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Abstract

Using a result of Blanchet and Wallwater (2015) for exactly simulating the maximum
of a negative drift random walk queue endowed with independent and identically dis-
tributed (i.i.d.) increments, we extend it to a multi-dimensional setting and then we give
a new algorithm for simulating exactly the stationary distribution of a first-in–first-out
(FIFO) multi-server queue in which the arrival process is a general renewal process and
the service times are i.i.d.: the FIFO GI/GI/c queue with 2≤ c <∞. Our method utilizes
dominated coupling from the past (DCFP) as well as the random assignment (RA) dis-
cipline, and complements the earlier work in which Poisson arrivals were assumed, such
as the recent work of Connor and Kendall (2015). We also consider the models in con-
tinuous time, and show that with mild further assumptions, the exact simulation of those
stationary distributions can also be achieved. We also give, using our FIFO algorithm, a
new exact simulation algorithm for the stationary distribution of the infinite server case,
the GI/GI/∞ model. Finally, we even show how to handle fork–join queues, in which
each arriving customer brings c jobs, one for each server.
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1. Introduction

In recent years, the method of exact simulation has evolved as a powerful way of sam-
pling from stationary distributions of queueing models for which such distributions cannot be
derived explicitly. The main method itself is referred to as coupling from the past (CFP), as
introduced in Propp and Wilson [17] for finite-state discrete-time Markov chains. Since then,
the method has been generalized to cover general state-space Markov chains by using dominat-
ing processes; this is known as dominated coupling from the past (DCFP), as in Kendall [15].
The main purpose of such methods is to produce a copy by simulation that has exactly (not
approximately) the stationary distribution desired. These methods involve simulating processes
backwards in time. In the present paper we consider using such methods for the first-in–first-out
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(FIFO) multi-server queue, denoted as the FIFO GI/GI/c queue, 2≤ c <∞, where c denotes
the number of servers working in parallel, and arriving customers wait in one common queue
(line).

The first algorithms yielding exact simulation in stationarity of the FIFO GI/GI/c queue
are found in [20] and [21], in which Poisson arrivals are assumed, i.e. the M/G/c case. In
[20], a DCFP method is used, but the strong condition of super-stability is assumed, ρ < 1,
instead of ρ<c (ρ =E[S]/E[T], where T and S denote an interarrival time and service time
respectively; stability only requires that ρ<c). As a dominating process, the M/G/1 queue is
used under processor sharing (PS) together (key) with its time-reversibility properties. In PS,
there is no queue: all customers are served simultaneously but at a rate 1/n when there are n≥ 1
customers in service. Then in [21], the general ρ<c case is covered by using a forward-in-time
regenerative method (a general method developed in [2]) and using the M/G/c model under a
random assignment (RA) discipline as an upper bound – a model in which each arrival joins
the ith queue with probability 1/c independently. (The general forward-in-time regenerative
method in [2] unfortunately always yields infinite expected termination time.) Then in [8],
Connor and Kendall generalized the DCFP/PS method in [20] by using the RA model. They
accomplished this by first exactly simulating the RA model in stationarity backwards in time
under PS at each node, then reconstructing it to obtain the RA model with FIFO at each node
and doing so in such a way that a sample path upper bound for the FIFO M/G/c is achieved.

As for renewal arrivals (the general FIFO GI/GI/c queue considered here) the methods used
above break down for various reasons, primarily because while under Poisson arrivals the c
stations under RA become independent, they are not independent for general renewal arrivals.
Also, the time-reversibility property of PS no longer holds, and nor does Poisson arrivals see
time averages (PASTA). Finally, under general renewal arrivals, the system may never empty
once it begins operating. New methods are needed. Blanchet, Dong, and Pei [7] solved the
problem by utilizing a vacation model as an upper bound. In the present paper, however, we
utilize DCFP by directly simulating the RA model in reverse time (under FIFO at each node).
Our method involves extending, to a multi-dimensional setting, a recent result of Blanchet and
Wallwater [6] for exactly simulating the maximum of a negative drift random walk endowed
with independent and identically distributed (i.i.d.) increments. We also remark on how our
approach can lead to new results for other models too, such as multi-server queues under the
last-in–first-out (LIFO) discipline, or the randomly choose next discipline, and even fork–join
models (also called split and match models).

2. The FIFO GI/GI/c model

Here we set up the classic first-in–first-out (of queue) (FIFO) multi-server queueing model
and its associated Markov chain known as the Kiefer–Wolfowitz workload vector (for further
details, see e.g. [1, Chapter 12, page 341], and the original paper [16]). In what follows, as
input to a c-server in a parallel multi-server queue with c≥ 2, we have i.i.d. service times
{Sn : n≥ 0} distributed as G(x)= P(S≤ x), x≥ 0, with finite and non-zero mean
0 <E[S]= 1/μ <∞. Independently, the arrival times {tn : n≥ 0} (t0 = 0) of customers
to the model form a renewal process with i.i.d. interarrival times Tn = tn+1 − tn, n≥ 0
distributed as A(x)= P(T ≤ x), x≥ 0, and finite non-zero arrival rate 0 < λ=E[T]−1 <∞.
The FIFO GI/GI/c model has only one queue, and customers upon arrival join the end of the
queue and then attend service at the station that becomes free first (just like a United States
post office). Because of the FIFO assumption, the nth service time initiated for use by a server,
Sn, is used on the nth arrival (they arrive at time tn), so one could equivalently imagine/assume
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that Sn is brought to the system by the nth arrival. In this equivalent form, we say that at time
tn, the workload in the system has jumped upward by the amount Sn. Each server is identical
in that they process service times at rate 1. We let Wn = (Wn(1), . . . , Wn(c))T denote the
Kiefer–Wolfowitz workload vector, defined recursively by

Wn+1 =R(Wn + Sne− Tnf)+, n≥ 0, (1)

where e= (1, 0, . . . 0)T , f= (1, 1, . . . , 1)T , R places a vector in ascending order, and + takes
the positive part of each coordinate. The vector Wn shows, in ascending order, how much
work at time tn each server will process from among all work in the system at that time not
including Sn. Letting Cn denote the nth arriving customer, Dn =Wn(1) is the customer delay
in the queue of Cn, because the server with the least amount of work will be the first to empty
in front of Cn. Recursion (1) defines a c-dimensional Markov chain due to the given i.i.d.
assumptions. The great importance of the recursion is that it yields {Dn : n≥ 0}, which is thus
a function of a Markov chain.

With stability condition ρ = λ/μ<c, it is well known that Wn converges in distribution as
n→∞ to a proper stationary distribution (hence so does Dn). Let π denote this stationary
distribution. Our main objective in the present paper is to provide a simulation algorithm for
sampling exactly from π .

3. The RA GI/GI/c model

Given a c-server queueing system, the random assignment model (RA) is the case when
each of the c servers forms its own FIFO single-server queue, and each arrival to the system,
independent of the past, randomly chooses queue i to join with equal probability 1/c, 1≤ i≤ c.
In the GI/GI/c case, we refer to this as the RA GI/GI/c model. The following is a special case
of Lemma 1.3 of [1, page 342]. (Such results and others even more general are based on [22],
[11], and [12].)

Lemma 1. Let QF(t) denote the total number of customers in the system at time t≥ 0 for the
FIFO GI/GI/c model, and let QRA(t) denote the total number of customers in the system at time
t≥ 0 for the corresponding RA GI/GI/c model in which both models are initially empty and fed
with exactly the same input of renewal arrivals {tn : n≥ 0} and i.i.d. service times {Sn : n≥ 0}.
Assume further that for both models the service times are used by the servers in the order in
which service initiations occur (Sn is the service time used for the nth such initiation). Then

P(QF(t)≤QRA(t) for all t≥ 0)= 1. (2)

The importance of Lemma 1 is that it allows us to jointly simulate versions of the two
stochastic processes {QF(t) : t≥ 0} and {QRA(t) : t≥ 0} while achieving a coupling such that
(2) holds. In particular, whenever an arrival finds the RA model empty, the FIFO model is
found empty as well. (But we need to impose further conditions if we wish to ensure that
indeed the RA GI/GI/c queue will empty with certainty.) Letting time t be sampled at arrival
times of customers, {tn : n≥ 0}, we thus also have

P(QF(tn−)≤QRA(tn−) for all n≥ 0)= 1. (3)

In other words, the total number in the system as found by the nth arrival is sample-path
ordered as well. Note that for the FIFO model, the nth arriving customer Cn initiates the nth
service since FIFO means ‘first-in-queue–first-out-of-queue’, where by ‘queue’ we mean the
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line before entering service. This means that for the FIFO model we can attach Sn to Cn upon
arrival if we so wish when applying Lemma 1. For the RA model, however, customers are not
served in the order in which they arrive. For example, consider c= 2 servers (system initially
empty) and suppose C1 is assigned to node 1 with service time S1, and C2 is also assigned to
node 1 (before C1 departs) with service time S2. Meanwhile, before C1 departs, suppose C3
arrives and is assigned to the empty node 2 with service time S3. Then S3 is used for the second
service initiation. For RA, the service times in order of initiation are a random permutation of
the originally assigned {Sn}.

To use Lemma 1, it is crucial to simply let the server hand out service times one at a time
when they are needed for a service initiation. Thus, customers waiting in a queue before starting
service do not have a service time assigned until they enter service. In simulation terminology,
this amounts to generating the service times in order of when they are needed.

Define the total workload at any time t as the sum of all whole and remaining service times
in the system at time t. One disadvantage of generating service times only when they are needed
is that it does not allow the workload to be defined – only the amount of work in service. To
get around this if need be, one can simply generate service times upon arrival of customers,
and give them to the server to be used in order of service initiation. The point is that when
Cn arrives, the total work in the system jumps up by the amount Sn. But Sn is not assigned to
Cn: it is assigned (perhaps later) to whichever customer initiates the nth service. This allows
Lemma 1 to hold true for the total amount of work in the system. If we let {VF(t) : t≥ 0} and
{VRA(t) : t≥ 0} denote the total workload in the two models with the service times used in the
manner just explained, then in addition to Lemma 1 we have

P(VF(t)≤ VRA(t) for all t≥ 0)= 1, (4)

P(VF(tn−)≤ VRA(tn−) for all n≥ 0)= 1. (5)

It is important, however, to note that what one cannot do is define workload at the individual
nodes i by doing this, because that forces us to assign Sn to Cn so that workload at the node that
Cn attends (i say) jumps by Sn and Cn enters service using Sn; that destroys the proper coupling
needed to obtain Lemma 1. We can only handle the total (sum over all c nodes) workload. In
the present paper, our use of Lemma 1 is via a kind of reversal.

Lemma 2. Let {S′n} be an i.i.d. sequence of service times distributed as G, and assign S′n to
Cn in the RA model. Define Sn as the service time used in the nth service initiation. Then {Sn}
is also i.i.d. distributed as G.

Proof . The key is to note that we are reordering based only on the order in which service
times begin to be used, not when they are completed (which would thus introduce a bias). The
service time chosen for the next initiation either enters service immediately (e.g. it is one that
is routed to an empty queue by an arriving customer) or is chosen from among those waiting
in lines, and all those waiting are i.i.d. distributed as G. Let t̂n denote the time at which the nth
service initiation begins. The value Sn of the nth service time chosen (at time t̂n) by a server
is independent of the past service time values used before time t̂n, and is distributed as G (the
choice of service time chosen as the next to be used is not based on the value of the service
time, only its position in the lines). Letting k(n)= the index of the {S′n} that is chosen, i.e.
Sn = S′k(n), it is this index (a random variable) that depends on the past, but the value Sn is
independent of k(n) since it is a new one. Thus the {Sn} are i.i.d. distributed as G. �
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The point of the above Lemma 2 is that we can, if we so wish, simulate the RA model by
assigning S′n to Cn (to be used as their service time), but then assigning Sn, i.e. S′k(n), to Cn in
the FIFO model. By doing so the requirements of Lemma 1 are satisfied and (2), (3), (4) and
(5) hold. Interestingly, however, it is not possible to first simulate the RA model up to a fixed
time t, and then stop and reconstruct the FIFO model up to this time t. At time t, there may still
be RA customers waiting in lines and hence not enough of the Sn have been determined yet
to construct the FIFO model. But all we have to do, if need be, is to continue the simulation
of the RA model beyond t until enough Sn have been determined to construct fully the FIFO
model up to time t.

4. Simulating exactly from the stationary distribution of the RA GI/GI/c model

By Lemma 1, the RA GI/GI/c queue, which shares the same arrival stream {tn : n≥ 0}
(t0 = 0) and the same service times in order of service initiations {Sn : n≥ 0}, will serve as
a sample path upper bound (in terms of total number of customers in the system and total
workload) of the target FIFO GI/GI/c queue. Independent of {Tn : n≥ 0} and {Sn : n≥ 0}, we
let {Un : n≥ 0} be an i.i.d. sequence of random variables from discrete uniform distribution
on {1, 2, . . . , c}; Un represents the choice that customer Cn makes about which single-server
queue to join under RA discipline. Let Vn = (Vn(1), . . . , Vn(c))T denote the workload vector
as found by Cn in the RA GI/GI/c model, and for i= 1, . . . , c, Vn(i) is the waiting time of the
Cn if he chooses to join the FIFO single-server queue of server i. So, V0(i)= 0 and

Vn+1(i)= (Vn(i)+ SnI(Un = i)− Tn)+, n≥ 0. (6)

These c processes are dependent through the common arrival times {tn : n≥ 0} (equiva-
lently common interarrival times {Tn : n≥ 0}) and the common {Un : n≥ 0} random variables.
Because of all the i.i.d. assumptions, {Vn : n≥ 0} forms a Markov chain. Define S̃n =
(SnI(Un = 1), . . . , SnI(Un = c))T and Tn = Tnf. Then we can express (6) in vector form as

Vn+1 = (Vn + S̃n −Tn)+, n≥ 0. (7)

Here Vn uses the same interarrival times {Tn : n≥ 0} and service times {Sn : n≥ 0} as we fed
Wn in (1). However, the coordinates of Vn are not in ascending order, though all of them are
non-negative.

Each node i as expressed in (6) can be viewed as a FIFO GI/GI/1 queue with common
renewal arrival process {tn : n≥ 0}, but with i.i.d. service times {S̃n(i)= SnI(Un = i) : n≥ 0}.
Across i, the service times (S̃n(1), . . . , S̃n(c)) are not independent, but they are identically
distributed: marginally, with probability 1/c, S̃n(i) is distributed as G, and with probability
(c− 1)/c it is distributed as the point mass at 0, i.e. E[S̃(i)]=E[S]/c. The point here is that we
are not treating node i as a single-server queue endowed only with its own arrivals (a thinning
of the {tn : n≥ 0} sequence) and its own service times i.i.d. distributed as G. Defining i.i.d.
increments �n(i)= S̃n(i)− Tn for n≥ 0, each node i has an associated negative drift random
walk {Rn(i) : n≥ 0} with R0(i)= 0 and

Rn(i)=
n∑

j=1

�j(i), n≥ 1.

With ρ = λE[S]<c, we define ρi = λE[S̃(i)]= λE[S]/c= ρ/c<1; equivalently E[�(i)]<0
for all i= 1, . . . , c. Let V0(i) denote a random variable with the limiting (stationary)
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distribution of Vn(i) as n→∞; it is well known (due to the i.i.d. assumptions) that V0(i) has
the same distribution as

M(i) �max
m≥0

Rm(i)

for i= 1, . . . , c.
More generally, even when the increment sequence is just stationary ergodic, not necessar-

ily i.i.d. (hence not time-reversible as in the i.i.d. case), it is the backward-in-time maximum
that is used in constructing a stationary version of {Vn(i)}. We will need this backwards
approach in our simulation so we go over it here; it is usually referred to as Loynes’ lemma. We
extend the arrival point process {tn : n≥ 0} to be a two-sided point stationary renewal process
{tn : n ∈Z}

· · · t−2 < t−1 < 0= t0 < t1 < t2 · · ·
Equivalently, Tn = tn+1 − tn, n ∈Z, form i.i.d. interarrival times; {Tn : n ∈Z} forms a two-sided
i.i.d. sequence.

Similarly, the i.i.d. sequences {Sn : n≥ 0} and {Un : n≥ 0} are extended to be two-sided
i.i.d., {Sn : n ∈Z} and {Un : n ∈Z}. These extensions further allow two-sided extension of the
i.i.d. increment sequences {�n(i) : n ∈Z} for i= 1, . . . , c, that is,

�n(i)= S̃n − Tn = SnI(Un = i)− Tn, n ∈Z.

Then we define c time-reversed (increments) random walks {R(r)
n (i) : n≥ 0} for i= 1, . . . , c,

by R(r)
0 (i)= 0 and

R(r)
n (i)=

n∑
j=1

�−j(i), n≥ 1.

A (from-the-infinite-past) stationary version of {Vn(i)} denoted by {V0
n (i) : n≤ 0} is then

constructed via

V0
0 (i)=max

m≥0
R(r)

m (i),

V0
−1(i)=max

m≥1
R(r)

m (i)− R(r)
1 (i),

V0
−2(i)=max

m≥2
R(r)

m (i)− R(r)
2 (i),

...

V0−n(i)=max
m≥n

R(r)
m (i)− R(r)

n (i),

for all i= 1, . . . , c.
By construction, the process V0

n = (V0
n (1), . . . , V0

n (c))T , n≤ 0, is jointly stationary rep-
resenting a (from-the-infinite-past) stationary version of {Vn : n≤ 0}, and satisfies the
forward-in-time recursion (7):

V0
n+1 = (V0

n + S̃n −Tn)+, n≤−1. (8)

Thus, by starting at n= 0 and walking backwards in time, we have (theoretically) a time-
reversed copy of the RA model. Furthermore, {V0

n : n≤ 0} can be extended to include forward
time n≥ 1 via using the recursion further:

V0
n = (V0

n−1 + S̃n−1 −Tn−1)+, n≥ 1, (9)

where S̃n = (SnI(Un = 1), . . . , SnI(Un = c))T for n ∈Z.
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In fact, once we have a copy of just V0
0, we can start off the Markov chain with it as initial

condition and use (9) to obtain a forward-in-time stationary version {V0
n : n≥ 0}.

The above ‘construction’, however, is theoretical. We do not yet have any explicit way of
obtaining a copy of V0

0, let alone an entire from-the-infinite-past sequence {V0
n : n≤ 0}. In

Blanchet and Wallwater [6], a simulation algorithm is given that yields (when applied to each
of our random walks), for each 1≤ i≤ c, a copy of

{(R(r)
n (i), V0−n(i)) : 0≤ n≤N}

for any desired 0≤N <∞ including stopping times N. We modify the algorithm so that it can
do the simulation jointly across the c systems, that is, we extend it to a multi-dimensional form.

In particular, it yields an algorithm for obtaining a copy of V0
0, as well as a finite segment

(of length N) of a backward-in-time copy of the RA model, {V0−n : 0≤ n≤N}, a stationary
into-the-past construction up to discrete time n=−N.

Finite exponential moments are not required (because only truncated exponential moments
are needed, E[eγ�(i)I{|�(i)| ≤ a}], which in turn allow for the simulation of the exponential
tilting of truncated �(i), via acceptance/rejection). To get a finite expected termination time
(at each individual node), one needs the service distribution to have finite moment slightly
beyond 2: for some (explicitly known) ε > 0,

E[S2+ε] <∞.

As our first case, we consider a stopping time N such that V−N = 0. Before giving the
definition of the stopping time N, we introduce the main idea of our simulation algorithm.

Let us define the maximum of a sequence of vectors. Suppose we have Z1, . . . , Zk, where
Zi ∈Rd with d≥ 1 and k ∈N+ ∪ {∞}. Define

max(Z1, . . . , Zk)=
(

max
1≤i≤k

Zi(1), . . . , max
1≤i≤k

Zi(d)
)T

.

Next define, for n ∈Z,

Un = (I(Un = 1), . . . , I(Un = c))T and �n = S̃n −Tn = SnUn − Tnf,

where {Un : n ∈Z} are i.i.d. from discrete uniform distribution over {1, 2, . . . , c}, and inde-
pendently {Tn : n ∈Z} are i.i.d. from distribution A (as introduced in Section 2). Our goal is to
simulate the stopping time N ∈N such that V0−N = 0, defined as

N = inf
{

n≥ 0: V0−n =max
k≥n

R(r)
k −R(r)

n = 0
}
, (10)

that is, the first time walking in the past, that all coordinates of the workload vector are 0,
jointly with {(R(r)

n , V0−n) : 0≤ n≤N}. (By convention, the value of any empty sum of numbers
is zero, i.e.

∑0
j=1 aj = 0.)

To ensure that E[N] <∞, in addition to ρ<c (stability), it is required that P(T > S) > 0 (see
the proof of Theorem 2 in [18]), for which the most common sufficient conditions are that T
has unbounded support, P(T > t) > 0, t≥ 0, or S has mass arbitrarily close to 0, P(S < t) > 0,

t > 0. But as we shall show in Section 6, given we know that P(T > S) > 0, we can assume
without loss of generality that interarrival times are bounded. It is that assumption which
makes the extension of [6] to a multi-dimensional form easier to accomplish. Then, we show
(in Sections 4.2 and 9) how to simulate from π even when P(T > S)= 0. We do that in two dif-
ferent ways, one as a sandwiching argument and the other involving Harris-recurrent Markov
chain regenerations.
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4.1. Algorithm for simulating exactly from π for the FIFO GI/GI/c queue: the case
P(T > S) > 0

As mentioned earlier, we will assume that P(T > S) > 0, so that the stable (ρ < c) RA and
FIFO GI/GI/c Markov chains (7) and (1) will visit 0 infinitely often with certainty. (That the RA
model empties infinitely often when P(T > S) > 0 is proved, for example, in [18].) We imagine
that at the infinite past n=−∞, we start both (7) and (1) from empty. We construct the RA
model forwards in time, while using Lemma 2 for the service times for the FIFO model, so that
Lemma 1 applies and we have it in the form of (3), for all tn ≤ 0 up to and including at time t0 =
0, at which time both models are in stationarity. We might have to continue the construction of
the RA model so that W0 (distributed as π ) can be constructed (e.g. enough service times have
been initiated by the RA model for using Lemmas 1 and 2). Formally, one can theoretically
justify the existence of such infinite-from-the-past versions (that obey Lemma 1), by use of
Loynes’ lemma. Each model (when started empty) satisfies the monotonicity required to use
Loynes’ lemma. In particular, noting that QRA(tn−)= 0 if and only if Vn = 0, we conclude
that if at any time n it holds that Vn = 0, then Wn = 0. By the Markov property, given that
Vn = 0=Wn, the future is independent of the past for each model, or said differently, the past
is independent of the future. This remains valid if n is replaced by a stopping time (strong
Markov property).

We outline the simulation algorithm steps as follows.

1. Simulate {{(R(r)
n (i), V0−n(i)) : 0≤ n≤N}, 1≤ i≤ c} with N as defined in (10). If N = 0,

go to the next step. Otherwise, having stored all data, reconstruct V0
n forwards in

time from n=−N (initially empty) until n= 0, using the recursion (8). During this
forward-in-time reconstruction, redefine Sj as the jth service initiation used by the RA
model (i.e. we are using Lemma 2 to gather service times in the proper order to feed
in the FIFO model, which is why we do the reconstruction). If at time n= 0 there
have not yet been N service initiations, then continue simulating the RA model out in
forward time until finally there is an Nth service initiation, and then stop. This will
require, at most, simulating out to tn with n=N(+) =min{n≥ 0: V0

n = 0}. Take the
vector (S−N, S−N+1, . . . , S−1) and reset (S0, S1, . . . , SN−1)= (S−N, S−N+1, . . . , S−1).
Also, store the interarrival times (T−N, T−N+1, . . . , T−1), and reset (T0, . . . , TN−1)=
(T−N, T−N+1, . . . , T−1).

2. If N = 0, then set W0 = 0 and stop. Otherwise use (1) with W0 = 0, recursively go for-
wards in time for N steps until obtaining WN , via the N reset service (S0, S1, . . . , SN−1)
and interarrival times (T0, . . . , TN−1). Reset W0 =WN .

3. Output W0.

Detailed simulation steps are discussed in Appendix A. Let τ denote the total number of
interarrival times and service times to simulate in order to detect the stopping time N. The
following proposition shows that our algorithm will terminate in finite expected time, i.e.
E[τ ] <∞. The proof is given in Section B.

Proposition 1. If ρ = λ/μ<c, P(T>S)>0, and there exists some ε>0 such that E[S2+ε] <∞,
then

E[N] <∞ and E[τ ] <∞.
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4.2. A more efficient algorithm: sandwiching

In this section we no longer even need to assume that P(T > S) > 0. (Another method
allowing for P(T > S)= 0 involving Harris-recurrent regeneration is given later in Section 9.)
Instead of waiting for the workload vector of the GI/GI/c queue under RA discipline to become
0, we choose an ‘inspection time’ t−κ < 0 for some κ ∈Z+ to stop the backward simulation
of the RA GI/GI/c queue, then construct two bounding processes of the target FIFO GI/GI/c
queue and evolve them forwards in time, using the same stream of arrivals and service time
requirements (in order of service initiations), until coalescence or time zero. In particular, we
let the upper bound process be a FIFO GI/GI/c queue starting at time t−κ with workload vector
V0−κ , and let the lower bound process be a FIFO GI/GI/c queue starting at the same time t−κ

from empty, i.e. with workload vector 0.
Let W(t) denote the ordered (ascendingly) workload vector of the original FIFO GI/GI/c

queueing process, starting from the infinite past, evaluated at time t. For t≥ t−κ , we define
Wu−κ (t) and Wl−κ (t) to be the ordered (ascendingly) workload vectors of the upper bound
and lower bound processes, initiated at the inspection time t−κ , evaluated at time t. By our
construction and Theorem 3.3 in [8],

Wu−κ (t−κ )=R(V0−κ )≥W(t−κ )≥Wl−κ (t−κ )= 0,

and for all t > t−κ ,
Wu−κ (t)≥W(t)≥Wl−κ (t),

where all the above inequalities hold coordinate-wise.
Note that we can evolve the ordered workload vectors of the two bounding processes as

follows: for tn−1 ≤ t < tn when −κ<n≤−1,

Wu−κ (t)=R(Wu−κ (tn−1)+ Sn−1e− (t− tn−1)f)+,

Wl−κ (t)=R(Wl−κ (tn−1)+ Sn−1e− (t− tn−1)f)+.
(11)

Similarly, let Q(t) denote the number of customers in the original FIFO GI/GI/c queueing
process, starting from the infinite past, evaluated at time t. For t≥ t−κ , we let Qu−κ (t) and
Ql−κ (t) denote the number of customers in the upper and lower bound queueing processes
respectively, both initiated at the inspection time t−κ , evaluated at time t. If at some time
τ ∈ [t−κ , 0] we observe that Wu−κ (τ )=Wl−κ (τ ), then it must be true that W(τ )=Wu−κ (τ )=
Wl−κ (τ ) and Q(τ )=Qu−κ (τ )=Ql−κ (τ ) (because the ordered remaining workload vectors of
two bounding processes can only meet when they both have idle servers). We call such time
τ ‘coalescence time’ and from then on we have full information of the target FIFO GI/GI/c
queue, hence we can continue to simulate it forwards in time until time 0.

However, if coalescence does not happen by time 0, we can adopt the so-called ‘binary
back-off’ method by letting the arrival time t−2κ be our new inspection time and redo the
above procedure to detect coalescence. Theorem 3.3 in [8] ensures that, for any t−κ ≤ t≤ 0,

Wu−κ (t)≥Wu
−2κ (t)≥W(t)≥Wl

−2κ (t)≥Wl−κ (t).

We summarize the sandwiching algorithm as follows.

1. Simulate {(R(r)
n , V0−n) : 0≤ n≤ κ} with all data stored.

2. Use the stored data to reconstruct V0
n forwards in time from n=−κ until n= 0, using

(8), and redefine Sj as the jth service initiation used by the RA model.
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3. Set Wu−κ (t−κ )=R(V0−κ ) and Wl−κ (t−κ )= 0. Then use the same stream of interar-
rival times (T−κ , T−κ+1, . . . , T−1) and service times (S−κ , S−κ+1, . . . , S−1) to simulate
Wu−κ (t), Wl−κ (t) forwards in time using (11).

4. If at some time t ∈ [t−κ , 0] we detect Wu−κ (t)=Wl−κ (t), set τ = t, W(τ )=Wu−κ (τ ),
Q(τ )=∑c

i=1 I(W(τ ; i) > 0), where W(t; i) is the ith entry of vector W(t). Then use the
remaining interarrival times and service times to evolve the original FIFO GI/GI/c queue
forwards in time until time t0 = 0, output (W(0), Q(0)) and stop.

5. If no coalescence is detected by time 0, set κ = 2κ , then continue to simulate the back-
ward RA GI/GI/c process until (− κ)th arrival, i.e. {(R(r)

n , V0−n) : 0≤ n≤ κ}, with all
data stored. Go to step 2.

Next we analyze properties of the coalescence time. Define

κ∗− = inf
{

n≥ 0: inf
t−n≤t≤0

‖Wu−n(t)−Wl−n(t)‖∞ = 0
}

.

If at time t−κ∗− we start an upper bound FIFO GI/GI/c queue with workload vector Wu
−κ∗−

(t−κ∗−)

and a lower bound FIFO GI/GI/c queue with workload vector 0, they will coalesce by time
t0 = 0. Therefore if we simulate the RA system backwards in time to t−κ∗− , we will be able to
detect a coalescence. We next show that E[− t−κ∗− ] <∞.

By stationarity we have that κ∗− is equal in distribution to

κ∗+ = inf
{

n≥ 0: inf
0≤t≤tn

‖Wu
0(t)−Wl

0(t)‖∞ = 0
}
,

hence −t−κ∗−
d= tκ∗+ .

Proposition 2. If ρ =E[S]/E[T]<c and there exists some ε>0 such that E[S2+ε]<∞ and
E[T2+ε]<∞, then

E[tκ∗+]<∞.

The proof follows the same argument as in the proof of Proposition 3 in [7], so we give a
brief proof outline in Section B.

5. Continuous-time stationary constructions

For a stable FIFO GI/GI/1 queue, let D denote stationary customer delay (time spent in
queue); that is, it has the limiting distribution of Dn+1 = (Dn + Sn − Tn)+ as n→∞.

Independently, let Se denote a random variable distributed as the equilibrium distribution
Ge of service time distribution G,

Ge(x)=μ

∫ x

0
P(S > y) dy, x≥ 0,

where S∼G. Let V(t) denote the total work in the system at time t, the sum of all whole or
remaining service times in the system at time t. Dn = V(tn−), and one can construct {V(t)} via

V(t)= (Dn + Sn − (t− tn))+, tn ≤ t < tn+1.

(It is to be continuous from the right with left limits.) Let V denote stationary workload; that
is, it has the limiting distribution

P(V ≤ x)= lim
t→∞

1

t

∫ t

0
P(V(s)≤ x) ds, x≥ 0.
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It is well known that the following holds (see e.g. [19, Sections 6.3 and 6.4]):

P(V > x)= ρP(D+ Se > x), x≥ 0.

Letting FD(x)= P(D≤ x) denote the probability distribution of D, letting δ0 be the point mass
at 0, and letting ∗ be convolution of distributions, this means that the distribution of V can be
written as a mixture:

(1− ρ)δ0 + ρFD ∗Ge.

This leads to the following.

Proposition 3. For a stable (0 < ρ < 1) FIFO GI/GI/1 queue, if ρ is explicitly known, and
one can exactly simulate from D and Ge, then one can exactly simulate from V .

Proof. 1. Simulate a Bernoulli (ρ) random variable B.

2. If B= 0, then set V = 0. Otherwise, if B= 1, then simulate D and independently
simulate a copy Se ∼Ge. Set V =D+ Se. Stop. �

Another algorithm requiring the ability to simulate from Ae (equilibrium distribution of the
interarrival time distribution A) instead of Ge follows from another known relation:

V
d= (D+ S− Te)+, (12)

where D, S, and Te ∼ Ae are independent (see e.g. equation (88) of [23, page 426]). Thus,
by simulating D, S, and Te, simply set V = (D+ S− Te)+. Equation (12) extends analo-
gously to the FIFO GI/GI/c model, where our objective is to exactly simulate from the
time-stationary distribution of the continuous-time Kiefer–Wolfowitz workload vector, W(t)=
(W(t;1), . . . , W(t;c))T , t≥ 0, where it can be constructed via

W(t)=R(Wn + Sne− (t− tn)f)+, tn ≤ t < tn+1.

It is to be continuous from the right with left limits, Wn =W(tn −). Total workload V(t), for
example, is obtained from this via

V(t)=
c∑

i=1

W(t; i).

Letting W∗ have the time-stationary distribution of W(t) as t→∞, and letting W0 have the
discrete-time stationary distribution π and letting S, Te, and W0 be independent, then

W∗ d=R(W0 + Se− Tef)+. (13)

So once we have a copy of W0 (distributed as π ) from our algorithm in Section 4.1 or
Section 4.2, we can easily construct a copy of W∗ as long as we can simulate from Ae. Of
course, if arrivals are Poisson then the distribution of W∗ is identical to that of W0 by PASTA,
but otherwise we can use (13).
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FIGURE 1: Number of customers for an M/M/c queue in stationarity when λ= 3, μ= 2, and c= 2.

5.1. Numerical results

As a sanity check, we have implemented our perfect sampling algorithm in MATLAB� for
the case of an Erlang (k1, λ)/ Erlang (k2, μ)/c queue. We provide our implementation codes
for both algorithms in the online appendix of this paper, available at https://github.com/yanan-
pei/exact-sampling-multiserver-queue.

First we consider M/M/c queues, which are special cases of Erlang (k1, λ)/ Erlang (k2, μ)/c
with k1 = k2 = 1. For the quantity of interest, the number of customers in the FIFO M/M/c
queue at stationary, we obtain its empirical distribution from a large number of independent
runs of our algorithm and compare it to the theoretical distribution which has a well-established
closed form:

π0 =
( c−1∑

k=0

ρk

k! +
ρc

(c− 1)!
1

c− ρ

)−1

,

πk =
⎧⎨⎩π0 · ρk/k! if 0 < k < c,

pi0 · ρkcc−k/c! if k ≥ c,

where ρ = λ/μ<c.
As an example, Figure 1 shows the result of such a test when λ= 3, μ= 2, and c= 2.

Gray bars are the empirical results of 5 000 draws using our algorithm and black bars are the
theoretical distribution number of customers in the system from stationarity. A Pearson’s chi-
squared test between the theoretical and empirical distributions gives a p-value equal to 0.8781,
indicating close agreement (i.e. we cannot reject the null hypothesis that there is no difference
between these two distributions). For another set of parameters λ= 10, μ= 2, and c= 10, the
results are shown in Figure 2 with a p-value of 0.6069 for the chi-squared fitness test.

For the general Erlang(k1, λ)/ Erlang(k2, μ)/c queue when k1 > 1 and k2 > 1 when ρ/c=
λk2/(cμk1)= 0.9, we compare the empirical distribution of number of customers in the system
at stationarity, obtained from a large number of runs of our perfect sampling algorithm, to the
numerical results (with precision at least 10−4) provided in Table III of [14]. The results for an
Erlang(2, 9)/ Erlang(2, 5)/c queue are given in Figure 3. Gray bars are the empirical results
of 5 000 draws using our algorithm and black bars are the numerical values given in [14], and
they are very close to each other. The Pearson’s chi-squared test gives a p-value of 0.9464, so
we cannot reject the null hypothesis that these two distributions agree well.
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FIGURE 2: Number of customers for an M/M/c queue in stationarity when λ= 10, μ= 2, and c= 10.
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FIGURE 3: Number of customers for an Erlang (k1, λ)/ Erlang (k2, μ)/c queue in stationarity when k1 =
2, λ= 9, k2 = 2, μ= 5, c= 2, and ρ/c= 0.9.

Next we run a numerical experiment comparing the computational efficiency of the first
algorithm in Section 4.1 and the second sandwiching algorithm in Section 4.2. We measure
the computational efficiency in two aspects. The first one is how far in the past we need to
simulate the dominating process to detect coalescence (counting the total number of arrivals
sampled backwards). The second aspect involves actual computation time in seconds. Figure 4
depicts such a comparison for an M/M/c queue with parameters λ= 10, μ= 2, and c= 10,
from 5 000 runs. Both results indicate that the second algorithm (sandwiching) is significantly
more efficient than the first one.

Finally we study how the computational complexity of our sandwiching algorithm com-
pares to the algorithm given in [7]. Note that these two algorithms look similar: they both use
back-off strategies to run two bounding processes from some inspection time and check if they
meet before time 0. The difference is that in [7] they use a so-called ‘vacation system’ to con-
struct upper bound process, whereas we use the same queue but under RA discipline instead.
In the following numerical experiment, we define the computational complexity as the total
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FIGURE 4: Computational efficiency comparison between two algorithms for an M/M/c queue.

TABLE 1. Simulation results for computational complexities with varying traffic intensities for an M/M/c
queue with fixed μ= 5 and c= 2.

95% confidence interval of number of arrivals simulated backwards

λ ρ/c Algorithm in Section 4.2 Algorithm in [7]

5 0.5 54.8194 ± 0.5758 146.5618 ± 2.3598
6 0.6 86.5394 ± 1.0536 308.4448 ± 4.9413
7 0.7 152.6552 ± 2.2695 730.1130 ± 11.2783
8 0.8 337.9544 ± 6.3021 2201.8254 ± 32.1556
9 0.9 1521.3502 ± 31.8267 12277.8686 ± 161.5824

number of arrivals each algorithm samples backwards to detect coalescence. Table 1 shows
how they vary with traffic intensity, ρ/c= λ/(cμ), based on 5 000 independent runs of both
algorithms using the same back-off strategy with the same initial κ = 1. The result suggests
that our second algorithm (sandwiching) outperforms the one proposed in [7] as the magni-
tude of our computational complexity does not increase as fast as theirs when traffic intensity
increases.
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6. Why we can assume that interarrival times are bounded

Lemma 3. Consider the recursion

Dn+1 = (Dn + Sn − Tn)+, n≥ 0,

where both {Tn} and {Sn} are non-negative random variables, and D0 = 0.
Suppose that, for another sequence of non-negative random variables {T̂n},

P(T̂n ≤ Tn, n≥ 0)= 1.

Then, for the recursion
D̂n+1 = (D̂n + Sn − T̂n)+, n≥ 0,

with D̂0 = 0,
P(Dn ≤ D̂n, n≥ 0)= 1.

Proof . The proof is by induction on n≥ 0: because (with probability 1 in the following
arguments) T̂0 ≤ T0, we have

D1 = (S0 − T0)+ ≤ (S0 − T̂0)+ = D̂1.

Now suppose the result holds for some n≥ 0. Then Dn ≤ D̂n and by assumption T̂n ≤ Tn; hence

Dn+1 = (Dn + Sn − Tn)+ ≤ (D̂n + Sn − T̂n)+ = D̂n+1,

and the proof is complete. �
Proposition 4. Consider the stable RA GI/GI/c model in which P(T > S) > 0. In order to use
this model to simulate from the corresponding stationary distribution of the FIFO GI/GI/c
model as explained in the Section 4.1, without loss of generality we can assume that the
interarrival times {Tn} are bounded: there exists b > 0 such that

P(Tn ≤ b, n≥ 0)= 1.

Proof . By stability, cE[T] >E[S], and by assumption P(T > S) > 0. If the {Tn} are not
bounded, then for b > 0, define T̂n =min{Tn, b}, n≥ 0, i.e. truncated Tn. Choose b sufficiently
large that cE[T̂] >E[S] and P(T̂ > S) > 0 still hold. Now use the {T̂n} in place of the {Tn} to
construct an RA model, denoted by R̂A. Denote this by

V̂n = (V̂n(1), . . . , V̂n(c)),

where it satisfies the recursion (7) in the form

V̂n+1 = (V̂n + S̃n − V̂n)+, n≥ 0,

where T̂n = T̂n · f.
Starting from V0 = V̂0 = 0, then from Lemma 3, it holds (coordinate-wise) that

Vn ≤ V̂n, n≥ 0,

and thus, if for some n≥ 0 it holds that V̂n = 0, then Vn = 0 and hence Wn = 0 (as explained in
our previous section). Since b was chosen ensuring that cE[T̂] >E[S] and P(T̂ > S) > 0, {V̂n}
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is a stable RA GI/GI/c queue that will indeed empty infinitely often. Thus we can use it to do
the backward-in-discrete-time stationary construction until it empties, at time (say)−N̂, where
N̂ =min{n≥ 0: V̂−n = 0}. Then, we can reconstruct the original RA model (starting empty at
time −N̂) using the (original untruncated) N̂ interarrival times (T−N̂, T−N̂+1, . . . , T−1) in lieu

of (T̂−N̂, T̂−N̂+1, . . . , T̂−1), so as to collect N̂ reordered Sn needed in the construction of W0
for the FIFO model. �
Remark 1. One would expect the reconstruction of the original RA model in the above proof
to be unnecessary, that instead we only need to reconstruct the R̂A model until we have N̂
service initiations from it, as opposed to N̂ service initiations from the original RA model.
Although this might be true, the subtle problem is that the order in which service times are
initiated in the R̂A model will typically be different than for the original RA model; they have
different arrival processes (counter-examples are easy to construct). Thus it is not clear how
one can utilize Lemma 1 and Lemma 2 and so on. One would need to generalize Lemma 1 to
account for truncated arrival times used in the RA model, but not the FIFO model, in perhaps
a form such as a variation of (3),

P(QF(tn−)≤QR̂A(t̂n−) for all n≥ 0)= 1,

where {t̂n} is the truncated renewal process. We have not explored this further.

7. Infinite server systems and other service disciplines

In this section we sketch how one can utilize our FIFO GI/GI/c results to obtain exact
sampling of some other models including the infinite server queue, and the multi-server queue
under other disciplines.

In [4] an exact simulation algorithm is presented for simulating from the stationary distri-
bution of the infinite server queue, the GI/GI/∞. Here we sketch how to utilize our new FIFO
GI/GI/c results to accomplish this by using a FIFO GI/GI/c model as an upper bound. The
GI/GI/∞ model has an infinite number of servers, there is no line, every arrival enters service
immediately upon arrival; the nth customer arrives at time tn and departs at time tn + Sn.

For 0 < ρ = λ/μ<∞, this model is always stable. Note that any c > ρ can be chosen for
this construction. A larger value of c will result in a smaller number of arrivals necessary to
detect coalescence, up to a certain point, since there will be less congestion in the bounding
systems and the customers will leave faster. On the other hand, the actual simulation time
may increase just as a consequence of simulating a c-dimensional random walk. We suggest a
rule consistent with square-root staffing, c= ρ +√ρ, since this is well known to trade quality
and capacity costs, which in our setting precisely translate to trading faster coalescence with
cost-per-replication costs (see [13]).

Letting V∞(t) denote the total amount of work in the GI/GI/∞ model, and letting Vc(t)
denote the total amount of work in the (necessarily stable) FIFO GI/GI/c model being fed
exactly the same input (of service times and interarrival times), and both starting initially
empty, the following is easily established:

P(V∞(t)≤ Vc(t) for all t≥ 0)= 1,

hence
P(V∞(tn−)≤ Vc(tn−) for all n≥ 0)= 1.

(Note that both models use the service times in the same order of initiation, which makes the
coupling easy from the start.)

https://doi.org/10.1017/apr.2019.45 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.45


Exact sampling for some multi-dimensional queueing models with renewal input 1195

Thus, if, for example, P(T > S) > 0, then the FIFO model will empty and can be used to
detect times when the GI/GI/∞ model will empty. Let L∞(tn−) denote the total number of
busy servers in the GI/GI/∞ model as found by Cn.

Simulating the FIFO model backwards in time in stationarity (using our previous algo-
rithm), until it first empties, can then be used to detect a time when the GI/GI/∞ model
is empty, and then one can construct it back up to time t= 0 to obtain a stationary copy of
V∞(tn−) and of L∞(tn−).

Now we consider alternatives disciplines to FIFO for the GI/GI/c model. It is immediate that
when service times are generated only when needed by a server, the total number of customers
in the system process {Q(t)} remains the same under FIFO as under last-in–first-out (LIFO), in
which the next customer to enter service is the one at the bottom of the line, or random selection
next (RS), in which the next customer to enter service from the line is selected at random by
the server. Thus, they all share the same stationary distribution of Q(t) as t→∞, as well as the
stationary distribution of Q(tn−) as n→∞. Let Q0 have this limiting (as n→∞) distribution.
This fact can be used to exactly simulate, for example, stationary delay D under LIFO or RS
(they are not the same as for FIFO). The method (sketch) is as follows. Simulate a copy of Q0,
jointly with the remaining service times of those in service, by assuming FIFO. This represents
the distribution of the system as found in stationarity (at time 0) by arrival C0. Consider RS, for
example. If the line is empty, then define DRS = 0; C0 enters service immediately. Otherwise,
place C0 in the line, and continue simulating but now using RS instead of FIFO. As soon as C0
enters service, stop and define DRS as that length of time.

8. Fork–join models

The RA recursion (7),

Vn+1 = (Vn + Sn −Tn)+, n≥ 0, (14)

is actually a special case for the modeling of fork–join (FJ) queues (also called split and match)
with c nodes. In an FJ model, each arrival is a ‘job’ with c components, the ith component
requiring service at the ith FIFO queue. So upon arrival at time tn, the job splits into its c
components to be served. As soon as all c components have completed service, then and only
then does the job depart. Such models are useful in manufacturing applications. The nth job
(Cn) thus arrives with a service time vector attached of the form Sn = (Sn(1), . . . , Sn(c)). Let
us assume that the vectors are i.i.d., but otherwise each vector’s coordinates can have a general
joint distribution; for then (14) still forms a Markov chain. We will denote this model as the
GI/GI/c-FJ model. The sojourn time of the ith component is given by Vn(i)+ Sn(i), and thus
the sojourn time of the nth job, Cn, is given by

Hn = max
1≤i≤c
{Vn(i)+ Sn(i)}.

Of great interest is obtaining the limiting distribution of Hn as n→∞; we denote a random
variable with this distribution as H0. FJ models are notoriously difficult to analyze analytically.
Even the special case of Poisson arrivals and i.i.d. exponential service times is non-trivial
because of the dependence of the c queues through the common arrival process. (A classic
paper is that of Flatto [10].) In fact, when c≥ 3, only bounds and approximations are available.
As for exact simulation, there is a paper by Hongsheng Dai [9] in which Poisson arrivals and
independent exponential service times are assumed. Because of the continuous-time Markov
chain (CTMC) model structure, Dai was able to construct (simulate) the time-reversed CTMC
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to use in a coupling from the past algorithm. But with general renewal arrivals and or general
distribution service times, such CTMC methods can no longer be used.

Our simulation method for the RA model outlined in Section 4, however, yields an exact
copy of H0 for the general GI/GI/c-FJ model, under the condition that there exists θ > 0, θ ∈Rc

such that
E[exp (θT (S1 −T1))] <∞.

First we simulate V0
0 exactly using exponential change of measure method introduced in [3]

(we use the same technique for multi-dimensional simulation in Section 4.1), then simulate a
vector of service times S= (S(1), . . . , S(c)) independently and set

H0 = max
1≤i≤c

{V0
0 (i)+ S(i)}.

Even when the service time components within S are independent, or the case when service
time distributions are assumed to have a finite moment generating function (in a neighborhood
of the origin), such results are new and non-trivial.

9. The case when P(T > S) = 0: Harris-recurrent regeneration

For a stable FIFO GI/GI/c queue, the stability condition can be rewritten as
E[T1 + · · · + Tc] >E[S], which implies also that P(T1 + · · · + Tc > S) > 0. Thus assuming
that P(T > S) > 0 is not necessary for stability. When P(T > S)= 0, the system will never
empty again after starting, and so using consecutive visits to 0 as regeneration points is
not possible. But the system does regenerate in a more general way via the use of Harris-
recurrent Markov chain theory; see [18] for details and history of this approach. The main
idea is that while the system will not empty infinitely often, the number in system process
{QF(tn−) : n≥ 0} will visit an integer 1≤ j≤ c− 1 infinitely often.

For illustration here, we will consider the c= 2 case (for the general case c≥ 2 the spe-
cific regeneration points analogous to what we present here are carefully given in equation
(4.6) of [18, page 396]). Let us assume that 1 < ρ < 2. (Note that if ρ < 1, then equivalently
E[T] >E[S] and so P(T > S) > 0; that is why we rule out ρ < 1 here.) We now assume
that P(T > S)= 0. This implies that for s � inf{s > 0: P(S > s) > 0} and t � sup{t > 0:
P(T > t) > 0}, we must have 0 < t < s <∞. It is shown in [18] that for ε > 0 sufficiently small,
the following event will happen infinitely often (in n) with probability 1:

{QRA(tn−)= 1, Vn(1)= 0, Vn(2)≤ ε, Tn > ε, Un = 1}. (15)

If n is such a time, then at time n+ 1 we have

{QRA(tn+1−)= 1, Vn+1(2)= 0, Vn+1(1)= (Sn − Tn)}. (16)

The point is that Cn finds one server (server 1) empty, and the other queue with only one
customer in it, and that customer is in service with a remaining service time≤ ε. Cn then enters
service at node 1 with service time Sn; but since Tn > ε, Cn+1 arrives finding the second queue
empty, and the first server has remaining service time Sn − Tn conditional on Tn > ε. Under
the coupling of Lemma 1, the same will be so for the FIFO model (see Remark 2 below). At
such a time n,

{QF(tn−)= 1, Wn(1)= 0, Wn(2)≤ ε, Tn > ε}, (17)

and at time n+ 1 we have

{QF(tn+1−)= 1, Wn(1)= 0, Wn(2)= (Sn − Tn)}. (18)
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Equations (16) and (18) define positive recurrent regeneration points for the two models (at
time n+ 1); the consecutive times at which regenerations occur form a (discrete-time) positive
recurrent renewal process (see [18]).

To put this to use, we change the stopping time N given in (10) to

N + 1=min{n≥ 1: Q0
RA(t−(n+1)−)= 1, V0

−(n+1)(1)= 0,

V0
−(n+1)(2)≤ ε, T−(n+1) > ε, U−(n+1) = 1}.

Then we do our reconstructions for the algorithm in Section 4.1 by starting at time −N, with
both models starting with the same starting value

{QRA(t−N−)= 1, V0−N(2)= 0, V0−N(1)= (S−(N+1) − T−(N+1)) | T−(N+1) > ε}, (19)

{QF(t−N−)= 1, W−N(1)= 0, W−N(2)= (S−(N+1) − T−(N+1)) | T−(N+1) > ε}. (20)

Remark 2. The service time used in (19) and (20) for coupling via Lemma 2, S−(N+1), is in
fact identical for both systems for the following subtle reason. At time−(N + 1), both systems
have only one customer in the system, and thus the total work is in fact equal to the remaining
service time, so we use (5) to conclude that both remaining service times (even if different)
are ≤ ε (for example, that is why (17) follows from (15)). Meanwhile, C−(N+1) enters service
immediately across both systems, so it is indeed the same service time S−(N+1) used for this
initiation. Coalescence is detected in finite expected time because of the positive recurrence
property underlying the definition of the regeneration points from (16) and (18).

Appendix A. Detailed algorithm steps in Section 4.1

To simulate the process {(R(r)
n , V0−n) : 0≤ n≤N} with the time N defined in (10) as

N = inf

{
n≥ 0: V0−n =max

k≥n
R(r)

k −R(r)
n = 0

}
,

we must sample the running time maxima (entry by entry) of the c-dimensional random walk

R(r)
n =

n∑
i=1

�−i =
n∑

i=1

(S̃−i −T−i), n≥ 0.

We will find a sequence of random times {Nn : n≥ 1} such that

max
n≤k≤Nn

R(r)
k ≥max

k≥Nn
R(r)

k .

Hence, we will be able to find the running time maxima by only sampling the random walk on
a finite time interval, that is, Nn is such that

max
k≥n

R(r)
k = max

n≤k≤Nn
R(r)

k .

To achieve this, we first decompose the random walk into two random walks and then construct
a sequence of ‘milestone’ events for each of these two random walks to detect the Nn. We will
elaborate the detailed implementations in the following context.
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Because of the stability condition ρ = λ/μ<c, we can find some value a ∈ (1/μ, c/λ). For
any n≥ 0, define

X−n =
n∑

j=1

(S−j − a)U−j, (21)

Y−n =
n∑

j=1

(aU−j −T−j), (22)

hence R(r)
n =∑n

j=1 �−j =X−n +Y−n and maxk≥nR(r)
k =maxk≥n(X−n +Y−n).

For all n≥ 0, let

NX
n = inf

{
n′ ≥ n : max

k≥n′
X−k ≤X−n

}
, (23)

NY
n = inf

{
n′ ≥ n : max

k≥n′
Y−k ≤Y−n

}
, (24)

Nn =max{NX
n , NY

n }. (25)

Then, by the definitions above,

max
k≥Nn

R(r)
k ≤max

k≥Nn
X−k +max

k≥Nn
Y−k ≤X−n +Y−n =R(r)

n .

Therefore, to get the running time maximum maxk≥nR(r)
k for each n≥ 0, we only need to

sample the random walk from step n to Nn, because

max
k≥n

R(r)
k =max

{
max

n≤k≤Nn
R(r)

k , max
n≥Nn

R(r)
k

}
= max

n≤k≤Nn
R(r)

k .

Next we describe how to sample Nn along with the multi-dimensional random walks

{X−n : n≥ 0} and {Y−n : n≥ 0}.

A.1. Simulation algorithm for the process {Y−n : n ≥ 0}
We first consider simulating the c-dimensional random walk {Y−n : n≥ 0} with Y0 = 0.

For each j≥ 1, E[aU−j −T−j] < 0, we can simulate the running time maximum maxk≥nY−k

jointly with the path {Y−k : 0≤ k≤ n} via the method developed in [3], with the following
assumptions.

Assumption (A1). There exists θ > 0, θ ∈Rc such that

E[ exp (θT (aU−j −T−j))] <∞.

Assumption (A1b). Suppose that in every dimension i= 1, . . . , c, there exists θ∗ ∈ (0,∞)
such that

φi(θ
∗) := log E[ exp (θ∗(aI(U−j = i)− T−j))]= 0.

Because for each j≥ 1, aI(U−j = i)− T−j are marginally identically distributed across i, so
θ∗ would work for all i= 1, . . . , c.
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Remark 3. In our setting, since U−j is bounded, assumption (A1) always holds. Assumption
(A1b) is known as Cramer’s condition in the large deviations literature, and it is a strengthening
of assumption (A1). We shall explain briefly at the end of this section that it is possible to relax
this assumption to (A1) by modifying the algorithm without affecting the exactness or compu-
tational cost of the algorithm. For the moment we continue to describe the main algorithmic
idea under assumption (A1b).

For any s ∈Rc and b ∈Rc+, define

Tb = inf{n≥ 0: Y−n(i) > b(i) for some i ∈ {1, . . . , c}},
T−b = inf{n≥ 0: Y−n(i) <−b(i) for all i= 1, . . . , c},

Ps(·)= P(· |Y0 = s).

We will use these definitions in Algorithm LTGM given in Section A.1.1.
We next construct a sequence of upward and downward ‘milestone’ events for this multi-

dimensional random walk. The construction is completely analogous to the classical ladder
height decomposition of one-dimensional random walks: we introduce a parameter, m, in order
to facilitate a certain acceptance/rejection step to be explained in the next subsection. Let

m= log (c)/θ∗�. (26)

Define D0 = 0 and 0 =∞. For k≥ 1, let

Dk = inf{n≥Dk−1 ∨ k−1I(k−1 <∞) : Y−n(i)<Y−Dk−1 (i)−m for all i}, (27)

k = inf{n≥Dk : Y−n(i)>Y−Dk (i)+m for some i}. (28)

Note that, by convention, kI(k <∞)= 0 if k =∞ for any k≥ 0. We let B ∈Rc, initially
set as (∞, . . . ,∞)T ∈Rc, to be the running time upper bound of process {Y−n : n≥ 0}. Let
m=mf, where f= (1, . . . , 1)T as defined in Section 2. From the construction of ‘milestone’
events in (27) and (28), we know that if k =∞ for some k≥ 1, the process will never cross
over the level Y−Dk +m after Dk coordinate-wise, that is, for i= 1, . . . , c,

Y−n(i)≤ Y−Dk (i)+m for all n≥Dk.

Hence, in this case we update the upper bound vector B=Y−Dk +m.

A.1.1. Global maximum simulation. Define

�= inf{Dk : k =∞, k≥ 1}.
By the construction of ‘milestone’ events, for all n≥�,

Y−n ≤Y−� +m < 0=Y0.

Hence, we can evaluate the global maximum level of the process {Y−n : n≥ 0} to be

M0 :=max
k≥0

Y−k = max
0≤k≤�

Y−k,

and we give the detailed sampling procedure in the following algorithm. The algorithm has
elements, such as sampling from P0(Tm <∞), which will be explained below.

Algorithm 1. (LTGM.) Simulate the global maximum of c-dimensional process {Y−n : n≥ 0}
jointly with the subpath and the subsequence of ‘milestone’ events.
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Input: a ∈ (1/μ, c/λ) satisfies assumption (A1b), m as in (26).

1. (Initialization) Set n= 0, Y0 = 0, D= [0], � = [∞], L= 0, and B=∞f.

2. Generate U ∼Unif{1, . . . , c} and let U= (I(U = 1), . . . , I(U = c))T . Independently
sample T ∼ A and let T= Tf. Set n= n+ 1, Y−n =Y−(n−1) + aU−T, U−n =U, and
T−n = T .

3. If there is some 1≤ i≤ c such that Y−n(i)≥ L(i)−m, then go to step 2; otherwise set
D= [D, n] and L=Y−n.

4. Independently sample J ∼Ber (P0(Tm <∞)).

5. If J = 1, simulate a new conditional path {(y−k, u−k, t−k) : 1≤ k≤ Tm}with y0 = 0, fol-
lowing the conditional distribution of {Y−k : 0≤ k≤ Tm} given Tm <∞. Set Y−(n+k) =
Y−n + y−k, U−(n+k) = u−k, T−(n+k) = t−k for 1≤ k≤ Tm. Set n= n+ Tm, � = [�, n].
Go to step 2.

6. If J = 0, set �= n, � = [�,∞], and B=L+m.

7. Output {(Y−k, U−k, T−k) : 1≤ k≤�}, D, �, and global maximum M0 =
max0≤k≤�Y−k.

Now we explain how to execute steps 4 and 5 in the above algorithm. The procedure is
similar to the multi-dimensional procedure given in [3], so we describe it briefly here. As
P0(·) denotes the canonical probability, we let P∗0(·)= P0( · |Tm <∞). Our goal is to simulate
from the conditional law of {Y−k : 0≤ k≤ Tm} given that Tm <∞ and Y0 = 0, i.e. to simulate
from P∗0. We will use acceptance/rejection by letting P′0(·) denote the proposal distribution.
A typical element ω′ sampled under P′0(·) is of the form ω′ = ((Y−k : k≥ 0), index ), where
index ∈ {1, . . . , c}, and it indicates the direction we pick to do exponential tilting; it is the
coordinate in which we change its measure to increase the chance of its hitting the upward
‘milestone’ as defined in (28). Given the value of index, the process (Y−k : k≥ 0) remains a
random walk. We now describe P′0 by explaining how to sample ω′. First,

P′0( index= i)=wi := 1

c
. (29)

Then, conditioning on index= i, for every set A ∈ σ ({Y−k : 0≤ k≤ n}),
P′0(A | index= i)= E0[ exp (θ∗Y−n(i))IA]. (30)

To obtain the induced distribution for U and T , we study the moment generating function
induced by definition (30). Given η ∈Rc in a neighborhood of the origin,

E0[ exp (ηT (aU−T)+ θ∗eT
i (aU−T))]

E0[ exp (θ∗eT
i (aU−T))]

= E0[ exp ((η+ θ∗ei)TaU)]

E0[ exp (θ∗eT
i aU)]

· E0[ exp (− (η+ θ∗ei)TT)]

E0[ exp (− θ∗eT
i T)]

.

The above expression indicates that under P′0(·), T and U are independent. Moreover, we have

E0[ exp (θ∗eT
i aU)]= exp (θ∗a)+ c− 1

c
.
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Therefore,

P′0(U = j | index= i)=

⎧⎪⎪⎨⎪⎪⎩
exp (θ∗a)

exp (θ∗a)+ c− 1
if j= i,

1

exp (θ∗a)+ c− 1
if j �= i.

(31)

On the other hand, conditional on index= i, the distribution of a generic interarrival time T is
obtained by exponential tilting such that

dP0(T | index= i)= dP0(T) · exp (− θ∗T)

E0[ exp (− θ∗T)]
= dP0(T) · exp (aθ∗)+ c− 1

c exp (θ∗T)
, (32)

where the second equation follows from assumption (A1b).
Following assumption (A1b) and because Var (aI(U−j = i)− T−j) > 0, by convexity,

E′0[Y−n( index )]=
c∑

i=1

E0[Y−n(i) exp (θ∗Y−n(i))]P′0( index= i)= 1

c

c∑
i=1

dφi(θ∗)
dθ

> 0,

so Y−n( index )→∞ as n→∞ almost surely under P′0(·), hence Tm <∞ with probability
one under P′0(·). Now, to verify that P0(·) is a valid proposal for acceptance/rejection method,
we must verify that dP∗0/dP′0 is bounded by a constant, that is,

dP∗0
dP′0

(Y−k : 0≤ k≤ Tm)

= 1

P0(Tm <∞)
· dP0

dP′0
(Y−k : 0≤ k≤ Tm)

= 1

P0(Tm <∞)
· 1∑c

i=1 wi exp (θ∗Y−Tm (i))

≤ 1

P0(Tm <∞)
· c

exp (θ∗m)

<
1

P0(Tm <∞)
,

where the last inequality is guaranteed by (26). So, acceptance/rejection is valid.
Moreover, the overall probability of accepting the proposal is precisely P0(Tm <∞). Thus,

we execute not only step 5 but simultaneously also step 4. We use this acceptance/rejection
method to replace steps 4 and 5 in Algorithm LTGM as follows.

4′. Sample {(y−k, u−k, t−k) : 0≤ k≤ Tm)} with y0 = 0 from P′0( · ) as indicated via (29),
(31), and (32). Sample a Bernoulli J with success probability

c∑c
i=1 exp (θ∗y−Tm (i))

.

5′. If J = 1, set Y−(n+k) =Y−n + y−k, U−(n+k) = u−k, T−(n+k) = t−k for 1≤ k≤ Tm. Set
n= n+ Tm and � = [�, n]. Go to step 2.
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A.1.2. Simulate {Y−n : n≥ 0} jointly with ‘milestone’ events. In this section we provide an
algorithm to sequentially simulate the multi-dimensional random walk {Y−n : n≥ 0} along
with its downward and upward ‘milestone’ events as defined in (27) and (28). We first extend
Lemma 3 in [5] to a multi-dimensional version as follows.

Lemma 4. Let 0 < a < b≤∞f (coordinate-wise) and consider any sequence of bounded
positive measurable functions fk : Rc×(k+1)→ [0,∞),

E0[fT−a(Y0, . . . , Y−T−a ) | Tb =∞]

= E0[fT−a(Y0, . . . , Y−T−a ) · I(Y−j(i)≤ b(i), 0≤ j < T−a, 1≤ i≤ c)] · PY−T−a
(Tb =∞)

P0(Tb =∞)
.

Therefore, if P∗∗0 (·) := P0(· | Tb =∞), then

dP∗∗0
dP0
= I(Y−j(i)≤b(i) for all j<T−a, 1≤i≤c) · PY−T−a

(Tb =∞)

P0(Tb =∞)
≤ 1

P0(Tb =∞)
.

Lemma 4 enables us to sample a downward patch by using the acceptance/rejection method
with the nominal distribution P0 as proposal. Suppose our current position is Y−Dj (for some
j≥ 1) and we know that the process will never go above the upper bound B (coordinate-
wise). Next we simulate the path up to time Dj+1. If we can propose a downward patch
(y−1, . . . , y−T−m) := (Y−1, . . . , Y−T−m ), under the unconditional probability given y0 = 0 and
y−k ≤m for 1≤ k≤ T−m, then we accept it with probability P0(Tσ =∞), where σ =B−
Y−Dj − y−T−m . A more efficient way to sample is to sequentially generate (y−1, . . . , y−�) with
y0 = 0 as long as m0 :=max0≤k≤�y−k ≤m coordinate-wise, then concatenate the sequence to
the previously sampled subpath. We give the efficient implementation procedure in the next
algorithm.

Algorithm 2. (LTRW.) Continue to sample the process {(Y−k, U−k, T−k) : 0≤ k≤ n} jointly
with the partially sampled ‘milestone’ event lists D and �, until a stopping criterion is met.

Input: a, m, previously sampled partial process {(Y−j, U−j, T−j) : 0≤ j≤ l}, partial ‘milestone’
sequences D and �, and stopping criterion H. (Note that if there is no previous simulated
random walk, we initialize l= 0, D= [0], and � = [∞].)

1. Set n= l. If n= 0, call Algorithm LTGM to get �, {(Y−k, U−k, T−k) : 0≤ k≤�}, D
and �. Set n=�.

2. While the stopping criterion H is not satisfied:

(a) Call Algorithm LTGM to get �̃, {(Ỹ−j, Ũ−j, T̃−j) : 0≤ j≤ �̃}, D̃, �̃, and M̃0.

(b) If M̃0 ≤m, accept the proposed sequence and concatenate it to the previous sub-
path, that is, set Y−(n+j) =Y−n + Ỹ−j, U−(n+j) = Ũ−j, T−(n+j) = T̃−j for 1≤ j≤
�̃. Update the sequences of ‘milestone’ events to be D= [D, n+ D̃(2 : end)],
� = [�, n+ �̃(2 : end)] and set n= n+ �̃.

3. Output {(Y−k, U−k, T−k) : 0≤ k≤ n} with updated ‘milestone’ event sequences
D and �.
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For n≥ 0, define

d1(n)= inf{Dk ≥ n : Y−Dk ≤Y−n}, (33)

d2(n)= inf{Dk > d1(n) : k =∞}, (34)

and d2(n) is an upper bound of NY
n defined in (24) because

max
k≥d2(n)

Y−k ≤Y−d2(n) +m < Y−d1(n) ≤Y−n.

Remark 4. Since assumption (A1b) is a strengthening of assumption (A1), we can accom-
modate our algorithms under the general assumption (A1). The implementation details are the
same as those mentioned in the remark section of [3, page 15].

A.2. Simulation algorithm for the process {X−n : n ≥ 0}
Recall from (21) that, for n≥ 0,

X−n(i)=
n∑

j=1

(S−j − a)I(U−j = i) for i= 1, . . . , c.

Define

Nk(i)=
k∑

j=1

I(U−j = i), (35)

Ln(i)= inf{k≥ 0: Nk(i)= n} (L0(i)= 0), (36)

Ŝ(i)
−n = S−Ln(i), (37)

for k≥ 0, n≥ 0, and i= 1, . . . , c. Nk(i) denotes the total number of customers routed to server
i among the first k arrivals counting backwards in time. Ln(i) denotes the index of the nth
customer that gets routed to server i in the common arrival stream, counting backwards in
time. Ŝ(i)

−n denotes the service time of the nth customer that gets routed to server i, counting
backwards in time.

For each i= 1, . . . , c, let {X̂(i)
−n : n≥ 0} with X̂(i)

0 = 0 be an auxiliary process such that

X̂(i)
−n :=

n∑
j=1

(Ŝ(i)
−j − a)= X−Ln(i)(i). (38)

For n≥ 0 and 1≤ i≤ c, define

N̂n(i)= inf
{

n′ ≥Nn(i) : maxk≥n′ X̂
(i)
−k ≤ X̂(i)

−Nn(i)

}
, (39)

and hence, by definition, in (23), we have

NX
n =max{LN̂n(1)(1), . . . , LN̂n(c)(c)}. (40)

First we develop simulation algorithms for each of the c one-dimensional auxiliary
processes {(X̂(i)

−n : n≥ 0) : 1≤ i≤ c}. Next we use the common server allocation sequence
{U−n : n≥ 0} (sampled jointly with the process {Y−n : n≥ 0} in Section A.1) with (35), (36),
and (37) to find NX

n via (40) for each n≥ 0.
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A.2.1. ‘Milestone’ construction and global maximum simulation. For each one-dimensional
auxiliary process {X̂(i)

−n : n≥ 0} with i= 1, . . . , c, we adopt the algorithm developed in [6] by
choosing any m′ > 0 and L′ ≥ 1 properly and define the sequences of upward and downward
‘milestone’ events by letting D(i)

0 = 0, 
(i)
0 =∞, and for j≥ 1,

D(i)
j = inf

{
n(i) ≥ 

(i)
j−1I((i)

j−1 <∞)∨D(i)
j−1 : X̂(i)

−n(i) < X̂(i)

−D(i)
j−1

− L′m′
}
, (41)


(i)
j = inf

{
n(i) ≥D(i)

j : X̂(i)
−n(i) − X̂(i)

−D(i)
j

> m′
}
, (42)

with the convention that if 
(i)
j =∞, then 

(i)
j I((i)

j <∞)= 0 for any j≥ 0.
For each i= 1, . . . , c, define

�(i) = inf{D(i)
k : 

(i)
k =∞, k≥ 1}.

By the ‘milestone’ construction in (41) and (42), for all n≥�(i),

X̂(i)
−n ≤ X̂(i)

−�(i) +m′ < 0= X̂(i)
0 .

Therefore we can evaluate the global maximum of the infinite-horizon process {X̂(i)
−n : n≥ 0} in

finite steps, that is,
M(i)

0 :=max
k≥0

X̂(i)
−k = max

0≤k≤�(i)
X̂(i)
−k.

We summarize the simulation details in the following algorithm.

Algorithm 3. (GGM.) Simulate the global maximum of the one-dimensional process

{(X̂(i)
−n, Ŝ(i)

−n) : n≥ 0}
jointly with the subpath and the subsequence of ‘milestone’ events.

Input: a, m′, L′.

1. (Initialization) Set n= 0, X̂(i)
0 = 0, D(i) = [0], �(i) = [∞], and L(i) = 0.

2. Generate S∼G. Set n= n+ 1, X̂(i)
−n = X̂(i)

−(n−1) + S, and Ŝ(i)
−n = S.

3. If X̂(i)
−n ≥ L(i) − L′m′, go to step 2; otherwise set D(i) = [D(i), n] and L(i) = X̂(i)

−n.

4. Call Algorithm 1 of [6, page 10] and obtain (J, ω).

5. If J = 1, set

X̂(i)
−(n+l) = L(i) +ω(l), Ŝ(i)

−(n+l) = X̂(i)
−(n+l) − X̂(i)

−(n+l−1) + a for l= 1, . . . , length(ω).

Set n= n+ length (ω), �(i) = [�(i), n] and go to step 2.

6. If J = 0, set �(i) = n and �(i) = [�(i),∞].

7. Output
{(X̂(i)
−k, Ŝ(i)

−k) : 1≤ k≤�(i)},
D(i), �(i), and global maximum M(i)

0 =max0≤k≤�(i) X̂(i)
−k.
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A.2.2. Simulate {X−n : n≥ 0} jointly with ‘milestone’ events. In this section we first explain
how to sample the auxiliary one-dimensional processes {X̂(i)

−n : n≥ 0} along with the ‘mile-
stone’ events defined in (41) and (42). Next we will need the service allocation information
{U−n : n≥ 0}, from the simulation procedure of process {Y−n : n≥ 0}, to recover the multi-
dimensional process of interest {X−n : n≥ 0} via (38).

The following algorithm gives the the sampling procedure for each auxiliary one-
dimensional process {X̂(i)

−n : n≥ 0} for i= 1, . . . , c. The simulation steps are the same as the
procedure given in Algorithm 3 of [6, page 16].

Algorithm 4. (GRW.) Continue to sample the process {(X̂(i)
−k, Ŝ(i)

−k) : 0≤ k≤ n} jointly with the
partially sampled ‘milestone’ event lists D(i) and �(i), until a stopping criterion is met.

Input: a, m′, L′, previously sampled partial process {(X̂(i)
−j, Ŝ(i)

−j) : 0≤ j≤ l}, partial ‘milestone’

sequences D(i) and �(i), and stopping criterion H(i). (Note that if there is no previously
simulated random walk, we initialize l= 0, D(i) = [0], and �(i) = [∞].)

1. Set n= l. If n= 0, call Algorithm GGM to get �(i), {(X̂(i)
−k, Ŝ(i)

−k) : 0≤ k≤�(i)}, D(i), and
�(i). Set n=�(i).

2. While the stopping criterion H(i) is not satisfied:

(a) Call Algorithm GGM to get �̃(i), {(X̃(i)
−j, S̃(i)

−j) : 0≤ j≤ �̃(i)}, D̃, �̃, and M̃(i)
0 .

(b) If M̃(i)
0 ≤m′, accept the proposed sequence and concatenate it to the previous

subpath, that is, set X̂(i)
−(n+j) = X̂(i)

−n + X̃(i)
−j, Ŝ(i)

−(n+j) = S̃(i)
−j for 1≤ j≤ �̃(i). Update

the sequences of ‘milestone’ events to be D(i) = [D(i), n+ D̃(i)(2 : end)], �(i) =
[�(i), n+ �̃

(i)
(2 : end)] and set n= n+ �̃(i).

3. Output {(X̂(i)
−k, Ŝ(i)

−k) : 0≤ k≤ n} with updated ‘milestone’ event sequences D(i) and �(i).

With the service allocation information {U−n : n≥ 0}, we can construct the c-dimensional
process {X−n : n≥ 0} (X0 = 0) from the auxiliary processes {(X̂(i)

−n, Ŝ(i)
−n) : n≥ 0}, i= 1, . . . , c.

For n≥ 1,

S−n = Ŝ(U−n)∑n
j=1 I(U−j=U−n), (43)

X−n(i)=
{

[c]lrX−(n−1)(i) if i �=U−n,

X−(n−1) + S−n − a if i=U−n.
(44)

By the definition of ‘milestone’ events in (41) and (42), for each n≥ 0, let

d(i)
1 (n)= inf

{
D(i)

k ≥ n : X̂(i)

−D(i)
k

≤ X̂(i)
−n

}
, (45)

d(i)
2 (n)= inf

{
D(i)

k > d(i)
1 (n) : 

(i)
k =∞

}
. (46)

Since
max

k≥d(i)
2 (Nn(i))

X̂(i)
−k ≤ X̂(i)

−d(i)
2 (Nn(i))

+m′ < X̂(i)

−d(i)
1 (Nn(i))

≤ X̂(i)
−Nn(i),
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we conclude that N̂n(i)≤ d(i)
2 (Nn(i)) and hence

NX
n ≤max

{
L

d(1)
2 (Nn(1))

(1), . . . , L
d(c)

2 (Nn(c))
(c)

}
.

A.3. Simulation algorithm for {R(r)
n : n ≥ 0} and coalescence detection

We shall combine the simulation algorithms in Sections A.1 and A.2 for processes

{((X̂(i)
−n, Ŝ(i)

−n) : n≥ 0), 1≤ i≤ c} and {(Y−n, U−n, T−n) : n≥ 0}

together to exactly simulate the multi-dimensional random walk {R(r)
n : n≥ 0} until coales-

cence time N defined in (10). To detect the coalescence, we start from n= 0 to compute d2(n)
and d(i)

2 (Nn(i)) (as defined in (34) and (36) respectively). If

max
n≤k≤d2(n)

Y−k =Y−n, (47)

and
max

Nn(i)≤k≤d(i)
2 (Nn(i))

X̂(i)
−k = X̂(i)

−Nn(i) (48)

for all i= 1, . . . , c, we set the coalescence time N← n and stop. Otherwise we increase n by
1 and repeat the above procedure until the first time that (47) and (48) are satisfied.

In the following algorithm we give the simulation procedure to detect coalescence while
sampling the time-reversed multi-dimensional process {R(r)

n : n≥ 0}.
Algorithm 5. (CD.) Sample the coalescence time N jointly with the process {R(r)

n : n≥ 0}.

Input: a, m, m′, L′.

1. (Initialization) Set n= 0. Set l= 0, Y0 = 0, D= [0], and � = [∞]. Set li = 0, X̂(i)
0 = 0,

D(i) = [0], and �(i) = [∞] for all i= 1, . . . , c.

2. Call Algorithm LTRW to further sample {(Y−j, U−j, T−j) : 0≤ j≤ l}, D, and � with the
stopping criterion H being

∑l
j=1 I(U−j = i) > li for all i= 1, . . . , c and Y−D(end−1) ≤

Y−n.

3. For each i= 1, . . . , c:

(a) Set ni =∑n
j=1 I(U−j = i).

(b) Call Algorithm GRW to further sample {(X̂(i)
−k, Ŝ(i)

−k) : 0≤ k≤ li}, D(i), and �(i) with

the stopping criterion H(i) being
∑l

j=1 I(U−j = i)≤ li and X̂(i)
−D(i)(end−1)

≤ X̂(i)
−ni

.

4. If maxn≤k≤D(end)Y−k ≤Y−n and maxni≤k≤D(i)(end)X̂
(i)
−k ≤ X̂(i)

−ni
for all i= 1, . . . , c, go to

the next step. Otherwise set n= n+ 1 and go to step 2.

5. For 1≤ k≤ n, recover S−k and X−k from the auxiliary processes via (43) and (44).

6. Output coalescence time N = n, the sequence {(U−k, T−k, S−k) : 0≤ k≤ n}, and process
{R(r)

k : 0≤ k≤ n}.
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Appendix B. Proofs

B.1. Proof of Proposition 1

Proof. Firstly, E[N] <∞ holds true under assumptions ρ<c and P(T > S) > 0 (proved in
[18]). Next we shall prove the computational cost τ has finite expectation as well.

For n≥ 0, we have NX
n , NY

n , and Nn defined in (23)–(25) such that

max
k≥Nn

R(r)
k ≤max

k≥Nn
X−k +max

k≥Nn
Y−k ≤Xn +Yn =R(r)

n .

Therefore, in order to evaluate the running time maximum over the infinite horizon
maxk≥nR(r)

k , it only requires sampling from n to Nn backwards in time, that is,

max
k≥n

R(r)
k =max

{
max

n≤k≤Nn
R(r)

k , max
k≥Nn

R(r)
k

}
= max

n≥k≤Nn
R(r)

k .

An easy upper bound for τ is given by τ̃ =∑N
n=0 Nn. By Wald’s identity, it suffices to show

that E[Nn] <∞ for any n≥ 0.
By the ‘milestone’ events construction for multi-dimensional process {Y−n : n≥ 0} in (27),

(28) and because d2(n) is an upper bound of NY
n , E[NY

n ]≤E[d2(n)] <∞ follows directly from
elementary properties of compound geometric random variables (see Theorem 1 of [3]).

For the other process {X−n : n≥ 0}, we simulate each of its c entries separately, that is,
{{X̂(i)
−n : n≥ 0} : 1≤ i≤ c} in Section A.2. Equation (40) gives

NX
n =max{LN̂n(1)(1), . . . , LN̂n(c)(c)} ≤

c∑
i=1

LN̂n(i)(i),

where N̂n(i) is defined in (39). By Theorem 2.2 of [6], E[N̂n(i)] <∞. Because

LN̂n(i)(i)= inf

{
k≥ 0:

k∑
j=1

I(U−j = i)= N̂n(i)

}
∼NegBinomial

(
N̂n(i); 1− 1

c

)
+ N̂n(i),

hence
E[LN̂n(i)(i)]= (c− 1)E[N̂n(i)]+E[N̂n(i)]= cE[N̂n(i)] <∞,

and

E[NX
n ]≤

c∑
i=1

E[LN̂n(i)(i)] <∞.

Therefore
E[Nn]≤E[NX

n ]+E[NY
n ] <∞. �

B.2. Proof of Proposition 2

Proof . By Wald’s identity, it suffices to show that E[κ∗+] <∞ because E[T] <∞. Next
we only provide a proof outline here since it follows the same argument as in the proof of
Proposition 3 in [7].
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Firstly, we construct a sequence of events {�k : k≥ 1}, which leads to the occurrence of κ∗+.
Secondly, we split the process {Wu

0(tn) : n≥ 0} into cycles with bounded expected cycle length.
We also ensure the probability that the event happens during each cycle is bounded from below
by a constant, which allows us to bound the number of cycles we need to check before finding
κ∗+ by a geometric random variable. Finally, we could establish an upper bound for E[κ∗+] by
applying Wald’s identity again. �
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