analogous to (1.1) have been recently

obtained by Maklakov [12, 13]. As in (1.1) the formulae express the lift force L and the

drag force D in terms of the velocity distribution v(s):

L = ρv0

l∫
0

(v · τ ) log
v0

v
ds, D =

ρv0

4π

⎛
⎝ l∫

0

v
√
ϕ

log
v0

v
ds

⎞
⎠

2

, (1.3)

where l is the length of the wetted arc AOB of the profile, ϕ = ϕ(s) is the distribution of

potential along AOB:

ϕ =

l1∫
s

v(s) ds for 0 � s � l1, ϕ =

s∫
l1

v(s) ds, for l1 � s � l,

l1 is the arc abscissa of the critical point O.
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In the theory of cavity flows the first Brillouin condition [3] plays an important role:

the pressure in the cavity is minimal. Then the velocity on the free streamlines AI and BI

is maximal, and therefore

v(s) � v0, 0 � s � l. (1.4)

This implies that in formulae (1.3) the factor log v0
v

� 0.

Owing to the simplicity of formulae (1.3) one can formulate different optimization

problems in which one needs to determine a velocity distribution that satisfies the Brillouin

condition (1.4) and has some optimal property. One of such problems has been solved

by Maklakov in [12, 13]. Namely, it has been found that the velocity distribution under

the Brillouin condition (1.4) provides a global maximum of the lift force. It has been

established that for the profile of maximum lift the length l1 = 0 (points A and O

coincide) and the optimal velocity distribution v(s) = e−1 v0 = const, where e is the

base of natural logarithms. It follows from (1.3) that Lmax = ρv2
0 l e

−1 and this is the

global maximum of the lift force. But such a formulation does not take into account

at all the cavitation drag, which is defined by the second equation in (1.3). If v(s) =

e−1 v0, then according to (1.3) the drag force D = ρv2
0 l/(π e), and the lift-to-drag ratio

of the profile of maximum lift is � = L/D = π. To obtain profiles with a greater

lift-to-drag ratio, it seems to be natural to introduce the drag D in the optimization

process.

At the end of the paper by Maklakov [12], as a variant of a further perspective direction

of investigations, it has formulated the problem of finding a minimum of the drag force

D under the constraints that the wetted arc length l and the lift force L are given. In

this paper we present an exact analytical solution to this problem. Besides, for the sake

of completeness, we find a maximum of the drag force D under the given values of l

and L.

It is convenient to formulate the problem in terms of the lift and drag coefficients

CL =
2L

ρv2
0 l

and CD =
2D

ρv2
0 l

, (1.5)

based on the wetted arc length l. Then the basic problem to be solved in the paper is as

follows.

Basic problem Let the lift coefficient CL be given. Find a global minimum (maximum) of

the drag coefficient CD under the Brillouin condition (1.4).

Solving the basic problem allows us to determine the functions CDmin(CL) and

CDmax(CL), which define the global extrema of the drag coefficient. Thereby we define the

domain of possible variations of coefficients CL and CD and determine upper and lower

bounds for the lift-to-drag ratios:

�max(CL) = CL/CDmin(CL), �min(CL) = CL/CDmax(CL).
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2 Auxiliary problem

Let l2 = l − l1 be the length of the arc OB. We introduce two dimensionless functions

u1(σ) and u2(σ), 0 � σ � 1, such that

v

v0
=

{
u1(

l1−s
l1

) on OA

u2(
s−l1
l2

) on OB
. (2.1)

Since the velocity v � 0, the functions u1(σ) and u2(σ) are non-negative. Under the

Brillouin condition (1.4) these satisfy the inequalities

u1(σ) � 1, u2(σ) � 1. (2.2)

By means of (1.3) and (1.5) we express the lift and drag coefficients in terms of u1(σ) and

u2(σ):

CL = 2 {(1 − ε) I[u2] − ε I[u1]} , CD =
1

2π

{√
1 − ε J[u2] +

√
ε J[u1]

}2

, (2.3)

where ε = l1/l, I[u] and J[u] are non-linear functionals of u(σ), 0 � σ � 1:

I[u] = −
1∫

0

u(σ) log u(σ) dσ, J[u] = −
1∫

0

u(σ) log u(σ) dσ√∫ σ

0 u(σ1) dσ1

. (2.4)

As one can see from (2.4), under the Brillouin condition (2.2) the values of the function-

als I[u] and J[u] at u = u1(σ) and u = u2(σ) are non-negative.

Let us rewrite I[u] and J[u] in terms of classical functionals of calculus of variations.

To do so we transform function u(σ) to λ(σ):

λ(σ) =

√
2

∫ σ

0

u(σ1) dσ1.

Then

I[λ] = −
∫ 1

0

λλ′ log(λλ′) dσ, J[λ] = −
√

2

∫ 1

0

λ′ log(λλ′) dσ. (2.5)

It is clear that λ(σ) � 0. Besides, u(σ) = λ(σ)λ′(σ), hence λ′(σ) � 0. In terms of λ(σ) the

Brillouin condition u(σ) � 1 is expressed as λ(σ)λ′(σ) � 1.

The solution of the basic problem, formulated in the Introduction, is based on solving

the following auxiliary problem.

Auxiliary problem Find the function λ(σ), σ ∈ [0, 1]:

λ(0) = 0, λ′(σ) � 0, (2.6)

which delivers a global minimum (maximum) to the functional J[λ] under the constraint

I[λ] = q (q is given), and the complementary condition

λ(σ)λ′(σ) � 1. (2.7)
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Let us find the exact upper and lower bounds of the functional I[λ]. It follows from

(2.6) and (2.7) that I[λ] � 0. We note that

I[λ] = −
∫ 1

0

G(λλ′) dσ,

where

G(u) = u log u. (2.8)

The only minimum of the function G(u) achieves at the point u = 1/ e and G(1/ e) = −1/ e.

Hence, the exact upper bound for the functional I[λ] is

I[λ] � 1/ e = qmax. (2.9)

Equality in (2.9) holds if and only if λ(σ)λ′(σ) = 1/ e. This means that the global maximum

of I[λ] is achieved by the function λ(σ) =
√

2σ/ e, which, as one can easily check, satisfies

the constraints (2.6) and (2.7). The value of the functional J[λ] for this function is

J[λ] = J[
√

2σ/ e] = 2/
√

e = Jr. (2.10)

The exact bounds for the functional I[λ] allow us to make more precise the formulation

of the auxiliary problem, namely in the constraint I[λ] = q the value of q satisfies the

inequalities 0 < q � qmax.

We denote by Jmin(q) and Jmax(q), correspondingly, the global minimum and maximum

of the functional J[λ] for a given value of I[λ] = q. The full solution to the auxiliary

problem is given by the following theorem.

Theorem 1 (1) The function Jmin(q) is defined by the parametric equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q = q(b) =
1

2

[
b2 − k2 + k(b − a) − k2 log

b

a

]
,

Jmin =
√

2

(
k log

b

a
+ b + k

)
,

(2.11)

where b ∈ (
√

2/ e,
√

2),

k = K(b) = − (e −1)b(b2 e −2)

2 + (e −2)b2 e
, a =

b2 e −2

(e −1)b
. (2.12)

The global minimum is achieved by the function

λ(σ) =

{ √
2σ for 0 � σ < γ,

−k +
√

2c(σ − γ) + (a + k)2 for γ � σ � 1,
γ = a2/2, (2.13)

where c = 2−b2

2+(e −2)b2 e
.
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Figure 2. Dependencies of Jmin and Jmax on q.

(2) The function Jmax(q) is defined by the parametric equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q = q(b) =
1

2

[
b2 + k b − k2 log

b + k

k

]
,

Jmax =
√

2

(
k log

b + k

k
+ b

)
,

where k = K1(b) = −b(b2 e −2)

2(b2 e −1)
, (2.14)

b ∈ (0,
√

2/ e).

The global maximum is achieved by the functions

λ(σ) = −k −
√

2cσ + k2 for q ∈ (0, q∗), b ∈ (0,
√

1/ e), (2.15)

λ(σ) = σ/
√

e for q = q∗, (2.16)

λ(σ) = −k +
√

2cσ + k2 for q ∈ (q∗, qmax], b ∈ (
√

1/ e,
√

2/ e), (2.17)

where q∗ = 3
4 e , c = b2

2(b2 e −1)
.

In the statements of the theorem the parameter b = λ(1).

A proof of this theorem will be presented in Section 4. Right now we illustrate the

theorem graphically, and thereafter demonstrate how the theorem can be used for solving

the basic problem formulated in the Introduction.

In Figure 2, where the functions Jmin(q) and Jmax(q) are shown, one can distinguish

three zones. In each of these zones the global extrema are achieved by the function λ(σ)

of different types. The first zone is the graph of Jmin(q) and the functions of the form

(2.13) correspond to this zone. The graph of Jmax(q) is divided into two zones: second

and third zones. The functions of the form (2.15) correspond to the second zone, and

those of the form (2.17) correspond to the third one. Accordingly, in each of the zones

the ranges of variations of the parameter b = λ(1) are different. In zone 1 the parameter

b ∈ (
√

2/ e,
√

2), in zone 2 the parameter b ∈ (
√

1/ e,
√

2/ e) and in zone 3 the parameter

b ∈ (0,
√

1/ e).
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Figure 3. Functions λ(σ) and u = λ(σ)λ′(σ).

In Figure 3, on the left we demonstrate the functions λ(σ), and on the right we show

the functions u(σ) = λ(σ)λ′(σ). We have constructed 19 curves varying uniformly the

parameter b = λ(1) with step
√

2/20. In addition, the bold lines in Figure 3 indicate the

graphs for characteristic points of the functions Imin(q) and Imax(q): for the rightmost

point of Figure 2 (q = qmax), for the upward-most point of the figure (q = q∗) and the

curves that correspond to the origin in Figure 2, when q = 0, Imin(q) = Imax(q) = 0.

Let Jm = 2
√

2/ e. The value Jm is the maximum possible value of the functional J[λ]

which is achieved only if I[λ] = q∗. The value Jr , defined by (2.10), is the value of J[λ]

for the maximum possible value of I[λ] = qmax.

3 Solution of the basic problem

To solve the basic problem, formulated in the Introduction of the paper, we firstly prove

the following.

Lemma 1 The function Jmin(q) increases, whereas the function Jmax(q) increases on the

segment (0, q∗) and decreases on the segment (q∗, qmax).

Proof Making use of (2.11) and (2.14) leads to the equation

d Jmin,max(q)

dq
=

d Jmin,max(q)

db

/
dq

db
= −

√
2

k
.

For the function Jmin(q), parameter k is always negative (see Theorem 1). This demon-

strates the validity of the first part of the lemma. To prove the second part, it is enough

to note that the parameter k(q) is negative for q � q∗ and positive for q � q∗ (see again

Theorem 1). Lemma 1 is proved. �

Consider now the first equation in (2.3). Taking into account that ε = l1/l ∈ [0, 1], we

conclude that

CL = 2 {(1 − ε) I[u2] − ε I[u1]} � 2 I[u2]. (3.1)

Since the maximum value of the functional I[u] = qmax = 1/ e, the lift coefficient

CL ∈ (0, 2/ e].
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Theorem 2 At a given value of the lift coefficient CL ∈ (0, 2/ e], the global minimum of the

drag coefficient is CDmin = 1
2π

J2
min(CL/2), and the global maximum of the lift-to-drag ratio

�max = 2πCL/ J2
min(CL/2).

Proof Let us set q1 = I[u1] and q2 = I[u2]. It is clear that

ε ∈ [0, 1), 0 � q1, q2 � qmax, (1 − ε)q2 − εq1 = CL/2 ∈ (0, qmax], (3.2)

CDmin = min
ε,q1 ,q2

1

2π

{√
1 − ε Jmin(q2) +

√
ε Jmin(q1)

}2

.

It is to be noted that ε � 1, since for ε = 1 the constraints (3.2) become contradictory.

Expressing q2 in terms of q1 by means of the last relation in (3.2), we get

CDmin = min
ε,q1

1

2π

{√
1 − ε Jmin

(
CL/2

1 − ε
+

εq1

1 − ε

)
+

√
ε Jmin(q1)

}2

.

By Lemma 1 the function to be minimized strictly increases with respect to q1. Hence,

the minimum is achieved at the point q1 = 0, i.e.

CDmin = min
ε

1

2π

{√
1 − ε Jmin

(
CL/2

1 − ε

)}2

. (3.3)

To prove the theorem it needs to establish that the minimum is reached at the point

ε = 0. This will be so if the function to be minimized in (3.3) strictly increases with respect

to ε. Let

q =
CL/2

1 − ε

and consider the function J2
min(q)/q. It is easy to see that this function strictly increases.

Indeed, calculating its derivative, we infer that the strict increase of J2
min(q)/q is equivalent

to the inequality

q J′
min(q) − Jmin(q)

2
> 0.

By means of (2.11), after a little algebra, we deduce that

q J′
min(q) − Jmin(q)

2
=

√
2(2 − b2)

b(e −1)(b2 e −2)
.

The last expression is positive because b ∈ (
√

2/ e,
√

2) (see Theorem 1). The strict increase

of J2
min(q)/q leads to the strict increase of the function to be minimized in (3.3). Theorem 2

is proved. �

Theorem 2 solves the basic problem on the minimization of CD and hence on maximiza-

tion of the lift-to-drag ratio. The problem of finding the maximum of CD (correspondingly,

the minimum of the lift-to-drag ratio) turns out to be more complex. The difficulties are

connected with a non-monotone behaviour of the function Jmax(q).
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Figure 4. Dependencies CDmin and CDmax on CL. The dash-and-dot line is the dependence CD on

CL for a flat plate.

It is evident that

CDmax = max
ε,q1 ,q2

1

2π

{√
1 − ε Jmax(q2) +

√
ε Jmax(q1)

}2

, (3.4)

where ε, q1 and q2 satisfy the constraints (3.2).

We have succeeded in obtaining analytical solutions to problems (3.2) and (3.4) only

for the limiting values of CL = 0 and CL = 2qmax = 2/ e. Indeed, the maximum of the

function Jmax(q) is achieved at the point q = q∗ = 3/(4 e), and this maximum equals

Jm = 2
√

2/ e. Therefore, for any functions u1(σ) and u2(σ)

CD � max
ε

1

2π
J2
m

(√
1 − ε +

√
ε
)2

=
1

2π
J2
m

(√
1 − ε +

√
ε
)2

|ε= 1
2

=
8

π e
.

The equality is only possible if q1 = q2 = q∗, ε = 1/2. But in this case, according to the

last relation in (3.2), the lift coefficient CL = 0. Therefore, at CL = 0 the maximum drag

coefficient is CDmax = 8/π e.

Let CL = 2qmax, then it follows from (3.1) that ε = 0, q2 = qmax and q1 can take any

value. But Jmin(qmax) = Jmax(qmax) = Jr , where the value of Jr is defined in (2.10). Hence,

according to (3.4), at CL = 2qmax we have

CDmin = CDmax =
1

2π
J2
r =

2

π e
.

So at CL = 2qmax we have �min = �max = π.

For 0 < CL < 2/ e, the solution to problems (3.2) and (3.4) has been found numerically

by means of the standard function Maximize of the package Mathematica 8.0.

In Figure 4 we demonstrate the dependencies of the minimal drag coefficient CDmin and

the maximal drag coefficient CDmax on the lift coefficient CL, and in Table 1 we show the

maximal and minimal lift-to-drag ratios �max and �min for different CL.

In Figure 5 we plot the values of ε, q1 and q2 versus CL, which have been obtained

in solving numerically problems (3.2) and (3.4). One can see from the figure that for any
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Table 1. The values of �max and �min for different CL

CL 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 2
e

�max ∞ 224.88 99.1015 57.0649 35.9197 23.0608 14.1997 7.0821 π

�min 0 0.107495 0.219695 0.342541 0.48536 0.666406 0.933793 1.53824 π

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1

0.2

0.3

0.4

0.5

ε

CL

q = q*

ε,q

q2

q1

Figure 5. Dependencies ε, q1 and q2 on CL.

CL the values of q1 and q2 satisfy inequalities q1 < q∗ and q2 > q∗, and the value ε is an

almost linear function that varies from ε = 1/2 at CL = 0 to ε = 0 at CL = 2qmax.

We should note that at CL → 0 the maximal lift-to-drag ratio �max → +∞. Indeed, for

flat plates the lift-to-drag ratio � = cot αa, where αa is the angle of attack. According to

Rayleigh’s well-known formula [3] the coefficient of the force, normal to the plate, is

CN =
2π sin αa

4 + π sin αa
.

If αa → 0, then CL = CN cos αa → 0, and � = cot αa → +∞. Since the relation

CDmin(CL)/CL defines the maximum possible lift-to-drag ratio, it is clear that �max → +∞
as CL → 0. In Figure 4 the dash-and-dot line demonstrates the dependence CD on

CL for the flat plate. As one can see from the figure, the line lies entirely between

the curves CDmin(CL) and CDmax(CL). It is worthy of note that for any profile in the

Helmholtz–Kirchhoff flow, the point (CL, CD) always lies between the curves CDmin(CL)

and CDmax(CL).

4 Proof of Theorem 1

4.1 Preliminary reasoning

Without the complementary condition (2.7) the auxiliary problem is a constrained problem

of calculus of variations with a free right endpoint. Let us try to find extrema by the

Lagrange multiplier rule without regard for the non-standard condition (2.7). To do so
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we construct the augmented cost functional

P[λ] = −
∫ 1

0

λ′(λ + k) log(λλ′) dσ = −
∫ 1

0

E(λ, λ′) dσ, (4.1)

where k is a real constant. We write the Euler equation [7]

Eλ − d

dσ
Eλ′ = 0,

which for the functional P[λ] takes the form

λ′′(λ + k)

λ′ + λ′ = 0.

Integrating this equation yields

λ′(σ)[λ(σ) + k] = c, (4.2)

where c is a constant. Because the right endpoint of the desired function λ(σ) is free, there

holds the relation [Eλ′ ]σ=1 = 0 (see [7]), which can be reduced to

λ(1)λ′(1) = 1/ e . (4.3)

Equation (4.2) subject to the condition λ(0) = 0 can be easily integrated and has two

solutions which are the functions of the form (2.15) for k > 0 and those of the form (2.17)

for k < 0.

As follows from Theorem 1 and the results in Section 3, the functions of forms (2.15)

and (2.17) do not define the minimum of the lift-to-drag ratio �, but its maximum, which

we determine in the paper only for the sake of completeness. Thus, application of the

classical approach to solving the basic problem, formulated in the Introduction, does not

lead to finding extrema that are of most practical interest.

To prove Theorem 1 we use the technique developed earlier in [8]–[11], [14] for

investigation of extremal problems of the jet and cavity theory. This technique is based

on Jensen’s inequality [4, theorem 204].

Let f(x) and g(x) be real functions defined in the interval [x1, x2], and

f(x) � 0,

∫ x2

x1

f(x) dx > 0.

If G(u) is a strictly convex function, then there holds Jensen’s inequality

∫ x2

x1

f(x)G[g(x)] dx �

[∫ x2

x1

f(x) dx

]
G

[∫ x2

x1
f(x)g(x) dx∫ x2

x1
f(x) dx

]
, (4.4)

and the equality in (4.4) being possible if and only if g(x) ≡ const.

As the first example of the application of Jensen’s inequality (4.4), let us obtain the

exact upper bound of the functional J[λ]. We denote λ(1) = b. By virtue of (2.7) it is
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evident that b �
√

2. We have

J[λ] = −
√

2

(∫ 1

0

λ′ log λ dσ +

∫ 1

0

λ′ log λ′ dσ

)
=

√
2

[
b − G(b) −

∫ 1

0

G(λ′) dσ

]
,

where G(u) is defined by (2.8).

We estimate the integral
∫ 1

0 G(λ′) dσ from below by means of (4.4):

∫ 1

0

G(λ′) dσ � G

(∫ 1

0

λ′ dσ

)
= G(b),

where the equality is possible if and only if λ′(σ) = const, i.e. for λ(σ) = bσ. From this, it

follows that

J[λ] �
√

2 [b − 2G(b)] = G1(b).

On the interval b ∈ [0,
√

2], function G1(b) achieves its maximum at b = 1/
√

e. Therefore,

the functional J[λ] achieves the global maximum at λ(σ) = σ/
√

e and this maximum is

2
√

2/ e. For the function λ(σ) = σ/
√

e we have λλ′ = σ/ e and the constraints (2.6) and

(2.7) are evidently valid. Thus,

J[λ] � 2
√

2/ e = Jm, (4.5)

where the equality is only possible for λ(σ) = σ/
√

e. For this function λ(σ) we have

I[σ/
√

e] = 3
4 e = q∗.

We now formulate the following important lemma, whose proof is evident.

Lemma 2 Let a function λ(σ) deliver a global maximum (minimum) to the functional P[λ]

under the constraints (2.6) and (2.7). Compute q = I[λ]. Then for k < 0 the function λ(σ)

is the solution to the auxiliary problem on the minimum (maximum) of J[λ], and for k > 0

the function λ(σ) is the solution to the auxiliary problem on the maximum (minimum) of

J[λ].

It follows from this lemma that determining global extrema of the functional P[λ] for

different values of k leads to different solutions to the auxiliary problem. Value k plays

the role of the parameter whose variation gives solutions of the constrained problem for

different values of q.

4.2 Proof of the first part of Theorem 1

The proof is based on finding a global maximum of the functional P[λ] for k < 0. It

is to be noted that for k < 0 the global maximum of the functional P[λ] is worthy of

finding in the range −
√

2 < k < 0. Indeed, assume k � −
√

2. By virtue of the constraint

(2.7), function λ(σ) �
√

2σ. If λ(σ) ≡
√

2σ, then λ(σ)λ′(σ) ≡ 1, P[
√

2σ] = 0, and if

λ(σ) �
√

2σ, λ(σ) �
√

2σ, then P[λ] < 0. Thus, the global maximum of the functional

P[λ] for k � −
√

2 is zero. We drop the trivial case λ(σ) ≡
√

2σ from further consideration

and suppose that k changes in the range −
√

2 < k < 0.
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The proof consists of several steps.

Step 1. Let k ∈ (−
√

2, 0) be a fixed value and choose γ ∈ (k2/2, 1). By means of Jensen’s

inequality we estimate the functional P[λ] from above by a function H(a, b),

where a = λ(γ), b = λ(1) (Lemma 3). It is of importance that for some class of

functions λ(σ) the non-strict inequality in the estimate turns into equality.

Step 2. We prove that the function H(a, b) has a unique global maximum which can be

found from the ordinary necessary conditions of extrema (Lemma 4).

Step 3. Let (a∗, b∗) be the point of global maximum of the function H(a, b). Then for any

function λ(σ) that satisfies the constraints (2.6) and (2.7) there hold the inequalities

P[λ] � H(a, b) � H(a∗, b∗), (4.6)

where a∗ and b∗ depend on choosing γ. We demonstrate that parameter γ can

be chosen in such a manner that there exists a unique function λ(σ) so that

P [λ] = H(a∗, b∗), for all other functions P [λ] < H(a∗, b∗) (Lemma 5). Hence, we

find a global maximum of the functional P [λ] under the constraints (2.6) and (2.7).

Step 4. Application of Lemma 2 finalises the proof.

Steps 1–3 allow us to reduce the problem of finding the global maximum of the non-

linear functional P[λ] to the maximization of the function H(a, b) of only two variables.

Now we shall realize step 1.

Lemma 3 Let k ∈ (−
√

2, 0). Choose γ ∈ (k2/2, 1) and consider any function λ(σ) that sat-

isfies the constraints (2.6) and (2.7). Then for the functional P[λ] there holds the inequality

P[λ] � H[a, b] =
1

2

[
(a + k)2 log f1(a, b) − (b + k)2 log f2(a, b) + k(b − a) + k2 log

b

a

]
,

(4.7)

where a = max[λ(γ),−k], b = max[λ(1),−k],

f1(a, b) =
a(b − a)(a + b + 2k)(k +

√
2γ)2

2(a + k)3(1 − γ)
, (4.8)

f2(a, b) =
b(b − a)(a + b + 2k)

2(b + k)(1 − γ)
. (4.9)

For λ(γ) > −k the equality in (4.7) is possible if and only if a =
√

2γ and on the interval

σ ∈ [γ, 1] the function λ(σ) satisfies the differential equation (4.2), i.e. for the functions of

the form (2.13), where

c =
(b − a)(a + b + 2k)

2(1 − γ)
. (4.10)

Proof Assume that λ(1) � −k. By virtue of (2.6), function λ(σ) � −k everywhere, and

a = b = −k. Because the constraint (2.7) is fulfilled, we have log(λλ′) � 0 and the

functional P[λ] � 0. But at a = b = −k, the right-hand side of inequality (4.7) vanishes,

https://doi.org/10.1017/S0956792513000442 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792513000442


244 D. V. Maklakov and I. R. Kayumov

and therefore for λ(1) � −k inequality (4.7) is valid. Because of this, in further reasoning

we suppose that λ(1) = b > −k.

Now assume that λ(γ) < −k. Then the function λ(σ) can be reconstructed in such a

manner that the value of the functional will not decrease, and the value of b = λ(1) will

not change, but λ(γ) = −k. Indeed, since λ(1) = b > −k, there exists a point σ1 ∈ (γ, 1)

such that λ(σ1) = −k, λ(σ) < −k for 0 � σ < σ1. On the segment (0, σ1) the integrand

in formula (4.1) is non-negative, that is the segment gives a non-positive contribution to

the functional P[λ]. Let us set that λ(σ) =
√

2σ for 0 � σ � k2/2 and λ(σ) = −k for

k2/2 < σ � σ1. Then the contribution of the segment (0, σ1) is zero, hence the functional

will not decrease, but now λ(γ) = −k.

So the class of admissible functions λ(σ) can be contracted, namely it is possible to

consider only the functions for which λ(σ) =
√

2σ for 0 � σ � k2/2. In this case

P[λ] = −
∫ 1

k2/2

λ′(λ + k) log(λλ′) dσ, λ(k2/2) = −k, λ(γ) = a � −k. (4.11)

Functional (4.11) can be represented in the following form:

P[λ] = −
∫ γ

k2/2

λ′(λ + k) log(λλ′) dσ −
∫ 1

γ

λ′(λ + k) log[λ′(λ + k)] dσ

+

∫ 1

γ

λ′(λ + k) log
λ + k

λ
dσ. (4.12)

Such a representation is correct since λ(σ) + k � 0 for σ ∈ [k2/2, 1].

The last integral in (4.12) can be calculated and expressed in terms of a = λ(γ) and

b = λ(1): ∫ 1

γ

λ′(λ + k) log
λ + k

λ
dσ =

∫ b

a

(p + k) log
p + k

p
dp = M(b) − M(a),

where

M(p) =
1

2

[
(p + k)2 log

p + k

p
+ kp + k2 log p

]
.

Because of this,

P[λ] = −
∫ γ

k2/2

f(σ)G(λλ′) dσ −
∫ 1

γ

G[λ′(λ + k)] dσ + M(b) − M(a), (4.13)

where f(σ) = 1 + k/λ(σ) and G(u) is defined by (2.8).

Let us set

α =

∫ γ

k2/2

f(σ) dσ =

∫ γ

k2/2

(1 + k/λ) dσ.

Assuming that α > 0, we estimate each of the integrals in (4.13) by means of Jensen’s

inequality (4.4) to obtain

P[λ] � −αG

[
1

α

∫ γ

k2/2

(1 + k/λ) λλ′ dσ

]
−(1−γ) G

[∫ 1

γ
λ′(λ + k) dσ

1 − γ

]
+M(b)−M(a). (4.14)
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Integrals on the right-hand side of (4.14) are calculated as

∫ γ

k2/2

(1 + k/λ) λλ′ dσ =

∫ a

−k

(p + k) dp =
(a + k)2

2
,

∫ 1

γ

λ′(λ + k) dσ =

∫ b

a

(p + k) dp =
1

2
[(b + k)2 − (a + k)2] =

1

2
(b − a)(b + a + 2k).

This leads to the inequality

P[λ] �
(a + k)2

2
log

2α

(a + k)2
− 1

2

[
(b + k)2 − (a + k)2

]
log

(b − a)(a + b + 2k)

2(1 − γ)

+M(b) − M(a). (4.15)

Thus, the right-hand side of (4.15) is a function of three variables: a, b, α (the parameters

k and γ are fixed) and, as one can easily see, the right-hand side is a non-decreasing function

of parameter α. We estimate the value of α from above. Since k < 0 and λ �
√

2σ, we

have

α =

∫ γ

k2/2

(
1 +

k

λ

)
dσ �

∫ γ

k2/2

(
1 +

k√
2σ

)
dσ =

(k +
√

2γ)2

2
.

Inserting this estimate into (4.15), we obtain inequality (4.7) of the lemma deduced

under the assumption that α > 0. But this inequality is also correct for α = 0. Indeed, if

α = 0, then λ(σ) = −k for k2/2 � σ � γ, a = −k, and the first summand in representation

(4.12) vanishes. In relation (4.7) this summand is estimated by the inequality

−
∫ γ

k2/2

λ′(λ + k) log(λλ′) dσ �
(a + k)2

2
log

(k +
√

2γ)2

(a + k)2
,

which turns into the equality 0 = 0 at a = −k.

Now we should consider the question of equality in (4.7) for a > −k. If a > −k, then

the term containing α on the right-hand side of inequality (4.15) is a strictly increasing

function of parameter α. Because of this, equality in (4.7) is only possible if

α = (k +
√

2γ)2/2. (4.16)

Besides, from the condition of equality in Jensen’s inequality (4.4) we must have

λ(σ)λ′(σ) = const for σ ∈ [k2/2, γ].

Moreover, from the same condition, function λ(σ) must satisfy differential equation (4.2)

on the segment σ ∈ [γ, 1]. Because λ(k2/2) = −k, conditions λ(σ)λ′(σ) = const for

σ ∈ [k2/2, γ] and (4.16) can be simultaneously fulfilled if λ(σ) =
√

2σ for σ ∈ [k2/2, γ],

which is equivalent to the condition a =
√

2γ. Solving differential equation (4.2) subject

to the conditions λ(γ) = a, λ(1) = b, we conclude that the function λ(σ) is of the form

(2.13). Lemma 3 is proved. �
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Figure 6. Graph of the function H(a, b) at k = −0.2, γ = 0.4.

The graph of the function H(a, b) at k = −0.2, γ = 0.4 is shown in Figure 6. As one

can see from the figure, function H(a, b) for these values of k and γ has a maximum at an

inner point (a,b) of the angle S:

S = {(a, b) ∈ S : a � −k, b � a} . (4.17)

To realize step 2 we need to prove this fact strictly for any k ∈ (−
√

2, 0) and γ ∈ (k2/2, 1).

Lemma 4 Consider in the plane ab an angle S . In the domain S the function H(a, b) achieves

a unique global maximum at an inner point (a, b) of the angle S , the coordinates a and b of

this point being determined from the system of equations

{
f1(a, b) = 1,

f2(a, b) = e−1,
(4.18)

where f1(a, b) and f2(a, b) are defined by formulae (4.8) and (4.9) respectively.

Proof It is easy to see that the function H(a, b) is continuous in the angle S up to the

boundary. In the plane ab consider the family of triangles

T (β) = {(a, b) ∈ T (β) : a � −k, b � a, b � β, β > −k} .

Each triangle T (β) is the intersection of the angle S and the half-plane b � β.

The function H(a, b) is continuous in the triangle T (β) up to the boundary, and therefore

H(a, b) achieves in this triangle maximum and minimum values. Let us demonstrate that

for β sufficiently large, the maximum value cannot be achieved on the boundary of the

triangle T (β). To do so, we calculate the partial derivatives of the function H(a, b):

∂H(a, b)

∂a
= (a + k) log f1(a, b),

∂H(a, b)

∂b
= −(b + k)[1 + log f2(a, b)] (4.19)
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and establish that

∂ log f1(a, b)

∂a
=

1

a
− 1

b − a
+

1

a + b + 2k
− 3

a + k

= −2a(b + k)2 − k(b − a)(a + b + 2k)

a(b − a)(a + k)(a + b + 2k)
< 0, (4.20)

lim
a→−k

log f1(a, b) = +∞, lim
a→b

log f1(a, b) = −∞. (4.21)

The first equality in (4.19) and relations (4.20) and (4.21) mean that for every fixed

b > −k the function H(a, b) achieves a unique maximum with respect to a on the interval

a ∈ [−k, b], the point of maximum being located inside the interval. Hence, the maximum

value of H(a, b) cannot be achieved on the boundaries a = −k and b = a of the triangle

T (β).

Now we calculate

∂ log f2(a, b)

∂b
=

1

b
+

1

a + b + 2k
+

a + k

(b − a)(b + k)
> 0, (4.22)

lim
b→a

log f2(a, b) = −∞, lim
b→+∞

log f2(a, b) = +∞. (4.23)

From the second equality in (4.19) and the relations (4.22) and (4.23), we infer that for

every fixed a � −k on the interval b ∈ (a,+∞) the function H(a, b) first increases with

respect to b, achieves a maximum and then decreases.

Let us prove that for β large enough, the maximum value of the function H(a, b) cannot

be achieved on the upper boundary b = β of the triangle T (β). To this end, from the

equation f1(a1, β) = 1 we find the point a1 at which the function H(a, β) achieves its

maximum with respect to a. If we prove that for this point there holds the inequality

log f2(a1, β) + 1 > 0, then H(a1, β) is not the maximum of the function H(a, b) in the

triangle T (β) because

lim
b→a1

[− log f2(a1, b) − 1] = +∞, − log f2(a1, β) − 1 < 0,

therefore the derivative ∂H(a, b)/∂b changes its sign with respect to b on the interval

b ∈ (a1, β), and hence the maximum of the function H(a1, b) with respect to b is located

inside this interval.

To the contrary, assume that log f2(a1, β) + 1 � 0. Then the relations⎧⎪⎪⎨
⎪⎪⎩

β[(β + k)2 − (a1 + k)2]

2(β + k)
� k1,

a1[(β + k)2 − (a1 + k)2]

2(a1 + k)3
= k2

(4.24)

hold simultaneously, where k1 = e−1(1 − γ) > 0, k2 = (1 − γ)/(k +
√

2γ)2 > 0.

From the first relation in (4.24) we find that

(a1 + k)2 � (β + k)2 − 2k1(β + k)/β. (4.25)
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We divide the first relation in (4.24) by the second and multiply the obtained inequality

by a1(a1 + k)−1/2 to get

β(a1 + k)2

2(β + k)
�

k1

2k2

a1

a1 + k
. (4.26)

Summing (4.26) and the first relation in (4.24) gives

β(β + k)

2
� k1 +

k1

2k2

a1

a1 + k
.

Because a1 ∈ (−k, β) and the right-hand side of (4.25) is strictly positive for β large

enough, we can estimate the value of a1 + k from below to obtain

β(β + k)

2
� k1 +

k1

2k2

β√
(β + k)2 − 2k1(β + k)/β

.

For β large enough, the last inequality cannot be fulfilled because as β → +∞ the

left-hand side of the inequality tends to +∞, but its right-hand side tends to a finite value

of k1 + k1/(2k2). So for β large enough, system (4.24) becomes contradictory. Therefore, in

the triangle T (β) for β sufficiently large, the point of maximum of the function H(a, b) is

located inside the triangle, and at this point the necessary conditions of extremum (4.18)

are fulfilled.

Now we prove that the system (4.18) has only one solution. The first equation of the

system is quadratic with respect b. Solving the equation, we get

b = b(a) = (a + k)

√
2(1 − γ)

(k +
√

2γ)2
a + k

a
+ 1 − k.

Further, we proceed in the same manner as in deducing relation (4.26), but now in (4.24)

the inequality is changed by equality, β is changed by b and a1 is changed by a. Doing so

leads to the system that is equivalent to (4.18):

⎧⎨
⎩

b = b(a),

b(b + k)

2
= k1 +

k1

2k2

a

a + k
.

(4.27)

The left-hand side of the second equation in (4.27) is a function that depends only on b

and strictly increases with respect to b, whereas the right-hand side depends only on a and

strictly decreases with respect to a. The function b = b(a) strictly increases. Substituting

b(a) for b on the left-hand side of the second equation in (4.27), we obtain an equation in

which the left-hand side strictly increases, and the right-hand side strictly decreases. Such

an equation cannot have more than one solution.

Since for β large enough the solution (a, b) of the system (4.18) is independent of β, we

conclude that at the point (a, b) the function H(a, b) achieves its global maximum in the

angle S . Lemma 4 is proved. �

To realize step 3 we prove the following.
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Lemma 5 Let k ∈ (−
√

2, 0). The global maximum of the functional P[λ] is achieved by the

function (2.13), where the parameters a, c and b ∈ (
√

2/ e,
√

2) are uniquely determined by

the system of equations ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k = K(b) = − (e −1)b(b2 e −2)

2 + (e −2)b2 e
,

a =
b2 e −2

(e −1)b
,

c =
2 − b2

2 + (e −2)b2 e
.

(4.28)

System (4.28) is equivalent to two conditions

λ(γ)λ′(γ + 0) = 1, λ(1)λ′(1) = 1/ e, (4.29)

written in terms of the function λ(σ) defined by (2.13).

The global maximum of P[λ] is

Pmax =
1

2

[
(b + k)2 + k(b − a) + k2 log

b

a

]
. (4.30)

Proof Choose γ ∈ (k2/2, 1) and find the roots a∗ and b∗ of the system (4.18). Then for

any function λ(σ) which satisfies the constraints (2.6) and (2.7) there holds the estimate

(4.6). Since by Lemma 4 we have a∗ > −k, from Lemma 3 we deduce that the equality

P[λ] = H(a∗, b∗) is only possible for the function λ(σ) defined by (2.13) and (4.10).

It follows from (2.13) that

γ = a2
∗/2. (4.31)

Hence, if initially γ is chosen so that after solving (4.18) equation (4.31) is satisfied, then

with λ(σ) defined by (2.13) and (4.10) all non-strict inequalities in (4.6) turn into equality

and P [λ] = H(a∗, b∗), for all other functions P [λ] < H(a∗, b∗).

Inserting γ = a2/2 into (4.18), we get the following system of equations for finding the

parameters a∗ and b∗: ⎧⎪⎨
⎪⎩

a(b − a)(a + b + 2k)

(a + k)(2 − a2)
= 1

b(b − a)(a + b + 2k)

(b + k)(2 − a2)
=

1

e

. (4.32)

For shortness of writing, we omit ‘stars’ in the notations of a∗ and b∗ in (4.32) and

further reasoning. It is easy to see that for k < 0, system (4.32) is equivalent to two first

equations in (4.28). The third equation in (4.28) will be obtained if we insert k and a from

(4.28) into (4.10).

From the conditions k < 0, b > a it follows that b ∈ (
√

2/ e,
√

2). Besides, the

function K(b) decreases monotonically for b >
√

2/ e and K(
√

2/ e) = 0, K(
√

2) =

−
√

2, hence system (4.28) always has a unique solution for k ∈ (−
√

2, 0), and the root

b ∈ (
√

2/ e,
√

2).

The equivalence of (4.29) to (4.28) can be checked by direct calculations. Besides, after

a little algebra it is possible to demonstrate that the function λ(σ), defined by (4.28) and

(2.13), satisfies the restrictions (2.6) and (2.7).

https://doi.org/10.1017/S0956792513000442 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792513000442


250 D. V. Maklakov and I. R. Kayumov

It is to be noted that the second condition in (4.29) is the condition (4.3) of the ‘free’

right endpoint for extremals of the functional P[λ]. The first condition in (4.29) means

that the functions u(σ) = λ(σ)λ′(σ), which define velocity distributions on the profile

surface, are continuous.

Formula (4.30) follows from the relations (4.18) and the estimate (4.7). Lemma 5 is

proved. �

To realize step 4, i. e. to finalize the proof of the first part of Theorem 1, we fix

k ∈ (−
√

2, 0) and find the parameters a, b and c from the system (4.28). By means of

(2.13) we determine the corresponding function λ(σ) and compute q = I[λ]. Since k < 0,

by Lemma 2 we infer that Jmin(q) = J[λ]. Then

q = Pmax − k Jmin/
√

2, (4.33)

where Pmax is determined by (4.30). Now we calculate

Jmin√
2

= −
∫ 1

γ

λ′ log(λλ′) dσ = −
∫ 1

γ

λ′ log

[
λ

λ + k
λ′(λ + k)

]
dσ.

Taking into account that the function λ(σ) satisfies differential equation (4.2) and λ(γ) = a,

λ(1) = b, we obtain

Jmin√
2

=

∫ b

a

log
p + k

p c
dp = k log

b + k

a + k
+ b log

b + k

b c
− a log

a + k

a c
.

Besides, for the function λ(σ) relations (4.29) are valid. From this it follows that

a + k

a c
= 1,

b + k

b c
= e,

b + k

a + k
= e

b

a
,

and hence,

Jmin√
2

= k log
b

a
+ b + k.

Inserting this expression into (4.33) and taking into account (4.30), we come to formulae

(2.11).

The function q(b) in (2.11) decreases monotonically with respect to the parameter b on

the interval b ∈ (
√

2/ e,
√

2), and

lim
b→

√
2/ e

q(b) = qmax = 1/ e, lim
b→

√
2
q(b) = 0.

Because of this, the parametric dependence (2.11) covers the whole range through which

the parameter q is varied. The first part of Theorem 1 is proved.

4.3 Proof of the second part of Theorem 1

The proof is based on finding a global maximum of the functional P[λ] for k > 0 and a

global minimum of this functional for k < 0. After determining these extrema we apply

Lemma 2.
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We should note that the global minimum of the functional P[λ] is worthy of finding

only for k < 0. Indeed, if k � 0, then the integrand in (4.1) is non-positive, whereas the

functional P[λ] itself is non-negative. Therefore, for λ(σ) ≡
√

2σ the functional takes its

global minimum value of P[
√

2σ] = 0. As previously, we do not consider the trivial case

λ(σ) ≡
√

2σ.

Lemma 6 Consider the functions λ(σ) which satisfy the constraints (2.6) and (2.7).

(1) For k > 0 the functional P[λ] takes its global maximum with the function λ(σ) of

the form (2.15). The parameter c > 0 is uniquely determined either from the condition

λ(1)λ′(1) = 1/ e of free right endpoint or from the equivalent relation

c =
b2

2(b2 e −1)
, (4.34)

where b = λ(1) is the root of the equation

k = K1(b) = −b(b2 e −2)

2(b2 e −1)
, (4.35)

and b ∈ (
√

1/ e,
√

2/ e).

(2) For k < 0 the functional P[λ] takes its global minimum with the function λ(σ) of

the form (2.17). The parameter c < 0 is uniquely determined either from the condition

λ(1)λ′(1) = 1/ e or from the equivalent relation (4.34), where b = λ(1) is the root of equation

(4.35) which belongs to the interval b ∈ (0,
√

1/ e).

(3) For both cases the extrema are defined by the formula

P(max
min)

=
1

2

[
b2 + 3kb + k2 log

b + k

k

]
. (4.36)

Proof Consider the first case k > 0. As previously, we denote λ(1) = b. Since λ(σ)+ k � 0,

the functional P[λ] can be represented in the following manner:

P[λ] = −
∫ 1

0

λ′(λ + k) log[λ′(λ + k)] dσ +

∫ 1

0

λ′(λ + k) log
λ + k

λ
dσ

= −
∫ 1

0

G[λ′(λ + k)] dσ +

∫ b

0

(p + k) log
p + k

p
dp,

where G(u) is defined by (2.8).

We estimate the first integral by Jensen’s inequality and calculate analytically the second

one. As a result, we obtain

P[λ] � H1(b) =
1

2

[
kb + k2 log

b + k

k
+ b(b + 2k) log f(b)

]
, f(b) =

2(b + k)

b2(b + 2k)
. (4.37)

Note that since the value of k is fixed, the function H1(b) depends only on b. We find

the value of b, at which H1(b) achieves its maximum with respect to b. By differentiation,
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we have
dH1(b)

db
= (b + k)[log f(b) − 1], (4.38)

where b + k > 0 on the interval b ∈ (0,+∞). Besides,

lim
b→+0

log f(b) = +∞, lim
b→+∞

log f(b) = −∞,
d log f(b)

db
= −2b2 + 5 bk + 4k2

b(b + k)(b + 2k)
< 0.

(4.39)

Hence, on the interval b ∈ (0,+∞) the function H1(b) firstly increases with increase of b,

reaches its unique maximum at point b, which is a root of equation f(b) = e, and then

decreases. Equation f(b) = e is equivalent to (4.35), and, since k � 0, the root belongs to

the interval b ∈ (
√

1/ e,
√

2/ e).

Let b be the root of equation (4.35). Then for any function λ(σ), which satisfies the

constraints (2.6), there holds the inequality P[λ] � H1(b). The equality in this inequality is

only possible if on the whole interval σ ∈ [0, 1] the function λ(σ) satisfies the differential

equation (4.2). Solving this equation under the conditions λ(0) = 0, λ(1) = b, we find that

the equality is only possible if λ(σ) is defined by (2.15), where c = b(b + 2k)/2. Inserting

k = K1(b) in the last relation for c, we get equation (4.34).

It is easy to check that for the function λ(σ), the constraints (2.6) and (2.7) are fulfilled.

Moreover, condition (4.3) is also fulfilled. The first statement of Lemma 6 is proved.

We now prove the second part of the lemma. Let k < 0 and assume that on the interval

[0, 1] there exist points, where λ(σ) > −k. Then the function λ(σ) can be reconstructed in

such a manner that the value of the functional will not increase, but λ(σ) � −k everywhere.

Indeed, if the above assumption is true, then by monotonicity of λ(σ) there exists a point

σ1 ∈ (0, 1) such that λ(σ1) = −k, λ(σ) � −k for σ ∈ [σ1, 1]. On the segment [σ1, 1] the

integrand in (4.1) is non-positive, i.e. this segment gives a non-negative contribution to the

functional P[λ]. If we set λ(σ) = −k for σ ∈ [σ1, 1], then the contribution of the segment

[σ1, 1] will be zero and the functional will not increase, but λ(σ) � −k everywhere.

So we can consider only the functions for which λ(σ) � −k. In this case the functional

P[λ] can be represented as

P[λ] = −
∫ 1

0

λ′(λ + k) log[−λ′(λ + k)] dσ +

∫ 1

0

λ′(λ + k) log

(
−λ + k

λ

)
dσ

=

∫ 1

0

G[−λ′(λ + k)] dσ +

∫ b

0

(p + k) log

(
−p + k

p

)
dp,

where, as previously, b = λ(1). We estimate the first integral from below by means of

Jensen’s inequality (4.4) and calculate the second one analytically taking into account that

p + k � 0. As a result, we have

P[λ] � H1(b). (4.40)

Here the function H1(b) is again defined by formula (4.37). It is worthy of note that in

inequality (4.37) the functional P[λ] is estimated from above, whereas in (4.40) the same

functional is estimated from below by the same function H1(b), but in (4.37) the value of

k > 0, and now k < 0. The first and third formulae in (4.39) retain their validity, and the
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second one should be changed by

lim
b→−k

log f(b) = −∞.

Since k + b < 0, on the interval b ∈ (0,−k), the function H1(b) first decreases with

increase of b, reaches its unique minimum at point b, which is a root of equation f(b) = e,

and then increases. Equation f(b) = e is equivalent to (4.35), and, since k < 0, the root

belongs to the interval b ∈ (0,
√

1/ e).

Repeating the final reasoning that we have used in proving the first statement of the

lemma, we come to the second statement. Formula (4.36) follows from the equation

f(b) = e and estimates (4.37) and (4.40). Thus, Lemma 6 is entirely proved. �

The second part of Theorem 1 follows from Lemmas 2 and 6. The only difficulty

appears in the consideration of the special case q = q∗. But this case has been already

investigated in deducing formula (4.5). Theorem 1 is proved.

5 Concluding remarks

In this work we are mainly concerned with the mathematical aspects of the formulated

basic problem and do not find the profile shapes that realize the maximal lift-to-drag

ratio. As follows from the proof of Theorem 2 for such shapes, the parameter ε = 0, i.e.

the points A and O coincide and the segment OA entirely disappears. Moreover, according

to the second statement of Theorem 1 on the initial part of the segment OB the velocity

v = v0. This means that on this part of OB the pressure is equal to that in the cavity,

and thus this initial part is unloaded. Preliminary computations show that the flow over

profiles with such a velocity distribution will be unrealizable physically (two-sheeted).

This brings up the natural question: How can the point (CL, CD) be close to the boundary

point (CL, CDmin) in Figure 4 to have a physically realizable flow? The solution of this

question will be a subject of further investigations.
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