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Assessing and improving the accuracy of
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With the growing interest in scale-resolving simulations of spatially evolving boundary
layers, synthetic turbulence generation (STG) has become a valuable tool for providing
unsteady turbulent boundary conditions through a sum over a finite number of
spatio-temporal Fourier modes with amplitude, direction and phase determined by a
random number set. Recent developments of STG methods are designed to match target
profiles for anisotropic and inhomogeneous Reynolds stresses. In this paper, it is shown
that, for practical values of the number of modes, a given set of random numbers may
produce Reynolds stress profiles that are 30 % off their target. To remedy this situation,
the error in the STG stress prediction is decomposed into a steady-state bias and a purely
unsteady part affecting the time convergence. Direct relationships between the random
number vectors and both types of error are developed, allowing large collections of
random number sets to be rapidly scanned and the best performers selected for a much
improved agreement with the target. The process is verified for the inflow to a direct
numerical simulation of a flat plate at Reθ = 1000. This paper demonstrates sufficient
time convergence over a few flow-through times as well as a correction of the method’s
biases.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

The generation of unsteady and spatially varying velocity fluctuations is an essential
component in the pursuit of efficient and accurate scale-resolving simulations of complex
turbulent flows at increasingly larger Reynolds numbers. Whether the fluctuations are
to be applied at the inflow of a computational domain or at the interface between
scale-resolving and non-scale-resolving regions, it is imperative that they provide
reproducible statistics that result in a short downstream development length. Various
methods have been proposed to achieve this goal (Wu 2017), notably the use of precursor or
parallel simulations, the recycling and rescaling of downstream instantaneous turbulence
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(Lund, Wu & Squires 1998), the use of vortex generating devices near the surface,
and artificial forcing through unsteady body force terms in the governing equations
(Spille-Kohoff & Kaltenbach 2001). Synthetic turbulence generators add artificial velocity
fluctuations to a known mean profile. Synthetic turbulence generation (STG) methods offer
many advantages, such as computational efficiency and ease of implementation, and are
extremely versatile since they require knowledge of local flow variables only.

The original idea for the STG method described herein is attributed to Kraichnan (1970),
who represented an incompressible velocity field as a finite sum of spatio-temporal Fourier
modes whose amplitude and phase are random. This methodology was then improved
by Karweit et al. (1991) for incompressible isotropic turbulence. Their method produced
turbulence fluctuations with zero mean and with the desired root mean square (r.m.s.)
value. Béchara (1994) successfully used a similar definition of synthetic turbulence for
noise modelling of free jet flows. Also of great significance is the work of Smirnov, Shi
& Celik (2001), who developed a random flow generation procedure for turbulent shear
flows with spatial inhomogeneity and anisotropy of the stresses. Their method takes as
input the Reynolds stress tensor as well as the length and time scales of the turbulence
(known a priori or available from the ongoing simulation) to produce more realistic
velocity fluctuations that satisfy these inputs. Batten, Goldberg & Chakravarthy (2004) and
Huang, Li & Wu (2010) improved upon these methods, allowing for a better representation
of the anisotropy and the energy spectra of the synthetic turbulence, respectively.
More recently, Adamian, Strelets & Travin (2011) and Shur et al. (2014) proposed
a similar approach to develop anisotropic and inhomogeneous synthetic turbulence
for aerodynamic applications, including noise measurements. Their formulation was
specifically developed for hybrid Reynolds-averaged Navier–Stokes (RANS) and
large-eddy simulation (LES) methods, but was shown in Spalart et al. (2017) and Balin,
Jansen & Spalart (2020) to be effective for inflows to direct numerical simulations (DNS)
as well.

The purpose of this work is to analyse and improve the convergence of the statistics
of the velocity fluctuations produced by the STG formulation of Shur et al. (2014) to
the desired local Reynolds stresses. The approximation of the infinite Fourier series with
a finite number of wave modes as well as the finite integration time of the simulation
lead to errors in the second-order statistics of the artificial turbulence that can negatively
impact the development of realistic turbulence and the downstream flow. In this paper,
the sources of these errors are clearly identified, and a strategy that allows for a much
improved agreement with the target statistics is proposed. The temporal convergence rate
to the target is also investigated. The efficacy of the STG method is therefore significantly
enhanced, further expanding its range of applicability. For instance, in spatially developing
flows where upstream history is critical (e.g. pressure gradient flows), errors in the shear
stress can lead to realistic turbulence that does not match the target wall shear and result in
poor predictions of the entire downstream flow. Having chosen a particular STG method
to analyse, it is important to note that there are other competitive classes of STG such as
the digital filtering method of Xie & Castro (2008). While some aspects are similar, and
thus similar errors are likely, subtle differences in this approach and other STG methods
will require further extensions to the analysis techniques described in this paper.

This paper is organized as follows. Section 2 is a review of the chosen STG method and
a description of the bias and time convergence errors that come from the use of finite wave
modes. Section 3 provides the analysis tools and understanding to rigorously assess these
two errors. Section 4 verifies the improvement achieved on the inflow to a flat plate DNS
and, finally, § 5 draws some conclusions.
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2. Base synthetic turbulence generation

Following the STG method developed by Shur et al. (2014), the velocity at the domain
inflow (or scale-resolving interface) is set to be the sum of a fluctuating and mean velocity
field. The fluctuating part has the intent of prescribing an energy spectra that is realized
in actual turbulence, a statistically stationary signal and a prescribed variance. The reader
is referred to the original paper for more detail on the method’s definitions, which are
summarized as follows:

u′
i = aij2

√
3
2

N∑
n=1

√
qnσ n

j cos(κndn
l x̂l + ψn), (2.1)

x̂i ≡ {(x1 − U0t′)max(κmin
e /κn, 0.1), x2, x3}, σ n

j dn
j = 0, aikajk = Rij,

qn ≡
∫ κn

κn−1
E(κn) dκ

/∫ ∞

0
E(κn) dκ, σ n = σ n(θn, φn),

E(κn) = (κn/κe)
4fη fcut[1 + 2.4(κn/κe)

2]−17/6, dn
i = dn

i (θ
n, φn, ηn).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.2)

Einstein summation notation has been adopted when the contraction is between spatial
dimensions (subscripts), while a sum is written for Fourier components (superscripts)
since they are often repeated more than twice. The terms θn, φn, ηn and ψn are sets
of random variables defined by their probability density functions and intervals: fθ =
sin(θ)/2, θ ∈ [0,π]; and fφ,η,ψ = π/2, {φ, η, ψ} ∈ [0, 2π). The two random sets of
spherical angles θn and φn cause the set of unit vectors, σ n

j , to be uniformly distributed on
a unit sphere. Imposing a divergence-free velocity (σ n

j dn
j = 0 as verified in Smirnov et al.

(2001)) together with the requirement that dn
j be uniformly distributed on a unit sphere

leaves dn
j as a function of the dependent variables (θ, φ) of σ n

j and the angle η in the plane
normal to σ n

j . The random angles, radial lengths and defined intensities are wave modes
that have been mapped to wave space from a pseudo-isotropic turbulence via the spatial
Fourier transform. Note that the definition of x̂i provides a means to slide through this
pseudo-turbulence domain by a spatial coordinate that progresses at the inflow bulk speed,
U0, naturally accounting for bulk convection. The second argument of the max is due to
Shur (M. L. Shur, private communication 2020). Definitions for κmin

e , fη, fcut and ke(xi)

match those given in Shur et al. (2014), where they were chosen to adjust the spectrum at
each grid point on the inflow plane (eddy size and anisotropy) to accurately account for
proximity to solid boundaries. Further, their approach of defining aij through a Cholesky
decomposition of the Reynolds stress, Rij, is adopted.

An increase in the number of wave modes directly corresponds to the number of
realizations of this pseudo-turbulence flow in addition to the recovery of the correct
normalized energy spectra or, in physical space, the autocorrelation functions (Béchara
1994). However, as all implementations of this STG boundary condition will use a finite
number of wave modes and a finite number of time steps, what remains to be seen is, with
N finite: (1) Does limt→∞〈u′

iu
′
j〉t = Rij and (2) does 〈u′

iu
′
j〉t − limt→∞[〈u′

iu
′
j〉t] become

acceptably small after a time t that is otherwise sufficient to converge statistics within
the interior of the simulation domain (e.g. a small number of domain flow-through times)?
Is there a dependence of getting one but not the other? Issue (1) will be referred to as the
bias (infinite-time realized Reynolds stress) and (2) as time convergence. This work aims
to provide independent measures of each that will enable improvements to both.
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3. Analysis tools

The analysis begins with the intent of recognizing the mathematical expressions that
separate the bias and time convergence accuracy of a particular random number set for N
wave modes relative to the target covariance tensor of the velocity fluctuations:

〈u′
lu

′
m〉t = aliamj〈v′

iv
′
j〉t, (3.1)

where

〈[ f ]〉t ≡ 1
t

∫ t

0
[ f (t′)]dt′, 〈[ f ]〉tz ≡ 1

tz

∫ z

0

∫ t

0
[ f (t′, z′)] dt′ dz′. (3.2a,b)

Note from above that aij provides a scaling to the velocity fluctuations, leaving vi to
provide the instantaneous fluctuating direction, which follows from (3.1) and (2.1):

v′
i = 2

√
3
2

N∑
n=1

√
qnσ n

i cos(κndn
l x̂l + ψn). (3.3)

This also makes it clear that the covariance of the fluctuation tensor, 〈v′
iv

′
j〉t, should

converge to δij, preferably within a time t that is comparable to the time required for the
Reynolds stresses to converge in an experiment. In this paper, we will refer to such an
averaging time as a physical averaging time due to it realistically reflecting the nature of
the turbulence, while inputs that require substantially longer averaging time to converge
the stresses are considered non-physical averaging times.

To better assess that, using (2.1), the covariance of the fluctuation tensor can be further
decomposed into

〈v′
iv

′
j〉t =

N∑
n=1

N∑
p=1

α
np
ij β

np, (3.4)

α
np
ij ≡ 6

√
qnqpσ n

i σ
p
j , βnp ≡ 1

t

∫ t

0
cos(γ nt′ + ψ̂n(x)) cos(γ pt′ + ψ̂p(x)) dt′, (3.5a,b)

γ n = 1
t′

[κndn
i x̂i]

∣∣∣∣
x=0

= −U0dn
1 max

(
2κmin,

κn

10

)
, ψ̂n = [κndn

i x̂i + ψn]
∣∣∣
t′=0

.

(3.6a,b)

Here, the fact that αnp
ij is independent of time has been exploited and the time integral has

been propagated directly to βnp, which captures all of the temporal variation of (3.4) and
ultimately (3.1). Analytically integrating (3.5a,b) yields

βnp(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin((γ n + γ p)t + ψ̂n + ψ̂p)

2(γ n + γ p)t
+ sin((γ n − γ p)t + ψ̂n − ψ̂p)

2(γ n − γ p)t
, n /= p,

1
2

+ sin(2(γ nt + ψ̂n))

4γ nt
, n = p.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)
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The accuracy of synthetic turbulence generation

The value of this split is made more clear by considering the infinite-time limit of (3.7):

lim
t→∞β

np = 1
2δ

np. (3.8)

With these definitions, the previously stated two objectives (the bias and time
convergence of this method) can now be analysed by independently inspecting∑

n
∑

p α
npδnp/2 = ∑

n α
nn/2 (the infinite-time value of (3.4)) and βnp(t). From the

former, it is clear that σ n
i influences the infinite-time bias with no influence from dn

i .
Conversely, the latter indicates that dn

i , and specifically dn
1, influences the temporal

convergence with no influence from σ n
i . This point is made more clear in subsequent

sections but, for now, it is observed that the sine terms of (3.7) are bounded by 1 but
the denominators beneath them are influenced by the size (for n = p) and closeness of
magnitude (for n /= p) of γ n, which is linear in dn

1. The restriction that dn
i σ

n
i = 0 for

each n means that the prescriptions of αnp
ij and βnp, while separable, are not completely

independent of each other.
It is understood (Kraichnan 1970) that, as the number of realizations (or equivalently

number of wave modes N) increases, the covariance of the fluctuation tensor in (3.1)
converges to δij. Infinite or even very large N is intractable for practical numerical
simulations for the obvious reason of the cost of evaluating (2.1). In the sections that
follow, N will be treated as fixed to O(500). It will be shown that this N is large enough
to allow acceptably low bias error and to allow time convergence of the STG fluctuations
to mimic the physical time needed for time convergence of turbulence statistics within the
interior of the simulation. This ensures that the unsteady inflow or scale-resolving interface
does not artificially raise the number of time steps required by the simulation.

3.1. Error measurements
Below are measures of error for any given random number choice (through (3.5a,b)):

eαij = αnn
ij

1
2 − δij, (3.9)

eRb
ij = ailajmeαlm, (3.10)

enp
t = 〈βnp〉t − 1

2δ
np, (3.11)

eRt
ij = ailajm〈vjvm〉t − 〈u′

iu
′
j〉t→∞, (3.12)

eRt
ij � 24

t
ailajm

N∑
n=1

N∑
p=1

σ n
l σ

p
m

⎧⎪⎪⎨
⎪⎪⎩

cqn

|γ n| , n = p,

c
√

qnqp

||γ n| − |γ p|| , n /= p,

⎫⎪⎪⎬
⎪⎪⎭ (3.13)

eR
b = eRb

ij wjle
Rb
li , eR

t = eRt
ij wjle

Rt
li . (3.14a,b)

These error measures will be explained in detail in the following two subsections.

3.2. Bias considerations
With a modest N = O(500) spherically uniform random wave mode application, the bias
in inflow spatio-temporal covariances has been observed to be up to 30 % off the target.
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The fluctuation bias error (3.9) depends upon a wave mode contraction of (3.5a,b), which
exposes the dependence not only on σ n

i but also on the normalized energy of mode n,
qn, which is a function of position. Such an error measure neglects that the aij is also a
function of position and it further couples fluctuation errors. With the exception of a11, the
scaling is increasingly dependent on the accuracy of the other entries:

aij(xl) =

⎡
⎢⎢⎢⎣

√
R11(xl) 0 0

R21(xl)/a11

√
R22(xl)− a2

21 0

R31(xl)/a11 (R32(xl)− a21a31)/a22

√
R33(xl)− a2

31 − a2
32

⎤
⎥⎥⎥⎦ . (3.15)

Take, for example, a non-zero fluctuation bias error in (3.9) and R11 = R22. Then using
(3.10) the percentage error on R12 is

eRb
12/R21 = a11a21eα11/R21 + a11a22eα12/R21 = eα11 + eα12

√
(R11/R21)2 − 1. (3.16)

This is to say that the percentage difference of bias is proportional not only to the
convergence of the isotropic fluctuation tensor but also to the ratio of the target stresses.
Generally, the percentage error increases in growing row and column with any anisotropic
stress and non-zero total fluctuation error. This propagation of error is directly accounted
for in (3.10). However, to further compensate for this error amplification, the first equation
in (3.14a,b) contracts the elements of the stress tensor error with a weight tensor, wjl, which
allows more weight to be given to stress components that are viewed as more important
(e.g. shear stress) to accurately simulate the inflow, and to stress components that would
otherwise accumulate more error.

With a precise measure of the bias error in hand, its inputs can be determined. As
described in Shur et al. (2014), the target stresses are assumed known, potentially from
an upstream RANS or other experiment. The normalized spectra are also assumed to be
determined as a function of the inflow plane mesh resolution (which sets κmax), the domain
width (which sets κmin), the wave mode spacing κn (with κn grown geometrically from
κmin to κmax at a rate of ≈1 %), and the energy spectrum E given as part of (2.1). This
leaves only the four random angles needed to define σ n

j , dn
j and ψn. It is indeed these

random number choices that will determine the bias of this procedure. Taking the first set
of random angles could lead to an acceptable bias but, more than likely, will lead to a poor
bias relative to what could be achieved by considering alternatives. Equations (3.14a,b)
provide a means to evaluate the quality of a given random number set at any location on
the inflow plane. That information can be used to find the worst location or can be averaged
in space. Furthermore, the error can be studied over a variety of time intervals. Specific
choices are discussed in § 4. Whatever the choice, by repeating this measurement for a
large number of random number sets allows quick determination of the sets resulting in
lowest bias, which is a key aspect of accurately matching the target inflow stress statistics.

3.3. Time convergence considerations
Slow time convergence of the second-order moments (stresses) provided by the STG inflow
fluctuations artificially slows the convergence of all interior flow quantities – a situation
best avoided. Two pathologies related to dn

j vectors have been identified that limit the
ability of the method to converge in a physically realistic amount of time. Examining (3.7)
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The accuracy of synthetic turbulence generation

for βnp, it may be observed that the rate of convergence in time agrees with the design
constraint developed by Kraichnan (1970) of a realistic autocorrelation function. However,
the amount of time that it takes to converge is dependent upon the pathologically poor
mode pairs. Notice that γ n adopts the units of inverse time. This exposes that when
either |γ n| or ||γ n| − |γ p|| is small then the time to converge is large. Since the only
non-deterministic variable in γ n from (3.6a,b) is dn

1, the restriction upon γ n is a restriction
on dn

1.
Equation (3.11) provides a direct measure of the error in the time term but, since it

lacks weighting of the normalized spectra, it cannot distinguish between slow convergence
of important high-energy modes and less impactful very low-energy modes. To rectify
that, and to account for the aforementioned redistribution of the error through the aij
coefficients, this error is scaled by the normalized energy of mode n, qn, (borrowed from
the αnp

ij term) and propagated to the Reynolds stress in (3.12). Unlike the bias considered
in the previous subsection, which removed all temporal convergence error by using the
infinite-time (exact) result of βnp in (3.9), for a given random number set, it is impossible to
fully isolate temporal convergence error from bias. However, once bias has been minimized
over a large sample of random number choices to find a set of σ n

j vectors, dn
j vectors can

be evaluated against the error measure provided by (3.13) to evaluate their propensity to
slow down temporal convergence. Note that c in (3.13) is an O(1) constant. Again, this
provides a very low-cost means to evaluate a large sample of random number sets and
choose one with an acceptable convergence of the velocity covariance tensor (Reynolds
stress). As with the bias, time convergence will in general be uneven by components and
thus the second part of (3.14a,b) provides a means to apply higher weights to components
that are deemed more important or more vulnerable to propagation error.

3.4. Sequential choosing
The above subsections outline a procedure to choose the two random number sets, θn and
φn, that produce a σ n

i that minimizes bias (infinite-time deviation from the target stress).
Subsequently, the sequential choosing method then chooses a third random number set ηn

that, with σ n
i , produces the dn

j vectors. The first component dn
1 defines γ n that must be

neither too small nor too close in absolute magnitude to all other γ p to avoid slow time
convergence in the significant energy modes as measured by (3.13). Note also that, all else
the same, the phase angle ψn does alter early-time convergence; however, it can be made
negligible to the other pathologies with longer time averaging.

Initial efforts to apply this approach provided substantial improvement of both bias
and temporal convergence rate by considering only 10 000 sets of random numbers that
were re-seeded at each draw. Larger collections of random number sets provided some
improvement, but diminishing returns were observed. Reversing the order amounts to first
finding the dn

j (using two random spherical angles) that provides improvement to time
convergence and then using the remaining random angle to find the σ n

i that reduces bias.
This reversed the situation; improved temporal convergence but bias was higher than when
σ n

i was chosen first.

3.5. Alternative choosing
The above analysis motivated the consideration of alternative procedures for the selection
of the random variables. The first alternative considered was to choose all four random
number sets and take a weighted combination of both errors given by (3.14a,b) so as to
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obtain a combined measure of bias and temporal convergence. As might be expected,
this produced more balanced results that were each better than the second choice but
substantially less improved than when they were the first in the sequential choosing
approach.

The second alternative considered follows the σ -first sequential choice process (fully
random and uniformly distributed procedure selecting for low bias) but then allows the ηn

to be chosen one at a time (not random) such that the resulting dn
i minimize the pathologies

associated with time convergence (i.e. (3.14a,b)). While this approach clearly tampers
with the fundamental assumptions of the method (fully random), it is asserted that an
‘intelligent design’ of prescribing dn

i vectors to minimize this pathology could be fruitful
in cases where fully random numbers lead to inflow stress convergence that is slower than
that typically observed on the interior of the computational domain.

The method of choosing dn
i vectors is systematic according to the two pathologies from

(3.13). From a set of N σ n
i wave modes, it starts with lowest wavenumber (n = 1). The

only pathology that exists for the first wave mode is the diagonal pathology. The plane
that is perpendicular to σ 1

i intersected with the unit sphere creates a circle that spans the
admissible d1

i . Given two unit vectors in that plane, η provides a combination to define
dn

i . There are exactly two η angles that minimize the diagonal mode pathology (except
when σ 1

1 = 1, which must be forbidden due to it yielding γ n = 0, which would require
infinite time to converge). The subsequent wave mode choices, l, are then influenced
by one diagonal pathology and l − 1 cross wave pathologies. These are not weighted
equally as determined by the specific wavemode’s normalized energy qp for p ≤ l. By
the construction of the pathologies, there will always be at least two optimal η that have
the same pathological impact. From mode to mode the method randomly chooses between
these two η to more uniformly distribute dn

j on the unit sphere.

4. Verification and results

As a test of the developments discussed above, a zero-pressure-gradient flow over a
flat plate was considered. At the location of the inlet, the momentum thickness Reynolds
number is Reθ = 1000. The wall-normal spacing is typical of DNS with the first point
located at y+ = 0.1 growing geometrically at a rate of 1.05 until reaching approximately
y+ = 10, after which it is held at this spacing until y = 1.2δ0, where δ0 is the inflow
boundary layer thickness. A structured spanwise spacing of Δ+

z = 6 is maintained
throughout the inflow. The streamwise spacing influences the spectra (Shur et al. 2014) and
the time step and thusΔ+

x = 10 leads to a time step ofΔt = 3 × 10−6, which corresponds
to a non-dimensional time step ofΔ+

t = 0.2. When studying the quality of the STG inflow
on a flat plate, a domain length of 8πδ0 is adequate since the domain only needs to be
long enough for the inflow to develop equilibrium stresses. Such a domain length has a
flow-through time of Δft = 8πδ0/U0 or approximately 5000 time steps.

An example of the inflow Reynolds shear stress (the time and spanwise average of the
covariance) obtained by applying (2.1) (with the first chosen set of random numbers) at the
inflow is shown in figure 1(a). All target profiles are taken from a Spalart–Allmaras RANS
simulation with the correction proposed by Coleman, Rumsey & Spalart (2018). The
RANS simulation domain matched the DNS domain with an extension upstream to include
a uniform flow stagnating upon a sharp leading edge from which the boundary layer
develops. The RANS profiles were extracted at the DNS inflow location. In figure 1(a–d),
the dash-dotted curve is a plot of the target shear stress profile. The dashed curve is the
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FIGURE 1. Reynolds shear stress −R12/u2
τ versus wall plus units: (a) typical random number

set; (b) improved bias random number set; (c) σ -first sequential choice random number set; and
(d) ‘intelligent’ design number set. Stress profile lines: dash-dotted, target; dashed, bias; solid,
time convergence. Time level labelled with symbols: � , 1Δft; �, 2Δft; 
, 4Δft; and �, 20Δft.

bias solution obtained by substituting (3.8) into (3.4) and further into (3.1), which displays
how far off the target a first chosen random number set can be. The remaining curves of
figure 1(a) display the span-time convergence at t = 1, 2, 4 and 20 times Δft. The random
number set in figure 1(a) was not fabricated to illustrate poor bias; rather, it was one
from a real simulation whose poor performance was finally attributed to this unexpectedly
poor random number set after a substantial time integration. This random number set
demonstrates the bias and temporal convergence of typically sampled sets.

Applying only the bias improvement (e.g. keeping the dn
i vectors from those of

figure 1(a), but considering a large collection of random number sets and choosing the
one with low bias error according to the first equation in (3.14a,b)) results in figure 1(b).
Applying σ -first sequential choosing is shown in figure 1(c). Note that the bias error
is further improved in figure 1(c) relative to figure 1(b) due to the greater freedom of
having two random numbers (θn and φn) where figure 1(b) only had one (ηn) due to dn

j
being constrained to match figure 1(a). Figure 1(d) illustrates the results obtained with
‘intelligent design’. A different seed was used and thus the bias results are similar but not
the same as figure 1(c) (showing the run-to-run variation in bias with a σ -first approach).
Note the span-time average is also improved with figure 1(d) showing the least variation
of the four cases.

The plots of figure 1 are not only time but also spanwise averaged, which, through the
action of ψ̂n can be seen in (3.7) to attenuate the time variation as the number of spanwise
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100

10–1

101100

f12

t/Δft

FIGURE 2. Time convergence of spanwise variation of stress fluctuations as a function of
flow-through times: f max

12 (dashed); f rmy
12 (solid). Symbols: +, figure 1(a); 
, figure 1(b);

�, figure 1(c); ×, figure 1(d); · · · · · · , DNS channel.

samples increases (average of sine is zero). Figure 1 is presented with spanwise averaging
because it is the common way that researchers assess time convergence, exploiting
the spatial homogeneity. However, a more clear view of the temporal convergence
can be obtained by considering the normalized spanwise-varying stress fluctuation
fij = 〈u′+

i u′+
j 〉t( y, z)− 〈u′+

i u′+
j 〉tz( y), which decays as limt→∞ fij = 0 without mixing in

spatial averaging.
The variation of fij with Δft is plotted two ways in figure 2 for each of the four cases

considered in figure 1. The dashed lines show f max
ij = maxy(maxz( fij)), which can be

thought of as the largest local stress deviation from its spanwise average for a given
interval’s time average (e.g. error of the poorest converged stress across the entire inflow
plane). The solid line shows f rmy

ij = maxy( f rms
ij ), which can be thought of as the least

time-converged r.m.s. variation of fij.
As this is a somewhat non-traditional quantity, the channel flow DNS database of

(Graham et al. 2016) was used to assess the expected level of f max
12 and f rmy

12 after one
channel flow-through time. This channel flow database was chosen over flat-plate data
because of the lack of inflow boundary condition assumptions. The Reτ for both cases
are similar – this paper’s flat plate ranges from Reτ = 600–1000 while the channel
Reτ = 1000. Mining the entire time-continuous segment of the database (one channel
flow-through time) at five wall-normal locations and 10 streamwise locations yielded
values of f max

12 ≈ 0.7 and f rmy
12 ≈ 0.2, which are added to figure 2 as dotted lines.

Comparing the dashed curves, none of the curves meets the channel value of f max
12 at 2Δft

though most have by 4Δft. Likewise, comparing the solid curves, all four cases are close
to f rmy

12 of the channel after 2Δft but only the ‘intelligent design’ case exhibits the expected
asymptotic 1/t convergence after 4Δft as it also did for f max

12 . It must be noted that the
Reynolds number and flow (channel versus boundary layer) differences likely render the
dotted lines as rough targets/guidelines for temporal convergence measures.
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′ l ¯〉 tz/
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y+

FIGURE 3. Normal Reynolds stress profile with ‘intelligent design’ random number set at
2Δft. Symbols: - - - -, Riso; ◦, R11; +, R22; ×, R33.

Though not shown here, the choice of ψn influences early-time convergence through the
numerator of (3.7), but, as most scale-resolving simulations integrate over multiple Δft,
the improved convergence in the t ≥ 4Δft range from ‘intelligent design’ is significant.
Note that figure 2 shows that the time convergence of the case in figure 1(c) is as good as
or better than the cases in figure 1(a) and figure 1(b). This contradicts the visual results
in figure 1 confirming the muddled view of time convergence introduced by spanwise
averaging in figure 1.

While the prediction of the shear stress at the inflow is the most important stress, the
normal stresses are also important in some applications. Figure 3 shows that the mode set
that created figure 1(d) (‘intelligent design’) resulted in excellent biases for the normal
stresses as well. Note that all three target stresses were set to isotropic values consistent
with information available from a one- or two-equation RANS closure. To achieve this
result, in (3.14a,b), w12 = w21 = 25, w22 = 5 and all other wij = 1. Equal weights for all
components yielded relatively larger bias error (not shown) in R12 as noted in (3.16).

Direct numerical simulations with two different random number sets were performed,
and the evolution of the wall coefficient of friction Cf is shown in figure 4. The high-bias
random number simulation requires a substantially longer development length to reach
the 5 % margin from Smits et al. (1983) correlation, which at this Reynolds number is in
good agreement with Coles’s (1962) experiment and Jimenez et al.’s (2010) DNS. The
low-bias inflow reaches the 5 % margin within two to three boundary layer thicknesses as
opposed to six for the high bias. Both eventually come to better agreement in eight and
10 boundary layer thicknesses, respectively. Better agreement in the early region offers
significant advantage when applied to flows with pressure gradients whose development is
not as forgiving as the zero-pressure-gradient cases presented here.

It is important to mention that the spike in wall shear immediately downstream of
the inflow is to be expected with this STG method (Shur et al. 2014), and is caused
by the near-wall synthetic turbulence developing the correct physics (e.g. wall streaks).
As a consequence, this spike is larger with DNS (see also the simulations of Spalart
et al. (2017)) than with other methods that do not fully resolve the near-wall turbulence,
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FIGURE 4. Coefficient of friction versus development length for high-bias (dashed) and
low-bias (solid) inflow; Smits, Matheson & Joubert (1983) correlation (dash-dotted) with 5 %
variation (dotted); Coles (1962) experiment, � ; and Jimenez et al. (2010) DNS, ◦.
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FIGURE 5. Reynolds shear stress profiles for high (dash) and low (solid) inflow bias at 3 (◦), 5
(� ) and 10 (�) boundary layer thicknesses downstream of inflow.

such as the hybrid RANS/LES model used in Shur et al. (2014) and figure 6. The shear
stress profiles shown in figure 5 illustrate the same delayed convergence of the high-bias
inflow relative to the low-bias inflow. At 3δ0 downstream the high-bias stress profile has
a substantial bulge in the range of 0.1 < y/δ0 < 0.6, which decreases in both magnitude
and range, 0.25 < y/δ0 < 0.6 by 5δ0, and is virtually eliminated by 10δ0.

As additional verification of the correctness of the implementation of Shur et al.’s
(2014) method, we repeat one simulation performed therein – a wall-modelled LES of
fully developed turbulent flow in a channel. In order to allow direct comparisons to the
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FIGURE 6. Coefficient of friction as a function of development length for a wall-modelled
LES of a channel utilizing STG (solid line) compared to periodic boundary conditions (◦).
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FIGURE 7. Reynolds shear stress profile six boundary layer thicknesses downstream of STG
inflow (solid line) compared to results obtained with periodic boundary conditions (◦), both
using wall-modelled LES.

original results of the method, the problem set-up matched those described in Shur et al.
(2014). The Reynolds number based on the half-height is Reτ = 400, the grid has spacing
Δx+ = 40, Δz+ = 20, Δy+

min = 0.8 and Δymax = 0.04H, where H is the channel height.
The turbulence model used was IDDES (improved delayed detached-eddy simulation)
(Shur et al. 2008) based on the Spalart–Allmaras RANS closure (Spalart & Allmaras
1994). Figure 6 shows that, for this channel flow, similarly to the flat-plate boundary
layer, with the STG inflow boundary condition the skin friction is recovered within 3δ
(δ = H/2) and the Reynolds shear stress agrees well with the solution obtained with
periodic boundary conditions at 6δ as shown in figure 7. These results are consistent with
the ones obtained by Shur et al. (2014) for the IDDES-SST (shear stress transport) k–ω
model.

It is important to highlight that the analysis of the errors and the choosing of the random
variables that are the focus of this paper are completely independent of the specific flow
problem. Of course, the target mean velocity and stress profiles will change; however,
the process of minimizing bias and obtaining adequate time convergence of the statistics
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does not (with the exception of the selection of the weights in (3.14a,b), which should be
tailored to prioritize the most important stress components).

5. Conclusions

Two types of STG error, bias and temporal convergence, were identified and explicit
predictions for the value of those errors were developed in terms of the simulation
parameters (e.g. mesh sizes on application plane, mean stress profiles, N) and, more
importantly, the four random numbers for the angles associated with each of the N modes.
These predictions provided a means to select random numbers that minimized each of the
errors separately. Data from the inflow plane of an ongoing DNS were used to demonstrate
the impact of STG under certain poor random number sets and, more importantly, to verify
that the aforementioned error measures could be used to identify random number sets with
very low bias and better STG performance. The time convergence was verified to be similar
to that of stresses on the interior of the domain when the temporal error term was taken into
account. Both error measures provide a means to quantify and minimize inflow differences
in simulations that are intended to be compared to other simulations, which will hopefully
allow a more direct comparison of the interior modelling and discretization.

Note that the above analysis is currently limited to the class of STG methods that uses a
fixed set of random numbers for the full time of the simulation, but extensions to methods
that allow time-varying random numbers (Xie & Castro 2008) will be considered in future
work. The error analysis provided in this paper is limited to cases where the boundary
condition is enforced strongly (Dirichlet) and directly to velocity components. The effect
of weak (Neumann) enforcement or nonlinear boundary conditions, which are important
to many numerical methods, will also be considered in future work.
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