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We obtain some techniques to study the shape of reliability functfaiare rate
mean residual lifeetc) by using the s-equilibrium distribution of a renewal pro-
cess defined by Fagiuoli and Peller@yaval ResLogist, 1993. We apply these
techniques to study how to obtain distributions with bathtub shaped failure rate
(BFR) from mixtures of two positive truncated normal distributions

1. INTRODUCTION

In reliability theory and survival analysia positive random variabd€ usually rep-
resents the life length of a unit or a component in a systerhus suppose thatis
an absolutely continuous random variable with density functian In this con-
text, the distribution functior-(t) = Pr(X = t) represents the probability of failure
before time and the reliability functiofR(t) = Pr(X = t) represents the probability
of correct functioning at time

The most used functions to describe the aging of the units are the failure rate
r(t) =1f(t)/R(t) and the mean residual lifg(t) = E(X — t| X =t). Itis well known
that both of them uniquely determine the distribution funciiioa, they have all of
the information about the modeFor examplethe inversion formula for (t) is
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R(t) = exp(— fotr(x) dx>. (1)

These functions are also used to compare and classify different Thégef-
initions for the likelihood ratiq=, ), failure rate(=;,), and mean residual lifes ;)
orders and increasirgecreasingfailure rate(IFR (DFR)) and decreasin@ncreas-
ing) mean residual lif§ DMRL (IMRL)) classes can be found [R0]. It is well
known that

X=, Y=2X=Y=2X=,Y
and
XIFR (DFR) = X DMRL (IMRL)

Throughoutincreasingdecreasingmeans nondecreasirigonincreasing

In this contextwe use positive random variables aheénce the Normal dis-
tributionN(, o) is replaced by the positive truncated Normal distributiof( |, o),
defined by the density

(t—w?

20°

f(t) = cexp(— ) fort >0,

where

) I Y S UG W S S
C—C(U,U)_<f0 exp< 202 >dX> - \2mo? O(p/o)

and ®(x) is the standard Normal distributioiNote that if X = N*(p, o), then
E(X) > pand VarX) < o2 If p+ 30 > 0, thenc = 1/\ 2702, E(X) = 1, and
Var(X) = o2 The failure rate for the positive truncated Normal coincides with the
failure rate for the Normal distributiofMill's ratio) for t > 0 and hence it is
increasing

However in practice the failure rates estimated from datasets have a bathtub
shapedenoted by BFRthat is they first strictly decrease from O tg then they are
constant front,; tot, (t; = t,), and finally, they increase fromy, to co. The failures
in the first period are called early failures and they are due to manufacturing defects
The failures in the second perigdseful life period are called chance failures and
the failures in the last perio@vear ouj are due to the aging proce§she timest;
andt, are called change points

Analogously a model has an upside-down failure rat¢FR) if r(t) strictly
increases from 0 tg, it is constant front; to t, (t; =t,) and it decreases fromto
oo. Similar classe$sBMRL and UMRL) can be defined for the mean residual life
We use the following notatioA model is IBFR wherr increases if0, ty) and it
has a bathtub shape (ity,o0). Analogously a model is BBFR when it is BFR in
(0, t5) and BFR in(tg,0).
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In the last 20 yearsnany theoretical models with BFRs have been proposed
from different methodgsee the reviews ih14,17]). In this article we show that
BFRs can be obtained from a mixture of two positive truncated normal models with
IFRs In our opinion this is the correct way to obtain a BFR distribution because it
explains why this shape arises naturally from a mixture of two different kind of
units (units with and without manufacturing defegts

Few articles study how to obtain BFR distributions from mixtuie®hn[13]
proposed obtaining BFR models from a mixture of three Weibull distributians
DFR Weibull for the early failurgsan exponential for the useful life peripand an
IFR Weibull for the wear period Vaupel and Yashif22] obtained plots of BFR
models from mixtures of an exponential and a model with linear failure tatéor-
tunately these results are not true whes> oo since the failure rate of the mixture
is equal to the failure rate of strong units whes oo (see[3]). Glaser 8], Gupta
and Warren 9], and Wondmagegneh23] studied special cases of Weibull and
gamma mixturesOther interesting articles that stydy general the shape of the
failure rate obtained from a mixture arg3,4,10,15,21].

The article is organized as followk Section 2 we introduce the modeln
Sections 3 and,4ve obtain some general techniques to determine the shae) of
andu(t) and thenin Section Swe study the mixtures of positive truncated Normal
distributions Finally, in Sections 6 and,&ve give some examples and remarks on
this model from a practical point of view

2. THE MODEL

Let us suppose that an absolutely continuous positive random vaKaide mix-
ture of two random variableX; andX,. Hence the densityf, is a mixture of two
densitiesf; andfo,

fo(t) = ph(t) + (1 —p)fo(t) fort=0, 2)
where 0= p = 1, the reliability (or survival function is also a mixture
Ro(t) = pRy(t) + (1~ p)Ro (1),

and the failure rate and the mean residual life are dynamic mixtures

rp(t) = p(t)ra(t) + (1= p(t)ro(t), 3)
Hp(t) = p(t)pa(t) + (1= p(t) Ho(t), 4
where
R, (t
=P~ ST PR = ©
Hence
min{r(t), ro(t)} = ry(t) = max{ry(t), ro(t)}. (6)
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Moreover from [3], we have under some mild conditions
tIim re(t) = tIim min(r(t), ro(t)). (7)

It is well known that ifX, and X, are DFR thenX, is also DFR However the
result is not true for IFR distributions

If X, represents correct manufactured units Xgdepresents units with man-
ufacturing defectsthen the following practical assumptions can be made

(i) p>po(eg., p>0.5);
(i) Xy =g Xo;
(iii) Xy andXg are IFR
(iv) r1(0) <ro(0).

Do these conditions imply a BFR mixture? In genetlaé answer to this ques-
tion is negativebut we are interested in studying it in mixtures of positive trun-
cated normal modeldNote that conditior(ii) impliesRy(t) = Ry(t) andE(X;) =
E(Xp). Condition(iv) impliesfy(0) > 0. Note that in the IFR Weibull modgthis
condition does not holdand hence we cannot obtain a BFR mixture

3. GENERAL RESULTS

Glaser[8] used the functiom(t) = —f’(t)/f(t) to study the failure rate shape
Glaser’s result is very useful sind@ many modelsit is easier to study(t) than
r(t). For examplein the normal modelr (t) does not have an explicit expression
butn(t) = (t — W)/o 2 and hencgfrom Glaser's resujt (t) is increasingThe func-
tion n(t) can be also used to characterize the likelihood ratio oftlers, Y
nx(t) = nv(1)) and the increasing and decreasing likelihood ratio clagkdds,
DLR) by the monotonicityy(t). The ILR class is usually defined by the logcon-
cavity of the density functiofisee[20, p. 405]) and it is equivalent to the class of
PF, densities defined if2]. From Glaser’s resultve have that ILRDLR) implies
IFR (DFR). Analogously we can define the BLR class wher(t) has a bathtub
shape and the ULR IBLR, DULR, BBLR, and UULR classe$we use the same
notation for the classes defined yt) as that used for the classes defined by
or pu(t)).

Recently Gupta and Warref9] have extended Glaser’s resuwhowing that
r'(t) = 0 has at most one solution on the closed intefyaly, ], wherezo =0 <
z, < --- < z,are the zeros of’(t). They also showed that(t) = 0 does not have
any solution in(z,,00). In Theorem 43 of [9] they extend Glaser’s resufthowing
that IBLR (DULR) implies IFR BFR, or IBFR (DFR, UFR, or DUFR). Similar
results were obtained independently by Blp&8avits and Singh[5]. We have
extended this result in the following lemma

LemmMma 1: If r’(t) is continuous in0,00) and r(t) strictly increases (decreases) in
(a,b) and strictly decreases (increases) (b, c), thenn(t) strictly increases
(decreases) at b.
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The proof is obtained from

f(t)

r'(t) =r®r ) —n) =r2t) + RO 8)
and
lim L lim r(t) = lim n(t). 9)
too JU(t)  tooe t—00

Thus if Xis BBLR, then it is IFR BFR, IBFR, or BBFR (i.e,, r has an easier
shape tham with the same monotonicity at the end

The equilibrium distribution of a renewal process associated with a positive
random variableX with meanu is determined by the density

R(t)
f*(t) = T fort > 0.

We denote byX* a random variable having this densitlyis well known (seeg e.g.,
[6,11]) thatr *(t) = 1/u(t). Moreover we note thaty*(t) = r(t).

If E(X®) < oo, Fagiuoli and Pellerej6], defined the s-equilibrium distribution
of a renewal process associatedxtas the distribution oK*** If X, denotes a
random variable having the s-equilibrium distributioimen X, =« X, X1) =t X%
X2 = X™*, and so forthwhere=¢; denotes equality in lalhey also defined the
s-CLASS by

Xs-CLASSe X CLASS
For example1l-IFR = DMRL. Analogously the s-order is defined by
X =sorderY © X(s) =order Y(s)
and the s-function by
s — function(t) = functiork(s)(t).

For examplethe 1-Ir order is the hr ordgthe 2-Ir order is the mrl ordeand the
1-failure rate isr(5)(t) = 1/p(t). Analogously we note that ifE(X®) < oo for s =
2,3,..., then

N (1) = rep(t) = (10)

Hs-2) (1)
and
X Ss-lr,st,mrl Y = X S(s+1)-|r,st,mr| Y

Hence Glaser’s and Gupta and Warren’s results can be appliegst@) and
I (t) = ns+1)(t), obtaining respectively the two following theorems
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THEOREM 2: If E(X5™1) < oo for s=0,1,2,..., then

1. 5 increasing (decreasingp 71 increasing (decreasing);
2. ns) bathtub (upside-dowrs n(s. 1) bathtub or increasing (upside-down or
decreasing).

THEOREM 3: If E(X5*1) < oo fors=0,1,2,..., thenn(s; 1 (t) = 0 has at most one
solution on the closed intervk, 1, z], where g=0< z; < --- < z, are the
zeros ofy(s (t) andn(s,1)(t) = 0 does not have any solution {Z,,).

Remark 4:Note that the shape ofs. 1) (r(s+1) Of Hs+1)) IS €asier thams, (rs) or

). For exampleif 7 is increasingdecreasing thenn s, i is increasingdecreas-
ing) for k = 1,2,... In particular if s =1, from (10), the shape ofu(t) can be
obtained from the shape oft). For examplefrom Glaser’s resujtwe obtain the
well-known resultiFR (DFR) = DMRL (IMRL) and if r(t) is BFR (UFR), then

p(t) is DMRL or UMRL (IMRL or BMRL) and the change point for(t) is smaller
than the change point fai(t) (another well-known resyltTheorem 3 i 16] and
Theorem 2 if 7] are now immediateMoreover the formulas fom (t) andr (t) can
be translated to(t) andu(t). For example(8) gives

<i>_i<i > 1
w0) o \po W) (1D

Remark 5:If X has a decreasing density functib(t), then we can define the pre-
ceding equilibrium distributiorX_y, by the reliabilityR_,(t) = f(t)/f(0). Obvi-
ously X =g X. Hence we can study the shape af(r, ) from the shape of
Ny (t) = —f"(t)/f'(t). Analogouslyif the ith derivativef ' (t) = 0fori =1,...,s,
then we can defin&_g and usen_g to studyz(r, p.

Remark 6: The results given by RojdlL8] for age-smooth distributions can be also
translated to the equilibrium distributions since it is also age-sméathexample

. Ri(t)
lim sup

SUP = ) <oo= lim pu(t) = lim p,(t)

((iii ) in Theorem 21 in[18]) can be obtainetby using(ii) in Theorem 21 in[18])
from the mild condition

f R;(u) du

t

lImsup——— < o= lim py(t) = lim pp(t).
t—oo t—oo

e J R,(u) du
t

Lemma 21 in [18] can be also translated tpandr whenf is decreasing anH_;,
is age-smooth of index p.
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4. GENERAL RESULTS FOR MIXTURES

To apply Glaser’'s and Gupta and Warren’s results to mixiusesnote that from
(2), np(t) = =1 (t)/f,(1) is also a dynamic mixtute

Np(t) = W(t)n.(t) + (1 — w(t))no(t), (12)

where
_ pfi(t) -1
pfi(t) + (L—p)fo(t)

Moreover we note that the equilibrium distribution of a mixture is another
mixture (with different weights of the equilibrium distributions of the compo-
nents that is

0=w(t)

(13)

Ry(t)

p

for(t) = =p fr(t) + (- p)fg(t),

where

_ PH1
=— =1
puy + (1 — p) Mo

Analogously the s-equilibrium distribution of a mixture is another mixture of
the s-equilibrium distributions of the componerti'ence from the results given in
the preceding sectigithe results obtained for the failure rate of mixtures can be
translated to the mean residual life of mixtures by usir@. Analogouslythe results
obtained fom (t) in mixtures can be translateditt), 1/u(t), and in generaln ) (t).

For examplethe mixture of two IMRL distributions is also IMRIMoreover Theo-
rems 21 and 22 obtained by Block and Jd&] can be applied tqi(t), obtaining
under some conditionshe following theorem

0=p*

THEOREM 7: The asymptotic behavior of the mean residual life of the mixture is
equal to that of the mean residual life of stronger components; that igtif g po(t),
then

lim Kp(t)/pa(t) = 1. (14)

We use the following notatiog(t) .~ (\v) ¢ ast — oo, when lim_, ., g(t) = ¢
and there exists’ such thaig(t) increasesdecreasesor t > t'.
We have obtained the following results

ProposITION 8: If 0 < p < 1and r(t) = ry(t) for t = t;, then the following hold:

1. Ry(t)/Re(t) " K=0ast— co.
2. pt) 7K' =p/[p+ (1—-pK]E(0,1]ast— co.
3. Ifliminf,_ . ro(t)/ri(t) > 1, then K= 0and K' = 1.
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4, 1If lim,ro(t)/ri(t) = ¢, thenlim,, fo(t)/fi(t) = Kandlim_,,w(t) =
K’. Moreover, K=0orc=1

5. If limemo(t)/n1(t) = ¢’ andlim_, ro(t)/r1(t) = c, thenlim_,, fg(t)/
f/(t) = K. Moreover, K=0orc’ = 1.

6. If uu(t) = Ho(t), no(t)/n4(t) decreases to'cand {(t)/f1(t) decreases to K,
thenn,(t)/7.(t) decreases to 1.

Proor: From(1), we have

Ro(t)/Rqy(t) = exn(fo (ra(x) = ro(x)) dX>.

If ri(t) = ro(t) for t = t;, thenRy(t)/R,(t) decreases t& = 0. Hence we
obtain item 2 from(5).

Moreover if liminf . ro(t)/r1(t) > 1, then there existl > 1 andt, > 0 such
thatry(t) > dry(t) > ry(t) for t > t,. Thus we have

FRQ:((:)) = eXp<J:2(r1(X) —TIo(X)) dx> exp((l— d) I;rl(x) dx).

From (1), it is easy to show thaﬁt‘;o r,(x) dx= oo, and henceK = 0 andK’ = 1.
Moreover as

fo(t)  To(t) Ro(t)
(1) ra(t) Ry(t)

if lim . ro(t)/ri(t) = c, then

Tt
lim = Kc
o0 ()
and from L'H6pital, we obtain

R )
K=1m R~ im ) =

Kc

andK = 0 orc = 1. Moreover lim_,,w(t) = K.
To obtain item 5we note that

B o) m(t)
S F{(1) e (0 7()

!

and

R K
K=lm o oo~

Kc’
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hold. Moreover item 6 is obtained from

Np(t) (no(t) )
—— =1+ (1—w(t) —-1). |
7(1) ) 71(t)

Remark 9:1If rq(t) = ry(t) for all t, thenRy(t)/Ry(t) decreases angt) increases
for all t. Moreover note that

w . . ro(t) _
o 1+(1 p(t))<rl(t) 1> (15)

holds and henceif ro/r, decreaseghenr,/r, decreases to 1 for ai > 0. This
result was given by Block and J§8]. Also note that ifry/r, decreaseshenfy/f;
decreases andl increasesBlock and Joe’s result can be also obtained from item 6
and(10). Analogously from Section 3 resulfsve obtain that ifuy(t) = p4(t) and
Ho(t)/py(t) increasesthenp,(t)/py(t) increases to.1

Moreover we have the following result
ProrosiTioN 10: If (2) holds, then

rp(t) = pOri(t) + (L= pt)ro(t) — pt)(L— pe)(ra(t) —ro(t)%  (16)
Proor: From(3) and(5), we have

rp(t) = p (O (ra(t) — ro(t)) + p(H)ri(t) + (1 — p(t)ro(t)
and
P(1— P)Ro(H)Ry(t)

(PRu(t) + (1= p)Ro(1))?
and hence (16) holds |

Remark 11:We note that expressiof8.2) in Gupta and Warref9] is wrong In
particular from (16), we obtain the following well-known resullf both X; andX,
are DFR then the mixture is DFRNVe can obtain similar results fay(t), p(t), and
in generaln(t).

p'(t) = (ro(t) = r4(t))

5. MIXTURES OF POSITIVE TRUNCATED NORMAL DISTRIBUTIONS

First, we give some properties for positive truncated Normal distributiSose of
these properties are also true fontruncated Normal distributions

ProrosiTioN 12. If X = N*(, o), then the following hold:

1. n(t) = (t—w/o

2. 1'(t) = (r(t) — (t = w/a?)r(t).
3.r(t) > (t— wlo?

4. E(X)=u + o?r(0).

5. r(t) increases tao as t— oo.
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. M(t) decreases t@ as t— oo.
Clime, r(t)/t =1/02.
r(t) — (t — /o2 decreases t as t— oo.
Cim o tu(t) = o2
10. lim o, (1/u(t)) — (t — W/o? = 0.
11. limo r'(t) = 1/02.
Proor: From the definitions an¢B), items 1 and 2 are immediat®loreover from
Kotz and Shanbhaf2] (see alsd19]), we have

) =pu—t+o?r(t)>0 a7)

for t = 0, and henceitems 3 and 4 hold
From items 2 and 3 (t) increases anf(t) decreases for all Moreover from

item 3 and(9), lim . r(t) = oo and lim_,., u(t) = 0. Hence
r(t) fw_ . to . oam 1

lim — = lim = lim = lim = .
tooo 1 too tR(t)  tow R(t) —tf(t)  tset—1/r(t) o2

Analogously from (17), we obtain

© oNO

t—p ()
t — —_ —
r(t) o2 >
which decreases to 0 &s- oo.
Applying L'Hbpital, we have
tIR(1) 1 () 1

im — = lm ————— =1lm < + — = —
oo tU(t)  toe [ t>oo t2 t o?
R(x) dx
t

and henceitem 9 holds
Analogously from (17), we obtain

o?R(t) — tfw R(x) dx

li ! ! li
im — —— = Ilim
oo U(t 2 oo o
we ) o ‘ (rzf R(x) dx
t
o 2f(t) — tR(t) +J R(x) dx
3 t
={m 72R(1)
o?r(t) + u(t) —t
= |Im >
t—oo ag
22Ut —
= lim —=—
t—oo a
_ M
0_2
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and henceitem 10 holdsFinally, from item 2 and(17), we have

) r(t():;(t)
and hence
limr’(t) = lim @tu(t) =—
t—c0 t>o to (o
holds [ ]

Remark 13:Note that the asymptotic behavior of a normal failure rate is equivalent
to a linear failure ratelf g(t) = r(t) — (t — w/o 2 andr *(t) is the failure rate of a
standard normaitheng(p + ko) = (r*(t) — k)/o. Hence for k = 3, we obtain
g(t) = 0.2830990 fort = pu + 3o.

We consider now a mixture of two positive truncated Normal distributkrs
N*(W,oi), i = 0,1. First, we note that the failure rate of the mixture of truncated
Normal distributions is not equal to the failure rate of a mixturdwftruncated
Normal distributions irt > 0. We have obtained the following properties

ProposITION 14: If X, is a mixture of 3= N" (o, 00) and X = N"(uy, o1), with
0 < p < 1land X = X, then the following hold:

1. o = oé.

2. lim o ro(t)/ri(t) = o2/cé = 1.

3. If o2 > o0&, then R(t)/Ry(t) decreases t® and p(t) increases tol as
t — oo.

4. If 0 > o, then §(1)/f1(t) N\ 0and w(t) 2 1 as t— co.

5. If o2 = o&, then [y < Wy, fo(t)/f1(t) decreases t®, w(t) increases tdl,
Ro(t)/Ry(t) decreases t@, and p(t) increases tdl as t— co.

6. If (t — py)/oZ < (t — Ho)/o&, then wWt) increases.

7. If go < py (>), then p(t)/r1(t) N of /0 (/) and 1,(t)/ry(t) v 1as t— oo.

8. mp(t) = w(t)(1/a?) + (1 — w(t)(L/od) — w(t) (1 — w(t)((t — py)/of —
(t— |-10)/0'02)2-

9. np(t) S wast— co.

Proor: Items 1-3 can be obtained from Propositions 8 andtéPns 4—6 can be
obtained from

fot) o <(t - M) (- IJ-O)Z)
—— = —exp - )

To obtain item 7we note that the asymptotic behaviorrgfr, is equal to that of

t_l10(7_12
t— W of
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which decrease@ncreasepto of/o§ whenpy < Wy (>). The property for,/ry is
obtained from(15). Moreover from (12),

t—l t—Ho t—Ho
np(t):W(t)( 2 g2 >+ 2 s

1 0 [4o)
where
w(t) = T+ at)
1-p fo(t) 1- t— )2 (t— )2
a(t) = p o(): p&ex (t— ) _( Ho) -0
p o fi(t) P C 20f 20§
and

a'(t) = a(t)<t_2”1 - t_—2“°>
g1 (2)s)

Thus differentiating we have

() = - —2 (t_“l t;“°>2+w<t>§+(1—w<t>)a%

A+ a(t)? g 0

and henceresult 8 holdsMoreover lim,_,, n,(t) = 1/0f > 0 because

lim (1- W(t))( e ;f°>2=o.

1 0

Thus result 9 holds |

CoroLLARY 15: If X is a mixture of X = N (g, 00) and X = N*(py, 07), with
0<p<1, 0,=0p andsd = od/(Hp — H1)3 then

If 6 > 3, then X%, is IFR.

Ifé6 =z w() = 2, and W0)(1 — w(0)) < §, then X, is IFR.

If6 = %, w(0) = 2, and w0)(1 — w(0)) = §, then X is IFR or BFR.

If § = 3, w(0) < 3, and W0)(1 — w(0)) > 8, then X, is IFR or BFR.

If6 = 7, w(0) < 3, and W0) (1 — w(0)) = 8, then % is IFR, BFR, or IBFR.

aogrONE

Moreover, the change points gf are determined by
w(t)(1—w(t)) = 46.
Proor: If oy = 0y, then from the preceding proposition

(Mo — ul)

0

adnp(t) = 1= (1—w(t)w(t)

andny(t) = 0 if and only if (1 — w(t))w(t) = 6.

https://doi.org/10.1017/50269964804184076 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964804184076

BATHTUB-SHAPED FAILURE RATE MODELS 523

Asx(l—-x)=ifor0<x<1, thenn,(t) > 0 whené > . Hence from
Glaser’s resultthe mixture is IFRAs w(t) increasesthe same result holds when
=32 w() =3 and

w(0)(1—w(0)) <.
If 6= 3%, w(0)= 3, and
w(0)(1—w(0)) = g,

then there exist; > 0 such thaiv(z,) (1 — w(z;)) = 8, 9p(z1) = 0, np(t) < O for
0 <t <z andn(t) > 0fort > z,. Thus from Glaser’s resujtX, is BFR or IFR
The same result holds whén= %, w(0) < 3, and

w(0)(1— w(0)) > 6.
If =2, w(0) < 3, and
w(0)(1—w(0)) =g,

then there exisz; < z, such thatw(z)(1 — w(z)) =6, i = 1,2, ny(t) > 0 for
0 <t <z, np(t) <0forz; <t <z, andny(t) > 0fort > z,. From Theorem 8

in [9], X, is IFR, BFR, or IBFR. [ |
We have obtained a general result when the variances are not equgl( et
na(t).

CoROLLARY 16: If X, is @ mixture of 3= N"(Ho,00) and X = N (py, 0y), with
0< p<1, 01> 0p andng(t) = n4(t) for t > 0, then the following hold:

1. Ifw(0) = x; andy(0) = 0, then X, is IFR.

2. Ifw(0) = x; andy(0) < 0O, then X, is IFR or BFR.

3. Ifw(0) < x; andy(t;) =0, then X, is IFR.

4. 1fw(0) < x;andy(t;) <O, then X, is IFR, BFR, or IBFR,

where

0 a—\/az—ab+b2<1
X e
1 a_b 9

1 . 1
a= 52 T o2
(t) = w(t)/of + 1-w(t)/og [t—p t—o)?
’ w(t)(1— w(t)) o2 ¢ )

and t is uniquely determined by (i) = X,.

ProoF: First, we note thaty(t) = 1.(t) (X1 = Xo) implies X; = X,. Hence
from the preceding propositiow(t) increasedim_,,, w(t) = 1, andn(t) = 0 (=)
if and only if y(t) = 0 (=). Thus
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Ot_lt
() = Mo(t) — ma(t)

= O w) PO, (18)

where

p(x) = (b—a)x?+2ax—Db

and 0< a= 1/0? < b= 1/0. Thus p(0) = —b andp(1) = a, andp(x) =0 has a
unique solutiorx; in (0,1). Hence asw increasesf w(0) = x4, theny(t) increases
for all t and we have properties 1 andlRw(0) < x,, theny(t) has a minimum at
t; > 0, wheret; is uniquely determined bw(t;) = X;, and we obtain properties 3
and 4 [ |

The following corollary completes the possible cases

CoROLLARY 17: If X is a mixture of X = N" (g, 00) and X = N*(py, 07), with
0<p<l o0,>09and

2 2
o -0
ty = 1 Ho 0U1>0’

ol —o¢

then the following hold:

1. If w(ty) = xy, then X, is IFR.

2. 1fw(ty) < xq, W(0) < Xq, ¥(0) =0, andy(t;) =0, then X, is IFR.

3. Ifw(ty) < Xg, W(0) < X4, ¥(0) <0, andy(t;) =0, then X, is IFR or BFR.

4. 1fw(tg) < Xq, W(0) < x4, ¥(0) =0, andy(t;) <O, then X is IFR, BFR, or
IBFR.

5. If w(ty) < xq, W(0) < x4, ¥(0) < 0, andy(t;) <O, then X is IFR, BFR,
IBFR, or BBFR.

6. If w(tp) < X1, W(0) = x4, ¥(0) > 0, y(t) =0, andy(t;) = 0, then X is
IFR.

7. 1fw(tg) < Xq, W(0) = x4, y(0) = 0, andy(t;) =0, then X is IFR or BFR.
8. If w(ty) < Xq, W(0) = x4, ¥(0) >0, andy(tj)) =0fori=1ori=2, then
Xy is IFR, BFR, or IBFR.
9. If w(tp) < X1, W(0) = x4, ¥(0) =0, andy(ty) <O, then X% is IFR, BFR,
IBFR, or BBFR.
10. 1f w(ty) < Xq, W(0) = x4, ¥(0) > 0, y(t;) <0, andy(t,) < O, then X, is
IFR, BFR, IBFR, BBFR, or IBBFR.

where { and t, are uniquely determined by = x, and t, < t,.

Proor: First, we note that

W (t) = w(t)(1—w(t))(no(t) — na(t)),
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and hencew decreases ifD, ty) and increases ifty,c0). Moreover0 < p < 1 and
o1 > opimply that lim,_, ., w(t) = 1. Hence taking into account thag(ty) = 0, we
have the following cases

If w(ty) = x4, from (18), the sign ofy’(t) is the same as that gf(t) — n.(t),
and we obtain item.1

If w(ty) < x, andw(0) < x4, thenw(t) = X, has a unique positive solution
t, > to. Hence from (18), y increases ii0, ty), decreases itt,, t;), and increases
in (t1,00), and we obtain items 2-6

If w(ty) < x; andw(0) = x,, thenw(t) = x, has two positive solutiong and
t, such that; < ty < t,. Hence from (18), v decreases if0, t;), increases in

(t4, to), decreases ifty, t,), and increases ift,,c0), and we obtain items 6—10
[ ]

Remark 18:Note that

_ _ 2, _ .2
t— o Uo@t_ﬂ'luo o6 My
ol ol of—o¢

and hencethe preceding corollary includes all possible casésreover r;(0) >
0 (<) if and only if r,(0) > 7,(0) (<). We also note that from the results given in
Section 3we have the shape and some information about the change pojrits of

Moreover we have the following properties

ProposiTION 19: If X, is a mixture of X = N* (o, 00) and X = N*(py, o) with
0 < p < 1landX =4 X, then the following hold:

1. r(t) =p(0)(ry(t) — (t— p)/od)ra(t) + (1= p(0)) (ro(t) — (t = Ho)/a) X
ro(t) = p(t) (1 — p(1) (ra(t) — ro(t)?

2. rp(t) = (p(O)ra(t) + (1 = p()ro(t)? — (p(O[(t — pa)/ofIra(t) + (1 —
P())[(t = po)/o§]ro(1)).

3. If 0=t =min(yy, Ho), then g(t) > 0.

4. rp(t) Moo ast— oo,

Proor: The proof of item 1 is immediate frortl6) and item 2 can be obtained
from item 1 since

rp(t) = p2(Ori(t) + (1 — p(1)2rg(t) + 2p(t) (1 — p(t))re(t)ro(t)

t— t—
M) — - p() —

= p(t) ro(t).

of o¢

Hence item 3 is obtained from item.2Moreover as lim_,., p(t) = 1 and
lim,., Ry(t)/Ro(t) = oo, then

| o (ra(t) = ro()?
I 1—p@)(ryt) —rot)z =1 T R.(1)/Ra(1)
fim (1= pO)ra(t) = rol)* = lim P = "5 2 1)
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which is equal to Qo = gg) or co/co (o > 0y). In the second casave have

lim p (ri(t) —ro(1))? = 2p lim (ry(t) — ro(t))(ri(t) —ro(t))
P TR (U/Ry () % (—Tp(DRo(D) + o(DR,(D)/RE(D)
e Rol) (1) = ro(O)(ri() ~rg(t) _
P R Fo(t) — (1) ’

sincg from Proposition 12r, — ry andr{ — 1/02, ast — co. Hence from (16)
lim ri(t) = 1 >0
lim ry(t) = -

and property 4 holds u

Remark 20:From the preceding propositigif fo(0) > f,(0) = 0(i.e., 4y + 307, > 0),
thenr/(0) < 0 if and only if

~ B 1- o), (19)
0o

which impliesp, < 0. This condition is equivalent to comparimg(0) with r,(0) =
(1 — p)ro(0). In particular if 7(0) = rq(0) (or if Xg has a linear failure rajethen
(19) holds Also note that ifiy < 0 andp — 1, then(19) holds Note that in the case
w(0) = 0, wincreases ang,(0) = 1/o¢ > 0. Hence if (19) holds thenX is BFR

Remark 21:Corollaries 15-17 can also be applied tmtruncated Normal distri-
butionsX; = N(;, ;) (the failure rate shape is the same as that of the translated
modelsX; = N*(; + ¢, 0;), wherec > max(g + 30, U1 + 304)). In this casewe
have thatr; increases from{—co, min( o, 41)). Moreover no(t) = n,(t) implies
0o = 01. Thus if o1 = 09 (Ho < Wy), thenw(—o0) = 0 andX,, is IFR or IBFR If
01> 09, thenw(—o0) = 1 andy (—o0) = oo, and hence X, is IFR, IBFR, or IBBFR.

Remark 22:Corollaries 15-17 can also be used to study the shape of mixtures of
linear failure rates which have the same shape as the translated mGdels

N* (W — c,07), wherec > 0 verifiesr;(t + ¢) = n;(t + ¢) for t > 0 andi = 1,2.

Note that this model includes the exponential distributibnus if X, andX; are

two models with linear failure rates(t) = a;t + by, fort > 0, wherea;,b, = 0

andi = 1,2, we have the following case$f a; = a; andby > by, then the shape

of the failure rate of the mixture is obtained from Corollary 15 by using

5= —2
 (bp — by)?
and
B pby
MO Bb (1 by
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Analogouslyif a; > a; andby > by, then the shape of the failure rate of the
mixture is obtained from Corollary 16 by using

‘. — a, —\aZ —a,a, + a3 -1
1 al_ao 9

_ pri(t)exp(—a; t%/2 — by t)
~pra(t)exp(—a t%/2 — byt) + (1 — p)ro(t)exp(—agt¥2 — byt)

w(t)

a;w(t) + ag(1— w(t))
w(t)(1—w(t))

y(t) = = (ra(t) = ro(1))2

Finally, if ag > a; andb, < b4, then the shape of the failure rate of the mixture
is obtained from Corollary 17 anig = (b, — by)/(ag — a4).
6. EXAMPLES

In this section we give some examples showing that all of the different shapes
given in Section 5 for the failure rate can be obtained from the mixture of positive
truncated Normal distribution®Ve pay special attention to BFR models

Example 23:1f X; = N*(3,3) andX, = N*(6,3), thenr,(t) increases if0,c0) for
all p, sinceoy = o, = 3 and

2 2 1
6 =06/(Mo— H)*=1> 2

The failure rates fop = 0, 0.2, 0.4, 0.6, 0.8, 1 are given in Figure.l

Ficure 1. Failure rates for the mixture ¢ *(3,3) andN*(6,3) with p = 0, 0.2,
0.4,0.6,0.8,and 1
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7 -
6 —
5 —
4 —
CF3_
2 -
1 —
0 —

T I i

0 5 10

X

Ficure 2. Failure rates for the mixture di*(1,1) andN*(7,1) with p =0, 0.2,
0.4, 0.6, 0.8, and 1

Example 24:1f X; = N*(9,1) andX,= N*(3,1), then

oé 1 1
8 = —2 = — < -,
(Bo—H)* 36 4
w(0) = 0,
w(0)(1—w(0) =0,
and hence X, is IFR or IBFR The mixture failure rates are given in FigureNbte
that we have a BFR fromic,,o). Thus a censure in0,c,) gives practical BFR

7 —

6 —

5 —

4

&

2

1 -

0 —
T T {
0 5 10

X

Ficure 3. Failure rates for the mixture dfi "(3,1) andN*(9,1) with p =0, 0.2,
0.4, 0.6, 0.8, and 1
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folt) mo(t)

ry(t)
n,(f)

T T | 1 I T T
6
t
Ficure 4. Failure rate for the mixture df *(—3,3) andN *(10,3) with p = 0.34432

This is equivalent to censuring approximately 60% of early failures represented by
Xo. We obtain similar results if we consider more truncated normal distributions for
early failures but in this casgc, is closer to zerdsee Fig 2).

Example 25:To obtain a BFR mixturewe neediy < 0 and(19). Thus if we con-
siderN*(—3,3) andN*(10,3), (19) impliesp > 0.34432 andin this casewe obtain
a BFR mixtureIf p = 0.34432 thenX, is IBFR. In Figure 4 we giverg, 1, 79,71,
andr,, for p = 0.34432 Note that(19) is equivalent to comparingo(0) = 3 with
re(0) = (1—p)ro(0) = (1 — p)/2 (Ain Figure 4. We give the mixture failure rates
forp=0.2,0.4, 0.6, and Q8 in Figure 5 Observe that a truncated nornit (—3,3)

is very similar to a linear failure rate

Example 26:In Figure § we show the failure rates obtained from a mixture
of N*(5,1) andN*(—1,3) for p= 0.2, 0.4, 0.6, and Q8. The mixture is BBFR for
p = 0.8 and IBBFR forp = 0.4.

7. CONCLUSIONS

First, we note that to have a BFR mixture from positive truncated normal models
we needyy < 0. From a practical point of viemthis is equivalent to assuming a
censored burn-in period larger thagfor the units with manufacturing defect which
in practice is quite usualwe test at the factory unfiht leastthe observed mean
time of failure for this kind of unit This condition holds if we suppose a linear
failure rate forXy. Thus under assumption§)—(iv) given in Section 2 and the
conditionspy < 0, r1(0) = 0 and(19), we obtain a BFR mixture from positive
truncated normal models

Sometimeswe have bathtub estimated failure rates from models which do not
have BFR due to some practical consideratidits examplein practice it is very
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15
1.0
£
0.5 —
00 o ——m o TImnSEEA s
1 i |
0 5 10
X

Ficure 5. Failure rates for the mixture dfi *(—3,3) andN*(10,3) with p = 0,
0.2,0.4,0.6,0.8, and 1

difficult to estimater (t) whenR(t) is small It is also difficult to estimate (t) near
t = 0 (especially wheniy, < ;). Hence models such as that of Figure & in
practice BFR.

The main conclusion is that BFR models appear naturally from mixtures of
usual IFR modelsWe think that this is the correct way to obtain the BFR model
since it explains the reason for the shape of the failure rate from the use of two
different populationsMoreover we can use the extensive literature on this topic

r(t)

Ficure 6. Failure rates for the mixture & *(5,1) andN*(—1,3) with p=0, 0.2,
0.4,0.6,0.8,and 1
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