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Abstract

We investigate queueing networks in a random environment. The impact of the
evolving environment on the network is by changing service capacities (upgrading and/or
degrading, breakdown, repair) when the environment changes its state. On the other side,
customers departing from the network may enforce the environment to jump immediately.
This means that the environment is nonautonomous and therefore results in a rather
complex two-way interaction, especially if the environment is not itself Markov. To
react to the changes of the capacities we implement randomised versions of the well-
known deterministic rerouteing schemes ‘skipping’ (jump-over protocol) and ‘reflection’
(repeated service, random direction). Our main result is an explicit expression for the
joint stationary distribution of the queue-lengths vector and the environment which is of
product form.
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1. Introduction

Queueing networks with product form steady state have found many fields of application,
e.g. production systems, telecommunications, and computer system modelling. The success
of this class of models stems from the simple structure of the steady state distribution which
provides access to easy performance evaluation procedures. Starting from the work of Jackson
[13], various generalisations have been developed. A branch which has recently found interest
is queueing networks in a random environment with product form steady state, and we will
contribute to this research area.

In this introduction we will give examples of predecessors, i.e. queueing systems in a random
environment and provide a survey of the state of the art. Thereafter we discuss two essentials for
our results and presentation: the construction of rerouteing schemes available in the literature
to deal with blocking or breakdown of nodes, and the distinction between autonomous and
nonautonomous environments. We end with a sketch of our achievements and of the structure
of the paper.

Predecessors. For birth–death processes (and M/M/1/∞ queues) in a random environment
there is a long history of investigations; see, e.g. [4], [5], [10], [21], and [37]. Related research
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is on service systems under external influences which cause the service process to break down
or decrease availability of servers; see, e.g. [39] and the recent survey [19]. The results in these
papers most often lack the elegance of Jackson’s product form steady state and the simplicity
of the steady states of birth–death processes.

Exceptions are [20], [25], and [28], where the environment of a production model (queue)
is an associated inventory, and [9] and [26], where the influence of the environment results in
randomly occurring breakdowns of the server, and [15], where the environment of a sensor node
encompasses the node’s neighbours, their status, etc. Queues in a general environment were
investigated in [16]. In these papers the two-dimensional steady state distribution of queueing-
environment processes factorises into the product of the marginal steady state distributions.
Essentially, in equilibrium and in the long run the states for the queue and the environment
decouple.

In [36] environment states are called ‘background states’which govern transition rates of the
queue and on the other side are influenced by the state the queue. A decomposition was proved
for the joint queueing-environment process and supplementary variables for nonexponential
service times and holding times for the background states.

State of the art. Zhu [38] was the first to find product form steady state distributions for
Jackson networks in a random Markovian environment. Economou [7], Balsamo and Marin [1],
and Tsitsiashvili et al. [32] continued the investigations. The procedure in these papers for a
network of single exponential servers is as follows (explained in terms of Zhu’s notation).
The key ingredients for node i in a Jackson network are an external Poisson-λi arrival stream,
exponential-μi service times, and a Markovian routeing scheme, which produces a total arrival
rate ηi . With ηi/μi =: ρi a local marginal stationary distribution is

ξi(n) = (1 − ρi)(ρi)
n, n ∈ N0. (1.1)

In [38] these parameters depend on the environment’s state, say k: λi(k), μi(k), ηi(k), and,
with the additional assumption that utilisations ρi(k) := ηi(k)/μi(k) =: ρi do not depend on k,
the local steady state is (1.1) again. Zhu and his followers do not explain how independence
of k for utilisations emerges.

A network of parallel nodes each with a local environment (= dedicated inventory) and a
common global environment (= replenishment system) with product form steady state was
described in [23]. The environment in this setting is not itself Markov.

In [11] a random walk and other systems of statistical mechanics were embedded into
environments which were represented by Jackson networks. In reversed interpretation the
Jackson networks are in an environment from statistical mechanics. The authors derived under
certain reversibility and local balance conditions explicit expressions for the system’s stationary
distribution which resemble product form equilibria.

Rerouteing schemes. The quest for readjustment rules which generate approximately a
behaviour similar to the independence of k for ρi(k) := ηi(k)/μi(k) =: ρi has a long history,
especially in the control of communications networks. There the term ‘rerouteing’ describes
the necessity to react, e.g. to buffer overflow, broken down nodes, and (partial) degrading
of transmission lines. To be more concrete: rerouteing schemes are stylised policies in
communications networks which mimic an exchange of routeing tables or of rules for dynamic
traffic reallocation as a reaction to changes of service capacities (e.g. by degradation of servers)
or of the network’s load situation, due to varying environment conditions; see [12], [22], [30],
and the references therein.
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In networks with blocking or with unreliable servers, it is often possible to obtain explicit
product form stationary distributions by implementing a clever rerouteing regime for customers
who find at a node, selected for his/her next entrance, the buffer full or the node broken down.
Examples are described in [26] under the heading of ‘skipping’, ‘repeated service-random
destination’, and ‘stalling’. The first regime is called ‘jump-over protocol’ by other authors,
see [33], the second regime is ‘reflection’.

The bulk of applications exploiting these schemes can be found in [34] and in [3, Chapter
1,9]. These rerouteing schemes maintain ρi(k) =: ρi for all k as Zhu requires it, but only for
those nodes i which are not blocked, respectively not broken down.

Autonomous versus nonautonomous environment. An environment is autonomous if its
describing process is itself Markov and its stationary distribution can be calculated without ref-
erence to the network process. So, the flow of influence in the coupled system is unidirectional.
See [1], [7], [32], and [38] for research into autonomous environments.

An environment is nonautonomous if its describing process is not Markov, because its
transition rates depend on the network’s actual state, or because jumps of the network process
may enforce the environment to change its status. So networks in nonautonomous environments
can be characterised by bidirectional influence and interaction. Nonautonomous environments
occur with various applications. For birth–death processes see [5] with autonomous environ-
ment and its follower [6], where the environment experiences ‘feedback’, i.e. its development
depends on the state of the birth–death process. A nonstandard construction can be found
in [24], where for a referenced node of a Jackson network the other nodes are considered
as its environment, which generally is nonautonomous. The background states in [36] are
nonautonomous. Typical scenarios for nonautonomous environments of queueing systems are
described in various settings in [11], [15]–[17], [23], and [28]. Our research in this paper
focuses on nonautonomous environments.

Structure of the paper and overview of our results. We start in Section 2 with a construction of
routeing chains for the selection of individual customers’ itineraries in the network and suitable
modifications of these in terms of general random walks. These schemes generalise the afore-
mentioned schemes from the literature: skipping (jump-over protocol) and reflection (repeated
service-random destination), and provide a much more flexible readjustment of routeing.

In Section 3 we show how these rerouteing schemes can be used to readjust the routeing
in a network, when service capacities at the nodes are changed. The aim is to maintain the
utilisations ρi of the nodes. This is possible as long as the servers are not completely down.
We indicate briefly how this aim emerges from optimisation issues: for typical cost functions
the queue-length distributions are decisive, which leads to the desire to maintain an optimally
designed (1.1), whenever such an optimal point is found.

Our main achievements are presented in Section 4. For Jackson networks in a nonau-
tonomous random environment we derive an explicit expression of product form for the joint
queueing-environment process. This generalises all the mentioned results for Jackson networks
in an autonomous random environment, and incorporates furthermore the case where nodes
may break down completely, which is not covered by the results of Zhu and his followers.
We study in depth ‘randomised skipping’ and ‘randomised reflection’ to react to influences of
the environment on the network’s capacities, which may decrease gradually or totally at some
nodes, but which may increase as well at other nodes. We indicate that more general rerouteing
schemes can be used for readjustment of routeing to obtain similar results.

Notation and conventions. Throughout R+
0 = [0, ∞), R+ = (0, ∞), N = 1, 2, 3, . . ., N0 =

{0} ∪ N, and A � B means A is strict subset of B, and A ⊂ B means A � B or A = B.
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The node set of our graphs (networks) is J̃ := {1, . . . , J }, and the ‘extended node set’ is
J̃0 := {0, 1, . . . , J }, where ‘0’ refers to the source and sink of the network. The vector ej

is the standard j th base vector in NJ̃
0 if 1 ≤ j ≤ J , and n = (nj : j ∈ J̃ ) is usually the

joint queue-length vector of some queueing network. Set the indicator function 1A = 1 if A

is true, and the Kronecker delta δxy := 1{x=y}. For any finite index set F̃ = {0, 1, . . . , F }
and any α = (αj : j ∈ F̃ ), we define diagonal matrices Iα and I(1−α): Iα(i, j) := 1{i=j}αi,

respectively I1−α(i, j) := 1{i=j}(1 − αi), i, j ∈ F̃ . For f, g : F̃ → R with countable F̃ , we
define pointwise multiplication f • g by f • g(i) = f (i)g(i), and diagonal matrix If •g by
If •g(i, j) := 1{i=j}f (i)g(i), i, j ∈ F̃ . For x = (xj : j ∈ F̃ ), we define ‖x‖∞ := supj∈F̃ |xj |.

2. Randomised random walks

The Markov chain which we consider will represent in network applications the chain that
describes routeing of customers on the nodes of a network. We construct randomised versions
of the described (deterministic) rerouteing schemes from the literature.

Let X = (Xn : n ∈ N0) be a homogeneous irreducible Markov chain on a finite state space F̃

with one-step transition probability matrix r = (r(i, j) : i, j ∈ F̃ ) and (unique) steady state
distribution η = (ηi : i ∈ F̃ ). An intuitive description of the modification of X which we will
construct is in terms of a random walk on the ‘nodes’ (≡ states) in F̃ governed by r . The general
principle is as follows. The transition matrix r will be used as a ‘candidate generating matrix’
for the next state of the random walker (RW). The candidate state, say j , will be accepted
with state dependent probability αj ∈ [0, 1]. We develop different policies to continue when
the proposed state is not accepted. We let α := (αj : j ∈ F̃ ) denote in any case the vector of
‘acceptance probabilities’, and B(α) = {j ∈ F̃ : αj = 0} is in any case the ‘taboo set for the
RW’.

Definition 2.1. The RW selects his/her itinerary under r and constraints α by randomised
skipping with acceptance probabilities α as follows. If the RW is in state i ∈ F̃ and selects
(with probability r(i, j)) destination j ∈ F̃ , a Bernoulli experiment is performed with success
(acceptance) probability αj , independent of the past, given j . If the experiment is successful
(= 1), the jump is accepted, immediately performed, and the RW settles down at j for at least
one time slot. If the experiment is not successful (= 0), the jump is not accepted and the
RW only performs an imaginary jump to j , spends no time there, and jumps on immediately,
governed by the matrix r, i.e. with probability r(j, l) he/she selects another possible successor
state l; thereafter a Bernoulli experiment is performed with success probability αl , independent
of the past, given l, and so on.

Example 2.1. If for ∅ �= B � F̃ we set αj = 0 if j ∈ B, and αj = 1 if j ∈ F̃ \ B, we have
‘skipping over taboo set B’as described in the literature in various applications: a jump to j ∈ B

is never accepted, while a proposed jump to j ∈ F̃ \ B will be accepted with probability 1.
This scheme is also known as ‘jump-over protocol for B’, or ‘skipping B’. In queueing

networks this scheme to modify a Markov chain was found independently several times in order
to resolve blocking; see, e.g. [33], [9], and [29, Chapter 3.6]. As a general methodology skipping
was introduced by Schassberger [27]. For unreliable networks this scheme was introduced in
[9] and [26].

Randomised skipping generates a Markov chain X(α), with transition matrix r(α). Details
of the construction and proof of the following theorem can be found in [18].
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Theorem 2.1. The Markov chain modification X(α) of X with transition matrix r(α) under
randomised skipping with taboo set B(α) = {j ∈ F̃ : αj = 0} � F̃ is irreducible on F̃ \B(α),
the states in B(α) are inessential, and it holds that

r(α) =
∞∑

k=0

(rI(1−α))
krIα = (I − rI(1−α))

−1rIα. (2.1)

We denote the steady state of r(α) by η(α) = (η(α)(j) : j ∈ F̃ ), which has support F̃ \B(α).
We will study the relation between the steady state η of r and η(α).

Proposition 2.1. Let x be a solution of xr = x. Then y := xIα solves the balance equation
yr(α) = y of the modified Markov chain under randomised skipping.

Proof. From xr = x, we obtain

xr (Iα + I(1−α))︸ ︷︷ ︸
=I

= x ⇐⇒ xrIα = x − xrI1−α,

which yields

xrIα = x(I − rI(1−α)) ⇐⇒ x (I − rI(1−α))(I − rI(1−α))
−1︸ ︷︷ ︸

=I

rIα = x(I − rI(1−α))︸ ︷︷ ︸
=y

and with r(α) = (I − rI(1−α))
−1rIα and y := x(I − rI(1−α)), we obtain a required solution of

yr(α) = y. This is x(I − rI(1−α)) = x − xI(1−α) = xIα . �
Proposition 2.2. Let y be a solution of yr(α) = y then x := y(I − rI(1−α))

−1 is a solution of
xr = x and it holds that y = (αjxj : j ∈ F̃ ).

Proof. We have

y (I − rI(1−α))
−1rIα︸ ︷︷ ︸

=r(α)

= y (I − rI(1−α))
−1(I − rI(1−α))︸ ︷︷ ︸
=I

.

So x = y(I − rI(1−α))
−1 fulfills

xrIα = x(I − rI(1−α)) ⇐⇒ xr (Iα + I(1−α))︸ ︷︷ ︸
=I

= x,

which is xr = x. The explicit expression follows from x(I − rI(1−α)) = y as in Proposi-
tion 2.1. �
Theorem 2.2. If η is the unique steady state of X then the unique steady state of X(α) is, with
normalisation constant C(α) = (ηIαe) = 〈η, α〉 and support F̃ \ B(α),

η(α) = (C(α))−1(ηjαj : j ∈ F̃ ).

Proof. The proof follows by applying Proposition 2.2 and the uniqueness of η as a stochastic
solution of xr = x. �
Definition 2.2. The RW selects his/her itinerary under r and the constraints α by randomised
reflection with acceptance probabilities α as follows. If the RW is in state i ∈ F̃ and selects
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(with probability r(i, j)) destination j ∈ F̃ , a Bernoulli experiment is performed with success
(acceptance) probability αj , independent of the past, given j . If the experiment is successful
(= 1), the jump is accepted, immediately performed, and the RW settles down at j for at least
one time slot. If the experiment is not successful (= 0), the jump is not accepted, and the RW
stays on at i for at least one further time slot. If this slot expires, with probability r(i, l) the RW
selects another successor state l; thereafter a Bernoulli experiment is performed with success
probability αl , and so on.

Example 2.2. If, for ∅ �= B � F̃ we set αj = 0 if j ∈ B, and αj = 1 if j ∈ F̃ \ B, we have
reflection of the RW at taboo set B: a jump to j ∈ B is never accepted, while a proposed jump
to j ∈ F̃ \ B will be accepted with probability 1.

This scheme is sometimes termed repetitive service–random destination. It is used to model
communication protocols in systems with finite buffers or for ALOHA-type protocols; see [14,
Section 5.11]. For networks with unreliable nodes this scheme was introduced in [9] and [26].

The principle in case of full buffer regulation is that whenever a packet is sent from node i to
node j and the buffer for incoming packets at j is full, the packet is rejected (lost) and node i,
which has saved a copy, tries to resend this packet (repetitive service), but not necessarily to j

(random destination). This procedure is iterated until the packet is sent to a node with free
buffer places.

Note, in our framework, (randomised) reflection of a customer’s jump may be caused by
rather different reasons, e.g. broken down nodes, partially degraded node capacity.

The transition matrix r(α) of the Markov chain X(α) under randomised reflection is, with
taboo set B(α) = {j ∈ F̃ : αj = 0} � F̃ ,

r(α)(i, j) =

⎧⎪⎨⎪⎩
r(i, j)αj , i, j ∈ F̃ , i �= j,

r(i, i) +
∑
k∈F̃

r(i, k)(1 − αj ), i ∈ F̃ , i = j, (2.2)

where X(α), respectively r(α), may be reducible even on F̃ \ B(α).
To apply the reflection principle a standard assumption is the reversibility of X for some

probability measure η = (ηi : i ∈ F̃ ). We set this assumption in force when investigating this
protocol. By checking the local balance for r(α), we obtain the following proposition.

Proposition 2.3. If η is the steady state distribution of the reversible irreducible Markov
chain X on finite state space F̃ then under randomised reflection X(α) is reversible with steady
state η(α) with support F̃ \ B(α) given by

η(α) = (C(α))−1(ηjαj : j ∈ F̃ )

with C(α) = (ηIαe) = 〈η, α〉.

3. Modification of Jackson networks with invariant utilisations

In this section we introduce standard Jackson networks and discuss optimal network design
in connection with invariance of the utilisations under parameter changes, as required in the
literature on networks in random environments. Thereafter, we will implement the rerouteing
schemes (modification techniques) from Section 2 into a network where the service capacities
are changed. We elaborate on the details of skipping and reflection and extract the general
principles behind them without proof. For more details, see [18].
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Standard Jackson networks. We consider a Jackson network [13] with node set J̃ :=
{1, . . . , J }. Customers arrive in independent external Poisson streams and at node j with
intensity λj ≥ 0, we set λ = λ1 + · · · + λJ > 0. Customers are indistinguishable, follow the
same rules, and request for exponentially(1)-distributed service at all nodes. All these requests
constitute an independent family of variables which are independent of the arrival streams.
Nodes are exponential single servers with state dependent service rates and infinite waiting
room under a first-come–first-served regime. If at node i there are ni > 0 customers, either in
service or waiting, service is provided there with intensity μi(ni) > 0. Routeing is Markovian,
a customer departing from node i immediately proceeds to node j with probability r(i, j) ≥ 0,
and departs from the network with probability r(j, 0). Taking r(0, j) = λj/λ, r(0, 0) = 0,
we assume that the extended routeing matrix r = (r(i, j) : i, j ∈ J̃0) is irreducible. Then the
traffic equation

ηj = λj +
J∑

i=1

ηir(i, j), j ∈ J̃ , (3.1)

has a unique solution which we denote by η = (ηj : j ∈ J̃ ). We extend (3.1) to a steady state
equation for a routeing Markov chain by

ηj =
J∑

i=0

ηir(i, j), j = 0, 1, . . . , J,

which is solved by η = (ηj : j = 0, 1, . . . , J ), where η0 := λ and the other ηj are from (3.1).
We useη in both meanings and emphasise the latter one by extended traffic solution η. Note thatη
is usually not a stochastic vector. Let X = (X(t) : t ≥ 0) denote the vector process recording
the queue lengths in the network. Then X(t) = (X1(t), . . . , XJ (t)) ∈ NJ̃

0 reads: at time t there
are Xj(t) customers present at node j , either in service or waiting. The assumptions put on
the system imply that X is a strong Markov process on state space NJ̃

0 . For an ergodic network
process X Jackson’s theorem [13] states that the unique steady state and limiting distribution ξ

on NJ̃
0 is with normalising constants C(j) for the marginal (over nodes) distributions

ξ(n) = ξ(n1, . . . , nJ ) =
J∏

j=1

nj∏
�=1

ηj

μj (�)
C(j)−1, n ∈ NJ̃

0 . (3.2)

Invariance of utilisations. We will investigate the problem of how to readjust routeing
in Jackson networks when service capacities change. The aim is to maintain the utilisations
ρi = ηi/μi , respectively the ratios ηj/μj (nj ). This program is motivated by the following
observation which with hindsight justifies Zhu’s [38] and his followers’ requirement to have
ρi = ηi(k)/μi(k) for all environment states k.

Network design is an optimisation problem with the goal to clear the input traffic as efficiently
as possible, in accordance with some cost criterion, and respecting the resources available.
A standard problem is to distribute for prescribed capacities μi(·) the offered load by optimal
routeing. Typical cost functions rely on the (expected) queue lengths only, plus mean waiting
times obtained by Little’s formula from these. These are mainly determined by the utilisations
ρi = ηi/μi , respectively the ratios ηj/μj (nj ). This results (in our notation) in determining
optimal routeing probabilities r(i, j) and in the cost function occur the optimal ratios ηi/μi(ni),
respectively η

ni

i /(
∏ni

�=1 μi(�)).
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Such a design was performed in [2] and [31, Section 6.1] for a set of parallel stations, in
[31, Chapter 7] for a general networks, and similarly by Whittle [35, Section 2], who searched
for optimal ‘nonadaptive routeing rules’ (not depending on the actual queue lengths) based on
cost functions which depend on mean queue lengths only.

We remark that this cost function may be inappropriate in some situations, especially when
routeing decisions are costly. Nevertheless, we assume that (for given μj (nj ), j ∈ J̃ ) according
to some cost criterion, which relies on the mean local queue lengths, we have found optimal
utilisations ηj/μj , respectively ratios ηj/μj (nj ), by an adequate routeing scheme r . Because
of this property of the found utilisations it is advisable to maintain the ρi , and we will succeed
in doing so.

The modification technique. If due to some external changes the service intensities μi(·)
at node i are changed by a factor γi ∈ [0, ∞) for i ∈ J̃ , we have to react in different ways
depending on the size of the γi .

Nodes may break down completely, i.e. γ� = 0 for such node �. Clearly, broken down nodes
should not be visited any longer. Recall that in this case classical (deterministic) skipping and
reflection can be successfully applied; see Examples 2.1 and 2.2.

On the other hand, nodes with degraded capacity should contribute to clearing the input
traffic, possibly for a reduced portion of the offered load. From the side constraint to maintain at
least approximately the ratios ‘overall arrival rate/service rates’, it is tempting to try rerouteing
by randomised skipping or reflection with suitably selected ‘acceptance probability vector’
α = α(γ ), where γ = (γi : i ∈ J̃ ). (If there is no ambiguity we will shortly write only α.) We
will proceed as follows. If γi ∈ [0, 1] for all i ∈ J̃ , i.e. nodes are degraded, the new routeing
has two components:

• part of the total external arrival rate will be rejected, and

• the admitted load will be redistributed among the nodes which are not completely broken
down in a way to meet exactly the old ratios.

We will show that randomised reflection and skipping with acceptance probability vector α =
α(γ ) work, where α0 = 1 and αi := γi , i ∈ J̃ constitute the vector α(γ ) = (αi, i ∈ J̃0).

If γj ∈ [0, ∞) then we either speed up service at node j if γj > 1, or have a degraded
server at node j if γj < 1. When at least one service rate increases, i.e. when ‖γ ‖∞ > 1, the
mechanism to adapt the network’s load and routeing is:

• we increase the total network input by a factor β = ‖γ ‖∞ > 1 to βλ, and

• redistribute the admitted load, choose, with α0 = 1, as acceptance probability vector
α = α(γ ) the relative service rate changes αj := γj /‖γ ‖∞, j ∈ J̃ .

We remark that if γj > 1, node j can process more load without being overloaded. However,
this additional load departing from j can cause overload at other nodes. Therefore, some of the
offered new total input of rate βλ possibly will not be accepted after readjusting the routeing.
Our randomised random walk algorithms from Section 2 will automatically compute the correct
rejection rates for the external arrivals.
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Definition 3.1. The modified routeing matrix is for randomised skipping, respectively reflec-
tion denoted by r(α) = (r(α)(i, j) : i, j ∈ J̃0), and is given by (2.1), respectively (2.2). The set
of ‘blocked nodes’ B(γ ) ⊂ J̃ is defined by j ∈ B(γ ) : ⇐⇒ γj = 0, and its complement is
the set of the ‘working nodes’: W(γ ) ⊂ J̃ , is by j ∈ W(γ ) : ⇐⇒ γj > 0.

When the service rates of a Jackson network are modified according to γ and routeing is
adjusted according to α(γ ), we obtain a new Markovian network process on NJ̃

0 denoted by
X(γ ) = (X(γ )(t) : t ≥ 0). Then X

(γ )
t = (X

(γ )
1 (t), . . . , X

(γ )

J (t)) ∈ NJ̃
0 reads: at time t there are

X
(γ )

j (t) customers present at node j , either in service or waiting. The strict positive transition
rates of the generator QX(γ ) =: Q(γ ) = (q(γ )(n, n′) : n, n′ ∈ NJ̃

0 ) are under both rerouteing
regimes for n = (n1, . . . , nJ ) ∈ NJ̃

0 given by

q(γ )(n, n + ei ) = βλr(α)(0, i), i ∈ J̃0,

q(γ )(n, n − ej + ei ) = 1{nj >0}γjμj (nj )r
(α)(j, i) i, j ∈ J̃ , i �= j,

q(γ )(n, n − ej ) = 1{nj >0}γjμj (nj )r
(α)(j, 0), j ∈ J̃ .

Theorem 3.1. (i) Randomised skipping. Let X be an ergodic Jackson network process with
stationary distribution ξ from (3.2), where the service intensities μi(ni) at node i are changed
by a factor γi ∈ [0, ∞) for i ∈ J̃ . Denote

β :=
{

1 if ‖γ ‖∞ ≤ 1,

‖γ ‖∞ if ‖γ ‖∞ > 1,
(3.3)

α0 = 1, αj =

⎧⎪⎨⎪⎩
γj if ‖γ ‖∞ ≤ 1,

γj

‖γ ‖∞
if ‖γ ‖∞ > 1,

for all j ∈ J̃ , (3.4)

change routeing by randomised skipping with α = (αi : i ∈ J̃0) according to Theorem 2.1,
and change the total network input by factor β. Then ξ is a stationary distribution for
X(γ ) = (X(γ )(t) : t ≥ 0) as well, and if B(γ ) = ∅ then X(γ ) is ergodic.

If B(γ ) �= ∅ then X(γ ) is not irreducible on NJ̃
0 and its state space is divided into an infinite

set of closed subspaces N
W(γ )
0 × {(nj : j ∈ B(γ ))} for all (nj : j ∈ B(γ )) ∈ N

B(γ )
0 . For any

probability distribution ϕ on N
B(γ )
0 there exists a stationary distribution ξ

(γ )
ϕ for X(γ ), which

is for n = (n1, . . . , nJ ) ∈ NJ̃
0 ,

ξ (γ )
ϕ (n) = ξ (γ )

ϕ (n1, . . . , nJ ) =
∏

j∈W(γ )

nj∏
�=1

ηj

μj (�)
C(j)−1ϕ(nj : j ∈ B(γ )). (3.5)

(ii) Randomised reflection. If additionally to the assumptions of Theorem 3.1(i) the routeing
chain r is reversible with respect to η then the rerouteing may be performed by randomised
reflection according to Proposition 2.3 with α = (αi : i ∈ J̃0). The results and equations of
Theorem 3.1(i) carry over word by word.
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Proof. The global balance equation xQ(γ ) = 0 for the joint queue-length process X(γ ) of
the modified system is in both settings for n = (n1, . . . , nJ ) ∈ NJ̃

0 ,

x(n)

(∑
j∈J̃

βλr(α)(0, j) +
∑
j∈J̃

1{nj >0}γjμj (nj )(1 − r(α)(j, j))

)
=

∑
i∈J̃

x(n − ei )1{ni>0}βλr(α)(0, i) +
∑
j∈J̃

x(n + ej )γjμj (nj + 1)r(α)(j, 0)

+
∑
j∈J̃

∑
i∈J̃\{j}

x(n − ei + ej )1{ni>0}γjμj (nj + 1)r(α)(j, i). (3.6)

We consider the B(γ ) �= ∅ case (the B(γ ) = ∅ case is proved similarly). Then for i ∈ B(γ ),
we have γi = αi = 0 and r(α)(j, i) = 0 for all j ∈ J̃0, and (3.6) reduces to

x(n)

( ∑
j∈W(γ )

βλr(α)(0, j) +
∑

j∈W(γ )

1{nj >0}γjμj (nj )(1 − r(α)(j, j))

)
=

∑
i∈W(γ )

x(n − ei )1{ni>0}βλr(α)(0, i) +
∑

j∈W(γ )

x(n + ej )γjμj (nj + 1)r(α)(j, 0)

+
∑

j∈W(γ )

∑
i∈W(γ )\{j}

x(n − ei + ej )1{ni>0}γjμj (nj + 1)r(α)(j, i).

Inserting x(n1, . . . , nJ ) = ∏
j∈W(γ )

∏nj

k=1(ηj /μj (k))C(j)−1ϕ(nj : j ∈ B(γ )) for any proba-
bility density ϕ on N

B(γ )
0 , we see that

∏
j∈W(γ ) C(j)−1ϕ(nj : j ∈ B(γ )) cancels.

Multiplication with (β
∏

j∈W(γ )

∏nj

�=1(ηj /μj (�)))
−1 yields( ∑

j∈W(γ )

λr(α)(0, j) +
∑

j∈W(γ )

1{nj >0}
γj

β
μj (nj )(1 − r(α)(j, j))

)

=
∑

i∈W(γ )

μi(ni)

ηi

1{ni>0}λr(α)(0, i) +
∑

j∈W(γ )

ηj

μj (nj + 1)

γj

β
μj (nj + 1)r(α)(j, 0)

+
∑

j∈W(γ )

∑
i∈W(γ )\{j}

μi(ni)

ηi

1{ni>0}
ηj

μj (nj + 1)

γj

β
μj (nj + 1)r(α)(j, i).

Using the fact that γj /β = γj /‖γ ‖∞ = αj for all j ∈ J̃ , we obtain( ∑
j∈W(γ )

λr(α)(0, j) +
∑

j∈W(γ )

1{nj >0}αjμj (nj )(1 − r(α)(j, j))

)

=
∑

i∈W(γ )

μi(ni)

ηi

1{ni>0}λr(α)(0, i) +
∑

j∈W(γ )

ηj

μj (nj + 1)
αjμj (nj + 1)r(α)(j, 0)

+
∑

j∈W(γ )

∑
i∈W(γ )\{j}

μi(ni)

ηi

1{ni>0}
ηj

μj (nj + 1)
αjμj (nj + 1)r(α)(j, i).
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Reordering and cancelling this yields( ∑
j∈W(γ )

λr(α)(0, j) +
∑

j∈W(γ )

1{nj >0}αjμj (nj )

)

=
∑

i∈W(γ )

μi(ni)

ηi

1{ni>0}λr(α)(0, i) +
∑

j∈W(γ )

∑
i∈W(γ )

μi(ni)

ηi

1{ni>0}αjηj r
(α)(j, i)

+
∑

j∈W(γ )

ηjαj r
(α)(j, 0). (3.7)

The first term on the left-hand side and the last term on the right-hand side equate because of∑
j∈W(γ )

λr(α)(0, j) = λ(1 − r(α)(0, 0)),

and with (ηjαj : j ∈ J̃0), we have( ∑
j∈W(γ )

ηjαj r
(α)(j, 0) + η0α0r

(α)(0, 0)

)
︸ ︷︷ ︸

=η0α0

−η0α0r
(α)(0, 0) = λ(1 − r(α)(0, 0)),

where we used the fact that (ηjαj : j ∈ J̃0) is invariant for r(α). So (3.7) reduces to∑
j∈W(γ )

1{nj >0}αjμj (nj )

=
∑

i∈W(γ )

μi(ni)

ηi

1{ni>0}λr(α)(0, i) +
∑

j∈W(γ )

∑
i∈W(γ )

μi(ni)

ηi

1{ni>0}αjηj r
(α)(j, i).

Take any i ∈ W(γ ) with ni > 0 and considering the summands with this i, we have

1{ni>0}αiμi(ni) = μi(ni)

ηi

1{ni>0}λr(α)(0, i) +
∑

j∈W(γ )

μi(ni)

ηi

1{ni>0}αjηj r
(α)(j, i),

which is
αiηi = λr(α)(0, i) +

∑
j∈W(γ )

αjηj r
(α)(j, i),

and recalling that η0 = λ, α0 = 1, and αj = 0 for j ∈ B(γ ), we obtain

αiηi =
∑

j∈W(γ )∪{0}
αjηj r

(α)(j, i). (3.8)

Any i will occur in such a procedure for some state vector with ni > 0. Therefore, if (3.8)
would hold, we would eventually arrive at (αjηj : j ∈ J̃0)r

(α) = (αjηj : j ∈ J̃0). Now (3.8)
does hold for Theorem 3.1(i) by Proposition 2.1 and α0 = 1, and for Theorem 3.1(ii) by
Proposition 2.3 and α0 = 1, which completes the proof. �
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Corollary 3.1. In Theorem 3.1 take X ergodic with equilibrium ξ from (3.2).

(i) If after modification all nodes are still working, possibly with degraded capacity, i.e.
B(γ ) = ∅, then in both cases of rerouteing, X(γ ) = (X

(γ )
t : t ≥ 0) is ergodic with

unique stationary and limiting distribution ξ .

(ii) If r(α)(0, 0) > 0 then the effective arrival rate after modification is βλ(1 − r(α)(0, 0)).

Corollary 3.2. (Extension to general rerouteing.) Let X be an ergodic Jackson network process
with stationary distribution ξ from (3.2), where the service intensities μi(ni) at node i are
changed by a factor γi ∈ [0, ∞) for i ∈ J̃ . Change routeing to follow some matrix r(α) with
invariant measure y = (αjηj : j ∈ J̃0) and increase the total network input by a factor β,
where α0 = 1, αj , and β are defined as in (3.4) and (3.3).

Denote the resulting Markovian state process on NJ̃
0 by X(γ ) = (X(γ )(t) : t ≥ 0).

Then ξ is a stationary distribution for X(γ ) as well, and if B(γ ) = ∅ then X(γ ) is ergodic.
If B(γ ) �= ∅ then X(γ ) is not irreducible on NJ̃

0 and its state space is divided into an infinite
set of closed subspaces N

W(γ )
0 × {(nj : j ∈ B(γ ))} for all (nj : j ∈ B(γ )) ∈ N

B(γ )
0 , and for

any probability distribution ϕ on N
B(γ )
0 there exists a stationary distribution ξ

(γ )
ϕ for X(γ )

given in (3.5).

4. Jackson networks in a random environment

In this section we apply the technique developed in Section 3 to control a Jackson network
in a nonautonomous environment, i.e. with bidirectional interaction of a network and its
environment. We implement randomised skipping and reflection as a rerouteing regime in
response to the environment’s changes, see Theorems 4.1 and 4.2, and thereafter extract the
principles behind this in Corollary 4.2. This generalises the results of [38], [7], [1], and [32].
The dynamic of the interacting system is determined, on one hand, by the environment process
Y = (Y (t) : t ≥ 0), changes of which result in changes of the network’s parameter, and, on the
other hand, by the network process X = (X(t) : t ≥ 0), where some jumps of X enforce the
environment to immediately react to this jump. To be more precise, the environment space K

is countable and whenever the environment at time t is in state Y (t) = k it changes to m ∈ K

with rate ν(k, m), and we set V = (ν(k, m) : k, m ∈ K).
The network process X records the joint queue-length vector, and Xj(t) = nj is the queue

length at node j ∈ J̃ . Whenever the environment’s state is k ∈ K and at node j a customer
is served and leaves the network, this jump triggers with probability Rj (k, m) the environment
to jump from k to m ∈ K . We set Rj = (Rj (k, m) : k, m ∈ K), j ∈ J̃ . Neither the generator
matrix V = (ν(k, m) : k, m ∈ K) nor the stochastic matrices Rj = (Rj (k, m) : k, m ∈ K), j ∈
J̃ need to be irreducible or positive recurrent.

Associated with the environment state, k ∈ K is a vector γ (k) ∈ [0, ∞)J̃ which determines
the factors by which the service capacities are changed, when the environment enters k (see
γ ∈ [0, ∞)J̃ in Section 3). This results in a service rate μj (nj , k) = γj (k)μj (nj ) if the queue
length at j is nj and the environment’s state is k.

The network reacts to the impact of the environment in state k by modifying the routeing
according to strategies described in Definitions 2.1 and 2.2, possibly by admitting more cus-
tomers. The latter part of the strategy is set in force whenever in environment state k there
exist some γj (k) > 1. In such state k ∈ K the arrival rate to the network is increased by
β(γ (k)) = ‖γ (k)‖∞ from λ to λβ(γ (k)).
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4.1. Rerouteing by randomised skipping

In this section we modify routeing in reaction to the servers’ changes of capacities by
randomised skipping from Definition 2.1. We investigate this case in detail, other modifications
will be described in less detail.

We need environment dependent rerouteing with acceptance probabilities α = α(γ (k)),
modified rerouteing matrices r(α(γ (k))), and overall load factors β(γ (k)). To keep notation
short we write (in the rest of the paper) α(k) = (αj (k) : j ∈ J̃0) instead of α(γ (k)), r(α(k))

instead of r(α(γ (k))), and β(k) instead of β(γ (k)). Randomised skipping from Definition 2.1
yields routeing regime r(α(k)) from Theorem 2.1, and the total input rate is changed by a factor
β(k). We define α and β similar to (3.3) and (3.4) for k ∈ K ,

β(k) :=
{

1 if ‖γ (k)‖∞ ≤ 1,

‖γ (k)‖∞ if ‖γ (k)‖∞ > 1,
(4.1)

α0(k) = 1, αj (k) =

⎧⎪⎨⎪⎩
γj (k) if ‖γ (k)‖∞ ≤ 1,

γj (k)

‖γ (k)‖∞
if ‖γ (k)‖∞ > 1,

for all j ∈ J̃ . (4.2)

We further define B(γ (k)) and W(γ (k)) similar to Definition 3.1 as a set of completely broken
down nodes, respectively as a set of nodes which, although possibly being degraded or upgraded,
can still serve customers under environment condition k.

With standard independence assumptions for interarrival and service times and of conditional
independence of routeing and of jumps of the environment triggered by departing customers,
the queue-lengths-environment process Z = (X, Y ) on E := NJ̃

0 ×K is Markov. Its generator
QZ = (qZ((n, k), (n′, k′)) : (n, k), (n′, k′) ∈ E) has strict positive transition rates for (n, k) =
((n1, . . . , nJ ), k) ∈ NJ̃

0 × K, j, i ∈ J̃ given as

qZ((n, k), (n + ei , k)) = β(k)λr(α(k))(0, i), (4.3)

qZ((n, k), (n − ej + ei , k)) = 1{nj >0}γj (k)μj (nj )r
(α(k))(j, i), i �= j,

qZ((n, k), (n − ej , m)) = 1{nj >0}γj (k)μj (nj )r
(α(k))(j, 0)Rj (k, m),

qZ((n, k), (n, m)) = ν(k, m), m ∈ K.

Theorem 4.1. Assume that the queue-lengths-environment process Z = (X, Y ) is ergodic
and that the pure Jackson network process X without environment is ergodic with stationary
distribution ξ on NJ̃

0 from (3.2). Define the reduced generator Qred as

Qred :=
[
V +

∑
j∈J̃

ηj I(γj •r(α(·))(j,0))(Rj − I )

]
, (4.4)

where γj and r(α(·))(j, 0) are for j ∈ J̃ real-valued functions on K . Assume that the reduced
generator equation θQred = 0 has a nonzero, nonnegative solution. Then Qred is irreducible
on K and the reduced generator equation θQred = 0 has a strictly positive stochastic solution
which we denote by θ .

Furthermore, the queue-lengths-environment process Z has the unique steady state distri-
bution π = (π(n, k) : n ∈ NJ̃

0 , k ∈ K) of product form given by

π(n, k) = ξ(n)θ(k), n ∈ NJ̃
0 , k ∈ K. (4.5)
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Proof. The global balance equation of Z is

π(n, k)

(∑
i∈J̃

β(k)λr(α(k))(0, i) +
∑

m∈K\{k}
ν(k, m)

︸ ︷︷ ︸
−ν(k,k)

+
∑
j∈J̃

1{nj >0}γj (k)μj (nj )(1 − r(α(k))(j, j))

)
=

∑
m∈K\{k}

π(n, m)ν(m, k) +
∑
i∈J̃

π(n − ei , k)1{ni>0}β(k)λr(α(k))(0, i)

+
∑
i∈J̃

∑
j∈J̃\{i}

π(n − ei + ej , k)1{ni>0}γj (k)μj (nj + 1)r(α(k))(j, i)

+
∑
j∈J̃

∑
m∈K

π(n + ej , m)γj (m)μj (nj + 1)r(α(m))(j, 0)Rj (m, k).

Inserting π(n, k) = ξ(n)θ(k), adding ξ(n)θ(k)ν(k, k) on both sides, and rearranging terms
and blowing up, we obtain

θ(k)

[
ξ(n)

(∑
i∈J̃

β(k)λr(α(k))(0, i) +
∑
j∈J̃

1{nj >0}γj (k)μj (nj )(1 − r(α(k))(j, j))

)]

= θ(k)

[∑
i∈J̃

ξ(n − ei )1{ni>0}β(k)λr(α(k))(0, i)

+
∑
i∈J̃

∑
j∈J̃\{i}

ξ(n − ei + ej )1{ni>0}γj (k)μj (nj + 1)r(α(k))(j, i)

+
∑
j∈J̃

ξ(n + ej )γj (k)μj (nj + 1)r(α(k))(j, 0)

]
+

∑
m∈K

ξ(n)θ(m)ν(m, k) − θ(k)
∑
j∈J̃

ξ(n + ej )γj (k)μj (nj + 1)r(α(k))(j, 0)

+
∑
j∈J̃

∑
m∈K

ξ(n + ej )θ(m)γj (m)μj (nj + 1)r(α(m))(j, 0)Rj (m, k). (4.6)

For each fixed environment state k the terms in squared brackets equate from Theorem 3.1,
see (3.6), where for B(γ (k)) we set in modified notation (ϕ → ϕ(k)) from that theorem the
specific probabilities

ϕ(k)(nj : j ∈ B(γ (k))) :=
∏

j∈B(γ (k))

nj∏
�=1

ηj

μj (�)
C(j)−1, (nj : j ∈ B(γ (k))) ∈ N

B(γ (k))
0 .
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Dividing by ξ(n) and cancelling μj (nj + 1), we arrive at

0 = −θ(k)
∑
j∈J̃

ηj γj (k)r(α(k))(j, 0) +
∑
j∈J̃

∑
m∈K

θ(m)ηjγj (m)r(α(m))(j, 0)Rj (m, k)

+
∑
m∈K

θ(m)ν(m, k).

Rearranging terms, we have

θ(k)
∑
j∈J̃

ηj γj (k)r(α(k))(j, 0) =
∑
m∈K

θ(m)

(
ν(m, k) +

∑
j∈J̃

ηj γj (m)r(α(m))(j, 0)Rj (m, k)

)
,

which finally leads for any prescribed k ∈ K to

0 =
∑
m∈K

θ(m)

(
ν(m, k) +

∑
j∈J̃

ηj γj (m)r(α(m))(j, 0)(Rj (m, k) − δmk)

)
.

In matrix form this is (4.4). Then Qred is obviously the generator of some Markov process.
It holds that Qred is irreducible because otherwise Z would not be irreducible. If θQred = 0

has no stochastic solution, the global balance equation of Z would have a nontrivial nonnegative
solution which cannot be normalised. This would contradict ergodicity. The same argument
shows that the solution must be unique. �

The proof of Theorem 4.1 shows the following characterisation. A similar corollary for
Theorem 4.2 and Corollary 4.2 below is valid but will not be stated separately.

Corollary 4.1. Assume that the queue-lengths-environment process Z = (X, Y ) is irreducible.
Define Qred as in (4.4). Then the following statements are equivalent:

(i) Z is ergodic with product form steady state distribution

π(n, k) = ξ(n)θ(k) =
J∏

j=1

nj∏
�=1

ηj

μj (�)
C(j)−1θ(k), n ∈ NJ̃

0 , k ∈ K;

(ii) for all j ∈ J̃ : ∑∞
nj =0

∏nj

�=1(ηj /μj (�)) < ∞ and θQred = 0 has a strictly positive
stochastic solution.

4.2. Rerouteing by randomised reflection

In this section we assume that r is reversible and the reaction to the servers’ change of
capacities is by randomised reflection according to Definition 2.2, which yields a routeing
regime r(α(k)) according to Proposition 2.3. We use α(k) and β(k) as defined in (4.2) and (4.1),
and take B(γ (k)) and W(γ (k)) as in Definition 3.1.

Note that under randomised reflection, r(α(k)) may be reducible on W(γ (k)) ∪ {0}. This
does not destroy ergodicity of the Markovian system process Z = (X, Y ) on E := NJ̃

0 × K .
The generator QZ of Z is identical to that displayed in (4.3).

Theorem 4.2. Assume that Z is ergodic and the pure Jackson network process X without
environment is ergodic with stationary distribution ξ on NJ̃

0 from (3.2). Assume that the
extended routeing matrix r = (r(i, j) : i, j ∈ J̃0) is reversible for η = (ηj : j ∈ J̃0). Assume
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that θQred = 0 (with Qred as in (4.4)) has a nonzero, nonnegative solution. Then Qred is
irreducible on K and θQred = 0 has a strictly positive stochastic solution which we denote
by θ . Furthermore, the queue-lengths-environment process Z has the unique steady state
distribution π = (π(n, k) : n ∈ NJ̃

0 , k ∈ K) of product form (4.5).

The proof of the theorem is along the same lines as the proof of Theorem 4.1. There, when
manipulating (4.6), we had to refer to the properties of skipping in Theorem 3.1(i), which is
now replaced by referring to the properties in Theorem 3.1(ii).

4.3. Rerouteing by general randomisation

The results of the previous sections lead us to extract general principles for randomised
rerouteing. We use α(k) and β(k) as defined in (4.1) and (4.2), and take B(γ (k)) and W(γ (k))

as in Definition 3.1. For rerouteing regimes r(α(k)), k ∈ K, for α(k) with α0(k) = 1 and
α(k) ∈ [0, 1]J̃0 , we require the properties described in Corollary 3.2.

Corollary 4.2. The queue-lengths-environment process Z = (X, Y ) is Markov on E := NJ̃
0 ×

K , and its generator is identical to that displayed in (4.3). Assume that the rerouteing regimes
r(α(k)), k ∈ K, have invariant measures y(k) = (αj (k)ηj : j ∈ J̃0). Assume that Z is ergodic
and assume that the pure Jackson network process X without environment is ergodic with
stationary and limiting distribution ξ on NJ̃

0 from (3.2). Assume that θQred = 0 (with Qred as
in (4.4)) has a nonzero, nonnegative solution. Then Qred is irreducible on K and θQred = 0
has a strictly positive stochastic solution which we denote by θ . Furthermore, Z has the unique
steady state distribution π = (π(n, k) : n ∈ NJ̃

0 , k ∈ K) of product form (4.5).

We remark that Corollary 4.2 extends [38, Theorem 1], and [7, Corollary 5] to nonau-
tonomous environments. Furthermore, in [7] equivalence of the existence of product form
stationary distribution (4.5) and invariance of the ratios (overall arrival rate/service rates) is
proved under the condition that for all environment states the solution of the traffic equations are
strictly positive [8]. Our environment dependent traffic equations η(α(k)) = η(α(k))r(α(k)), k ∈
K , have in general no strict positive solutions because for B(γ (k)) �= ∅ and j ∈ B(γ (k)), we
have η(α(k))(j) = 0. If there is some k′ ∈ K with B(γ (k′)) = ∅, we have η(α(k′))(j) > 0. So
the η(α(k))(j)/μj (nj , k) are not independent of k. Nevertheless, Theorems 4.1 and 4.2 as well
as Corollary 4.2 prove product form steady state, which extends the previous results of Zhu and
others even for the case of autonomous environments.
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