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Topology of two-dimensional flow associated with degenerate dividing streamline on a free

surface is analysed from a topological point of view by considering the critical point concept.

Streamline patterns and their bifurcations in the vicinity of a free surface were investigated

by Brøns (Brøns, M. (1994) Topological fluid dynamics of interfacial flows. Phys. Fluids 6,

2730–2736). Brøns’s work is extended to the case of a stream function, including the fourth-

order normal form approach. From this, a complete description of bifurcations which can

occur in two-dimensional incompressible flow is obtained up to codimension three. The theory

is applied to the patterns found numerically in a roll coater.

Key words: Dynamical systems in fluid mechanics (37N10); Incompressible viscous fluids

(76D99); Bifurcation problems

1 Introduction

The topological fluid dynamics of flows with interfaces and free surfaces is a topic of

interest, with a wide variety of scientific and engineering applications (see [3,10,14,17,20,

21]).

There has been a great deal of work on nonlinear dynamics. Important studies on this

topic appeared in the early 1980s (for example [15, 16, 18]). An elementary property of

stable singularities is discussed by Golubitsky and Guillemin [9]. An investigation of local

flow properties on a viscous free surface has been conducted through nonlinear dynamics;

this approach provides a coherent theoretical framework and deduces flow patterns based

on the saddles and centres, and the lines of separation and attachment on a viscous-free

surface. Nonlinear dynamics was first applied to flows near fluid interfaces by Lugt [14].

He studied dividing streamlines, curvature effects and the role of vorticity, and derived

some basic properties of flow on a viscous-free surface; for example a single dividing

streamline is always perpendicular to the free surface. Lugt’s [14] work was revisited in a

more general setting, allowing the interface to take an arbitrary shape by Brøns [3]; he

discovered a complete description of the bifurcations that depend on terms of up to the

second order.

In this study, a normal form transformation is used for constructing a simple stream

function family, which classifies all possible local streamline topologies for a given order

of degeneracy (degeneracy of order 4 is considered). This technique was first used by
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Brøns and Hartnack [5] for two-dimensional (2D) flow away from boundaries, and by

Hartnack [13] for 2D flow close to fixed (possibly curved) walls. This approach was later

used to analyse a variety of specific steady flows, for example the flow in a driven cavity

[8, 11], slip flows [19], a flow close to an axisymmetric flow [2] and vortex breakdown

[4, 7].

In the present work, the streamline topology of a 2D incompressible flow near the

critical point is studied. Critical points are degenerate in the sense that the Jacobian of

linearisation of the corresponding Hamiltonian dynamical system about such a critical

point vanishes identically. There are two types of degenerate critical points (simple and

non-simple degeneracies) which depend on the Jacobian matrix of the velocity field.

The first case, concerning simple degenerate critical points (i.e. a singular yet non-zero

Jacobian matrix), was examined by Hartnack [13]. The second case, concerning non-

simple degenerate critical points (i.e. vanishing Jacobian), was examined theoretically

and numerically by Gürcan et al. [12], who discovered streamline patterns and their

bifurcations near a non-simple degenerate critical point. The unfolding of degenerate

patterns, which means a family of stream functions containing a particular degenerate

flow, may be obtained up to codimension three. These degenerate patterns are classified by

their codimension, which is the number of their unfolding parameters. For codimension

three, corresponding to the fourth-order normal form of the stream function, we obtain a

flow pattern with three critical points on a free surface connected with an in-flow saddle

point to produce two separation bubbles with opposite rotations. In the case of flows near

a wall, such a pattern was predicted in the theoretical works of Bakker [1] and Gürcan

et al. [12]. The same structure was realised in the near-wake of a circular cylinder at low

Reynolds numbers by Brøns et al. [6].

The aim of this paper is to find the streamline patterns and their bifurcations in a

2D incompressible fluid flow near a non-simple degenerate critical point close to a free

surface. A normal form transformation is used to simplify the differential equations of a

Hamiltonian system that describes the streamlines. It will be shown that degenerate flow

patterns and their bifurcations associated with the non-simple degenerate critical point

near a stationary wall can also be seen near a free surface under certain conditions. The

theory is applied to the pattern found numerically in the studies of Stokes flow in a roll

coater. Also, a new degenerate critical point is found on the free surface. Their bifurcations

give rise to a variety of flow patterns which have not been observed previously either

theoretically or numerically.

2 Governing differential equations and boundary condition of 2D motion

The steady, isothermal flow of an incompressible, Newtonian fluid of uniform density, ρ,

and viscosity, μ, is given by the Navier–Stokes equation

ρu∇u = −∇p + μ∇2u + ρg (2.1)

expressing the conservation of momentum, and the continuity equation

∇ · u = 0 (2.2)
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Figure 1. The geometry of the problem. The interface is given by the curve y = f(x) with liquid

below and air above.

embodying the conservation of fluid mass. Here u = (u, v) and p are the fluid velocity and

pressure, respectively, and g is the acceleration due to gravity. We consider the steady,

2D flow of a liquid–gas interface or a free surface. The interface is given by y = f(x)

with liquid below and gas above. We assume that the coordinate system is translated and

rotated such that f(0) = f
′
(0) = 0 (see Figure 1).

The presence of moving fluid–fluid interfaces introduces complications into the solution

procedure, since the shapes of these boundaries are not known a priori and must be

determined as a part of the solution. Thus, this interface in a 2D flow is a curve of

unknown shape that may be fitted locally by a polynomial about the origin. Assuming

that the interface is smooth, we can write

f(x) =

∞∑
n=2

snx
n. (2.3)

A stream function ψ results from the continuity equation such that the streamlines are

found from

ẋ = u =
∂ψ

∂y
, ẏ = v = −∂ψ

∂x
. (2.4)

To obtain local information about the flow close to a given point that is taken as the

origin, ψ, is expanded in a Taylor series,

ψ =

∞∑
i+j=0

ai,jx
iyj . (2.5)

Here we consider the coefficients of the series at some finite order, so the analyticity of ψ

is not important.

On the free surface (a) the normal velocity must vanish, (b) the tangential (shear) stress

must be continuous and (c) the normal stresses and surface tension stresses must balance.
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The first condition, written as u · n = 0 (in terms of the stream function)

−f′(x)
∂ψ

∂y
=

∂ψ

∂x
, (2.6)

is known as the kinematic boundary condition and expresses the fact that no fluid may

cross a steady interface. Here u is the velocity vector and n = (1 + f′(x)2)−1/2(−f′(x), 1) is

the normal vector of the interface at (x, f(x)).

Inserting the expansions (2.3) and (2.5) into (2.6) yields

a1,0 = 0, a2,0 = −s2a0,1, a3,0 = −s2a1,1 − s3a0,1, (2.7)

a4,0 = −s3a1,1 − a2,1s2 − a0,2s2
2 − s4a0,1

and the stream function (2.5) becomes

ψ = a0,1y − s2a0,1x
2 + a1,1xy + a0,2y

2 + (−s2a1,1 − s3a0,1)x
3

+ a2,1x
2y + a1,2xy

2 + a0,3y
3 + (−s3a1,1 − a2,1s2 − a0,2s2

2 − s4a0,1)x
4

+ a3,1x
3y + a2,2x

2y2 + a1,3xy
3 + a0,4y

4. (2.8)

When one of the fluids is air and the other is liquid, as in this paper, the fact that the

viscosity of air is negligible compared to that of most liquids means that condition (b) is

reduced to

(n · σ) · t = 0, (2.9)

where σ = −pI + [∇u + (∇uT ] is the stress tensor of the liquid, n is the unit normal

pointing outwards from the liquid and t is the unit tangent to the free surface. The

boundary condition (2.9) can be expressed in terms of the stream function as

−4μf′(x)

(
∂2ψ

∂x∂y

)
+ μ

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
(1 − f′(x)2) = 0, (2.10)

and inserting the expansions (2.3) and (2.8) into (2.10) gives a sequence of relations

between the Taylor coefficients aij . The first few are

a0,2 = −s2a0,1, a1,2 = s2a1,1 − 3 s3a0,1, (2.11)

a2,2 = 3 a2,1s2 − 6 s4a0,1 − 3 a0,3s2 + 6 s2
3a0,1.

So the stream function becomes

ψ = a0,1y − s2a0,1x
2 + a1,1xy − s2a0,1y

2 + (−s2a1,1 − s3a0,1)x
3

+ a2,1x
2y + (s2a1,1 − 3 s3a0,1)xy

2 + a0,3y
3 + (−s3a1,1 − a2,1s2

+ s2
3a0,1 − s4a0,1)x

4 + a3,1x
3y + (3 a2,1s2 − 6 s4a0,1 − 3 a0,3s2 + 6 s2

3a0,1)x
2y2

+ a1,3xy
3 + a0,4y

4. (2.12)

The last boundary condition (c) applied at the free surface is the normal stress condition

(n · σ) · n =
T

R
, (2.13)
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where R = (1+f
′
(x)2)3/2

f
′′
(x)

is the radius of the curvature of the interface at (x, f(x)) and T is

the surface tension, which is assumed to be constant over the entire free surface. Equation

(2.13) can be written in terms of the stream function as follows:

−p(x, y)(1 + f
′
(x)2) + 2μ f

′
(x)2

∂2

∂x∂y
ψ(x, y) − 2 μ

∂2

∂x∂y
ψ(x, y) (2.14)

−2 μ f
′
(x)

(
∂2

∂y2
ψ(x, y) − ∂2

∂x2
ψ(x, y)

)
=

f
′′
(x)T√

1 + f
′
(x)2

.

For equation (2.14), the pressure coefficients must be determined. It can be expanded in

a series

p(x, y) =

∞∑
i+j=0

pi,jx
iyj . (2.15)

By applying the Navier–Stokes equation (2.1), we obtain the pressure series as follows:

p(x, y) = p0,0 + (−ρ a0,1a1,1 + 2 μ a2,1 + 6 μ a0,3)x+ (−2 ρ a0,1
2s2 + 4 μ s2a1,1

+ 12 μ s3a0,1)y + (−ρ a0,1a2,1 + 2 ρ s2
2a0,1

2 − ρ a1,1
2

2
+ 3 μ a3,1

+ 3μ a1,3)x
2 + (−6 ρ a0,1s2a1,1 − 6 ρ a0,1

2s3 + 24 μ s3a1,1 + 12 μ a2,1s2

− 48 μ s2
3a0,1 + 48 μ s4a0,1 + 12 μ a0,3s2)xy + (ρ a0,1a2,1 + 2 ρ s2

2a0,1
2

− ρ a1,1
2

2
− 3 μ a3,1 − 3 μ a1,3)y

2. (2.16)

Inserting equations (2.12) and (2.16) into equation (2.14) yields

a1,1 =
−p0,0 + 2 s2T

2μ
, a2,1 = −p0,0ρ a0,1 − 2 ρ a0,1s2T + 12 μ2a0,3 − 12 s3Tμ

12μ2
, (2.17)

a3,1 =
−16 μ s2

2a1,1 − 24 s2
3T + 24Ts4 − 6 μ a1,3 + 2 ρ a0,1a2,1 + ρ a1,1

2

18μ
. (2.18)

The coefficients of the stream function can be explained with physical aspects, namely

derivatives of viscous stress tensor, pressure and derivatives of pressure. The viscous stress

tensor is

τij = μ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.19)
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where μ is the dynamic viscosity of the fluid. Applying (2.19) and the Navier–Stokes

equations, one can verify the following relations:

a0,1 = u(0, 0), a1,1 =
τxx

2μ
= −τyy

2μ
,

a2,1 =
1

4μ

∂τxx
∂x

= − 1

4μ

∂τyy
∂x

,

a0,3 =
1

12μ

(
∂τxx
∂x

+ 2
∂τxy
∂y

)
=

1

12μ

(
− ∂τyy

∂x
+ 2

∂τxy
∂y

)
,

a0,4 =
1

12μ

(
∂τxx
∂x

− ∂τxy
∂y

)
= − 1

12μ

(
∂τyy
∂x

+
∂τxy
∂y

)
,

a3,1 =
1

12μ

∂2τxx

∂x2
= − 1

12μ

∂2τyy

∂x2
,

a1,3 =
1

12μ

∂2τxx

∂y2
= − 1

12μ

∂2τyy

∂y2
,

∂p

∂x
= −ρ a0,1a1,1 + 2 μ a2,1 + 6 μ a0,3,

∂p

∂y
= −2 ρ a0,1

2s2 + 4 μ s2a1,1 + 12 μ s3a0,1,

where μ, ρ, p are the viscosity, density and pressure respectively.

The interface will be transformed into a straight line after a coordinate change x = ξ,

y = η + f(x), and substituting this into the stream function we get

ψ = a0,1η − s2a0,1η
2 + a1,1ξ η + a0,3η

3 + (s2a1,1 − 3 s3a0,1)ξ η
2

+ (a2,1 − 2 s2
2a0,1)ξ

2η + a1,3ξ η
3 + a0,4η

4 + (3 a2,1s2 − 6 s4a0,1

+ 6 s2
3a0,1)ξ

2η2 + (a3,1 − 2 s2a0,1s3 + 2 (s2a1,1 − 3 s3a0,1)s2)ξ
3η. (2.20)

2.1 Flow field as a nonlinear dynamical systems

Our problem can be written as a system of nonlinear differential equations using
.

ξ = ∂ψ
∂η

and
.
η = − ∂ψ

∂ξ
.

The linear approximation of equation (2.20) is

⎛
⎝ ·
ξ
·
η

⎞
⎠ =

(
a0,1

0

)
+

(
a1,1 −2s2a0,1

0 −a1,1

)(
ξ

η

)
, (2.21)

with the Jacobian

J =

(
a1,1 −2s2a0,1

0 −a1,1

)
. (2.22)

If a0,1 = 0 in (2.21), the origin is a critical point. Substituting a0,1 = 0 in the Jacobian
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Figure 2. Streamlines near a critical point on the free surface. (a) Non-degenerate critical point

for a1,1 � 0. Degenerate critical points (b) a2,1/a0,3 < 0; (c) a2,1/a0,3 > 0. These critical points were

found by Brøns [3]. (d) a0,1 = a1,1 = a2,1 = 0, a3,1 � 0, a0,3 � 0. A dividing streamline, tangent to

the free surface is also found in [5] with completely different boundary conditions, namely Navier

conditions near a solid wall. (e) a0,1 = a1,1 = a0,3 = 0, a2,1 � 0, a0,4 � 0.

matrix we get

J =

(
a1,1 0

0 −a1,1

)
. (2.23)

We see that the origin is a saddle with eigenvalues a1,1 and − a1,1. The separatrix

corresponding to a1,1 is the interface, while the other separatrix is a dividing streamline

which is orthogonal to the interface given by ξ = 0. The unstable direction is given by

the eigenvector, (0, 1). Thus, the origin has a separatrix in the direction ξ = 0, and the

separation angle is θ = π
2
. This classical result was found by Brøns [3] and Lugt [14], and

shows that if a1,1 = τxx
2μ

= − τyy
2μ

� 0, a separation line is perpendicular to the free surface.

See Figure 2(a).

If a0,1 = a1,1 = 0, which means physically that p0,0 = 2s2T from the normal stress

condition (2.17), the origin is a degenerate critical point, since zero is a double eigenvalue

of J . Also, the degenerate singularity occurs in a viscous flow if the pressure gradient ( ∂p
∂y

)

and the shear stress gradient (τxx = τyy = 0) vanish simultaneously in the singular point.

The corresponding stream function is given by

ψ = a2,1ξ
2η + a0,3η

3 + O(ξ4, η4). (2.24)

Depending on the sign of the coefficients, there are two possibilities. If a2,1/a0,3 < 0, two

linear separatrices exist. If a2,1/a0,3 > 0, there is no separatrix except at the interface. The

saddle point has a dividing streamline in the direction η = ±
√

− a2,1

a0,3
ξ and a streamline

along the free surface (η = 0). The separation angle can be written in terms of shear stress

gradient at the origin as

tan θ = ±
√

−a2,1

a0,3
= ±

√√√√−3
∂τxx
∂x(

∂τxx
∂x

+ 2
∂τxy
∂y

) = ±

√√√√3

∂τyy
∂x(

− ∂τyy
∂x

+ 2
∂τxy
∂y

) . (2.25)

Equation (2.25) shows that the separation angle of dividing streamlines depends on the

shear stress gradient. See Figures 2(b) and (c). These types of degenerate critical points

and their unfolding can be seen in [3].
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2.2 Non-simple degenerate critical points of order 4

Here we extend the degenerate conditions of case [3]. There are three classes of such cases

that may arise:

(i) a0,1 = a1,1 = a2,1 = 0, a0,3 � 0,

(
τxx = τyy =

∂τxx
∂x

=
∂τyy
∂x

= 0,
∂τxy
∂y

� 0

)
,

(ii) a0,1 = a1,1 = a0,3 = 0, a2,1 � 0,

(
τxx = τyy =

∂τxx
∂x

+
∂τyy
∂x

= 0,
∂τxx
∂x

=
∂τyy
∂x

� 0

)
,

(iii) a0,1 = a1,1 = a0,3 = a2,1 = 0, a3,1 � 0, a1,3 � 0,

(
∂p

∂x
=

∂p

∂y
= 0,

∂2τxx

∂x2
� 0,

∂2τyy

∂x2
� 0

)
.

If a0,1 = a1,1 = a2,1 = 0 but a0,3 � 0, which means physically that p1,0 = 6s3T or

a0,3 = s3T/μ from the normal stress condition (2.17), the corresponding stream function

is given by

ψ = a3,1ξ
3η + a1,3ξ η

3 + a0,4η
4 + a0,3η

3. (2.26)

To eliminate the fourth-order terms in (2.26) and for easy determination of the codi-

mension, we use the idea of the normal form theory of [5] and [13] by choosing a

different generating function. The new coordinates (ξ∗, η∗) are found from a canonical

transformation defined by the generating function

S = ηξ∗ +
∑
i+j=3

si,jη
iξ
j
∗, (2.27)

such that

ξ =
∂S

∂η
, η∗ =

∂S

∂ξ∗
. (2.28)

Solving (2.28) for ξ, η and including terms up to the second order yields

ξ = ξ∗ + s1,2ξ
2
∗ + 2s2,1ξ∗η∗ + 3s3,0η

2
∗ , (2.29)

η = η∗ − 3s0,3ξ
2
∗ − 2s1,2ξ∗η∗ − s2,1η

2
∗ . (2.30)

We require that the boundaries are preserved under the transformation, i.e. η = 0

is mapped to η∗ = 0. This is achieved by taking s0,3 = 0 in (2.30). Inserting this

transformation in (2.26) and truncating after the fourth-order order, we obtain

ψ = a3,1ξ∗
3η∗ − 9 a0,3s0,3ξ∗

2η∗
2 +

(
−6 a0,3s1,2 + a1,3

)
ξ∗ η∗

3

+
(
−3 a0,3s2,1 + a0,4

)
η∗

4 + a0,3η∗
3. (2.31)

The si,j are free for us to choose. With the choices

s2,1 =
a0,4

3a0,3
, s1,2 =

a1,3

6a0,3
, s0,3 = 0, (2.32)

we eliminate a number of terms and get

ψ = a3,1ξ∗
3η∗ + a0,3η∗

3. (2.33)
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If a0,3 � 0 and a3,1/a0,3 < 0, there is a cusp point on η∗ = 0, see Figure 2(d). The

condition a0,3 � 0 indicates that 1
12μ

( ∂τxx
∂x

+ 2
∂τxy
∂y

) and 1
12μ

(− ∂τyy
∂x

+ 2
∂τxy
∂y

) do not vanish at

the singularity. The dividing streamlines are found as η∗ = ±
√

− a3,1

a0,3
ξ3 and ξ∗ = 0. The

ratio of a3,1/a0,3 can be expressed in local variables,

a3,1

a0,3
=

∂2τxx
∂x2

∂τxx
∂x

+ 2
∂τxy
∂y

=

∂2τyy
∂x2

∂τyy
∂x

− 2
∂τxy
∂y

(2.34)

and will depend on the first- and second-order shear stress gradients. A degenerate pattern

with a cusp is also found in [19], but in connections with completely different boundary

conditions, namely Navier conditions near a solid wall.

In the second case, we consider the degeneracy of order 4, where a0,1 = a1,1 = a0,3 = 0

(py = 0) but a2,1 � 0 (px � 0), we have

ψ = a3,1ξ∗
3η∗ − a2,1s2ξ∗

2η∗
2 + a1,3ξ∗ η∗

3 + a0,4η∗
4 + a2,1ξ∗

2η∗. (2.35)

We proceed as in case (a0,3 � 0) to eliminate (ξ∗η∗
3 and ξ2

∗ η∗
2) from the stream function

(2.35) by choosing

s3,0 = − a1,3

6a2,1
, s2,1 =

s2

3
. (2.36)

With these simplification, we have

ψ = a2,1ξ∗
2η∗ + a0,4η∗

4 + a3,1ξ∗
3η∗. (2.37)

Further reduction is possible by a quadratic transformation, see for example [19]. Substi-

tuting the transformation ξ∗ → ξ∗ − a3,1

3a2,1
ξ2

∗ into (2.37) gives

ψ = η∗(a2,1ξ∗
2 + a0,4η∗

3). (2.38)

Possible separatrices of the point are given by ψ = 0, which gives

η∗ = 0, ξ∗ = ±
√

−a0,4

a2,1
η3

∗ , (2.39)

or expressed in physical terms

η∗ = 0, ξ∗ = ±

√√√√3

∂τxx
∂x

− ∂τxy
∂y

∂τxx
∂x

η3
∗ = ±

√√√√3

∂τyy
∂x

+
∂τxy
∂y

∂τyy
∂x

η3
∗ . (2.40)

It shows a cusp separatrix on the free surface, see Figure 2(e). This critical point is also

seen by Deliceoğlu and Gürcan [8] under the symmetric condition about a straight line

away from boundaries.

In the third case, further degenerate flow patterns are obtained by extending degeneracy

taking a0,1 = a1,1 = a2,1 = a0,3 = 0 in equation (2.20), which means that s3 = 0 from the

normal stress condition (2.17) (in other words, the interface must be a parabola) in the
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stream function. Substituting the above condition in the stream function (2.20), we get

ψ = η(a31ξ
3 + a13ξη

2 + a04η
3). (2.41)

There are three terms of order 3. To find the degenerate flow patterns we should reduce

the number of parameters. This will be achieved by using the Navier–Stokes equation.

From the vorticity transport equation we get the following relation of the stream function:

υ∇4ψ =
∂∇2ψ

∂t
+

∂ψ

∂y

∂

∂x
(∇2ψ) − ∂ψ

∂x

∂

∂y
(∇2ψ), (2.42)

where υ is the kinematic viscosity. Inserting the expansion (2.8) and collecting terms of

the same order in x, y gives a series of algebraic equations for ai,j . The equations of order

0 and 1 are given by

x0y0 : v(72 s2
3a0,1 − 32 a2,1s2 − 72 s4a0,1 − 48 s3a1,1 + 24 a0,4 − 24 a0,3s2)

= a0,1(−8 s2a1,1 − 12 s3a0,1),

x0y1 : a0,1(6 a3,1 + 6 a1,3) − 2 s2a0,1(−8 s2a1,1 − 12 s3a0,1) − a1,1(2 a2,1 + 6 a0,3) = 0,

x1y0 : a0,1(−36 s3a1,1 + 48 s2
3a0,1 − 28 a2,1s2 − 48 s4a0,1 − 12 a0,3s2) + a1,1(−8 s2a1,1

−12 s3a0,1) + 2 s2a0,1(2 a2,1 + 6 a0,3) = 0. (2.43)

By using (2.43) and the assumption a0,1 = a1,1 = a2,1 = a0,3 = 0, we get a0,4 = 0 and the

stream function (2.41) becomes

ψ = η(a3,1ξ
3 + a1,3ξη

2). (2.44)

Theorem 2.1 Let a0,1, a1,1, a2,1 and a0,3 become zero. Assuming the non-degeneracy conditions

a1,3 � 0, a3,1 � 0 hold, then the normal form of order 4 for the stream function (2.8) is

ψ = η(a3,1ξ
3 + a1,3ξη

2). (2.45)

From the theorem, the local flow topology in the neighbourhood of the non-simple

degenerate critical point can be easily obtained. Possible separatrices (dividing streamlines)

of the critical point are given by ψ = 0, that is

ξ = 0, η = 0, η = ±
√

−a3,1

a1,3
ξ. (2.46)

If
a3,1

a1,3
=

∂2τxx
∂x2

∂2τxx
∂y2

> 0, there are three separatrices (see Figure 3(a)). If
a3,1

a1,3
=

∂2τxx
∂x2

∂2τxx
∂y2

< 0, there are

five separatrices from a single saddle, and this case is denoted by a topological saddle (see

Figure 3(b)). Equation (2.16) for pressure is equivalent to constant under the condition

a0,1 = a1,1 = a2,1 = a0,3 = 0 and a3,1 + a1,3 = 0. It follows that situation (b) in Figure (3) is

possible under the constant pressure condition.
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(a) (b)

Figure 3. Non-simple degenerate critical points. (a)
a3,1
a1,3

> 0, (b)
a3,1
a1,3

< 0.

2.3 Bifurcation of non-simple degenerate critical points of order 4

The degenerate flow patterns (Figure 2) obtained in the previous section will appear only

when some coefficients of the stream function are zero. In this section, to determine all

possible bifurcations close to non-simple degenerate critical points, a small perturbation

of these coefficients known as the bifurcation value in the stream function is considered.

The idea of the normal form theory of Brøns [5] is used by choosing a different generating

function preserving kinematic boundary conditions (a), (b) and (c).

2.3.1 Bifurcation of degenerate critical point for a0,1 = a1,1 = a2,1 = 0, a3,1 � 0

To study the bifurcations close to the non-simple degenerate critical points, we introduce

small parameters ε1 = a0,1, ε2 = a1,1, ε3 = a2,1 and by substituting these parameters into

the stream function (2.20) we obtain

ψ =
(
a3,1 + 2 (s2ε2 − 3 s3ε1) s2 − 2 s2ε1s3

)
ξ3η + (3 ε3s2 + 6 s2

3ε1

−6 s4ε1)ξ
2η2 + a1,3ξ η

3 + a0,4η
4 +

(
ε3 − 2 s2

2ε1
)
ξ2η + (s2ε2

−3 s3ε1)ξ η
2 + a0,3η

3 + ε2ξ η − s2ε1η
2 + ε1η. (2.47)

Now we apply normal form transformations to simplify some terms of the stream function

(2.47), but include small parameters in the transformations. The new coordinates (ξ∗, η∗)

are found from a canonical transformation defined by the generating function

S = ηξ∗ +
∑

i+j+k+l+m=3

si,j,k,l,mη
iξ
j
∗ε
k
1ε
l
2ε
m
3 , (2.48)

such that

ξ =
∂S

∂η
, η∗ =

∂S

∂ξ∗
. (2.49)

The method for finding the normal form of bifurcation of degenerate critical points

proceeds as in previous studies ([5, 11]). We omit computation steps and only give the

following transformed stream function:

ψ = η∗(ã0,1 + ã0,2η∗ + ã1,1ξ∗ + a0,3η
2
∗ + a3,1ξ

3
∗), (2.50)
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where

ã0,1 = ε1 + O2 (ε1, ε2, ε3) , ã0,2 =

(
−s2 − a0,4

3a0,3

)
ε1 + O2(ε1, ε2, ε3), (2.51)

ã1,1 = − a1,3

3a0,3
ε1 + ε2 + O2(ε1, ε2, ε3). (2.52)

Note that ã0,1, ã0,2 and ã1,1 can be expressed as linear combinations of two small parameters

ε1 and ε2 if the terms of higher order than 2 are neglected. Hence, the stream function

depends on two small parameters ε1 and ε2. A final simplification can be obtained by first

dividing ψ by a0,3 corresponding to scaling the time and then scale ξ∗ by the substitution

ξ∗ → 3

√
a0,3

a3,1
ξ∗ to obtain

ψ = η∗(μ1 + aμ1η∗ + μ3ξ∗ + η2
∗ + ξ3

∗) + O(ξ∗, η∗)
5, (2.53)

where μ1, μ3 are the new small parameters depending on ε1, ε2, and a is a small constant.

The reader will note that the normal form (2.53) is almost the same as the normal form

of equation (55) in [19]. The flow patterns and their bifurcations are exactly the same as

in [19], so the relevant computations and bifurcation diagrams are omitted.

Here we focus on the case of ã0,1, ã0,2 and ã1,1 as a linear combination of three small

parameters ε1, ε2 and ε3 by including higher order terms in equations (2.51) and (2.52).

Now the stream function depends on three small parameters ε1, ε2 and ε3. Once again,

dividing ψ by a0,3 corresponding to scaling the time and then scale ξ∗ by the substitution

ξ∗ → 3

√
a0,3

a3,1
ξ∗ to obtain

ψ = η∗(μ1 + μ2η∗ + μ3ξ∗ + η2
∗ + ξ3

∗) + O((ξ∗, η∗))
5, (2.54)

where μ1, μ2, μ3 are the new small parameters depending on ε1, ε2, ε3.

Proceeding as above, in the general case (re-labeling the coordinates back to x, y) one

obtains the following.

Theorem 2.2 Let a0,1, a1,1 and a2,1 be small parameters. Assuming the non-degeneracy condi-

tions a0,3 � 0, a3,1 � 0 are satisfied, then the normal form of order 4 for the stream function

(2.8) is

ψ = y(μ1 + μ2y + μ3x+ y2 + x3) + O((x, y))5, (2.55)

where μ1, μ2 and μ3 are small transformed parameters.

The corresponding dynamical systems with codimension three are

ẋ = μ1 + 2μ2y + μ3x+ 3y2 + x3,

ẏ = −y(μ3 + 3x2). (2.56)

The critical point on the free surface (y = 0) is μ1 +μ3x+x3 = 0, and there is a bifurcation

curve for 4μ3
3 + 27μ2

1 = 0, which divides parameter plane into two regions. In one of these
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regions there are three fixed points, while in the other there is a single fixed point. Crossing

these curves, a separation bubble on the free surface is created or destroyed.

Off the axis (y� 0), local bifurcations occur when

μ3 + 3x2 = 0 and μ1 + 2μ2y + μ3x+ 3y2 + x3 = 0.

Combining these, one obtains the following four critical points away from the free surface:

A

(√
−3 μ3

3
,−μ2

3
+

√
Δ1

9

)
, B

(√
−3 μ3

3
,−μ2

3
−

√
Δ1

9

)
,

C

(
−

√
−3 μ3

3
,−μ2

3
+

√
Δ2

9

)
, D

(
−

√
−3 μ3

3
,−μ2

3
−

√
Δ2

9

)
,

where

Δ1 = 9 μ2
2 − 27 μ1 − 6 μ3

√
3

√
−μ3, Δ2 = 9 μ2

2 − 27 μ1 + 6 μ3

√
3
√

−μ3. (2.57)

The types of the critical point can be determined by the sign of the determinant of the

Jacobian matrix |J| = 6 yx(2 μ2 + 6 y) − (μ3 + 3 x2)2. Evaluating |J| at singular points,

one finds A(
√

−3 μ3

3
,− μ2

3
+

√
Δ1

9
) and D(−

√
−3 μ3

3
,− μ2

3
−

√
Δ2

9
) are centres, while other singular

points such as B(
√

−3 μ3

3
,− μ2

3
−

√
Δ1

9
) and C(−

√
−3 μ3

3
,− μ2

3
+

√
Δ2

9
) are saddle points for μ2 < 0.

The bifurcation which occurs away from the boundaries is the merging and disappearance

of a saddle and a centre and denotes a cusp bifurcation, which is labelled by C1 and C2 in

Figure 4. This occurs when Δ1 = 0 or Δ2 = 0. In addition to these bifurcation curves, the

stream function value of the interior saddle point can take the same value as the critical

points on the free surface. Such a configuration appears when ψ(C) = 0. From this we

find that bifurcation curve is given by

1

729

(
3 μ2 −

√
Δ2

) (
−81 μ1 + 18 μ2

2 − 3 μ2

√
Δ2 + 18 μ3

√
3
√

−μ3 − Δ2

)
= 0, (2.58)

which is labeled by G1 in Figure 4. In order to obtain the equation of the heteroclinic

bifurcation curve, we need ψ(B) = ψ(C). The calculation shows

1/27 μ2
2
√

Δ1 − 4

27
μ2μ3

√
3
√

−μ3 − 1/9
√

Δ1μ1 − 2

81

√
Δ1μ3

√
3
√

−μ3

− 1

729
Δ1

3/2 + 1/27 μ2
2
√

Δ2 − 1/9
√

Δ2μ1 +
2

81

√
Δ2μ3

√
3

√
−μ3 − 1

729
Δ2

3/2 = 0,

(2.59)

which is labeled by G2 in Figure 4.

A series of flow structures is represented in the (μ1, μ3) space as shown in Figure 4. A

topology of type (1) shows a single dividing streamline on the free surface. By varying

of the parameter space, type (2) is obtained by applying a cusp point bifurcation in the

flow. Then we see that this cusp critical point unfolds into a homoclinic pattern. The flow

patterns ((14), (17) and (19)) indicate the possible cusp point bifurcation in the bifurcation

diagram. Going to region (4), we approach bifurcation (3) where a separation bubble on
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(5)

1 1
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15
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4
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Figure 4. Bifurcation diagram for the normal form (2.55) in the (μ1, μ2, μ3) parameter space with

μ2 < 0.
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the free surface is created. Crossing this curve will unfold this degenerate point similar

to type (4). Consequently, the flow region (4) in Figure 4 contains a separation bubble

on the free surface with the homoclinic orbit. Going from region (4) to region (6) a

bubble merging bifurcation (5) is crossed, indicating that the two saddle points on the

free surface coalesce. Entering region (8) from (6), the curve G1 is passed, on which a

saddle connection exists between the saddle on the free surface and the saddle in the flow

as shown in flow pattern (7).

The flow pattern (9) in Figure 4 deserves further consideration since the interaction of

two vortices with opposite rotation occurs only near the non-simple degenerate critical

point. Two topologically different flow structures (8) and (10) appear in the same area,

but this is possible only in the event of global bifurcation (9) which divides the region into

subregions (8) and (10). Examining the changes in the structure near the free surface, we

encounter a vortex ring bifurcation (11) which attaches to the free surface at a singular

point. This bifurcation causes the creation of a separation bubble with a homoclinic orbit,

see (12). Other important pattern arises from the global bifurcation (13) between the

separation bubble on the free surface and an in-flow vortex ring. Entering region (15)

from (12), the curve C1 is passed on which the centre–saddle pair has disappeared. The

flow pattern (18) is obtained by applying a bubble merging bifurcation (16) or a cusp

point bifurcation (17) in the flow.

2.3.2 Bifurcation of degenerate critical point for a0,1 = a1,1 = a0,3 = 0, a2,1 � 0

As we mentioned at the beginning of Section (2.3.1), we use the generating function and a

near-identity quadratic transformation to obtain the normal form of the stream function.

Here we consider small parameters ε1 = a0,1, ε2 = a1,1, ε3 = a0,3, and substituting these

parameters into the stream function (2.20) we find

ψ =
(
a3,1 + 2 (s2ε2 − 3 s3ε1) s2 − 2 s2ε1s3

)
ξ3η + (3 a2,1s2 + 6 s2

3ε1

− 6 s4ε1)ξ
2η2 + a1,3ξ η

3 + a0,4η
4 +

(
a2,1 − 2 s2

2ε1
)
ξ2η + (s2ε2

− 3 s3ε1)ξ η
2 + ε3η

3 + ε2ξ η − s2ε1η
2 + ε1η, (2.60)

where ε1 = a0,1, ε2 = a1,1 and ε3 = a0,3 are small parameters.

By choosing

s21000 = −s2, s11100 =
2s2

2

a2,1
, s11010 =

a3,1

2a2,1
2
, s20100 =

3s3
4a2,1

(2.61)

and setting the remaining coefficients in the generating function S equal to zero, equation

(2.60) becomes

ψ = a3,1ξ∗
3η∗ + a0,4η∗

4 +

(
a3,1ε2

2a2,1
+ a2,1

)
ξ∗

2η∗ +

(
ε3 − 2 s2

2ε1 − ε2a1,3

2a2,1

)
η∗

3

+ ε2ξ∗ η∗ +

((
3s3
2a2,1

+
s2a3,1

a2,1
2

)
ε1ε2 + 4

s2
3ε1

2

a2,1

)
η∗

2

+

(
−2

s2
2ε1

2

a2,1
− a3,1ε1ε2

2a2,1
2

+ ε1

)
η∗. (2.62)
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By changing ξ∗ → ξ∗ − a3,1

2a2,1
ξ2

∗ , then (2.62) takes the form

ψ = a0,4η∗
4 + a2,1ξ∗

2η∗ +

(
ε3 − 2 s2

2ε1 − ε2a1,3

2a2,1

)
η∗

3 + ε2ξ∗ η∗

+

((
3s3
2a2,1

+
s2a3,1

a2,1
2

)
ε1ε2 + 4

s2
3ε1

2

a2,1

)
η∗

2 +

(
−2

s2
2ε1

2

a2,1
− a3,1ε1ε2

2a2,1
2

+ ε1

)
η∗.

(2.63)

Translation of the origin will remove the terms of the next highest degree (ξ∗η∗) in the

stream function by replacing ξ∗ by ξ∗ + ξ0, where ξ0 = − ε2
2a2,1

, then we obtain

ψ = a0,4η∗
4 + a2,1ξ∗

2η∗ +

(
ε3 − 2 s2

2ε1 − ε2a1,3

2a2,1

)
η∗

3

+

((
3s3
2a2,1

+
s2a3,1

a2,1
2

)
ε1ε2 + 4

s2
3ε1

2

a2,1

)
η∗

2 +

(
− ε2

2

4a2,1
− 2

s2
2ε1

2

a2,1
− a3,1ε1ε2

2a2,1
2

+ ε1

)
η∗.

(2.64)

A final simplification can be obtained by first dividing ψ by ã2,1 corresponding to scaling

the time and then scaling η∗ by the substitution η∗ → 3

√
ã2,1

a0,4
η∗ to obtain

ψ = η∗(ξ
2
∗ + b0 + b1η∗ + b2η

2
∗ + η3

∗) + O((ξ∗, η∗)
5. (2.65)

Proceeding as above, in the general case (re-labeling the coordinates back to x, y) one

obtains the following.

Theorem 2.3 Let a0,1, a1,1 and a0,3 be small parameters. Assuming the non-degeneracy condi-

tions a2,1 � 0, a0,4 � 0 are satisfied, then the normal form of order 4 for the stream function

(2.8) is

ψ = y(x2 + b0 + b1y + b2y
2 + y3) + O((x, y)5, (2.66)

where b0, b1 and b2 are small transformed parameters.

The reader will note that the normal form (2.66) is almost the same as the normal form

of (28) in [8]. The flow patterns and their bifurcations are exactly the same as in [8],

so the relevant computations are omitted and bifurcation diagrams are illustrated in

Figure 5.

There exist three different kinds of bifurcation curves in Figure 5, which are labeled

by B,C,G. In the first kind, there is a bubble creation, that is, with a centre away

from the boundaries and two on-free surface saddles which are connected by heteroclinic

trajectories (see Figure 5(d)). In the second kind, a cusp bifurcation, which occurs away

from the free surface, is the merging and disappearance of a saddle and a centre (see

Figure 5(c)). In addition to these bifurcation curves, the stream function value of the

interior saddle point can take the same value as the critical points on the free surface.

It yields a global bifurcation curve, which is labeled by G in the bifurcation diagram.

New flow patterns are found in which the saddle of the homoclinic pattern is connected
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Figure 5. Bifurcation diagram for the fourth-order normal form (2.66) with b1 > 0.

by a separation bubble on the free surface (see Figure 5(b)). These patterns can also be

observed in a reverse double-film-fed roll coating nip as an application of the theoretical

framework.

2.3.3 Bifurcation of degenerate critical point for a0,1 = a1,1 = a2,1 = a0,3 = 0

A normal form transformation for the degenerate critical point under the condition

a0,1 = a1,1 = a2,1 = a0,3 = 0 is quite similar to the one made for the degenerate case

(a0,1 = a1,1 = a2,1 = 0 or a0,1 = a1,1 = a0,3 = 0). As in that situation, analogous changes of

parameters and variables show that our map can be transformed into the form

ψ = y(μ1 + μ2x+ μ3y
2 + ωxy2 + x3), (2.67)

where μ1, μ2 and μ3 are small transformed parameters. For this reason, we define small

parameters ε1 = a01, ε2 = a11, ε3 = a21, ε4 = a03, and substituting these parameters into
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the stream function (2.20) we obtain

ψ = (a3,1 − 2 s2ε1s3 + 2 (s2ε2 − 3 s3ε1)s2)ξ
3η + (3 ε3s2 − 6 s4ε1 + 6 s2

3ε1)ξ
2η2 (2.68)

+ a1,3ξη
3 − 1

6v
(−6 vs3ε2 + 18 vs2

3ε1 − 18 vs4ε1 − 6 vε4s2 + ε1s2ε2 + 3 s3ε1
2)η4

+(−2 s2
2ε1 + ε3)ξ

2η + (s2ε2 − 3 s3ε1)ξη
2 + ε4η

3 + ε2ξη − s2ε1η
2 + ε1η.

We proceed as in (2.3.1) and (2.3.2) to simplify the fourth order terms of the stream

function (2.68). We omit the detail computations and only give the result by the following

theorem.

Theorem 2.4 Let a0,1, a1,1, a2,1 and a0,3 be small parameters. Assuming the non-degeneracy

conditions a1,3 � 0 and a3,1 � 0 are satisfied, then the normal form of order 4 for the stream

function (2.8) is

ψ = y(μ1 + μ2x+ μ3y
2 + ωxy2 + x3), (2.69)

where μ1, μ2 and μ3 are small transformed parameters.

Using the normal form (2.69) with codimension three, the corresponding dynamical

system,

ẋ = μ1 + μ2x+ 3μ3y
2 + 3ωxy2 + x3,

ẏ = −y(μ2 + ωy2 + 3x2), (2.70)

with the Jacobian

J =

(
μ2 + 3ωy2 + 3x2 6μ3y + 6ωxy

−6xy −μ2 − 3ωy2 − 3x2

)
,

can be analysed by using the description of Gürcan et al. [12]. When det(J) = 0 on the

free surface, the bifurcation occurs for

μ1 + μ2x+ x3 = 0,

μ2 + 3x2 = 0. (2.71)

By eliminating x one finds (
μ2

3

)3

= −
(
μ1

2

)2

, (2.72)

which forms a bifurcation set labelled by F1. Away from the free surface (y� 0), we get

y2 = −3
x2

ω
− μ2

ω
,

μ1 + μ2x+ 3 μ3y
2 + 3ω xy2 + x3 = 0.

By eliminating y2, one finds

μ1 − 3
μ3μ2

ω
− 2 μ2x− 9

μ3x
2

ω
− 8 x3 = 0 (2.73)
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giving the local bifurcation which occurs for ω = 1

192 μ2
3 + 5589 μ3

2μ2
2 + 6561 μ2μ3

4 − 5832 μ3μ2μ1 + 1296 μ1
2 − 2187 μ1μ3

3 = 0, (2.74)

and for ω = −1

192 μ2
3 + 5589 μ3

2μ2
2 + 6561 μ2μ3

4 + 5832 μ3μ2μ1 + 1296 μ1
2 + 2187 μ1μ3

3 = 0. (2.75)

One should also consider the possibility of global bifurcations such as saddle to saddle

connections off and on the free surface critical points. This requires ψ to attain the same

value on and off the free surface critical points. The conditions for global bifurcation are

∂ψ

∂y

∣∣∣∣
y2=−3 x2

ω
− μ2

ω

= μ1 − 2 μ2x− 9
μ3x

2

ω
− 3

μ3μ2

ω
− 8 x3 = 0,

ψ|
y2=−3 x2

ω
− μ2

ω

= μ1 − 3
μ3x

2

ω
− μ3μ2

ω
− 2 x3 = 0, (2.76)

and combining these gives

(4 μ2
3 + 27 μ1

2)(ω3μ1 − μ3
3 − μ2μ3ω

2)(32 μ2
6ω6 + 432 μ2

4μ1μ3ω
5

+ 1458 μ2
2μ1

2μ3
2ω4 + 729ω3μ3

3μ1
3 + 540ω3μ2

3μ1μ3
3 + 2187ω2μ2μ1

2μ3
4

− 108ω2μ2
4μ3

4 + 729 μ1
2μ3

6 − 108 μ2
3μ3

6) = 0. (2.77)

To analyse flow patterns in three parameters is rather academic. Therefore, we reduce the

parameter number by using the following parameterization

μ2 = k

(
μ1

2

)2/3

and μ3 = l

(
μ1

2

)1/3

. (2.78)

We find that bifurcation sets for μ1 � 0 become k = −3 and

64 k3ω4 + 1863 k2ω2l2 + 2187 kl4 − 3888 lkω3 + 1728ω4 − 1458ω l3 = 0, (2.79)

and the global bifurcation occurs for

(k + 3)(k2 − 3 k + 9)(2ω3 − l3 − lω2k)(8ω6k6 + 216 k4lω5 − 27 k4l4ω2

+ 270 k3l3ω3 − 27 k3l6 + 1458 l2ω4k2 + 2187 kl4ω2 + 1458 l3ω3 + 729 l6) = 0 .(2.80)

The reader will note that the bifurcation set on the free surface is almost the same as

the bifurcation set of Bakker [1] and Gurcan et al. [12]. Although in this study the

non-simple degenerate critical points are on the free surface, the flow patterns and their

bifurcations are exactly the same as in Bakker [1] and Gurcan et al. [12] for ω = 1, but

the fixed wall is replaced by a free surface. The relevant computations are omitted and

the bifurcation diagram is illustrated in Figure 6. It shows a degenerate flow pattern in

which a separation bubble and a separating streamline interact with an in-flow saddle

point creating two separation bubbles around flow centres with opposite rotations. This

pattern is numerically observed in a double-film-fed forward roll coater. The bifurcation

diagram for the normal form (2.69) with ω = −1 is also shown in Figure 7.
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Figure 6. Bifurcation diagram for the normal form (2.69) with ω = 1.
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Figure 7. Bifurcation diagram for the normal form (2.69) with ω = −1.
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Figure 8. The reverse double-film-fed roll coating nip, see Wilson ( [20], Figure 5.3).

)b()a( (c) (d)

Figure 9. Schematic representation of flow patterns found by Wilson [20] in a reverse

double-film-fed roll coating nip. Only the left of the nip is shown.

3 Application

Now we give a brief description of flow patterns found in a roll coater. A more description

can be found in Wilson [20] and Wilson et al. [21]. Wilson [20] explored the development

of flow structures in a reverse double-film-fed roll coater (reproduced in Figure 8). It

illustrates the problem in which the rolls of radius R1 and R2 move in the opposite

direction through the nip with peripheral speeds U1 and −U2 respectively. The surfaces of

the rolls are separated by a minimum distance, 2B0, where B0 is the semi-gap width. There

is a gap between a pair of co-rotating rolls featuring four liquid films, H[1], . . . , H[4]. The

variation of the inlet film thickness is very important because it indicates the lubricant

quantity that is being carried into the roll coater. Films H1 and H4/H2 and H3 are taken

to be the incoming/outgoing films of thickness in the reverse double-film-fed roll coater.

The resulting boundary value problem is described by five dimensionless parameters: the

roll speed ratio S = −U2/U1; the returning film fraction ζ = H4/H2; the inlet flux λ; the

capillary number Ca and the radius to semi-gap ratio B0/R.

In Figure 9 a series of flow structures is displayed for different values of the returning

film fraction ζ = H4/H2 at Ca = 0.04, S = 1, B0/R = 0.01 and λ = 0.3. By variation

of the returning film fraction, the flow patterns (a)–(d) in Figure 5 were obtained by

Wilson ( [20], Figures 5.31(d–f) and 5.35). In Figure 9(a), there exists a separation bubble

on the upstream free surface and a homoclinic orbit at ζ = 0.78. By decreasing ζ to

around 0.243, the homoclinic orbit and the upstream separation bubble coalesce, thus

connecting the interior saddle point to the two saddle points upstream the free surface,

as seen in Figure 9(b). By decreasing ζ below 0.243, this global bifurcation results in one

large upstream free surface with an inner separatrix which contains a saddle point and
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Figure 10. The forward double-film-fed roll coating nip, Wilson et al. ( [21], Figure 2).

(a) (b) (c) (d)

Figure 11. Schematics showing streamline patterns obtained by Wilson et al. [21] in a forward

double-film-fed roll coating nip.

two sub-eddies (see Figure 9(c)). If the inlet flux λ was reduced, the downstream free

surface would move upstream and the bead would shrink. Thus, the centre and the saddle

would coalesce in a cusp bifurcation to leave just the centre on the left of the nip (see

Figure 9(d)).

Wilson et al. [21] studied the steady flow in a double-film-fed forward roll coater

(reproduced in Figure 10). As can be seen in Figure 10, the only difference between this

problem and that in a reverse double-film-fed roll coater is the direction in which the

upper roll moves. The dimensionless variables are given by the roll speed ratio S = U1/U2;

the returning film fraction ζ = H2/H4; the inlet flux λ; the capillary number Ca and the

radius to semi-gap ratio B0/R.

Flow patterns (a)–(d) shown in Figure 11 were found by Wilson et al. [21] (Figure 4(c),

8, 11(c) and (e) respectively). He first considered S = 1 and λ = 0.21 for decreasing ζ from

1 to 0.9. In particular, Figure 11(a) shows three saddle points on the free surface which

interact with an in-flow saddle point creating two vortices with opposite rotations. As ζ is

decreased, the heteroclinic connections separate from the saddle point on the free surface

(see Figure 11(b)). Between each separation bubble and the separating streamline there is

a homoclinic pattern. By varying the returning parameter ζ for other fixed parameters in

Figures 11(c–d) one encounters the flow patterns and their bifurcations shown in Figure 6.

The flow patterns 1, 5–6 and 12 in Figure 6 exactly correspond to patterns (a)–(d) in

Figure 11. Wilson et al. [21] also stated that the flow pattern 7 in Figure 6 can be

seen when S < 1, i.e. a homoclinic flow structure arises in the lower recirculation. The

other flow patterns can be obtained at a slightly different values of ζ and λ, but with

specific values of S . Therefore, a complete bifurcation diagram corresponding to Figure 6

is expected by varying the three physical parameters S , ζ and λ.
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4 Conclusion

In the present paper, the behaviour of degenerate flow patterns and their bifurcations

near non-simple degenerate critical points on the free surface were considered by using

the framework of local expansions of the stream function. We extend the classification of

possible local streamline topologies close to a free surface by considering the fourth order

expansion of the stream function in transformed coordinates. A simple stream function

family was obtained using a normal form transformation and a variety of features, such

as normal velocity, the tangential (shear) stress and normal stress condition, and the flow

patterns were discussed. The flow patterns and bifurcations near a simple degenerate

critical point were already studied by Brøns [3]. The present paper focused on 2D flow

structures observed near a non-simple degenerate critical point on the free surface. These

flow structures are of particular interest as they provide guidelines for complicated 3D

flow structures. The possibilities are that the critical points in 3D flow structures are much

greater than in 2D flow structures. Critical points for 2D flows can be of two types, either

saddle or centre, but nodes and foci also exist as critical points in 3D flows. Also, global

bifurcations cannot be determined by using a scalar stream function, since it does not

exist for 3D flows. These suggest very complex dynamics and chaotic streamlines which

the normal form cannot capture.

We obtain new flow patterns in Figure 4, such as an interaction of two vortices with

opposite rotation as shown in Figure 4(c) that occur only near the non-simple degenerate

critical point. The bifurcation diagram (Figure 5) is also obtained by Deliceoğlu and

Gürcan [8] under the symmetric condition about a straight line away from boundaries in

2D incompressible flow. It was shown in [8] that the degenerate flow pattern (Figure 2(e))

does not occur in the steady flow with the mirror symmetry. Hence, the mechanisms

of flow structures as shown in Figure 9 are not expected in the steady flow with the

mirror symmetry. Furthermore, the bifurcation diagram (Figure 6) for the normal form

(2.69) with ω = 1, which was found near the wall by Bakker [1] and Gurcan et al.

[12], is also seen close to the free surface by using different normal forms. We find

no qualitative difference between flow topology in the rigid wall and the free surface.

However, the degenerate flow pattern for ω = −1 in Figure 3 and their bifurcations

as shown in Figure 7 have not been previously observed close to rigid wall or any

boundaries.

The theory was applied to the pattern found numerically in the studies of Stokes flow

in the double-film-fed reverse and forward roll coater. The application of the theory

was already carried out by Wilson et al. [21] for Stokes flow in the bead of a meniscus

roll coater. Gurcan et al. [12] also observed similar transformation of flow patterns in

a double-lid-driven cavity except that the pattern (12) in Figure 6 cannot appear in the

cavity for the considered values of (S, A) parameters, i.e. the flow configuration jumps

from type (9) to type (13) in Figure 6.
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The author wishes to thank Prof. Dr. F. Gürcan and Dr. M. Wilson for their valuable

support, comments, suggestions and corrections.

https://doi.org/10.1017/S0956792512000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000319


Topology of 2D flows close to the free surface 101

References

[1] Bakker, P. G. (1991) Bifurcation in Flow Patterns, Vol. 2: Nonlinear Topics in the Mathematical
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