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We obtain some techniques to study the shape of reliability functions~failure rate,
mean residual life, etc+! by using the s-equilibrium distribution of a renewal pro-
cess defined by Fagiuoli and Pellerey~Naval Res+ Logist+, 1993!+We apply these
techniques to study how to obtain distributions with bathtub shaped failure rate
~BFR! from mixtures of two positive truncated normal distributions+

1. INTRODUCTION

In reliability theory and survival analysis, a positive random variableX usually rep-
resents the life length of a unit or a component in a system+ Let us suppose thatX is
an absolutely continuous random variable with density functionf ~t !+ In this con-
text, the distribution functionF~t ! 5 Pr~X # t ! represents the probability of failure
before timet and the reliability functionR~t ! 5 Pr~X$ t ! represents the probability
of correct functioning at timet+

The most used functions to describe the aging of the units are the failure rate
r ~t ! 5 f ~t !0R~t ! and the mean residual lifeµ~t ! 5 E~X2 t 6X $ t !+ It is well known
that both of them uniquely determine the distribution function~i+e+, they have all of
the information about the model!+ For example, the inversion formula forr ~t ! is
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R~t ! 5 expS2E
0

t

r ~x! dxD+ (1)

These functions are also used to compare and classify different units+ The def-
initions for the likelihood ratio~#lr!, failure rate~#fr!, and mean residual life~#mrl!
orders and increasing~decreasing! failure rate~IFR ~DFR!! and decreasing~increas-
ing! mean residual life~DMRL ~IMRL !! classes can be found in@20# + It is well
known that

X #lr Yn X #fr Yn X #mrl Y

and

X IFR ~DFR! n X DMRL ~IMRL !

Throughout, increasing~decreasing! means nondecreasing~nonincreasing!+
In this context, we use positive random variables and, hence, the Normal dis-

tributionN~µ,s! is replaced by the positive truncated Normal distributionN1~µ,s!,
defined by the density

f ~t ! 5 c expS2
~t 2 µ!2

2s2 D for t . 0,

where

c 5 c~µ,s! 5SE
0

`

expS2
~x 2 µ!2

2s2 D dxD21

5
1

M2ps2

1

F~µ0s!

and F~x! is the standard Normal distribution+ Note that if X [ N1~ µ,s!, then
E~X ! . µ and Var~X ! , s2+ If µ 1 3s .. 0, thenc > 10M2ps2, E~X ! > µ, and
Var~X ! > s2+ The failure rate for the positive truncated Normal coincides with the
failure rate for the Normal distribution~Mill’s ratio ! for t . 0 and, hence, it is
increasing+

However, in practice, the failure rates estimated from datasets have a bathtub
shape, denoted by BFR; that is, they first strictly decrease from 0 tot1, then they are
constant fromt1 to t2 ~t1 # t2!, and, finally, they increase fromt2 to`+ The failures
in the first period are called early failures and they are due to manufacturing defects+
The failures in the second period~useful life period! are called chance failures and
the failures in the last period~wear out! are due to the aging process+ The timest1
andt2 are called change points+

Analogously, a model has an upside-down failure rate~UFR! if r ~t ! strictly
increases from 0 tot1, it is constant fromt1 to t2 ~t1 # t2! and it decreases fromt2 to
`+ Similar classes~BMRL and UMRL! can be defined for the mean residual life+
We use the following notation+ A model is IBFR whenr increases in~0, t0! and it
has a bathtub shape in~t0,`!+ Analogously, a model is BBFR when it is BFR in
~0, t0! and BFR in~t0,`!+
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In the last 20 years, many theoretical models with BFRs have been proposed
from different methods~see the reviews in@14,17# !+ In this article, we show that
BFRs can be obtained from a mixture of two positive truncated normal models with
IFRs+ In our opinion, this is the correct way to obtain a BFR distribution because it
explains why this shape arises naturally from a mixture of two different kind of
units ~units with and without manufacturing defects!+

Few articles study how to obtain BFR distributions from mixtures+ Krohn @13#
proposed obtaining BFR models from a mixture of three Weibull distributions~a
DFR Weibull for the early failures, an exponential for the useful life period, and an
IFR Weibull for the wear period!+ Vaupel and Yashin@22# obtained plots of BFR
models from mixtures of an exponential and a model with linear failure rate+ Unfor-
tunately, these results are not true whent r ` since the failure rate of the mixture
is equal to the failure rate of strong units whent r ` ~see@3# !+ Glaser@8# , Gupta
and Warren@9# , and Wondmagegnehu@23# studied special cases of Weibull and
gamma mixtures+ Other interesting articles that study, in general, the shape of the
failure rate obtained from a mixture are@1,3,4,10,15,21# +

The article is organized as follows+ In Section 2, we introduce the model+ In
Sections 3 and 4, we obtain some general techniques to determine the shape ofr ~t !
andµ~t ! and then, in Section 5, we study the mixtures of positive truncated Normal
distributions+ Finally, in Sections 6 and 7, we give some examples and remarks on
this model from a practical point of view+

2. THE MODEL

Let us suppose that an absolutely continuous positive random variableXp is a mix-
ture of two random variablesX1 andX0+ Hence, the densityfp is a mixture of two
densitiesf1 andf0,

fp~t ! 5 pf1~t ! 1 ~12 p! f0~t ! for t $ 0, (2)

where 0# p # 1, the reliability ~or survival function! is also a mixture,

Rp~t ! 5 pR1~t ! 1 ~12 p!R0~t !,

and the failure rate and the mean residual life are dynamic mixtures,

rp~t ! 5 p~t !r1~t ! 1 ~12 p~t !!r0~t !, (3)

µp~t ! 5 p~t !µ1~t ! 1 ~12 p~t !!µ0~t !, (4)

where

0 # p~t ! 5
pR1~t !

pR1~t ! 1 ~12 p!R0~t !
# 1 (5)

Hence,

min$r1~t !, r0~t !% # rp~t ! # max$r1~t !, r0~t !%+ (6)
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Moreover, from @3# , we have, under some mild conditions,

lim
tr`

rp~t ! 5 lim
tr`

min~r1~t !, r0~t !!+ (7)

It is well known that ifX0 andX1 are DFR, thenXp is also DFR+ However, the
result is not true for IFR distributions+

If X1 represents correct manufactured units andX0 represents units with man-
ufacturing defects, then the following practical assumptions can be made:

~i! p . p0 ~e+g+, p . 0+5!;
~ii ! X1 $fr X0;

~iii ! X1 andX0 are IFR;
~iv! r1~0! , r0~0!+

Do these conditions imply a BFR mixture? In general, the answer to this ques-
tion is negative, but we are interested in studying it in mixtures of positive trun-
cated normal models+ Note that condition~ii ! impliesR1~t ! $ R0~t ! andE~X1! $
E~X0!+ Condition~iv! implies f0~0! . 0+ Note that in the IFR Weibull model, this
condition does not hold, and, hence, we cannot obtain a BFR mixture+

3. GENERAL RESULTS

Glaser@8# used the functionh~t ! 5 2f '~t !0f ~t ! to study the failure rate shape+
Glaser’s result is very useful since, in many models, it is easier to studyh~t ! than
r ~t !+ For example, in the normal model, r ~t ! does not have an explicit expression
buth~t ! 5 ~t 2 µ!0s2, and hence, from Glaser’s result, r ~t ! is increasing+ The func-
tion h~t ! can be also used to characterize the likelihood ratio order~X #lr Y m

hX~t ! $ hY~t !! and the increasing and decreasing likelihood ratio classes~ILR,
DLR! by the monotonicityh~t !+ The ILR class is usually defined by the logcon-
cavity of the density function~see@20, p+ 405# ! and it is equivalent to the class of
PF2 densities defined in@2# + From Glaser’s result, we have that ILR~DLR! implies
IFR ~DFR!+ Analogously, we can define the BLR class whenh~t ! has a bathtub
shape, and the ULR, IBLR, DULR, BBLR, and UULR classes~we use the same
notation for the classes defined byh~t ! as that used for the classes defined byr ~t !
or µ~t !!+

Recently, Gupta and Warren@9# have extended Glaser’s result, showing that
r '~t ! 5 0 has at most one solution on the closed interval@zk21, zk# , wherez0 5 0 ,
z1 , {{{ , zn are the zeros ofh '~t !+ They also showed thatr '~t ! 5 0 does not have
any solution in~zn,`!+ In Theorem 4+3 of @9# they extend Glaser’s result, showing
that IBLR ~DULR! implies IFR, BFR, or IBFR ~DFR, UFR, or DUFR!+ Similar
results were obtained independently by Block, Savits, and Singh@5# + We have
extended this result in the following lemma+

Lemma 1: If r '~t ! is continuous in~0,`! and r~t ! strictly increases (decreases) in
~a,b! and strictly decreases (increases) in~b, c! , then h~t ! strictly increases
(decreases) at b.
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The proof is obtained from

r '~t ! 5 r ~t !~r ~t ! 2 h~t !! 5 r 2~t ! 1
f '~t !

R~t !
(8)

and

lim
tr`

1

µ~t !
5 lim

tr`
r ~t ! 5 lim

tr`
h~t !+ (9)

Thus, if X is BBLR, then it is IFR, BFR, IBFR, or BBFR ~i+e+, r has an easier
shape thanh with the same monotonicity at the end!+

The equilibrium distribution of a renewal process associated with a positive
random variableX with meanm is determined by the density

f *~t ! 5
R~t !

µ
for t . 0+

We denote byX* a random variable having this density+ It is well known~see, e+g+,
@6,11# ! that r *~t ! 5 10µ~t !+ Moreover, we note thath*~t ! 5 r ~t !+

If E~Xs! ,`, Fagiuoli and Pellerey@6# , defined the s-equilibrium distribution
of a renewal process associated toX as the distribution ofX

s* + + + *+ If X~s! denotes a
random variable having the s-equilibrium distribution, thenX~0! 5st X, X~1! 5st X

*,
X~2! 5st X

**, and so forth, where5st denotes equality in law+ They also defined the
s-CLASS by

X s-CLASSm X~s! CLASS+

For example, 1-IFR5 DMRL+ Analogously, the s-order is defined by

X #s-orderYm X~s! #orderY~s!

and the s-function by

s2 functionX~t ! 5 functionX~s!
~t !+

For example, the 1-lr order is the hr order, the 2-lr order is the mrl order, and the
1-failure rate isr~1!~t ! 5 10µ~t !+ Analogously, we note that ifE~Xs! , ` for s5
2,3, + + + , then

h~s!~t ! 5 r~s21!~t ! 5
1

µ~s22!~t !
(10)

and

X #s-lr,st,mrl Yn X #~s11!-lr,st,mrl Y+

Hence, Glaser’s and Gupta and Warren’s results can be applied toh~s!~t ! and
r~s!~t ! 5 h~s11!~t !, obtaining respectively the two following theorems+
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Theorem 2: If E~Xs11! , ` for s5 0,1,2, + + + , then

1. h~s! increasing (decreasing)n h~s11! increasing (decreasing);
2. h~s! bathtub (upside-down)n h~s11! bathtub or increasing (upside-down or

decreasing).

Theorem 3: If E~Xs11! , ` for s5 0,1,2, + + + , thenh~s11!
' ~t ! 5 0 has at most one

solution on the closed interval@zk21, zk# , where z0 5 0 , z1 , {{{ , zn are the
zeros ofh~s!

' ~t ! andh~s11!
' ~t ! 5 0 does not have any solution in~zn,`!.

Remark 4:Note that the shape ofh~s11! ~r~s11! or µ~s11!! is easier thanh~s! ~r~s! or
µ~s!!+ For example, if h~s! is increasing~decreasing!, thenh~s1k! is increasing~decreas-
ing! for k 5 1,2, + + + In particular, if s 5 1, from ~10!, the shape ofµ~t ! can be
obtained from the shape ofr ~t !+ For example, from Glaser’s result, we obtain the
well-known resultIFR ~DFR! n DMRL ~IMRL! and, if r ~t ! is BFR ~UFR!, then
µ~t ! is DMRL or UMRL ~IMRL or BMRL ! and the change point forµ~t ! is smaller
than the change point forr ~t ! ~another well-known result!+ Theorem 3 in@16# and
Theorem 2 in@7# are now immediate+Moreover, the formulas forh~t ! andr ~t ! can
be translated tor ~t ! andµ~t !+ For example, ~8! gives

S 1

µ~t !
D' 5 1

µ~t !
S 1

µ~t !
2 r ~t !D+ (11)

Remark 5: If X has a decreasing density functionf ~t !, then we can define the pre-
ceding equilibrium distributionX~21! by the reliabilityR~21!~t ! 5 f ~t !0f ~0!+ Obvi-
ously, X~21!

* 5st X+ Hence, we can study the shape ofh~r,µ! from the shape of
h~21!~t ! 5 2f ''~t !0f '~t !+ Analogously, if the i th derivativef ~i !~t ! # 0 for i 51, + + + ,s,
then we can defineX~2s! and useh~2s! to studyh~r,µ!+

Remark 6:The results given by Rojo@18# for age-smooth distributions can be also
translated to the equilibrium distributions since it is also age-smooth+ For example,

lim sup
tr`

R1~t !

R2~t !
, `n lim

tr`
µ1~t ! # lim

tr`
µ2~t !

~~iii ! in Theorem 2+1 in @18# ! can be obtained~by using~ii ! in Theorem 2+1 in @18# !
from the mild condition

lim sup
tr`

E
t

`

R1~u! du

E
t

`

R2~u! du

, `n lim
tr`

µ1~t ! # lim
tr`

µ2~t !+

Lemma 2+1 in @18# can be also translated toh andr whenf is decreasing andX~21!

is age-smooth of index2r+
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4. GENERAL RESULTS FOR MIXTURES

To apply Glaser’s and Gupta and Warren’s results to mixtures, we note that from
~2!, hp~t ! 5 2fp

'~t !0fp~t ! is also a dynamic mixture:

hp~t ! 5 w~t !h1~t ! 1 ~12 w~t !!h0~t !, (12)

where

0 # w~t ! 5
pf1~t !

pf1~t ! 1 ~12 p! f0~t !
# 1+ (13)

Moreover, we note that the equilibrium distribution of a mixture is another
mixture ~with different weights! of the equilibrium distributions of the compo-
nents; that is,

fp
*~t ! 5

Rp~t !

µp

5 p* f1
*~t ! 1 ~12 p* ! f0

*~t !,

where

0 # p* 5
pµ1

pµ1 1 ~12 p!µ0

# 1+

Analogously, the s-equilibrium distribution of a mixture is another mixture of
the s-equilibrium distributions of the components+ Hence, from the results given in
the preceding section, the results obtained for the failure rate of mixtures can be
translated to the mean residual life of mixtures by using~10!+Analogously, the results
obtained forh~t ! in mixtures can be translated tor ~t !, 10µ~t !, and, in general, h~s!~t !+
For example, the mixture of two IMRL distributions is also IMRL+Moreover, Theo-
rems 2+1 and 2+2 obtained by Block and Joe@3# can be applied toµ~t !, obtaining,
under some conditions, the following theorem+

Theorem 7: The asymptotic behavior of the mean residual life of the mixture is
equal to that of the mean residual life of stronger components; that is, if µ1~t ! $ µ0~t !,
then

lim
tr`

µp~t !0µ1~t ! 5 1+ (14)

We use the following notationg~t ! ; ~'! c as t r `, when limtr` g~t ! 5 c
and there existst ' such thatg~t ! increases~decreases! for t . t '+

We have obtained the following results+

Proposition 8: If 0 , p , 1 and r1~t ! # r0~t ! for t $ t1, then the following hold:

1. R0~t !0R1~t ! ' K $ 0 as tr `.
2. p~t ! ; K ' 5 p0 @ p 1 ~12 p!K # [ ~0,1# as tr `.
3. If lim inf tr` r0~t !0r1~t ! . 1, then K5 0 and K' 5 1.
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4. If lim tr` r0~t !0r1~t ! 5 c, thenlim tr` f0~t !0f1~t ! 5 K and lim tr`w~t ! 5
K '. Moreover, K5 0 or c 5 1.

5. If lim tr` h0~t !0h1~t ! 5 c' and lim tr` r0~t !0r1~t ! 5 c, thenlim tr` f0
'~t !0

f1
'~t ! 5 K. Moreover, K5 0 or c' 5 1.

6. If µ1~t ! $ µ0~t !, h0~t !0h1~t ! decreases to c', and f0~t !0f1~t ! decreases to K,
thenhp~t !0h1~t ! decreases to 1.

Proof: From ~1!, we have

R0~t !0R1~t ! 5 expSE
0

t

~r1~x! 2 r0~x!! dxD+
If r1~t ! # r0~t ! for t $ t1, then R0~t !0R1~t ! decreases toK $ 0+ Hence, we

obtain item 2 from~5!+
Moreover, if lim inf tr` r0~t !0r1~t ! . 1, then there existd . 1 andt2 . 0 such

that r0~t ! . dr1~t ! . r1~t ! for t . t2+ Thus, we have

R0~t !

R1~t !
# expSE

0

t2

~r1~x! 2 r0~x!! dxDexpS~12 d!E
t2

t

r1~x! dxD+
From ~1!, it is easy to show that*t2

` r1~x! dx5`, and, hence, K 5 0 andK ' 5 1+
Moreover, as

f0~t !

f1~t !
5

r0~t !

r1~t !

R0~t !

R1~t !

if lim tr` r0~t !0r1~t ! 5 c, then

lim
tr`

f0~t !

f1~t !
5 Kc

and, from L’Hôpital, we obtain

K 5 lim
tr`

R0~t !

R1~t !
5 lim

tr`

f0~t !

f1~t !
5 Kc

andK 5 0 or c 5 1+ Moreover, lim tr`w~t ! 5 K '+
To obtain item 5, we note that

lim
tr`

f0
'~t !

f1
'~t !

5 lim
tr`

f0~t !

f1~t !

h0~t !

h1~t !
5 Kc'

and

K 5 lim
tr`

f0~t !

f1~t !
5 lim

tr`

f0
'~t !

f1
'~t !

5 Kc'

518 J. Navarro and P. Hernandez

https://doi.org/10.1017/S0269964804184076 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964804184076


hold+ Moreover, item 6 is obtained from

hp~t !

h1~t !
5 11 ~12 w~t !!Sh0~t !

h1~t !
2 1D+ n

Remark 9: If r1~t ! # r0~t ! for all t, thenR0~t !0R1~t ! decreases andp~t ! increases
for all t+ Moreover, note that

rp~t !

r1~t !
5 11 ~12 p~t !!S r0~t !

r1~t !
2 1D (15)

holds, and, hence, if r00r1 decreases, thenrp0r1 decreases to 1 for allp . 0+ This
result was given by Block and Joe@3# + Also note that ifr00r1 decreases, thenf00f1
decreases andw increases+ Block and Joe’s result can be also obtained from item 6
and~10!+ Analogously, from Section 3 results, we obtain that ifµ0~t ! # µ1~t ! and
µ0~t !0µ1~t ! increases, thenµp~t !0µ1~t ! increases to 1+

Moreover, we have the following result+

Proposition 10: If (2) holds, then

rp
'~t ! 5 p~t !r1

'~t ! 1 ~12 p~t !!r0
'~t ! 2 p~t !~12 p~t !!~r1~t ! 2 r0~t !!2+ (16)

Proof: From ~3! and~5!, we have

rp
'~t ! 5 p'~t !~r1~t ! 2 r0~t !! 1 p~t !r1

'~t ! 1 ~12 p~t !!r0
'~t !

and

p'~t ! 5
p~12 p!R0~t !R1~t !

~ pR1~t ! 1 ~12 p!R0~t !!2 ~r0~t ! 2 r1~t !!

and, hence, ~16! holds+ n

Remark 11:We note that expression~3+2! in Gupta and Warren@9# is wrong+ In
particular, from ~16!, we obtain the following well-known result: If both X1 andX0

are DFR, then the mixture is DFR+We can obtain similar results forh~t !, µ~t !, and,
in general, h~s!~t !+

5. MIXTURES OF POSITIVE TRUNCATED NORMAL DISTRIBUTIONS

First, we give some properties for positive truncated Normal distributions+ Some of
these properties are also true for~untruncated! Normal distributions+

Proposition 12. If X [ N1~µ,s!, then the following hold:

1. h~t ! 5 ~t 2 µ!0s2.
2. r '~t ! 5 ~r ~t ! 2 ~t 2 µ!0s2!r ~t !+
3. r(t ) . (t 2 m)/s2.
4. E(X )5 m 1 s2r(0).
5. r(t ) increases tò as tr `.
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6. µ~t ! decreases to0 as tr `.
7. lim tr` r ~t !0t 5 10s2.
8. r~t ! 2 ~t 2 µ!0s2 decreases to0 as tr `.
9. lim tr` tµ~t ! 5 s2.

10. lim tr`~10µ~t !! 2 ~t 2 µ!0s2 5 0.
11. lim tr` r '~t ! 5 10s2.

Proof: From the definitions and~8!, items 1 and 2 are immediate+Moreover, from
Kotz and Shanbhag@12# ~see also@19# !, we have

µ~t ! 5 µ2 t 1 s2r ~t ! . 0 (17)

for t $ 0, and, hence, items 3 and 4 hold+
From items 2 and 3, r ~t ! increases andµ~t ! decreases for allt+Moreover, from

item 3 and~9!, lim tr` r ~t ! 5` and limtr` µ~t ! 5 0+ Hence,

lim
tr`

r ~t !

t
5 lim

tr`

f ~t !

tR~t !
5 lim

tr`

f '~t !

R~t ! 2 tf ~t !
5 lim

tr`

h~t !

t 2 10r ~t !
5

1

s2 +

Analogously, from ~17!, we obtain

r ~t ! 2
t 2 µ

s2 5
µ~t !

s2 ,

which decreases to 0 ast r `+
Applying L’Hôpital, we have

lim
tr`

1

tµ~t !
5 lim

tr`

t21R~t !

E
t

`

R~x! dx

5 lim
tr`

1

t 2 1
r ~t !

t
5

1

s2

and, hence, item 9 holds+
Analogously, from ~17!, we obtain

lim
tr`

1

µ~t !
2

t

s2 5 lim
tr`

s2R~t ! 2 tE
t

`

R~x! dx

s2E
t

`

R~x! dx

5 lim
tr`

s2f ~t ! 2 tR~t ! 1E
t

`

R~x! dx

s2R~t !

5 lim
tr`

s2r ~t ! 1 µ~t ! 2 t

s2

5 lim
tr`

2µ~t ! 2 µ

s2

5 2
µ

s2
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and, hence, item 10 holds+ Finally, from item 2 and~17!, we have

r '~t ! 5
r ~t !µ~t !

s2

and, hence,

lim
tr`

r '~t ! 5 lim
tr`

r ~t !

ts2 tµ~t ! 5
1

s2

holds+ n

Remark 13:Note that the asymptotic behavior of a normal failure rate is equivalent
to a linear failure rate+ If g~t ! 5 r ~t ! 2 ~t 2 µ!0s2 andr *~t ! is the failure rate of a
standard normal, theng~µ 1 ks! 5 ~r *~t ! 2 k!0s+ Hence, for k 5 3, we obtain
g~t ! # 0+2830990s for t $ µ 1 3s+

We consider now a mixture of two positive truncated Normal distributionsXi [
N1~µi ,si !, i 5 0,1+ First, we note that the failure rate of the mixture of truncated
Normal distributions is not equal to the failure rate of a mixture of~untruncated!
Normal distributions int . 0+ We have obtained the following properties+

Proposition 14: If Xp is a mixture of X0 [ N1~µ0,s0! and X1 [ N1~µ1,s1!, with
0 , p , 1 and X1 $fr X0, then the following hold:

1. s1
2 $ s0

2.
2. lim tr` r0~t !0r1~t ! 5 s1

20s0
2 $ 1.

3. If s1
2 . s0

2, then R0~t !0R1~t ! decreases to0 and p~t ! increases to1 as
t r `.

4. If s1
2 . s0

2, then f0~t !0f1~t ! ' 0 and w~t ! ; 1 as tr `.
5. If s1

2 5 s0
2, then µ0 , µ1, f0~t !0f1~t ! decreases to0, w~t ! increases to1,

R0~t !0R1~t ! decreases to0, and p~t ! increases to1 as tr `.
6. If ~t 2 µ1!0s1

2 , ~t 2 µ0!0s0
2, then w~t ! increases.

7. If µ0 , µ1 ~.!, then r0~t !0r1~t ! ' s1
20s0

2 ~;! and rp~t !0r1~t ! ' 1 as tr`.
8. hp

' ~t ! 5 w~t !~10s1
2! 1 ~1 2 w~t !!~10s0

2! 2 w~t !~1 2 w~t !!~~t 2 µ1!0s1
2 2

~t 2 µ0!0s0
2!2.

9. hp~t ! ; ` as tr `.

Proof: Items 1–3 can be obtained from Propositions 8 and 12+ Items 4–6 can be
obtained from

f0~t !

f1~t !
5

c0

c1

expS ~t 2 µ1!2

2s1
2 2

~t 2 µ0!2

2s0
2 D+

To obtain item 7, we note that the asymptotic behavior ofr00r1 is equal to that of

t 2 µ0

t 2 µ1

s1
2

s0
2 ,
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which decreases~increases! to s1
20s0

2 whenµ0 , µ1 ~.!+ The property forrp0r1 is
obtained from~15!+ Moreover, from ~12!,

hp~t ! 5 w~t !S t 2 µ1

s1
2 2

t 2 µ0

s0
2 D1

t 2 µ0

s0
2 ,

where

w~t ! 5
1

11 a~t !
,

a~t ! 5
12 p

p

f0~t !

f1~t !
5

12 p

p

c0

c1

expS ~t 2 µ1!2

2s1
2 2

~t 2 µ0!2

2s0
2 D $ 0

and

a '~t ! 5 a~t !S t 2 µ1

s1
2 2

t 2 µ0

s0
2 D+

Thus, differentiating, we have

hp
' ~t ! 5 2

a~t !

~11 a~t !!2 S t 2 µ1

s1
2 2

t 2 µ0

s0
2 D2

1 w~t !
1

s1
2 1 ~12 w~t !!

1

s0
2

and, hence, result 8 holds+ Moreover, lim tr` hp
' ~t ! 5 10s1

2 . 0 because

lim
tr`

~12 w~t !!S t 2 µ1

s1
2 2

t 2 µ0

s0
2 D2

5 0+

Thus, result 9 holds+ n

Corollary 15: If Xp is a mixture of X0 [ N1~µ0,s0! and X1 [ N1~µ1,s1!, with
0 , p , 1, s1 5 s0, andd 5 s0

20~µ0 2 µ1!2, then

1. If d . 1
4
_, then Xp is IFR.

2. If d # 1
4
_, w~0! $ 1

2
_, and w~0!~12 w~0!! , d, then Xp is IFR.

3. If d # 1
4
_, w~0! $ 1

2
_, and w~0!~12 w~0!! $ d, then Xp is IFR or BFR.

4. If d # 1
4
_, w~0! , 1

2
_, and w~0!~12 w~0!! . d, then Xp is IFR or BFR.

5. If d # 1
4
_, w~0! , 1

2
_, and w~0!~12 w~0!! # d, then Xp is IFR, BFR, or IBFR.

Moreover, the change points ofhp are determined by

w~t !~12 w~t !! 5 d+

Proof: If s1 5 s0, then from the preceding proposition,

s0
2hp
' ~t ! 5 12 ~12 w~t !!w~t !

~µ0 2 µ1!2

s0
2

andhp
' ~t ! $ 0 if and only if ~12 w~t !!w~t ! # d+
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As x~1 2 x! # 1
4
_ for 0 , x , 1, thenhp

' ~t ! . 0 whend . 1
4
_ + Hence, from

Glaser’s result, the mixture is IFR+ As w~t ! increases, the same result holds when
d # 1

4
_ , w~0! $ 1

2
_ , and

w~0!~12 w~0!! , d+

If d # 1
4
_ , w~0! $ 1

2
_ , and

w~0!~12 w~0!! $ d,

then there existz1 . 0 such thatw~z1!~12 w~z1!! 5 d, hp
' ~z1! 5 0, hp

' ~t ! , 0 for
0 , t , z1 andhp

' ~t ! . 0 for t . z1+ Thus, from Glaser’s result, Xp is BFR or IFR+
The same result holds whend # 1

4
_ , w~0! , 1

2
_ , and

w~0!~12 w~0!! . d+

If d # 1
4
_ , w~0! , 1

2
_ , and

w~0!~12 w~0!! # d,

then there existz1 , z2 such thatw~zi !~1 2 w~zi !! 5 d, i 5 1,2, hp
' ~t ! . 0 for

0 , t , z1, hp
' ~t ! , 0 for z1 , t , z2, andhp

' ~t ! . 0 for t . z1+ From Theorem 4+3
in @9#, Xp is IFR, BFR, or IBFR+ n

We have obtained a general result when the variances are not equal andh0~t ! $
h1~t !+

Corollary 16: If Xp is a mixture of X0 [ N1~µ0,s0! and X1 [ N1~µ1,s1!, with
0 , p , 1, s1 . s0, andh0~t ! $ h1~t ! for t . 0, then the following hold:

1. If w~0! $ x1 andg~0! $ 0, then Xp is IFR.
2. If w~0! $ x1 andg~0! , 0, then Xp is IFR or BFR.
3. If w~0! , x1 andg~t1! $ 0, then Xp is IFR.
4. If w~0! , x1 andg~t1! , 0, then Xp is IFR, BFR, or IBFR,

where

0 , x1 5
a 2 Ma2 2 ab1 b2

a 2 b
, 1,

a 5
1

s1
2 , b 5

1

s0
2 ,

g~t ! 5
w~t !0s1

2 1 ~12 w~t !!0s0
2

w~t !~12 w~t !!
2 S t 2 µ1

s1
2 2

t 2 µ0

s0
2 D2

,

and t1 is uniquely determined by w~t1! 5 x1.

Proof: First, we note thath0~t ! $ h1~t ! ~X1 $lr X0! implies X1 $fr X0+ Hence,
from the preceding proposition, w~t ! increases, lim tr`w~t ! 51, andhp

' ~t ! $ 0 ~#!
if and only if g~t ! $ 0 ~#!+ Thus,
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g '~t ! 5
h0~t ! 2 h1~t !

w~t !~12 w~t !!
p~w~t !!, (18)

where

p~x! 5 ~b 2 a!x2 1 2ax2 b

and 0, a 5 10s1
2 , b 5 10s0

2+ Thus, p~0! 5 2b andp~1! 5 a, andp~x! 5 0 has a
unique solutionx1 in ~0,1!+ Hence, asw increases, if w~0! $ x1, theng~t ! increases
for all t and we have properties 1 and 2+ If w~0! , x1, theng~t ! has a minimum at
t1 . 0, wheret1 is uniquely determined byw~t1! 5 x1, and we obtain properties 3
and 4+ n

The following corollary completes the possible cases+

Corollary 17: If Xp is a mixture of X0 [ N1~µ0,s0! and X1 [ N1~µ1,s1!, with
0 , p , 1, s1 . s0 and

t0 5
s1

2 µ0 2 s0
2 µ1

s1
2 2 s0

2 . 0,

then the following hold:

1. If w~t0! $ x1, then Xp is IFR.
2. If w~t0! , x1, w~0! , x1, g~0! $ 0, andg~t1! $ 0, then Xp is IFR.
3. If w~t0! , x1, w~0! , x1, g~0! , 0, andg~t1! $ 0, then Xp is IFR or BFR.
4. If w~t0! , x1, w~0! , x1, g~0! $ 0, andg~t1! , 0, then Xp is IFR, BFR, or

IBFR.
5. If w~t0! , x1, w~0! , x1, g~0! , 0, andg~t1! , 0, then Xp is IFR, BFR,

IBFR, or BBFR.
6. If w~t0! , x1, w~0! $ x1, g~0! . 0, g~t1! $ 0, andg~t2! $ 0, then Xp is

IFR.
7. If w~t0! , x1, w~0! $ x1, g~0! # 0, andg~t2! $ 0, then Xp is IFR or BFR.
8. If w~t0! , x1, w~0! $ x1, g~0! . 0, andg~ti ! $ 0 for i 5 1 or i 5 2, then

Xp is IFR, BFR, or IBFR.
9. If w~t0! , x1, w~0! $ x1, g~0! # 0, andg~t2! , 0, then Xp is IFR, BFR,

IBFR, or BBFR.
10. If w~t0! , x1, w~0! $ x1, g~0! . 0, g~t1! , 0, andg~t2! , 0, then Xp is

IFR, BFR, IBFR, BBFR, or IBBFR.

where t1 and t2 are uniquely determined by w~t ! 5 x1 and t1 , t2.

Proof: First, we note that

w'~t ! 5 w~t !~12 w~t !!~h0~t ! 2 h1~t !!,
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and, hence, w decreases in~0, t0! and increases in~t0,`!+Moreover, 0 , p , 1 and
s1 . s0 imply that limtr`w~t ! 51+ Hence, taking into account thatg~t0! $ 0, we
have the following cases:

If w~t0! $ x1, from ~18!, the sign ofg '~t ! is the same as that ofh0~t ! 2 h1~t !,
and we obtain item 1+

If w~t0! , x1 andw~0! , x1, thenw~t ! 5 x1 has a unique positive solution
t1 . t0+Hence, from ~18!, g increases in~0, t0!, decreases in~t0, t1!, and increases
in ~t1,`!, and we obtain items 2–6+

If w~t0! , x1 andw~0! $ x1, thenw~t ! 5 x1 has two positive solutionst1 and
t2 such thatt1 , t0 , t2+ Hence, from ~18!, g decreases in~0, t1!, increases in
~t1, t0!, decreases in~t0, t2!, and increases in~t2,`!, and we obtain items 6–10+

n

Remark 18:Note that

t 2 µ0

s0
2 5

t 2 µ0

s0
2 m t 5

s1
2 µ0 2 s0

2 µ1

s1
2 2 s0

2 ,

and, hence, the preceding corollary includes all possible cases+ Moreover, rp
'~0! .

0 ~,! if and only if rp~0! . hp~0! ~,!+We also note that from the results given in
Section 3, we have the shape and some information about the change points ofµ~t !+

Moreover, we have the following properties+

Proposition 19: If Xp is a mixture of X0 [ N1~µ0,s0! and X1 [ N1~µ1,s1! with
0 , p , 1 and X1 $fr X0, then the following hold:

1. rp
'~t ! 5 p~t !~r1~t ! 2 ~t 2 µ1!0s1

2!r1~t ! 1 ~12 p~t !!~r0~t ! 2 ~t 2 µ0!0s0
2! 3

r0~t ! 2 p~t !~12 p~t !!~r1~t ! 2 r0~t !!2

2. rp
'~t ! 5 ~ p~t !r1~t ! 1 ~1 2 p~t !!r0~t !!2 2 ~ p~t !@~t 2 µ1!0s1

2#r1~t ! 1 ~1 2
p~t !!@~t 2 µ0!0s0

2#r0~t !!.
3. If 0 # t # min~µ1,µ0!, then rp

'~t ! . 0.
4. rp~t ! ; ` as tr `.

Proof: The proof of item 1 is immediate from~16! and item 2 can be obtained
from item 1 since

rp
'~t ! 5 p2~t !r1

2~t ! 1 ~12 p~t !!2r0
2~t ! 1 2p~t !~12 p~t !!r1~t !r0~t !

2 p~t !
t 2 µ1

s1
2 r1~t ! 2 ~12 p~t !!

t 2 µ0

s0
2 r0~t !+

Hence, item 3 is obtained from item 2+ Moreover, as limtr` p~t ! 5 1 and
lim tr` Rp~t !0R0~t ! 5`, then

lim
tr`

~12 p~t !!~r1~t ! 2 r0~t !!2 5 lim
tr`

p
~r1~t ! 2 r0~t !!2

Rp~t !0R0~t !
,
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which is equal to 0~s1 5 s0! or`0` ~s1 . s0!+ In the second case, we have

lim
tr`

p
~r1~t ! 2 r0~t !!2

Rp~t !0R0~t !
5 2p lim

tr`

~r1~t ! 2 r0~t !!~r1
'~t ! 2 r0

'~t !!

~2fp~t !R0~t ! 1 f0~t !Rp~t !!0R0
2~t !

5 2p lim
tr`

R0~t !

Rp~t !

~r1~t ! 2 r0~t !!~r1
'~t ! 2 r0

'~t !!

r0~t ! 2 rp~t !
5 0,

since, from Proposition 12, rp r r1 andri
'r 10si

2, ast r `+ Hence, from ~16!

lim
tr`

rp
'~t ! 5

1

s1
2 . 0

and property 4 holds+ n

Remark 20:From the preceding proposition, if f0~0! .. f1~0! > 0 ~i+e+, µ113s1 .. 0!,
thenrp

'~0! , 0 if and only if

2
µ0

s0
2 . ~12 p! f0~0!, (19)

which impliesµ0 , 0+ This condition is equivalent to comparingh0~0! with rp~0! >
~12 p!r0~0!+ In particular, if h0~0! > r0~0! ~or if X0 has a linear failure rate!, then
~19! holds+Also note that ifµ0 , 0 andpr 1, then~19! holds+ Note that in the case
w~0! > 0, w increases andhp

' ~0! > 10s0
2 . 0+ Hence, if ~19! holds, thenXp is BFR+

Remark 21:Corollaries 15–17 can also be applied to~untruncated! Normal distri-
butionsXi [ N~µi ,si ! ~the failure rate shape is the same as that of the translated
modelsXi [ N1~µi 1 c,si !, wherec . max~µ0 1 3s0,µ1 1 3s1!!+ In this case, we
have thatrp

' increases from~2`,min~µ0,µ1!!+ Moreover, h0~t ! $ h1~t ! implies
s0 5 s1+ Thus, if s1 5 s0 ~µ0 , µ1!, thenw~2`! 5 0 andXp is IFR or IBFR+ If
s1 . s0, thenw~2`! 51 andg~2`! 5`, and, hence, Xp is IFR, IBFR, or IBBFR+

Remark 22:Corollaries 15–17 can also be used to study the shape of mixtures of
linear failure rates which have the same shape as the translated modelsXi [
N1~µi 2 c,si !, wherec . 0 verifiesri ~t 1 c! > hi ~t 1 c! for t . 0 andi 5 1,2+
Note that this model includes the exponential distribution+ Thus, if X0 andX1 are
two models with linear failure ratesri ~t ! 5 ai t 1 bi , for t . 0, whereai ,bi $ 0
and i 5 1,2, we have the following cases+ If a0 5 a1 andb0 . b1, then the shape
of the failure rate of the mixture is obtained from Corollary 15 by using

d 5
a0

~b0 2 b1!2

and

w~0! 5
pb1

pb1 1 ~12 p!b0

+
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Analogously, if a0 . a1 andb0 . b1, then the shape of the failure rate of the
mixture is obtained from Corollary 16 by using

x1 5
a1 2 Ma1

2 2 a1a0 1 a0
2

a1 2 a0

, 1,

w~t ! 5
pr1~t !exp~2a1 t 202 2 b1 t !

pr1~t !exp~2a1 t 202 2 b1 t ! 1 ~12 p!r0~t !exp~2a0 t 202 2 b0 t !

g~t ! 5
a1w~t ! 1 a0~12 w~t !!

w~t !~12 w~t !!
2 ~r1~t ! 2 r0~t !!2+

Finally, if a0 . a1 andb0 , b1, then the shape of the failure rate of the mixture
is obtained from Corollary 17 andt0 5 ~b1 2 b0!0~a0 2 a1!+

6. EXAMPLES

In this section, we give some examples showing that all of the different shapes
given in Section 5 for the failure rate can be obtained from the mixture of positive
truncated Normal distributions+We pay special attention to BFR models+

Example 23:If X1 [ N1~3,3! andX0 [ N1~6,3!, thenrp~t ! increases in~0,`! for
all p, sinces0 5 s1 5 3 and

d 5 s0
20~µ0 2 µ1!2 5 1 .

1

4
+

The failure rates forp 5 0, 0+2, 0+4, 0+6, 0+8, 1 are given in Figure 1+

Figure 1. Failure rates for the mixture ofN1~3,3! andN1~6,3! with p 5 0, 0+2,
0+4, 0+6, 0+8, and 1+
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Example 24:If X1 [ N1~9,1! andX0 [ N1~3,1!, then

d 5
s0

2

~µ0 2 µ1!2 5
1

36
,

1

4
,

w~0! > 0,

w~0!~12 w~0!! > 0,

and, hence, Xp is IFR or IBFR+ The mixture failure rates are given in Figure 3+ Note
that we have a BFR from~cp,`!+ Thus, a censure in~0,cp! gives practical BFR+

Figure 2. Failure rates for the mixture ofN1~1,1! andN1~7,1! with p 5 0, 0+2,
0+4, 0+6, 0+8, and 1+

Figure 3. Failure rates for the mixture ofN1~3,1! andN1~9,1! with p 5 0, 0+2,
0+4, 0+6, 0+8, and 1+
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This is equivalent to censuring approximately 60% of early failures represented by
X0+We obtain similar results if we consider more truncated normal distributions for
early failures, but in this case, cp is closer to zero~see Fig+ 2!+

Example 25:To obtain a BFR mixture, we needµ0 , 0 and~19!+ Thus, if we con-
siderN1~23,3! andN1~10,3!, ~19! impliesp . 0+34432 and, in this case,we obtain
a BFR mixture+ If p # 0+34432, thenXp is IBFR+ In Figure 4, we giver0, r1,h0,h1,
andrp for p 5 0+34432+ Note that~19! is equivalent to comparingh0~0! 5 1

3
_ with

rp~0! > ~12 p!r0~0! > ~12 p!02 ~A in Figure 4!+We give the mixture failure rates
for p5 0+2, 0+4, 0+6, and 0+8 in Figure 5+Observe that a truncated normalN1~23,3!
is very similar to a linear failure rate+

Example 26: In Figure 6, we show the failure rates obtained from a mixture
of N1~5,1! andN1~21,3! for p 5 0+2, 0+4, 0+6, and 0+8+ The mixture is BBFR for
p 5 0+8 and IBBFR forp 5 0+4+

7. CONCLUSIONS

First, we note that to have a BFR mixture from positive truncated normal models,
we needµ0 , 0+ From a practical point of view, this is equivalent to assuming a
censored burn-in period larger thanµ0 for the units with manufacturing defect which,
in practice, is quite usual~we test at the factory until, at least, the observed mean
time of failure for this kind of unit!+ This condition holds if we suppose a linear
failure rate forX0+ Thus, under assumptions~i!–~iv! given in Section 2 and the
conditionsµ0 , 0, r1~0! > 0 and ~19!, we obtain a BFR mixture from positive
truncated normal models+

Sometimes, we have bathtub estimated failure rates from models which do not
have BFR due to some practical considerations+ For example, in practice, it is very

Figure 4. Failure rate for the mixture ofN1~23,3! andN1~10,3! with p50+34432+
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difficult to estimater ~t ! whenR~t ! is small+ It is also difficult to estimater ~t ! near
t 5 0 ~especially whenµ0 ,, µ1!+ Hence, models such as that of Figure 2, are, in
practice, BFR+

The main conclusion is that BFR models appear naturally from mixtures of
usual IFR models+ We think that this is the correct way to obtain the BFR model,
since it explains the reason for the shape of the failure rate from the use of two
different populations+ Moreover, we can use the extensive literature on this topic+

Figure 5. Failure rates for the mixture ofN1~23,3! andN1~10,3! with p 5 0,
0+2, 0+4, 0+6, 0+8, and 1+

Figure 6. Failure rates for the mixture ofN1~5,1! andN1~21,3! with p5 0, 0+2,
0+4, 0+6, 0+8, and 1+
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