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The aim of this paper is to make the formation of liquid plugs as difficult as possible in
liquid partially filling a horizontal rectangular tube in a downward gravity field by setting
the walls to have differing contact angles. Manning et al.’s method (J. Fluid Mech., vol.
682, 2011, pp. 397–414), extended from Concus–Finn theory, is applied to the existence
of capillary plugs in rectangular tubes. The critical Bond numbers (Bc) determining the
existence of capillary plugs in a rectangular tube are studied for different settings of
the non-uniform contact angles, and the influence of the aspect ratio (defined as the
width-to-height ratio) of the rectangular cross-section on Bc is examined. Compared to
the maximum and minimum of Bc reached for uniform contact angles, the maximum of Bc
is higher, which is attained for the bottom contact angle γ2 = 135◦, the top contact angle
γ4 = 45◦, and the side contact angles γ1 = γ3 = 90◦; while the minimum is considerably
lowered to zero, which is reached for γ1 = γ2 = 45◦ and γ3 = γ4 = 135◦. The aspect ratio
of the rectangle has no influence on the maximum and minimum Bc for a tube with walls
of differing contact angles. There is only one non-occluded liquid topology in a square,
while two topologies may occur in a rectangle with aspect ratio 2, and the transition
between the two topologies is accompanied by a kink of the curve of Bc. Optimization
of the non-uniform contact angles can facilitate or effectively block the capillary plugs in
rectangular tubes regardless of the aspect ratios.

Key words: capillary flows

1. Introduction

A liquid plug in a container with a small cross-section may or may not occur
depending on the container geometry, gravity and surface tension. An understanding of
the hydrostatics of liquid plugs in a container is important in a number of applications.
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Examples include liquid plugs in fuel cells (Herescu & Allen 2012), liquid filling in a
gap in micro-gravity (Chen & Collicott 2006), and liquid occlusion in microfluidics and
micro-electromechanical systems (Gravesen, Branebjerg & Jensen 1993). Liquid plugs
may be harmful to the performance of the equipment. Generally, it is very important to
optimally design the containers (mainly including designing the tube geometry and setting
the material surface properties) to avoid liquid plugs in them.

To understand the liquid plug phenomenon, it is necessary to find the equilibrium
capillary surfaces spanning the containers and to propose criteria for the occlusion of
the liquid. Concus & Finn (1969) and Finn (1986) developed a well-known theory to
propose criteria for the existence and non-existence of an occluding capillary surface
in a cylinder for cases under weightless conditions or in a gravity field parallel to the
axis of the cylinder. Smedley (1990) applied Finn’s (1986) theory to the cases of four
different cross-sections (one of them being eccentric annuli) for various wetting angles
under weightless conditions. Pour & Thiessen (2019) extended Smedley’s (1990) work
to the case of both non-wetting and wetting liquids with a given sufficient volume in an
annular geometry between two non-concentric cylinders under weightless conditions. In
a geometric parameter space, they found the occluding region where only the occluding
configuration occurs, the non-occluding region where only the non-occluding bridging
configuration occurs, and a bistable region where either configuration can exist.

De Lazzer et al. (1996) used a numerical method to calculate the capillary pressure in a
rotating polygonal cylinder, when a body force is perpendicular to the axis of the cylinder.
De Lazzer et al. (2003) investigated the shapes of liquids pinned between two parallel
plates under the effect of a lateral body force. Manning, Collicott & Finn (2011) extended
the known theory (Concus & Finn 1969; Finn 1986) to include transverse body forces,
leading to an explicit mathematically rigorous occlusion criterion for cylindrical tubes in
a transverse body force field, depending on the force magnitude and contact angle. The
critical Bond number was used as an important parameter to determine the existence or
non-existence of capillary plugs. If the Bond number is less than the critical Bond number,
a plug in the tube may occur; otherwise a plug in the tube will not occur. They presented
a precise analytic criterion for a liquid plug in a circular cylinder. Manning et al.’s
(2011) analytic theory is in good agreement with direct calculations for the surfaces of
minimizing energy via Surface Evolver (Brakke 1992) in three-dimensional mode. Based
on the Manning et al. (2011) theory, Manning & Collicott (2015) presented an exhaustive
determination of the critical Bond number for the existence of occluding capillary surfaces
in horizontal rectangular channels with uniform contact angles in a downward gravity field.
The effects of aspect ratios (defined as the width-to-height ratio) and contact angles on the
critical Bond number of the rectangular tube were examined. The critical Bond numbers
for liquid plugs in the tubes with different cross-sectional shapes (including circle, oblate
and prolate ellipses of different aspect ratios, and triangles) and different contact angles
were determined (Rascón, Parry & Aarts 2016).

Researchers have sought to find methods for preventing the existence of liquid plugs.
For this purpose, a wedge was found by Concus & Finn (1969) to be able to avoid liquid
plugs in a cylindrical container. When the sum of the contact angle and half of the interior
angle of the corner is less than 90◦, a liquid plug will not occur or the surface will
not exist. Manning et al. (2011) designed a ‘flattened ice-cream cone’ cylinder in which
non-occluding will occur. Square hydrophilic channels are utilized in fuel cells to prevent
liquid water plugs in them (Zhang, Yang & Wang 2006). Compared to the contact angle
γ = 90◦, both γ > 90◦ and γ < 90◦ can decrease the critical Bond number (Manning
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et al. 2011). A sufficiently large aspect ratio can lead to reduction of the critical Bond
number of a rectangular tube (Manning & Collicott 2015). However, in some applications,
the cross-section of the liquid partially filling the tube is determined mainly by the
performance of the equipment containing the flow tube and may not be changed only
due to the liquid plug performance. Furthermore, the reduction of critical Bond number
due to γ > 90◦ or γ < 90◦ and the use of rectangular cross-section of very large aspect
ratio (Manning & Collicott 2015) is small, and the value of the critical Bond number is
of the same order of magnitude as before. It is necessary to seek alternative methods of
making the formation of liquid plugs as difficult as possible.

The above work has been focused on finding the equilibrium capillary surfaces and
determining the critical Bond numbers for liquid plugs in tubes, where the contact angles
on the walls are uniform. What are the configurations of the equilibrium capillary surfaces
in infinitely long tubes with walls of differing contact angles (called non-uniform contact
angles here)? How does the non-uniformity of contact angles influence the critical Bond
numbers for liquid plugs in the tubes? Is the non-uniformity of contact angles helpful
for obtaining much smaller critical Bond numbers or not? These questions have not been
studied to date. Here, we answer them by taking rectangular tubes as an example, because
a rectangle can serve as a canonical form to extend to other polygonal shapes.

In this paper, a mathematical model that considers the effects of transverse gravity
and surface tension is given to calculate equilibrium capillary surfaces in infinitely long
rectangular tubes. Manning et al.’s (2011) method is applied to the existence of capillary
plugs in rectangular tubes. The effect of different settings of the non-uniform contact
angles on the critical Bond number is investigated. Finally, the critical Bond numbers for
liquid plugs in the rectangular tubes with the walls of differing contact angles for different
aspect ratios are determined.

2. Methods

Consider a long horizontal rectangular tube partially filled with a liquid in a downward
gravity field, as depicted in figure 1. The length of the tube is assumed infinite; w and h are
the width and height of the tube cross-section, respectively; and the aspect ratio is defined
as w/h. The gas and the liquid in the tube are immiscible fluids and both of them have
very large fixed volumes. Physically, the static equilibrium of the gas–liquid interface is
supported by gravity and the surface tension forces at contact points (contact lines in three
dimensions).

2.1. Young–Laplace equation in two dimensions
We assume that the gas–liquid interface is in equilibrium in a horizontal rectangular tube
in a downward gravity field (figure 1). By solving the Young–Laplace equation in two
dimensions (Bhatnagar & Finn 2016):(

yx√
1 + y2

x

)
x

≡ (sinψ)x = λ+ κy, (2.1)

the height y(x) of the liquid surface can be determined, yielding the equilibrium condition
for the gas–liquid interface. In this equation, the subscript x represents the derivative with
respect to the coordinate x (i.e. (·)x ≡ d(·)/dx), ψ is the inclination angle of the curve y(x)
and κ = ρg/σ is the capillary constant, with ρ the density difference (positive) between
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FIGURE 1. Schematic of general cross-section of liquid partially filling a rectangular tube in
a downward gravity field. The interior Ω is divided into Ω∗ and (Ω −Ω∗) by the arc Γ ; the
perimeter Σ is divided into Σ∗ and (Σ −Σ∗); ψ is the inclination angle on the arc Γ ; and γ1,
γ2, γ3 and γ4 are the contact angles of the four walls, respectively.

liquid and gas, g the gravitational acceleration, σ the surface tension of the interface,
and λ is a constant depending on the eventual volume constraint. The boundary condition
remains as

ν · T y = cos γ, T y ≡ ∇y/
√

1 + |∇y|2, (2.2)

where ν is the unit exterior normal to the rectangle on Σ , and γ is the contact angle.
We can obtain the solutions of (2.1) by integrating the parametrization form of (2.1).

There are two parametrization forms of (2.1). Following Bhatnagar & Finn (2016), we
have

dx
dψ

= cosψ
λ+ κy

,
dy
dψ

= sinψ
λ+ κy

. (2.3a,b)

A first integral of the form is (Bhatnagar & Finn 2016; Zhou & Zhang 2017):

c = (λ+ κy0)
2

2κ
+ cosψ0. (2.4)

The solutions according to the range of the integral constant c are uniquely determined by
the prescribed point (x0, y0) on the interface and the inclination angle ψ0 of the interface
at the prescribed point. Explicitly integrating the terms of (2.3a,b), we obtain

x = x0 +
∫ ψ

ψ0

cos τ
±√

2κ(c − cos τ)
dτ, ψ ∈

[
ψ0,

π

2

]
, (2.5)

y = −λ
κ

± 1
κ

√
2κ(c − cosψ). (2.6)

Equation (2.1) also can be parametrized by the arclength s (Finn 1986) as

dx
ds

= cosψ,
dy
ds

= sinψ,
dψ
ds

= dx
ds

dψ
dx

= λ+ κy, (2.7a–c)

which hold the solution curves (corresponding to 0 < c < 1 in (2.4)–(2.6)) each
containing an inflection point. Equations (2.5) and (2.6) are employed in calculation for
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the family of solution curves with c > 1, and (2.7a–c) are employed in calculation for the
family of solution curves with 0 < c ≤ 1.

2.2. Occlusion criteria
The plug criterion for an infinitely long horizontal rectangular tube partially filled by
liquid in a downward gravity field is developed by extending Manning et al.’s (2011) plug
criterion for a cylindrical tube. The two inequalities that are necessary for the existence of
an occluding interface are

Φ[Ω∗] ≡ |Γ | −
∫
Σ∗

cos γ + |Ω∗|
|Ω|

∫
Σ

cos γ + κ

∫
Ω∗

y > 0, (2.8)

and

Ψ [Ω∗] ≡ |Γ | +
∫
Σ∗

cos γ − |Ω∗|
|Ω|

∫
Σ

cos γ − κ

∫
Ω∗

y > 0. (2.9)

If one of the above two inequalities is not satisfied for an Ω∗, a plug surface will not exist.
We choose the constant λ as

λ = 1
|Ω|

∫
Σ

cos γ = (cos γ1 + cos γ3)+ (w/h)(cos γ2 + cos γ4)

w
, (2.10)

and the centroid of the rectangle lies on the x-axis. The Bond number (B) is defined
based on the height of the tube cross-section h (used as the characteristic length) as
B = (ρg/σ)h2. The critical Bond number (Bc) is used as the parameter to determine the
existence or non-existence of capillary plugs. If B < Bc, a plug in the tube may occur;
otherwise, a plug will not occur. Newton’s method is used for iterative computations of
the above equations.

3. Results and discussion

3.1. Effect of uniform contact angles
For contact angles smaller than 45◦ or larger than 135◦, the liquid will critically wet the
corners of the rectangle regardless of the Bond number (Concus & Finn 1969). The critical
Bond numbers of a square tube and a rectangular tube of w/h = 2 for uniform contact
angles (γ1 = γ2 = γ3 = γ4) varying from 45◦ to 135◦ with an increment of 1◦ are shown
in figure 2. The results are in excellent agreement with those calculated by Manning &
Collicott (2015). The curve is symmetric about the vertical line γ = 90◦ (verified in § 3.2)
and reaches a maximum at γ = 90◦. In other words, both γ > 90◦ and γ < 90◦ can lead
to the reduction of Bc. The contact angle γ can be found to produce the same Bc value as
the contact angle 180◦ − γ . Furthermore, different from the smooth curve of the square,
the curve for w/h = 2 has two kinks (each corresponding to a topological change in the
non-occluded liquid configuration between a single connected region and two separated
corner regions) at γ = 49◦ and 131◦ so that the minimum of Bc is smaller than that of the
square tube (also see Manning & Collicott 2015).

3.2. Effect of non-uniform contact angles
In reality, the contact angle on one wall of a tube may be different from the contact
angles on the other walls. We take a square tube as an example to analyse the effect of
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FIGURE 2. Critical Bond numbers of two rectangular tubes versus uniform contact angles.
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γ2 = γ4 = 45° (135°)

FIGURE 3. Critical Bond number of a square tube for different values of contact angles
γ2 = γ4 versus contact angles γ1 = γ3.

the non-uniform contact angles on Bc. Owing to the symmetry of the two sidewalls, the
effect of the contact angle of one sidewall γ1 is equivalent to the effect of the contact angle
of the other sidewall γ3. Figure 3 shows the variations of Bc for different contact angles
(γ2 = γ4 = 45◦, 60◦, 75◦, 90◦, 105◦, 120◦ and 135◦) with the contact angles γ1 = γ3. In
figure 3, the curves are still symmetric about the vertical line γ1 = γ3 = 90◦ and reach
maxima at γ1 = γ3 = 90◦. A larger difference in the contact angles γ2 = γ4 from 90◦
leads to the reduction of Bc. However, the maximum and minimum of Bc do not change
any more compared to the case for the uniform contact angles (γ1 = γ2 = γ3 = γ4).

In order to further analyse the effect of the non-uniformity of γ2 and γ4 effectively, the
contact angles studied have the relationship γ4 = 180◦ − γ2. In this case, the maximum
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FIGURE 4. Critical Bond number of a square tube for different values of contact angles γ2 and
γ4 = 180◦ − γ2 versus contact angles γ1 = γ3.
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FIGURE 5. Interface of rectangular tube (a) with contact angles γ1, γ2, γ3 and γ4 and (b) with
γ+

1 = 180◦ − γ1, γ+
2 = 180◦ − γ4, γ+

3 = 180◦ − γ3 and γ+
4 = 180◦ − γ2.

non-uniformity of the two contact angles is generated when γ2 = 45◦ or 135◦. It is found
from figure 4 that the lower contact angle on the bottom wall with the greater contact angle
on the top wall can lead to effective reduction of Bc, and, in contrast, the reverse can lead
to effective increase of Bc. The minimum is reached for γ2 = 45◦ and γ4 = 135◦ and the
maximum of 13.66 is attained for γ2 = 135◦ and γ4 = 45◦.

We will analyse the effect of the non-uniformity of the two side contact angles γ1 and γ3
based on the maximum non-uniformity of the bottom and top contact angles. In order to
reduce the number of representative cases for comprehensive study in this respect as much
as possible, we initially analyse the relationship of Bc for the case with contact angles
γ1, γ2, γ3 and γ4 and that for the case with γ+

1 = 180◦ − γ1, γ+
2 = 180◦ − γ4, γ+

3 =
180◦ − γ3 and γ+

4 = 180◦ − γ2. The interfaces of the two cases are shown in figure 5.
Since (2.8) and (2.9) are equivalent, we compare the values of Φ for the two cases. For the
two cases as shown in figures 5(a) and 5(b) the Φ values are, respectively,

Φa = |Γa| − (|Σ∗
a1| cos γ1 + |Σ∗

a2| cos γ2 + |Σ∗
a3| cos γ3 + |Σ∗

a4| cos γ4)

+ |Ω∗
a |

|Ω|
∫
Σ

cos γ + κ

∫
Ω∗

a

y, (3.1)
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and

Φb = |Γb| − (|Σ∗
b1| cos γ+

1 + |Σ∗
b2| cos γ+

2 + |Σ∗
b3| cos γ+

3 + |Σ∗
b4| cos γ+

4 )

+ |Ω∗
b |

|Ω|
∫
Σ

cos γ+ + κ

∫
Ω∗

b

y. (3.2)

From (2.5), (2.6) and (2.10), we find that the y values of the two interfaces are symmetric
about the x-axis. Therefore, κ

∫
Ω∗

b
y = κ

∫
Ω∗

a
y. Moreover, the arclengths, the areas and the

perimeters have the relations, respectively: |Γa| = |Γb|, |Ω∗
a | = |Ω| − |Ω∗

b | and |Σ∗
a | =

|Σ | − |Σ∗
b |. In this case, (3.2) can be rewritten as

Φb = |Γa| −
(∫

Σ

cos γ+ − |Σ∗
a1| cos γ+

1 − |Σ∗
a2| cos γ+

4 − |Σ∗
a3| cos γ+

3

−|Σ∗
a4| cos γ+

2

)
+ (|Ω| − |Ω∗

a |)
|Ω|

∫
Σ

cos γ+ + κ

∫
|Ω∗

a |
y

= |Γa| + (|Σ∗
a1| cos γ+

1 + |Σ∗
a2| cos γ+

4 + |Σ∗
a3| cos γ+

3 + |Σ∗
a4| cos γ+

2 )

− |Ω∗
a |

|Ω|
∫
Σ

cos γ+ + κ

∫
|Ω∗

a |
y. (3.3)

Based on the relation of the contact angles as shown in figure 5(a) and those in
figure 5(b),

∫
Σ

cos γ+ is equal to − ∫
Σ

cos γ from (2.10), and Φb is equal to Φa from
(3.1) and (3.3). It is concluded that the value of Bc of a rectangular tube with contact
angles γ1, γ2, γ3 and γ4 is equal to that with γ+

1 = 180◦ − γ1, γ+
2 = 180◦ − γ4, γ+

3 =
180◦ − γ3 and γ+

4 = 180◦ − γ2. (The uniform contact angles of γ1 = γ2 = γ3 = γ4 = γ ,
and γ+

1 = γ+
2 = γ+

3 = γ+
4 = 180◦ − γ are special cases. The Bc value for the uniform

contact angle γ is equal to that for the uniform contact angle 180◦ − γ .) In this case, the
range of γ1 from 45◦ to 135◦ and the range of γ3 from 90◦ to 135◦ are representative for
the comprehensive studies on the influence of the non-uniformity of γ1 and γ3.

The critical Bond numbers of a square tube versus contact angle γ1 with γ3 changing
among 90◦, 105◦, 120◦ and 135◦ for the case γ2 = 45◦ and γ4 = 135◦ and the case γ2 =
135◦ and γ4 = 45◦ are shown in figure 6. The curve is no longer symmetric about the
vertical line of 90◦, as it is in figures 2–4. The minimum of Bc = 0 reached at γ1 = γ2 =
45◦ and γ3 = γ4 = 135◦ (figure 6a) is lower than that shown in figure 4. The maximum
13.66 reached at γ2 = 135◦, γ4 = 45◦ and γ1 = γ3 = 90◦ (figure 6b) is equal to that shown
in figure 4. This implies that the non-uniformity of the two side contact angles can help to
reduce the minimum of Bc but never influence the maximum. Furthermore, the minimum
of Bc attained by optimizing the non-uniform contact angles is far lower than the minima
attained by changing the uniform contact angles and by increasing the aspect ratio to a
very large value (Manning & Collicott 2015). Optimization of the non-uniform contact
angles can therefore be considered as a more effective method of preventing the existence
of liquid plugs.

3.3. Effect of aspect ratios for non-uniform contact angles
The aspect ratio of the tube with rectangular cross-section has been found to change the
minimum of Bc but not to change the maximum 8.0, for uniform contact angles. Moreover,
a very large aspect ratio (= 100) leads to a smaller value of Bc for uniform contact angles
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FIGURE 6. Critical Bond number of a square tube versus contact angle γ1 with γ3 changing
among 90◦, 105◦, 120◦ and 135◦ for (a) γ2 = 45◦ and γ4 = 135◦ and (b) γ2 = 135◦ and
γ4 = 45◦.
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FIGURE 7. Critical Bond number of a rectangular tube (w/h = 2) versus contact angle γ1 with
γ3 changing among 90◦, 105◦, 120◦ and 135◦ for (a) γ2 = 45◦ and γ4 = 135◦ and (b) γ2 = 135◦
and γ4 = 45◦.

w/h = 1 w/h = 2 Contact angle conditions

Maximum 13.66 13.66 γ2 = 135◦, γ4 = 45◦ and γ1 = γ3 = 90◦
Minimum 0 0 γ1 = γ2 = 45◦ and γ3 = γ4 = 135◦

TABLE 1. Maximum and minimum critical Bond numbers.

46◦ or 134◦, but it is still larger than 3.5 (Manning & Collicott 2015). Here, we intend
to examine the effect of the aspect ratio of the rectangular cross-section on the minimum
and maximum of Bc for a tube with walls of differing contact angles. As demonstrated in
previous sections, the variation of contact angles is complex for comprehensively studying
the effect of the non-uniformity of contact angles. In this context, the cases of γ1 changing
from 45◦ to 135◦ for γ2 = 45◦ and 135◦, γ3 = 90◦, 105◦, 120◦ and 135◦ and γ4 = 135◦ and
45◦ are chosen, which include the two cases corresponding, respectively, to the minimum
and maximum of Bc (figure 7).
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FIGURE 8. Critical Bond number as a function of contact angle for a capillary with two rectangular cross-sections: (a–d) square and (e–h) rectangle
with w/h = 2. Panels (a) and (e) are for uniform contact angles, while panels (b–d) and ( f –h) are for non-uniform contact angles. In the latter, the
contact angles γ1 = γ2 vary from 45◦ to 135◦ and γ3 = γ4 = 45◦ (b and f ), 90◦ (c and g) and 135◦ (d and h). The red circles denote the data at
five representative contact angles, γ1 = γ2 = 50◦, 70◦, 90◦, 110◦ and 130◦, which correspond to A, B, C, D and E, respectively. In order to have a
clear mark on the curves, every red circle is so large that it approximately covers the three neighbouring points on a curve (e.g. the E red circle
approximately covers the three points corresponding to γ1 = γ2 = 129◦, 130◦ and 131◦, respectively).

901
R

1-10

https://doi.org/10.1017/jfm.2020.598 Published online by Cambridge University Press

https://doi.org/10.1017/jfm.2020.598


Plugs in horizontal tubes with non-uniform contact angles

(b)
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(c)
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FIGURE 9. A three-dimensional view of the interface shapes for occluding liquid configurations
in a rectangular tube (w/h = 2) for different cases directly calculated using Surface Evolver:
(a) γ1 = 90◦, γ2 = 60◦, γ3 = 90◦, γ4 = 120◦; (b) γ1 = 90◦, γ2 = 90◦, γ3 = 90◦, γ4 = 90◦; and
(c) γ1 = 90◦, γ2 = 120◦, γ3 = 90◦, γ4 = 60◦. The liquid and the gas are located at the left side
and the right side of the interface shape in the tube, respectively. The critical Bond numbers for
(a), (b) and (c) are 4.0, 8.0 and 12.0, respectively.

We compare the values of Bc for the chosen cases for a rectangle with w/h = 2 (figure 7)
and a square (figure 6). It is found that the aspect ratio does not change the minimum and
maximum of Bc (table 1). In other words, the aspect ratio of the rectangular cross-section
has no effect on the minimum and maximum of Bc for a tube with walls of differing
contact angles. This conclusion also can be obtained by substituting the contact angles for
the minimum and maximum of Bc into (2.8) and (2.9). However, for the square, there is
only one non-occluded liquid configuration with the gas–liquid interface meeting the two
sidewalls (as the type 1 topology) while for the rectangle, besides the type 1 topology,
another non-occluded liquid configuration having two contact points in one corner region
or having four contact points in two separated corner regions may occur (as the type 2
topology) (figure 8). The transition between the two topologies is accompanied by the
kink of the curve of Bc for the rectangle. Only one topology leads to no kink of the curve
of Bc for the square. Figure 9 shows a three-dimensional view of the interface shapes for
occluding liquid configurations in the rectangle with w/h = 2 for different cases directly
calculated using Brakke’s Surface Evolver (1992).

4. Conclusions

In this paper, the existence of capillary plugs in liquid partially filling a horizontal
rectangular tube with walls of differing contact angles in a downward gravity field is
studied. The critical Bond numbers for a rectangular tube with walls of differing contact
angles are analysed and the influence of the aspect ratio of the rectangular cross-section
on the critical Bond number is examined. Compared to the cases for uniform contact
angles, the maximum of Bc attained for γ2 = 135◦, γ4 = 45◦ and γ1 = γ3 = 90◦ is
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greatly enhanced, and the minimum is significantly reduced to zero, which is reached for
γ1 = γ2 = 45◦ and γ3 = γ4 = 135◦. The non-uniformity of contact angles can effectively
make the formation of liquid plugs difficult in the tube. The aspect ratio of the rectangle
has no effect on the minimum and maximum of Bc for the tube with walls of differing
contact angles. There is only the type 1 topology in the square, while both type 1 topology
and type 2 topology may occur in the rectangle with w/h = 2, and the transition between
the two topologies is accompanied by the occurrence of a kink of the Bc curve. It is
hoped that this paper will lay a solid foundation for the design of non-occluding tubes
in a transverse body force field.
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