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ORBIFOLD ASPECTS OF CERTAIN OCCULT PERIOD MAPS

ZHIWEI ZHENG

Abstract. We first characterize the automorphism groups of Hodge structures

of cubic threefolds and cubic fourfolds. Then we determine for some complex

projective manifolds of small dimension (cubic surfaces, cubic threefolds, and

nonhyperelliptic curves of genus 3 or 4), the action of their automorphism

groups on Hodge structures of associated cyclic covers, and thus confirm

conjectures made by Kudla and Rapoport in (Pacific J. Math. 260(2) (2012),

565–581).

§1. Introduction

Given a proper smooth family of Kähler manifolds, we can associate the polarized Hodge

structure of each fiber to the base point, and hence obtain a holomorphic map from the base

to the moduli space of polarized Hodge structures of certain fixed type. This holomorphic

map is called the period map, which is a central notion in Hodge theory, and is a powerful

tool for studying moduli spaces of projective manifolds for which the period map is injective

(we then say these manifolds satisfy the global Torelli theorem).

1.1 Occult period maps

In [KR12], Kudla and Rapoport discussed what they called the occult period maps. The

key point is that, for some kinds of projective manifolds, by looking at the periods of certain

canonically associated objects instead of the usual periods, we obtain better characterization

of the moduli spaces. The examples addressed in [KR12] are cubic surfaces, cubic threefolds,

and nonhyperelliptic curves of genus 3 and 4. We first sketch the constructions for those

cases. More detailed treatments can be found in Sections 6 and 7.

(Cubic surface). For a smooth cubic surface S, we have H2(S, C) =H1,1(S). Thus, the

Hodge structures on smooth cubic surfaces are without moduli. A clever construction by

Allcock, Carlson, and Toledo in [ACT02] is to consider the period of the cubic threefold X

which is a triple cover of P3 branched along S. The celebrated work [CG72] by Clemens

and Griffiths showed the global Torelli for cubic threefolds. Therefore, the period of X

should control the geometry of S in a certain sense. The authors of [ACT02] associated the

period of X with S and show that the resulting period map identifies the moduli space of

smooth cubic surfaces with an open subset of an arithmetic ball quotient of dimension 4.

This period map is called the occult period map for cubic surfaces.

(Cubic threefold). For cubic threefolds, the usual period map gives rise to an embedding

from the moduli space of smooth cubic threefolds to the moduli space of five-dimensional

principal polarized abelian varieties. For this usual period map, the source has dimension

10, while the target has dimension 15. It turns out that an occult period map behaves

better, in the sense that the source and target have the same dimension. To be concrete, let
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138 Z. ZHENG

T be a smooth cubic threefold. Denote by X the triple cover of P4 branched along T . Then

X is a cubic fourfold with a natural action by the group µ3 of third roots of unity. The

global Torelli theorem for cubic fourfolds is originally proved by Voisin [Voi86, Voi08]. A

new and complete proof can also be found in [Loo09]. In [LS07] and [ACT11], the authors

associated the period of X with T , and show that the resulting period map identifies the

moduli space of smooth cubic threefolds with an open subset of an arithmetic ball quotient

of dimension 10. This period map is called the occult period map for cubic threefolds.

(Genus 3 curve). For a smooth nonhyperelliptic curve C with genus 3, the linear system of

the canonical bundle KC embeds C as a smooth quartic curve in P2. Let X be the fourth

cover of P2 branched along C. Then X is a smooth quartic surface with a natural action by

µ4 = {±1,±
√
−1}. A smooth quartic surface is a K3 surface of degree 4. The global Torelli

theorem for polarized K3 surfaces is first proved in [PŠ71]. In [Kon00], Kondō associated

the period of X with C and showed that the resulting period map identifies the moduli

space of smooth nonhyperelliptic curves of genus 3 with an open subset of an arithmetic

ball quotient of dimension 6. This period map is called the occult period map for genus 3

curves.

(Genus 4 curve). For a smooth nonhyperelliptic curve C with genus 4, the linear system of

the canonical bundle KC embeds C as a complete intersection of a quadric surface Q (either

smooth or with one node) and a smooth cubic surface in P3. Let X be the triple cover of Q

branched along C. Then X is a polarized K3 surface (either smooth or with one node) with

a natural action by µ3. In [Kon02], Kondō associated the period of X with C and showed

that the resulting period map identifies the moduli space of smooth nonhyperelliptic curves

of genus 4 with an open subset of an arithmetic ball quotient of dimension 9. This period

map is called the occult period map for genus 4 curves.

The sources and targets of those four occult period maps acquire natural orbifold

structures. In [KR12], Kudla and Rapoport regarded those four ball quotients as the coarse

moduli of the moduli stack of abelian varieties with certain additional structures. Moreover,

they reinterpreted the occult period maps as morphisms between Deligne–Mumford stacks.

This led them to raise and partially answer some natural descent problems, for example,

whether the occult period maps can be defined over their natural fields of definition. See

[KR12, Section 9].

The main result of this paper, Theorem 1.1, answers the conjectures made by Kudla and

Rapoport about the orbifold aspects of the occult period maps; see [KR12, Remark 5.2,

6.2, 7.2, 8.2].

Theorem 1.1. (Main Theorem) For smooth cubic surfaces, smooth cubic threefolds,

and smooth nonhyperelliptic curves with genus 3 or 4, the occult period maps identify the

orbifold structures on the moduli spaces and those on the ball quotients.

1.2 Structure of the proof

To prove Theorem 1.1, we need to characterize the actions of the automorphism groups of

cubic threefolds, cubic fourfolds, and polarized K3 surfaces on the corresponding polarized

Hodge structures. The following fact is useful in this paper (see [JL17, Proposition 2.11]

combining with [MM64a]).

Proposition 1.2. When d> 3, n> 2, and X is a smooth degree d n-fold, the induced

action of Aut(X) on Hn(X, Z) is faithful.
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In order to prove Theorem 1.1 for cubic threefolds, we need the following.

Proposition 1.3. Let X be a smooth cubic fourfold, then the group homomorphism

(1) Aut(X)−→Auths(H
4(X, Z), η)

is an isomorphism. Here η is the square of the hyperplane class of X, and

Auths(H
4(X, Z), η) is the group of automorphisms of the lattice H4(X, Z) preserving the

Hodge decomposition and η.

The injectivity of the homomorphism (1) is a corollary of Proposition 1.2. The surjectivity

of the homomorphism (1) is saying that any automorphism of the polarized Hodge structure

on H4(X, Z) is induced by an automorphism of X. We recall the global Torelli theorem for

cubic fourfolds.

Theorem 1.4. (Voisin) Let X1, X2 be two smooth cubic fourfolds. Suppose there

exists an isomorphism ϕ : H4(X2, Z)∼=H4(X1, Z) respecting the Hodge decompositions and

squares of hyperplane classes, then there exists a linear isomorphism f : X1
∼=X2.

Actually, a stronger version of the global Torelli theorem for cubic fourfolds is claimed in

[Voi86]. Namely, with the conditions in Theorem 1.4, the linear isomorphism f : X1
∼=X2 can

be uniquely chosen such that ϕ is induced by f . Assuming the weak version (Theorem 1.4),

the strong version of global Torelli is equivalent to Proposition 1.3. In Section 4, we

show that Theorem 1.4, plus the injectivity of the group homomorphism (1) appearing

in Proposition 1.3, implies the surjectivity of the same homomorphism.

Remark 1.5. By [BD85], the Fano scheme of lines on a smooth cubic fourfold is a

hyper-Kähler fourfold of deformation type K3[2]. Via this construction, the strong version

of global Torelli for cubic fourfolds can be deduced from Verbitsky’s global Torelli theorem

for hyper-Kähler manifolds. This is done by Charles [Cha12].

To show Theorem 1.1 for cubic surfaces, we need to characterize the action of the

automorphism group of a smooth cubic threefold on its intermediate Jacobian. Recall that

for a smooth cubic threefold X, we denote J(X) =H3(X, Z)\H1,2(X), which is a five-

dimensional complex torus with a principal polarization given by the topological intersection

on H3(X, Z). This principally polarized abelian variety J(X) is called the intermediate

Jacobian of X. See [CG72]. By Proposition 1.2, we have an injective group homomorphism

Aut(X) ↪→Aut(J(X)). Note that we have naturally µ2 = {±1} ⊂Aut(J(X)).

Proposition 1.6. Let X be a smooth cubic threefold, then we have a natural group

isomorphism Aut(J(X))∼= Aut(X)× µ2.

One input of our proof for Propositions 1.3 and 1.6 is the existence of analytic slices

for certain proper actions of complex Lie groups (see Proposition 2.2), which implies the

existence of universal deformations for any smooth hypersurfaces of degree at least 3. We

discuss this in Section 2. As an application of the results in Section 2, we construct the

moduli spaces of marked hypersurfaces in Section 3. In Sections 4 and 5, we present the

proof of Propositions 1.3 and 1.6, respectively. In Section 6, we conclude Theorem 1.1 for

cubic surfaces and cubic threefolds.

The action of the automorphism group of a polarized K3 surface on the corresponding

Hodge structure is well-understood, thanks to the work by Rapoport and Burns [BR75]. In

Section 7, we prove Theorem 1.1 for smooth nonhyperelliptic curves with genus 3 or 4. Our

proof relies on lattice theoretic analysis.
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§2. Universal deformation of smooth hypersurface

All algebraic varieties considered in this paper are over the complex field, and the topology

we are using is the analytic topology. We use Pn to denote the complex projective space

of dimension n. For a complex vector space V of finite dimension, we denote by PV the

projectivization of V . By a degree d n-fold, we mean a hypersurface of degree d in Pn+1. In

this section, we require n> 2, d> 3, and (n, d) 6= (2, 4).

Let G be a complex Lie group acting on a complex manifold M . For x ∈M , we denote

by Gx= {gx
∣∣g ∈G} the orbit of x and by Gx = {g ∈G

∣∣gx= x} the stabilizer group of x.

A subgroupH ofG acts onG×M via h(g, x) = (gh−1, hx) for h ∈H and (g, x) ∈G×M .

We denote G×H M =H\\(G×M) if H is finite.

Let X be a degree d n-fold. We denote by Aut(X) the group of automorphisms of

X induced from linear transformations of the ambient space. According to [MM64a,

Theorem 2], when d> 3, n> 2 and (n, d) 6= (2, 4), the group Aut(X) is equal to the usual

automorphism group of X consisting of regular automorphisms. In particular, this is the

case when X is a smooth cubic of dimension 2, 3, or 4.

The vector space Symd((Cn+2)∗) consists of degree d polynomials with n+ 2 variables.

We denote by Cn,d ⊂ Symd((Cn+2)∗) the subspace consisting of polynomials defining smooth

degree d n-folds. Recall that PCn,d is the projectivization of Cn,d.
For F ∈ Cn,d and g ∈GL(n+ 2, C), we define g(F ) = F ◦ g−1. Thus, we have a left action

of GL(n+ 2, C) on Cn,d. This induces a left action of PGL(n+ 2, C) on PCn,d. Take a point

x in PCn,d and denote by X the corresponding degree d n-fold, we have Gx = Aut(X). In

our cases, Gx is finite; see [MM64a, Theorem 1].

For a complex submanifold S of PCn,d, we denote by XS the tautological family of degree

d n-folds over S. The following result will be used in the proof of Propositions 1.3 and 1.6.

Proposition 2.1. For a smooth degree d n-fold X with corresponding point x ∈ PCn,d,
there exists a complex submanifold S of PCn,d containing x, which satisfies the following

properties.

(i) For any point x′ ∈ PCn,d with the corresponding hypersurface X ′ linearly isomorphic to

X via f : X ′ −→X, we can find an open neighborhood U of x′ in PCn,d, a map U −→ S,

and a morphism f̃ : XU −→XS such that one has the following commutative diagram:

XU XS

U S

f̃

with f̃ |Xx′
= f : X ′ −→X. The choice of f̃ is unique.

(ii) The submanifold S is Gx-invariant. In other words, any automorphism a of X induces

an automorphism a : S −→ S of S. We denote by ã : XS −→XS the pullback of a on

XS. We then have the following commutative diagram:

XS XS

S S

ã

a

(iii) Suppose there are x1, x2 ∈ S and g ∈G with g : Xx1
∼= Xx2, then g ∈Gx.
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To prove this theorem, we need to understand the local structure of the action of PGL(n+

2, C) on PCn,d at x. The following proposition should be known to the experts. However,

we did not find it in the literature; hence, we give a proof for completeness.

Proposition 2.2. Let G be a complex Lie group acting holomorphically and properly

on a complex manifold M . Suppose x is a point in M with the stabilizer group Gx = {g ∈
G
∣∣gx= x} finite. Then there exists a smooth, locally closed, contractible, Gx-invariant

submanifold S of M containing x such that GS is open and G×Gx S −→GS is an

isomorphism. In particular, G× S −→GS is a covering map of degree |Gx|.

Proof. The orbit Gx∼=G/Gx is a submanifold of M containing x. There exists an open

neighborhood U of x in M with an open embedding j : U ↪→ TxM such that j(x) = 0 and the

tangent map j∗ is equal to identity. For every g ∈Gx, the tangent map g∗ : TxM −→ TxM

of g at x is an invertible linear map. Consider a holomorphic map F : U −→ TxM sending

y ∈ U to

F (y) =
1

|Gx|
∑
g∈Gx

(g−1∗ j(g(y))).

Then F (x) = 0 and F∗ = id. Moreover, for any h ∈Gx, we have

(2) F (h(y)) =
1

|Gx|
∑
g∈Gx

(g−1∗ j(gh(y))) =
1

|Gx|
∑
g∈Gx

h∗((gh)−1∗ j(gh(y))) = h∗F (y).

The representation of Gx on TxM has an invariant subspace Tx(Gx). By representation

theory of finite groups, there exists an invariant subspace T1 such that Tx(Gx)⊕ T1 = TxM .

By inverse function theorem, we can choose an open neighborhood U1 of x in U such that

the restriction of F on U1 is an open embedding into TxM . We may shrink U1 such that

F (U) is the product of an open subset of Tx(Gx) and a Gx-invariant open subset B of U1.

By Equation (2), the submanifold S = F−1(B) of M is Gx-invariant.

Consider the natural map p : G× S −→M . The tangent map of p at (1, x) is an

isomorphism p∗ : T1G⊕ TxS ∼= Tx(Gx)⊕ T1 = TxM . Thus, p∗ is an isomorphism at any

points in certain neighborhood of x in G× S. If p∗ is an isomorphism at (1, y) for y ∈ S,

then p∗ is also an isomorphism at every point in G× {y}. Actually, for any g ∈G, we can

consider the commutative diagram

G× S M

G× S M

p

g

p

g−1

where the map in the first column is multiplying the first factor with g−1 from the left.

Thus, we have p= g ◦ p ◦ g−1. Taking derivatives at (g, y), the above equation implies that

p∗ is an isomorphism at (g, y).

Thus, we may shrink S such that p∗ is an isomorphism at every point in G× S. As a

summary of the above argument, there exists a Gx-invariant submanifold S of M containing

x such that TxS ⊕ Tx(Gx) = TxM , and p : G× S −→M is open. In particular, GS is an

open subset of M .

The map G× S −→GS is surjective and factors through G×Gx S. It suffices to show

that we can suitably shrink S such that G×Gx S −→GS is an isomorphism. We assume

that this cannot be achieved and try to conclude contradiction.
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We can find (g, s), (g′, s′) ∈G× S such that gs= g′s′ and g−1g′ /∈Gx. Denote g1 = g−1g′

and s1 = s′. Then we obtain a pair (g1, s1) ∈G× S such that g1 /∈Gx and g1s1 ∈ S. We

shrink S to obtain x ∈ S2 ⊂ S such that S2 is a Gx-invariant open submanifold of S and

s1 /∈ S2. By our assumption, there exists (g2, s2) ∈G× S2 such that g2 /∈Gx and g2s2 ∈ S2.
Continuing to do this, we obtain a sequence of pairs (gi, si)i∈N+ such that gi /∈Gx, gisi ∈

Si ⊂ S. We may require that the limit of Si is the point x, then we have si→ x as i→∞.

The morphism G×M −→M ×M , (g, x) 7−→ (gx, x) is proper; hence, the preimage of

S × S ⊂M ×M is compact. Thus, there exists a subsequence (gik , sik) of (gi, si) such that

(gik , sik) has a limit as k→∞. The limit of (sik) must be x. Assume that gik → g0 ∈G.

Since giksik ∈ Sik , we have g0x= lim(giksik) equals x. Thus, g0 ∈Gx.

The differential of the morphism G× S −→M at (g0, x) is an isomorphism Tg0G⊕ TxS ∼=
Tx(Gx)⊕ TxS ∼= TxM . Therefore, G× S −→M is a local isomorphism at (g0, x). This

implies that gik = g0 for k large enough. But by our choices, we have gik /∈Gx, which is

a contradiction.

In this paper, we call a submanifold S with all the properties in Proposition 2.2 a slice

for the action of G on M at x.

Proof of Proposition 2.1. We consider the action of G= PGL(n+ 2, C) on M = PCn,d.
By [MFK94, Proposition 0.8], this action is proper in the sense that G×M −→M ×M is

proper. By Proposition 2.2, we can take S to be a slice containing x. We next show that S

satisfies the properties we require.

(i) Take U to be an open neighborhood of x′ in GS. Consider the covering map G× S −→
G×Gx S ∼=GS, we have a unique morphism h : U −→G× S with h(x′) = (f−1, x) such that

the following diagram commutes:

G× S

U G×Gx S

h

For y′ ∈ U , we denote h(y′) = (g−1, y). Then we have g−1y = y′; hence, gy′ = y. Thus, the

lifting h gives rise to a morphism f̃ : XU −→XS as required. The uniqueness of the lifting

implies the uniqueness of f̃ .

(ii) Recall that Gx = Aut(X). Since S is Gx-invariant, the automorphism a acts on S.

The pullback ã : XS −→XS of a satisfies the requirement.

(iii) Consider the covering map G× S −→G×Gx S ∼=GS. For any h ∈Gx, the pair

(h, h−1x2) is a point in G× S over x2 ∈GS. Since gx1 = x2, the pair (g, x1) is also a point

over x2. Since G× S −→GS is of degree |Gx|, one must have (g, x1) ∈ {(h, h−1x2)
∣∣h ∈Gx};

hence, g ∈Gx.

§3. Moduli of smooth hypersurfaces with markings

In this section, all hypersurfaces are assumed to be smooth. We still assume that n> 2

and d> 3. We are going to construct the moduli space of marked degree d n-folds as a

complex manifold.

Consider a point x ∈M = PCn,d with X = Xx the corresponding degree d n-fold. It

is known that Hn(X, Z) is free. We have a unimodular bilinear form bx : Hn(X, Z)×
Hn(X, Z)−→ Z given by the cup product. For n even, we denote by ηx ∈Hn(X, Z) the
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(n/2)th power of the hyperplane class. By a symmetric (symplectic) lattice, we mean

a free abelian group of finite rank together with an integral symmetric (symplectic)

bilinear form which is nondegenerate. Denote by (Λn,d, b) an abstract lattice isomorphic

to (Hn(X, Z), bx). For n even, we fix η ∈ Λn,d such that (Λn,d, b, η)∼= (Hn(X, Z), bx, ηx).

A marking of X is an isomorphism φ : (Hn(X, Z), bx)∼= (Λn,d, b) which sends ηx to η

when n is even. Two pairs (x1, φ1) and (x2, φ2) are said to be equivalent if there exists

g ∈G= PGL(n+ 2, C) such that g(x1) = x2 and φ2 = φ1 ◦ g∗.
We define N n,d, the moduli space of marked smooth degree d n-folds, first as a set,

consisting of equivalence classes of (x, φ). We want to endow N n,d with the structure of a

complex manifold. We first identify the topology on N n,d.

Consider (x, φ) ∈N n,d. We take S to be a slice for the action of G on M at x. Recall that

Gx = Aut(X) is the automorphism group of X = Xx and π : XS −→ S is the tautological

family of degree d n-folds over S. Since S is contractible, the local system Rnπ∗(Z) is

trivializable. Thus, φ induces a marking for every fiber of the local system. This gives rise

to a map q : S −→N n,d.

Proposition 3.1. The map q is injective.

Proof. Suppose there are two different points x1, x2 ∈ S with q(x1) = q(x2). We denote

by φ1, φ2 the induced markings on Xx1 ,Xx2 . Then there exists a linear transformation

g : Xx1 −→Xx2 with φ2 = φ1 ◦ g∗.
We have g ∈Gx by Proposition 2.1. By Proposition 1.2, g∗ acts nontrivially on Hn(X, Z).

This implies that φ and φ ◦ g∗ are two different markings of X; hence, φ2 and φ1 ◦ g∗ are

two different markings of Xx2 , a contradiction! We showed the injectivity of q.

Now we take those slices as charts on N n,d. To make N n,d a complex manifold, we still

need to show that it has the Hausdorff property.

Proposition 3.2. With the topology given as above, N n,d is Hausdorff.

Proof. Suppose two pairs (x1, φ1), (x2, φ2), as points in N n,d, are nonseparated. By

[MM64b, Theorem 2], the moduli space of degree d n-folds, as a GIT-quotient of PCn,d
by PGL(n+ 2, C), is separated. This implies that Xx1 and Xx2 are linearly isomorphic.

Without loss of generality, we assume that x1 = x2.

Take a slice S containing x1. Since (x1, φ1), (x1, φ2) ∈N n,d are nonseparated, there exist

two points x3, x4 ∈ S such that (x3, φ3), (x4, φ4) represent the same point in N n,d (here we

write φ3 for the marking on Xx3 induced by φ1 and φ4 the marking on Xx4 induced by

φ2). Then there exists g : Xx3
∼= Xx4 with φ4 = φ3 ◦ g∗. By Proposition 2.1, we have g ∈Gx.

Then φ2 = φ1 ◦ g∗ as markings on Xx1 . Therefore, (x1, φ1) and (x1, φ2) represent the same

point in N n,d. This implies that N n,d is Hausdorff.

Corollary 3.3. The set N n,d, with local charts given as above, is a complex manifold.

The space N n,d may be disconnected. For a complete understanding, we recall some

works by Beauville on monodromy group of the universal family of degree d n-folds. Take

a point x ∈ Cn,d and denote by X = Xx the corresponding smooth degree d n-fold; there is

a representation

ρ : π1(Cn,d, x)−→Aut(Hn(X, Z))
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of the fundamental group π1(Cn,d, x) of Cn,d. The image of ρ, denoted by Γn,d, is called the

monodromy group of the universal family of smooth degree d n-folds. From [Bea86], we

have the following.

Theorem 3.4. (Beauville)

(i) For n even, and (n, d) 6= (2, 3), we have Γn,d ⊂Aut(Hn(X, Z), bx, ηx) of index 2.

(ii) For n= 2 and d= 3, we have Γn,d = Aut(H2(X, Z), ηx) equals the Weyl group of the

E6 lattice.

(iii) For n odd and d even, we have Γn,d = Aut(Hn(X, Z), bx).

(iv) For n odd and d odd, there exists a quadratic form

qx : Hn(X, Z)−→ Z/2Z

such that qx(u+ v) = qx(u) + qx(v) + bx(u, v) (for any u, v ∈Hn(X, Z)) and Γn,d =

Aut(Hn(X, Z), bx, qx).

Since PCn,d is connected, the connected components of N n,d are in bijection with the

cosets of the monodromy group in the target automorphism group. Thus, we have the

following.

Corollary 3.5. The moduli space N n,d of marked degree d n-folds has finitely many

connected components, precisely,

(i) it is connected if (n, d) = (2, 3), or n odd and d even,

(ii) it has two components if n even and (n, d) 6= (2, 3), and

(iii) for n odd and d odd, the number of its connected components is equal to [Aut(Λ, b) :

Aut(Λ, b, q)], where q is the Z/2Z-valued quadratic form on Λ corresponding to qx.

§4. Automorphism group of cubic fourfold

In this section, we apply Proposition 2.1 to investigate the relation between the

automorphism group of a smooth cubic fourfold X and that of the polarized Hodge structure

of X. We will prove Proposition 1.3.

We first review some basic facts on Hodge theory of cubic fourfolds. Take x ∈ PC4,3 and

denote by X the corresponding cubic fourfold, then H4(X, Z) is a free abelian group of

rank 23, and the natural intersection pairing

bx : H4(X, Z)×H4(X, Z)−→ Z

is unimodular and of signature (21, 2). Recall from Section 3 that we have ηx ∈H4(X, Z),

and (Λ4,3, b, η)∼= (H4(X, Z), bx, ηx).

Let L be the orthogonal complement of η in Λ4,3, which is a lattice of signature (20, 2).

Let D be the projectivization of the set of points x ∈ LC with b(x, x) = 0 and b(x, x)< 0.

This is called the period domain of cubic fourfolds. The map P : N 4,3 −→D taking (x, φ)

to φ(H3,1(Xx)) is the period map for cubic fourfolds.

Proposition 4.1. (Local Torelli theorem for cubic fourfolds) The period map P for

cubic fourfolds is locally biholomorphic.

Proof. The dimensions of N 4,3 and D0 are both equal to 20. By Flenner’s infinitesimal

Torelli theorem (see [Fle86], Theorem 3.1), the differential of P has full rank everywhere

in N 4,3. We conclude that P is locally biholomorphic.
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Proof of Proposition 1.3. Take x ∈ PC4,3 and denote by X the corresponding cubic

fourfold. Denote by σ an automorphism of H4(X, Z) which preserves bx, ηx and the Hodge

structure.

Take a slice S containing x. Take φ1, φ2 to be two markings of X such that φ−12 φ1 = σ.

For any y ∈ S, there are induced markings (from φ1, φ2) on Xy, still denoted by φ1, φ2.

Define two holomorphic maps f1, f2 from S to D by fi(y) = P(y, φi) for i= 1, 2.

By Proposition 4.1, we may assume f1, f2 to be open embeddings (shrink S if necessary).

Since σ preserves Hodge structures, we have f1(x) = f2(x). Then there exist two points

x1, x2 in S such that f1(x1) = f2(x2) and this value in D can be chosen generically. By

Theorem 1.4, Xx1 and Xx2 are linearly isomorphic. We can choose a linear isomorphism

g : Xx1
∼= Xx2 . By Proposition 2.1, we have g ∈Aut(X). Since f1(x1) = f2(x2) is generic, it

(as Hodge structures on (L, b)) admits no nontrivial automorphisms; hence, φ2 = φ1 ◦ g∗ as

markings of Xx2 . Then we have also φ2 = φ1 ◦ g∗ as markings of X. Thus, σ = (g−1)∗.

Corollary 4.2. The period map P : N 4,3 −→D is an open embedding.

Proof. Suppose (x1, φ1), (x2, φ2) ∈N 4,3 have the same image in D. Then by Theo-

rem 1.4, there exists g ∈ PGL(6, C) with g : Xx1
∼= Xx2 . We have (g∗)−1φ−11 φ2 an automor-

phism of H4(Xx2 , Z) preserving bx2 , ηx2 and the Hodge structure; hence, it is induced by an

automorphism of Xx2 . This implies that φ−12 φ1 is induced by a linear isomorphism between

Xx1 and Xx2 . Thus, (x1, φ1) = (x2, φ2) in N 4,3. We showed the injectivity of P; hence, P
is an open embedding.

§5. Automorphism group of cubic threefold

In this section, we deal with the case of cubic threefolds and prove Proposition 1.6.

We first introduce the intermediate Jacobians of smooth cubic threefolds. Take x ∈ PC3,3
and denote by X the corresponding cubic threefold, then H3(X, Z) is a free abelian group of

rank 10. There is a symplectic unimodular bilinear form bx on H3(X, Z). The intermediate

Jacobian of X is defined to be J(X) =H2,1(X)\H3(X, C)/H3(X, Z), which is a priori a

complex torus. The symplectic form bx makes J(X) a principally polarized abelian variety.

We have the following theorem; see [CG72, Theorem 13.11] or [Bea82].

Theorem 5.1. (Global Torelli for cubic threefolds) Cubic threefolds are determined by

their intermediate Jacobians. Precisely, if two cubic threefolds X, Y have isomorphic

intermediate Jacobians (as principal polarized abelian varieties), then they are isomorphic.

We recall Griffiths’ theory of integral of rational differentials on hypersurfaces; see [Gri69].

Take F ∈ Cn,d a degree d polynomial of n+ 2 variables Z0, . . . , Zn+1 and denote by Z(F )

the zero locus of F in Pn+1. We write

Ω =

i=n+1∑
i=0

(−1)iZidZ0 ∧ · · · ∧ d̂Zi ∧ · · · ∧ dZn+1.

Take an integer a > 0 such that ad> n+ 2 and take a degree ad− n− 2 polynomial L.

We have a homogeneous rational differential LΩ/F a on Cn+2, with its residue along Z(F )

giving rise to an n-form on Z(F ). Define R : C[Z0, . . . , Zn+1]ad−n−2 −→Hn(Z(F ), C) to be

the map taking L to ResZ(F )(LΩ/F a). We denote by

Fn(Z(F ))⊂ · · · ⊂ F 0(Z(F )) =Hn(Z(F ), C)

the Hodge filtration on Hn(Z(F ), C). By [Gri69], we have the following.
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Theorem 5.2. The map R has image in Fn−a+1(Z(F )), and the composition of

C[Z0, . . . , Zn+1]ad−n−2
R−→ Fn−a+1→ Fn−a+1/Fn−a ∼=Hn−a+1,a−1(Z(F ))

is surjective.

Lemma 5.3. The automorphism −id of J(X) is not induced by any automorphism of

X.

Proof. Suppose there is a linear isomorphism g : X −→X with g∗ =−id on J(X). Then

g∗2 = id on H3(X, Z). By Proposition 1.2, we have g2 = id.

We can take a linear transformation g̃ : C5 −→ C5 representing g, and choose a coordinate

system (Z0, . . . , Z4) such that g̃(Zi)(= Zi ◦ g̃−1) = Zi or −Zi for i ∈ {0, 1, . . . , 4}. For each

i ∈ {0, 1, . . . , 4}, there exists a complex number λi with g̃(ZiΩ/F
2) = λi(ZiΩ/F

2).

Since g∗ =−id, the automorphism g is nontrivial; hence, there exists i1, i2 ∈ {0, 1, . . . , 4}
such that g̃(Zi1) = Zi1 and g̃(Zi2) =−Zi2 . Thus, λi1 6= λi2 .

On the other hand, by g∗ =−id on J(X), we have that g∗ =−id on H3(X, C). By taking

residues of ZiΩ/F
2 along X, we obtain a basis for H2,1(X). Thus, λi =−1 for every i. This

contradicts the previous result λi1 6= λi2 .

Denote by P the ambient space of X. For a linear form l (of variables Z0, . . . , Z4),

the rational differential lΩ/F 2 has residue in H2,1(X). Recall that PH2,1(X) is the

projectivization of H2,1(X). We have a map P ∗ −→ PH2,1(X), where P ∗ is the dual

of P . By Theorem 5.2, every element in H2,1(X) comes in this way. Thus, the map

P ∗ −→ PH2,1(X) is surjective. Since dim P ∗ = dim P = dim PH2,1(X) = 4, we obtain an

isomorphism κ : P ∗ ∼= PH2,1(X). Note that PH2,1(X) and PH1,2(X) are naturally dual to

each other, we have an isomorphism κ∗−1 : P ∼= PH1,2(X).

Lemma 5.4. For any g ∈Aut(X), the following diagram commutes:

(3)

P PH1,2(X)

P PH1,2(X)

g

κ∗−1

κ∗−1

g∗

Proof. Let g̃ : C5 −→ C5 be a linear isomorphism representing g. For an arbitrary linear

form l, we have

g̃∗(lΩ5/F
2) = g̃∗(l)g̃∗(Ω5)/(g̃

∗(F ))2 = λ(g)g̃∗(l)(Ω5/F
2),

where λ(g) is a complex number independent of l. This implies the commutativity of the

following diagram:

(4)

P ∗ PH2,1(X)

P ∗ PH2,1(X)

g∗

κ

g∗

κ

which implies the commutativity of diagram (3).
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The theta divisor Θ of the intermediate Jacobian J(X) has a unique singular point (using

translation, we may ask the singular point to be 0) of degree 3, and the projectivized tangent

cone PT0Θ⊂ PT0J(X) = PH1,2(X) is identified with X via κ∗ : PH1,2(X)∼= P ; see [Bea82]

(main theorem) together with the discussion in [CG72, Chapter 12].

Take σ ∈Aut(J(X)) which induces a linear automorphism σ∗ of PT0J(X). Since σ

preserves Θ, it must fix the only singular point 0. Thus, the induced automorphism σ∗
preserves X ⊂ P . We obtain a group homomorphism

α : Aut(J(X))−→Aut(X)

taking σ to σ−1∗ .

An automorphism g of X induces g∗ : H1,2(X)−→H1,2(X) preserving the lattice

H3(X, Z)⊂H1,2(X). Thus, g∗ gives rise to an automorphism of J(X). In this way, we

obtain a group homomorphism

β : Aut(X)−→Aut(J(X)).

By Lemma 5.4, we have αβ = id. Thus, Aut(J(X))∼= Aut(X)×Ker(α).

Proof of Proposition 1.6. To prove Proposition 1.6, it suffices to show Ker(α) = µ2.

Suppose we have σ ∈Aut(J(X)) such that σ 6= id and α(σ) = id. Then σ is acting trivially

on PH1,2(X); hence, the action of σ on H1,2(X) is, by a scalar, denoted by ζ. The action

of σ on H2,1 is then by the scalar ζ. Any automorphisms of a polarized abelian variety

must have finite order (see [Lan59, Proposition 8, Chapter VII]); hence, σ has finite order.

We may then assume that ζ is an nth root of unity. Since H3(X,Q) is a vector space over

Q, all primitive nth roots of unity should appear as eigenvalues of the automorphism σ on

H3(X, C). But we know that only ζ and ζ appear. Thus, n equals 2, 3, 4, or 6. To show

Ker(α) = µ2, it suffices to show that the cases n= 3, 4, 6 do not appear.

Denote by D the period domain associated with cubic threefolds. In other words, D is

the moduli space of Hodge structures on Λ3,3 which have type weight 3 and Hodge numbers

(0, 5, 5, 0) and are principally polarized by b. Recall from Section 3 that N 3,3 is the moduli

space of marked smooth cubic threefolds. We have the period map P : N 3,3 −→D.

An automorphism (with order 3, 4, or 6) of Λ3,3 with only eigenvalues ζ and ζ uniquely

determines a Hodge structure on Λ3,3, hence a point in D. There are only countably many

such automorphisms, determining countably many points in D. We denote by I the subset

of D consisting of such Hodge structures.

Let x ∈ PC3,3 be the corresponding point of a smooth cubic threefold X. Assume there

exists an automorphism σ of H3(X, Z) which preserves bx and acts as scalar by ζ on

H1,2(X), where ζ is equal to a primitive third, fourth, or sixth root of unity. We are going

to derive contradiction.

Take a slice S for the action of PGL(5, C) on PC3,3 at x. Let φ1, φ2 be two markings of X

such that φ−12 φ1 = σ. For any y ∈ S, there are induced markings (from φ1, φ2) on Xy, still

denoted by φ1, φ2. Define two holomorphic maps f1, f2 from S to D by fi(y) = P(y, φi)

for i= 1, 2.

Since σ preserves Hodge structures, we have f1(x) = f2(x). By Flenner’s infinitesimal

Torelli theorem, we may assume f1, f2 to be injective on S (after suitable shrinking of S).

Since dim(f1(S)) = dim(f2(S)) = 10 and dim(D) = 15, we have

dim(f1(S) ∩ f2(S)) > 5.
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Then there exist two points x1, x2 in S such that f1(x1) = f2(x2), and this value is not in

I. Therefore, Proposition 1.6 holds for Xx1 and Xx2 . By Theorem 5.1, there exists a linear

isomorphism g : Xx1
∼= Xx2 . The composition g∗φ−12 φ1 is an automorphism of H3(Xx1 , Z)

preserving bx2 and the Hodge structure, and hence lies in Aut(J(Xx1))∼= Aut(Xx1)× µ2.
Without loss of generality, we can select g such that g∗φ−12 φ1 ∈ µ2. By Proposition 2.1,

we have g ∈Gx. We have g∗φ−12 φ1 = g∗σ ∈ µ2 as automorphisms of H3(X, Z), which

implies that (g−1)∗ =±σ. Then we have g−1 = α(β(g−1)) = α((g−1)∗) = α(±σ) = id, which

is impossible because (g−1)∗ =±σ is nontrivial.

§6. Occult period map: cubics

In the remaining of this paper, we will consider occult period maps for four cases

successively and finally confirm some conjectures made by Kudla and Rapoport in [KR12].

6.1 Case of cubic surfaces

In this section, we deal with cubic surfaces. For details of the construction, see [ACT02].

Take S to be a cubic surface and X the associated cubic threefold given as the triple

cover of the projective space P3 branched along S. Then there is a natural action of the

cyclic group of order 3 on X (Deck transformations of the ramified covering) and hence

also on H3(X, Z) and the intermediate Jacobian J(X) of X. Denote by σ a generator of

the group action.

Therefore, we have the group µ6 = {±id,±σ,±σ2} acting on J(X). We denote by A0 the

subgroup of A= Aut(J(X)) consisting of elements commuting with σ. Note that µ6 lies at

the center of A0.

We can construct a group homomorphism from Aut(S) to A0/µ6 as follows. Take

a : S −→ S to be an automorphism of S, we can lift it to an automorphism ã of X, unique

up to Deck transformations. The automorphism ã of X induces an automorphism of J(X)

which commutes with σ, hence also induces an element in A0/µ6. This construction does

not depend on the choices of the lifting of a.

The map attaching J(X) (with the action of µ6) to the cubic surface S is called the

occult period map of cubic surfaces, which is an open embedding of the coarse moduli

space PGL(4, C)\\PC2,3 of smooth cubic surfaces into an arithmetic ball quotient Γ\B4 of

dimension 4, where Γ = Aut(Λ3,3, σ)/µ6; see [ACT02]. In [KR12, Remark 5.2], a conjecture

about the stack aspect of the occult period map for cubic surfaces is made, which is already

claimed as an implication of [ACT02, Theorem 2.20]. We prove (Theorem 6.2) the conjecture

in a more straightforward way.

Proposition 6.1. The group homomorphism Aut(S)−→A0/µ6 is an isomorphism.

Proof. We first show the surjectivity. Let ζ ∈A0 be an automorphism of J(X) commut-

ing with µ6. By Proposition 1.6, one element in {ζ,−ζ} is induced by an automorphism

of the cubic threefold X. With the ambiguity of µ6 in mind, we may just assume that ζ is

induced by an automorphism of X. We denote this automorphism by ã.

Since ζ = ã∗ commutes with σ, by Proposition 1.2, we have that ã commutes with the

Deck transformations of X −→ P3. Therefore, ã is induced by an automorphism a of S. We

showed the surjectivity.

Next, we show the injectivity. Let a be an automorphism of S inducing the trivial element

in the group A/µ6. Equivalently, there is a lifting ã of a such that ã∗ ∈ µ6. We can compose
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ã with Deck transformations; hence, we can assume ã∗ ∈ {±id}. By Lemma 5.3, we must

have ã∗ = id and by Proposition 1.2, ã= id; hence, a= id. We showed the injectivity.

Theorem 6.2. The occult period map

P : PGL(4, C)\\PC2,3 −→ Γ\B4

for smooth cubic surfaces identifies the orbifold structures of the GIT-quotient

PGL(4, C)\\PC2,3 and the image in Γ\B4.

Proof. By [ACT02], P is an isomorphism of analytic spaces onto its image; by

Proposition 6.1, it identifies the natural orbifold structures on the source and image.

6.2 Case of cubic threefolds

In this section, we deal with cubic threefolds. For details of the construction, see [ACT11].

Take T to be a cubic threefold and X the associated cubic fourfold given as triple cover

of the projective space P4 branched along T . As in the case of cubic surfaces, one has

an action σ of order 3 on the middle cohomology H4(X, Z) of X, which preserves the

intersection pairing and square of the hyperplane class of X, and acts freely on the primitive

part H4
0 (X, Z). Therefore, we have the group µ6 = {±id,±σ,±σ2} acting on the lattice

H4
0 (X, Z) (with intersection pairing of discriminant 3). We then denote by A the subgroup

of Aut(H4
0 (X, Z)) consisting of elements preserving Hodge structures and A0 the subgroup

of A consisting of elements commuting with σ. The center of A0 contains µ6.

We can construct a group homomorphism from Aut(T ) to A0/µ6 as follows. Take a :

T −→ T to be an automorphism of T , we can lift it to ã :X −→X, an automorphism of X,

unique up to Deck transformations. The automorphism ã of X induces an automorphism

of H4
0 (X, Z) which commutes with σ, and hence also induces an element in A0/µ6 which

does not depend on the choices of the lifting of a.

The map attaching Hodge structures on the lattice H4
0 (X, Z) (preserved by the action

of µ6) to the cubic threefolds T is the occult period map for cubic threefolds, which is an

open embedding of the coarse moduli space PGL(5, C)\\PC3,3 of smooth cubic threefolds

into an arithmetic ball quotient Γ\B10, where Γ = Aut(Λ4,3, η, σ)/µ3 (see Section 3 for

the notations Λ4,3, η). We confirm the conjecture in [KR12, Remark 6.2] by the following

proposition.

Proposition 6.3. The group homomorphism Aut(T )−→A0/µ6 is an isomorphism.

Proof. We first show the surjectivity. Let ζ ∈A0 be an automorphism of H4
0 (X, Z)

preserving Hodge structure and commuting with σ. By lattice theory, one of ζ,−ζ is induced

by an automorphism of the whole cohomology H4(X, Z) which preserves square of the

hyperplane section, and hence, by Proposition 1.3, also induced by an automorphism of the

cubic fourfold X. With the ambiguity of µ6 in mind, we may just assume that ζ is induced

by an automorphism ã of X.

Since ζ = ã∗ commutes with σ, by Proposition 1.2, we have that ã commutes with the

Deck transformations of X −→ P4. Therefore, ã is induced by an automorphism a of T . We

showed the surjectivity.

Next, we show the injectivity. Let a be an automorphism of T , inducing the trivial

element in the group A0/µ6. Equivalently, there is a lifting ã of a such that ã∗ ∈ µ6. We

can compose ã with Deck transformations; hence, we may assume that ã∗
∣∣
H4

0 (X,Z)
∈ {±id}.
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Since ã∗ preserves square of the hyperplane class, we must have ã∗ = id. By Proposition

1.2, ã= id; hence, a= id. We showed the injectivity.

Theorem 6.4. The occult period map

P3,3 : PGL(5, C)\\PC3,3 −→ Γ\B10

for smooth cubic threefolds identifies the orbifold structures of the GIT-quotient

PGL(5, C)\\PC3,3 and the image in Γ\B10.

Proof. By [ACT11, Theorem 1.9], P3,3 is an open embedding of analytic spaces. By

Proposition 6.3, it identifies the natural orbifold structures on the source and image.

§7. Occult period map: Kondō’s examples

In this section, we confirm Kudla and Rapoport’s conjectures for nonhyperelliptic curves

of genus 3 and 4. First, we collect some results on K3 surfaces and lattice theory that will

be used.

We will use the global Torelli theorem for K3 surfaces. The original literature is [BR75],

and one can also see [Huy16], [LP81].

Theorem 7.1. (Global Torelli theorem for K3 surfaces) Suppose two K3 surfaces S1
and S2 satisfy the following:

(i) there exists an isomorphism ϕ : H2(S1, Z)∼=H2(S2, Z) preserving the corresponding

Hodge structures,

(ii) ϕ(KS1) ∩ KS2 6= ∅, where KS1 and KS2 are the Kähler cones of S1 and S2,

then there exists an isomorphism between the two K3 surfaces, and this isomorphism induces

ϕ.

Parallel to Proposition 1.2, one has the following lemma for K3 surfaces; see [LP81,

Proposition 7.5].

Lemma 7.2. For any K3 surface S, the action of Aut(S) on H2(S, Z) is faithful.

We recall some basic notions in lattice theory. One can refer to [Nik79].

Let M be a lattice. Denote MQ =M ⊗Q and still denote by bM the extended

bilinear form on MQ. One has naturally M ↪→Hom(M, Z) ↪→MQ. The lattice M is called

unimodular if M ∼= Hom(M, Z).

The discriminant group of M is defined to be AM = Hom(M, Z)/M . There is a quadratic

form on AM defined as follows:

qM : AM −→Q/Z

[x] 7−→ [bM (x, x)]

for x ∈Hom(M, Z) and [x] ∈AM the equivalence class of x. This quadratic form qM is called

the discriminant form associated with M .

If bM (x, x) ∈ 2Z for any x ∈M , then M is called an even lattice. Suppose M is even,

then we can take values of the discriminant form qM in Q/(2Z). Suppose more that M is

2-elementary, that is, AM is isomorphic to (Z/2Z)l for certain integer l, then the image of

qM lies in (12Z)/(2Z). By [Nik79], we have the following.
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Lemma 7.3. Suppose that L is a unimodular lattice. Suppose that M, N are two

sublattices of L perpendicular to each other (then both M, N are primitive). Then the

following hold:

(i) There is a natural isomorphism between (AM , qM ) and (AN ,−qN ).

(ii) Suppose there are isomorphisms σM : M −→M and σN : N −→N inducing the same

action on AM ∼=AN , then there exists an automorphism of L inducing σM and σN .

7.1 Case of curves of genus 3

In this section, we deal with curves of genus 3. For details of the construction, see [Kon00].

Take C to be a smooth nonhyperelliptic curve of genus 3, which is embedded as a quartic

curve in P2 by the canonical linear system. Take S to be the associated quartic K3 surface

given as degree 4 cover of the projective space P2 branched along C. There is a natural

action of the cyclic group of order 4 (Deck transformations of the ramified covering) on S,

and hence also on H2(S, Z). Denote by σ a generator of the order 4 group.

Define M = {x ∈H2(S, Z)
∣∣σ(x) = x} and N = {x ∈H2(S, Z)

∣∣σ(x) =−x}. They are

primitive sublattices of H2(S, Z), perpendicular to each other, and both have discriminant

group isomorphic to (Z/2Z)8. The Hodge decomposition on N restricted from that on S

has type (1, 14, 1).

We have the group µ4 = {±id,±σ} acting on the lattice M . We then denote by A the

subgroup of Aut(N) consisting of elements preserving the Hodge structure and by A0 the

subgroup of A consisting of elements commuting with σ.

We can construct a group homomorphism from Aut(C) to A0/µ4 as follows. Take

a : C −→ C to be an automorphism of C coming from a linear transformation of the ambient

space P2. We can lift a to an automorphism ã of S, unique up to Deck transformations. The

automorphism ã of S induces an automorphism of N which commutes with σ, and hence

also induces an element in A0/µ4 which does not depend on the choices of the lifting of a.

The map attaching the Hodge structure on N (preserved by the action of µ4) to C

is the occult period map for smooth nonhyperelliptic curves of genus 3, which is an open

embedding of the coarse moduli spaceM◦3 of smooth nonhyperelliptic curves of genus 3 into

an arithmetic ball quotient Γ\B6, where Γ = Aut(N, σ)/µ4 is an arithmetic group acting

on B6. We confirm the conjecture in [KR12, Remark 7.2] by the following proposition.

Proposition 7.4. The group homomorphism Aut(C)−→A0/µ4 is an isomorphism.

We need the following lemmas.

Lemma 7.5. For an E7-lattice P , we have a quadratic form q : (12P )/P −→ Z/(2Z)

taking x ∈ 1
2P to [2bP (x, x)]. Then we have an exact sequence:

1−→ {±id} −→Aut(P )−→Aut((12P )/P, q)−→ 1.

Proof. See [Bou02, Exercise 3 of Section 4, Chapter 6].

Lemma 7.6. An automorphism of the lattice N is induced by an automorphism of

H2(S, Z) preserving the hyperplane class η ∈H2(S, Z).

This lemma is proved and used in [Kon00]. For completeness, we rewrite a proof.

Proof of Lemma 7.6. Let D be the double cover of P2 branched along the quartic curve

C, then D is a Del Pezzo surface of degree 2 and S is a double cover of D branched along C.
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The middle cohomology H2(D, Z) of D is a unimodular lattice, and M ∼=H2(D, Z)(2).

Here we use L(n) to denote a lattice L with a scaled quadratic form by n. We have the

discriminant group AM = (12M)/M of M . We have a sublattice (η0)⊕ P in H2(D, Z) of

index 2, where η0 is the hyperplane class of D and P is an E7-lattice.

Denote by ζ an automorphism of N ; it induces an automorphism of (AN , qN )∼=
(AM ,−qM ). It suffices to construct an automorphism ρ of M such that ρ(η) = η and ρ,

ζ induces the same automorphism of (AM , qM ).

The finite group (12P )/P is a subgroup of AM ∼= (12M)/M . We are going to show that

the induced map of ζ on AM preserves (12P )/P .

Take an element x ∈ P , consider [12x] ∈AM , then

qM ([12x]) = [14bM (x, x)] = [12bP (x, x)] ∈ Z/(2Z),

where the last step is because P is an E7-lattice, which is an even lattice. Since H2(D, Z) is

an odd lattice, there exists element y ∈H2(D, Z) with self-intersection an odd number;

hence, qM ([12y]) /∈ Z/(2Z). Therefore, as a subset of AM , (12P )/P = {α ∈AM
∣∣qM (α) ∈

Z/(2Z)}, which implies that ζ preserves (12P )/P .

By Lemma 7.5, there are two automorphisms ρ1, −ρ1 of P , both inducing the action ζ

on (12P )/P . We can extend the action id⊕ ρ1 on (η0)⊕ P uniquely to an automorphism ρ2
of H2(D, Z) and similarly extend id⊕ (−ρ1) to ρ3. The two automorphisms ρ2 and ρ3 can

be regarded as automorphisms of M , and hence also induce actions on AM . Consider the

automorphisms ξ1 = ρ−12 ◦ ζ and ξ2 = ρ−13 ◦ ζ on (AM , qM ); they are different and both act

as identity on (12P )/P .

Assume that ξ : AM −→AM is an automorphism preserving qM and acting trivially

on (12P )/P . Take x ∈M with [12x] /∈ (12P )/P and assume ξ([12x]) = [12y] for y ∈M . Then

for any z ∈ P , we have ξ([(x+ z)/2]) = [(y + z)/2], which implies that qM ([(x+ z)/2]) =

qM ([(y + z)/2]). Thus, 1
2(bM (x− y, z)) ∈ 2Z for any z ∈ P . This implies that either x− y or

x− y − η belongs to 2M ; hence, ξ([12x]) = [12x] or [12(x− η)]. Therefore, the automorphism

ξ as required has at most two possibilities. We conclude that either ξ1 or ξ2 equals identity;

hence, either ρ2 or ρ3 equals ζ as automorphisms of AM .

Lemma 7.7. Suppose there are two automorphisms ζ1, ζ2 of the K3 lattice H2(S, Z)

such that

ζ1
∣∣
N

= ζ2
∣∣
N

: N −→N

and both the automorphisms preserve the hyperplane class; then they coincide.

Proof. It suffices to show that any automorphism ζ of H2(S, Z) which acts identically

on (η)⊕N must be the identity.

Define sublattice P of H2(D, Z) as in the proof of Lemma 7.6. Since ζ acts identically

on N , it also acts identically on AN ∼=AM , and hence also identically on (12P )/P . By

Lemma 7.5, we have ζ equals id or −id on P , with the latter possibility excluded by the

fact that ζ is an automorphism of the whole lattice H2(S, Z) preserving η. Thus, ζ = id and

we proved the lemma.

Proof of Proposition 7.4. We first show the surjectivity. Let ζ ∈A0 be an automorphism

of N preserving the Hodge structure and commuting with σ. By Lemma 7.6, ζ is induced

by an automorphism of the whole lattice H2(S, Z) which preserves the hyperplane class.

This automorphism apparently preserves the Hodge structure on H2(S, Z) and hence comes

from an automorphism ã of the quartic surface S.

https://doi.org/10.1017/nmj.2019.36 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.36


ORBIFOLD ASPECTS OF CERTAIN OCCULT PERIOD MAPS 153

Since ζ = ã∗
∣∣
N

commutes with σ, we have σã∗ and ã∗σ coincide on the lattice N and both

preserve the hyperplane class. By Lemma 7.7, the equality σã∗ = ã∗σ holds on the whole

lattice H2(S, Z). By Lemma 7.2, we have that ã commutes with the Deck transformations of

S −→ P2. Therefore, ã is induced by an automorphism a of C. We showed the surjectivity.

Next, we show the injectivity. Let a be an automorphism of C inducing the trivial element

in the group A0/µ4. Then there is a lifting ã of a such that ã∗
∣∣
N
∈ µ4. We can compose

ã with Deck transformations, and hence we can assume that ã∗
∣∣
N

= id. Since ã∗ acts as

identity on the hyperplane class of S, by Lemma 7.7, ã∗ = id and by Lemma 7.2, ã= id;

hence, a= id. We showed the injectivity.

Theorem 7.8. The occult period map

P : M◦3 −→ Γ\B6

for smooth nonhyperelliptic curves of genus 3 identifies the natural orbifold structure ofM◦3
and the image in Γ\B6.

Proof. By [Kon00, Theorem 2.5], P is an open embedding of analytic spaces; combining

with Proposition 7.4, we have that P identifies the orbifold structures on the source and

image.

7.2 Case of curves of genus 4

In this section, we deal with curves of genus 4. For details of the construction, see [Kon02].

Take C to be a smooth nonhyperelliptic curve of genus 4, which is embedded as a complete

intersection of a quadric surface Q (smooth or with one node) and a smooth cubic surface

in P3 via the canonical linear system. Take S to be the associated K3 surface given as triple

cover of the quadric surface Q branched along C (in case Q is singular, take its minimal

resolution instead). Then there is a natural action of the cyclic group of order 3 on S

(Deck transformations of the ramified covering) and hence also on H2(S, Z). Denote by σ

a generator of this group.

Suppose the quadric surface containing C is smooth, then it is isomorphic to P1 × P1;

if the quadric surface is singular, then we can blow up the singular point and obtain Q a

rational surface which is the projectivization of the degree 2 and rank 2 vector bundle on P1.

In both cases, we have U =H2(Q, Z) a hyperbolic lattice with generators x1, x2 such that

bU (x1, x1) = bU (x2, x2) = 0, b(x1, x2) = 1 and η0 = x1 + x2 is the hyperplane class of Q.

Denote M = {x ∈H2(S, Z)
∣∣σ(x) = x} and N =M⊥. Then M contains the hyperplane

class. Moreover, M, N are primitive sublattices of H2(S, Z) perpendicular to each other.

Explicitly, M ∼=H2(Q, Z)(3) is of rank 2, N is of rank 20, and they have isomorphic

discriminant groups AN ∼=AM ∼= (Z/3Z)2. The induced Hodge decomposition on N is of

type (1, 18, 1).

We have the group µ6 = {±id,±σ,±σ2} acting on the lattice N . We then denote by A

the subgroup of Aut(N) consisting of elements preserving the Hodge structure and by A0

the subgroup of A consisting of elements commuting with σ.

We can construct a group homomorphism from Aut(C) to A0/µ6 as follows. Take

a : C −→ C to be an automorphism of C coming from a linear transformation of the

ambient space P3. This linear transformation preserves Q and we can lift it to ã : S −→ S,

an automorphism of S, unique up to Deck transformations. The automorphism ã of S

induces an automorphism of N which commutes with σ, and hence also induces an element

in A0/µ6 which does not depend on the choices of the lifting of a.
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The map attaching the Hodge structure on N (preserved by the action of µ6) to C

is the occult period map for smooth nonhyperelliptic curves of genus 4, which is an open

embedding of the coarse moduli spaceM◦4 of smooth nonhyperelliptic curves of genus 4 into

an arithmetic ball quotient Γ\B9, where Γ = Aut(N, σ)/µ6 is an arithmetic group acting

on B9. We confirm the conjecture in [KR12, Remark 8.2] by the following proposition.

Proposition 7.9. The group homomorphism Aut(C)−→A0/µ6 is an isomorphism.

We need the following lemmas.

Lemma 7.10. Let U be a hyperbolic lattice, that is, with generators x1, x2 such that

bU (x1, x1) = bU (x2, x2) = 0, bU (x1, x2) = 1. Then all possible automorphisms ρ of U are in

the list below:

(i) ρ=±id,

(ii) ρ(x1) = x2, ρ(x2) = x1,

(iii) ρ(x1) =−x2, ρ(x2) =−x1.

Proof. The proof of this lemma is straightforward.

Lemma 7.11. Suppose ζ to be an automorphism of the lattice N , then exact one of ±ζ
is induced by an automorphism of H2(S, Z) preserving the hyperplane class η ∈H2(S, Z).

Proof. The automorphism ζ of N induces an action on

AN ∼=AM = (13U)/U = {0,±[13x1],±[13x2],±[13(x1 + x2)],±[13(x1 − x2)]}.

Exactly one of ±ζ preserves [13η0] = [13(x1 + x2)]. Without loss of generality, we assume

that ζ satisfies this property. Then ζ must send [13x1] to [13x1] or [13x2], and the value ζ([13x2])

is correspondingly determined. Combining with Lemma 7.10, there exists an automorphism

of M = U(3) which preserves η and matches with ζ on N . Thus, by Lemma 7.3, the

automorphism ζ is induced from an automorphism of the whole lattice H2(S, Z) which

preserves η. This proves our lemma.

Lemma 7.12. Suppose there are two automorphism ζ1, ζ2 of the K3 lattice H2(S, Z)

such that ζ1
∣∣
N

= ζ2
∣∣
N

: N −→N . Then they coincide.

Proof. Since ζ1, ζ2 act the same on N , they also act the same on AN ∼=AM . By

Lemma 7.10, we know that ζ1, ζ2 act the same on M , and hence the same on the whole

lattice H2(S, Z).

Proof of Proposition 7.9. We first show the surjectivity. Let ζ ∈A0 be an automorphism

of N commuting with σ and preserving the Hodge structure. By Lemma 7.11, one element

in {ζ,−ζ} is induced by an automorphism of the whole lattice H2(S, Z) which preserves

Hodge structure and η. By Theorem 7.1, this automorphism is induced by an automorphism

of S. With the ambiguity of µ6 in mind, we may just assume that ζ is induced by an

automorphism ã of S.

Since ζ = ã∗
∣∣
N

commutes with σ, by Lemma 7.12, we have σã∗ = ã∗σ on H2(S, Z). By

Lemma 7.2 we have that ã commutes with the Deck transformations of S −→Q. Therefore,

ã is induced by an automorphism a of C. We showed the surjectivity.

Next we show the injectivity. Let a be an automorphism of C, inducing the trivial element

in the group A0/µ6. Then there is a lifting ã of a such that ã∗
∣∣
N
∈ µ6. We can compose ã
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with Deck transformations; hence, we can assume ã∗
∣∣
N
∈ {±id}. Since ã∗ acts as identity

on the hyperplane class of S, we must have ã∗
∣∣
N

= id and by Lemma 7.12, ã∗ = id. Thus,

by Lemma 7.2, ã= id, which implies that a= id. We showed the injectivity.

Theorem 7.13. The occult period map

P : M◦4 −→ Γ\B9

for smooth nonhyperelliptic curves of genus 4 identifies the natural orbifold structures on

M◦4 and the image in Γ\B9.

Proof. By [Kon02], P is an open embedding of analytic spaces; combining with

Proposition 7.9, we have that P identifies the orbifold structures on the source and image.
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