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Abstract
A diregular bipartite tournament is a balanced complete bipartite graph whose edges are oriented so that
every vertex has the same in- and out-degree. In 1981 Jackson showed that a diregular bipartite tournament
contains a Hamilton cycle, and conjectured that in fact its edge set can be partitioned into Hamilton cycles.
We prove an approximate version of this conjecture: for every ε > 0 there exists n0 such that every diregular
bipartite tournament on 2n� n0 vertices contains a collection of (1/2− ε)n cycles of length at least (2−
ε)n. Increasing the degree by a small proportion allows us to prove the existence of many Hamilton cycles:
for every c> 1/2 and ε > 0 there exists n0 such that every cn-regular bipartite digraph on 2n� n0 vertices
contains (1− ε)cn edge-disjoint Hamilton cycles.

2020 MSC Codes: 05C20, 05C51

1. Introduction
Finding sufficient conditions for a graph to contain a Hamilton cycle, i.e. a cycle that contains
every vertex of G, is one of the classical problems in graph theory. Dirac’s theorem [5] states that
every graph on n vertices with minimum degree at least n/2 contains a Hamilton cycle. Later, Ore
[21] showed that it is enough if every pair of non-adjacent vertices has the sum of their degrees
totalling at least n. A natural extension to the existence of one Hamilton cycle is then the existence
of many edge-disjoint Hamilton cycles, or even of a decomposition into Hamilton cycles, i.e. a par-
tition of the edges of a graph into Hamilton cycles. Clearly, if such a decomposition exists, say into
d Hamilton cycles, then the graph must be 2d-regular. A construction byWalecki (see e.g. [2, 11])
shows that the complete graph K2d+1 admits such a decomposition for every d� 1. More gener-
ally, the complete r-partite graph K(n; r) on rn vertices admits a decomposition into Hamilton
cycles whenever (r − 1)n is even, and into Hamilton cycles and a perfect matching if (r − 1)n is
odd [10, 17]. Some further graph classes have been shown to admit Hamilton decompositions; we
refer the reader to the survey article by Alspach, Bermond and Sotteau [3].

†This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 648509). This publication reflects only its authors’ view; the
European Research Council Executive Agency is not responsible for any use that may be made of the information it contains.
‡Supported by the Australian research council (ARC), DE170100789 and DP180103684.

© The Author(s), 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0963548320000152 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548320000152
mailto:y.pehova@warwick.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548320000152&domain=pdf
https://doi.org/10.1017/S0963548320000152


Combinatorics, Probability and Computing 887

Nash-Williams [19] extended Dirac’s theorem by showing that every n-vertex graph with min-
imum degree at least n/2 contains at least 5n/224 edge-disjoint Hamilton cycles, and conjectured
that the minimum degree condition is sufficient to prove the existence of �(n+ 1)/4� edge-
disjoint Hamilton cycles. Babai (see [18]) provided a construction showing that this is false.
However, Csaba, Kühn, Lo, Osthus and Treglown [4] proved that regular graphs satisfying the
above minimum degree condition can be decomposed into Hamilton cycles and at most one
perfect matching.

These problems naturally extend to the setting of oriented graphs that are obtained from sim-
ple graphs by endowing every edge with an orientation. We write (u, v) for the (oriented) edge
between the pair {u, v} oriented from u to v. A Hamilton cycle in an oriented graph G is an order-
ing v1, . . . , vn of the vertices of G such that for all 1� i� n the edge (vi, vi+1) is present (where
vn+1 = v1). The out-degree of a vertex v in an oriented graphG, denoted by d+

G (v), is the number of
edges (v, y) ∈ E(G), and the in-degree of a vertex v in an oriented graph G, denoted by d−

G (v), is the
number of edges (x, v) ∈ E(G).We omit the subscriptG if the graphG is clear from context.We set
δ+(G)=minv∈V(G) d+(v), δ−(G)=minv∈V(G) d−(v), and δ0(G)=min{δ+(G), δ−(G)}. We refer
to the latter as the minimum semidegree of G (the maximum semidegree �0(G) is defined
analogously).

Keevash, Kühn and Osthus [13] show that for n large enough, every oriented graph G on n
vertices with minimum semidegree at least (3n− 4)/8 contains a Hamilton cycle. A construction
due to Häggkvist [9] shows that this is best possible. Kühn and Osthus [14] prove that every r-
regular oriented graphG on n vertices has a Hamilton cycle decomposition for every r� cn, where
c> 3/8 is a constant and n is large enough. In particular, this establishes Kelly’s conjecture which
states that every regular tournament has a Hamilton cycle decomposition. The result in [14] builds
on earlier work by Kühn, Osthus and Treglown [16] which includes a first approximate version of
Kelly’s conjecture.

How many disjoint Hamilton cycles can one guarantee when the (oriented) graph is not regu-
lar? As the union of disjoint Hamilton cycles forms a regular spanning subgraph, the maximal r
for which G contains an r-regular spanning subgraph is an upper bound for this quantity. Ferber,
Long and Sudakov [6] show that this upper bound is asymptotically correct for oriented graphs of
large enough minimum semidegree.

Theorem 1.1. (Ferber, Long, Sudakov [6]). Let c> 3/8, ε > 0 and let n be sufficiently large. Let G
be an oriented graph on n vertices with δ0(G)� cn. Then G contains (1− ε)r edge-disjoint Hamilton
cycles, where r is the maximum integer such that G contains an r-regular spanning subgraph.

In this paper we consider the corresponding degree conditions for regular bipartite oriented
graphs. An obvious necessary condition for a bipartite (oriented) graph to contain a Hamilton
cycle is that both parts of the bipartition have equal size, in which case the graph is called balanced.
Note that theminimum semidegree of a bipartite oriented graphG can be at most �v(G)/4�, where
v(G) denotes the number of vertices of G. Graphs that attain this bound satisfy 4|v(G), and are
necessarily balanced and (v(G)/4)-regular. Such graphs are called diregular bipartite tournaments.
Jackson [12] showed that diregular bipartite tournaments are Hamiltonian, and he conjectured
the following.

Conjecture 1.2. (Jackson [12]). Every diregular bipartite tournament is decomposable into
Hamilton cycles.

In this paper we adjust the methods of [6] to the bipartite setting and prove the following relax-
ation of Jackson’s conjecture. A directed graph (or digraph, for short) consists of a set of vertices V
and a set of ordered pairs of V , called directed edges (or just edges). That is, directed graphs may
contain edges (x, y) and (y, x) for two vertices x, y ∈V , but no loops and no multiple edges. The
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notions of Hamilton cycles, minimum semidegree, etc., introduced earlier for oriented graphs,
generalize in the natural way to directed graphs.

Theorem 1.3. Let c> 1/2, ε > 0, and let n be sufficiently large. Then every cn-regular bipartite
digraph G on 2n vertices contains at least (1− ε)cn edge-disjoint Hamilton cycles.

To the best of our knowledge no other intermediate results towards Conjecture 1.2 are known.
Our result constitutes an approximate version of Conjecture 1.2 in the following sense. Let G be
a diregular bipartite tournament and add εn in- and out-neighbours to every vertex (this can be
realized by adding an edge-disjoint (εn)-regular spanning subgraph using Hall’s theorem on the
complement). We obtain an almost decomposition of the resulting graph into Hamilton cycles.
Of course, none of these Hamilton cycles need to be cycles of the original bipartite tournament.
For bipartite oriented graphs we prove the following.

Theorem 1.4. Let c> 1/4, ε > 0, and let n be sufficiently large. Then every cn-regular bipartite
oriented graph G on 2n vertices contains at least (1− ε)cn edge-disjoint cycles of length at least
2n−O(n/ log2 n).

In particular, we can almost decompose the edge set of every bipartite regular tournament into
almost spanning cycles.

We note that the constants 1/2 and 1/4 in Theorems 1.3 and 1.4 are optimal for such state-
ments. Indeed, a d-regular digraphmay be disconnected if d = n/2, as may be a d-regular oriented
graph if d = n/4.

2. Preliminaries
In this section we introduce notation and present lemmas that we use later in the proof of our
main result.

All graphs and digraphs are finite and simple, that is, they do not contain loops or double edges
(in the case of graphs) or double oriented edges (in the case of digraphs). Let G be a graph or a
digraph. We let V(G) denote the vertex set of G and let E(G) denote the edge set of G. For subsets
X, Y ⊆V(G) we write EG(X, Y) for the set of edges xy if G is a graph, and the set of directed edges
(x, y) if G is a digraph. Let G[X] denote the graph or digraph induced on X. When G is a graph,
let NG(X) denote the set of vertices y such that xy ∈ E(G) for some x ∈ X. When G is a digraph,
we let N−

G (X) (N
+
G (X)) denote the set of vertices y such that (y, x) ∈ E(G) ((x, y) ∈ E(G)) for some

x ∈ X. When X = {v} we also write EG(v, Y) (and EG(Y , v) in the digraph case), NG(v), N−
G (v) and

N+
G (v) for the above sets, of which we call the latter three the neighbourhood, the in-neighbourhood

and the out-neighbourhood of v, respectively. The sizes of these sets are denoted by v(G)= |V(G)|,
e(G)= |E(G)|, e(X, Y)= |E(X, Y)|, dG(v)= |NG(X)|, d−

G (v)= |N−
G (v)|, d+

G (v)= |N+
G (v)|. We also

write dG(v, Y) for eG(v, Y) when G is a graph, and d+
G (v, Y)= eG(v, Y) and d−

G (v, Y)= eG(Y , v)
when G is a digraph. Throughout the paper, expressions of the form d±(v)� d are used as short-
hand for ‘d−(v)� d and d+(v)� d’, and all other uses of± carry the analogous meaning. We omit
the subscript G when there is no danger of ambiguity.

We say a graph or digraph G has bipartition (V1,V2) if V(G)=V1 ∪V2, where V1 and V2 are
disjoint and all edges have one end-point in V1 and one in V2. A digraph G is a balanced bipartite
digraph if it has a bipartition (V1,V2) such that |V1| = |V2|.

For a graph or digraph with bipartition (V1,V2) and a subset W ⊆V(G) we write WV1 and
WV2 forW ∩V1 andW ∩V2, respectively.
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For real numbers x, y, z we write x= y± z if x ∈ [y− z, y+ z]. For two functions f (n) and g(n)
we write f (n)	 g(n) if f (n)/g(n)→ 0 as n→ ∞. We omit floor and ceiling signs for clarity of
presentation.

We need the following standard concentration result for binomial random variables (see [1,
Theorem A.1.1]).

Lemma 2.1. (Chernoff ’s inequality). Let X be a binomial random variable with parameters (n, p),
and let μ = np. Then

P(|X − μ|� a)� 2e−a2/3μ.

Remark 2.2. Let X be a hypergeometric random variable with parameters (N,K, n), that is, given
an underlying set V of size N and a subset S⊆V of size K, X = |Y ∩ S| where Y is a subset of V of
size n chosen uniformly at random. The same inequality as in Lemma 2.1 holds for X, where now
μ = nK/N. For details see [7, Section 21.5].

The following provides a sufficient minimum semidegree condition for a digraph to contain a
Hamilton cycle.

Theorem 2.3. (Ghouila-Houri [8]). Every strongly connected digraph G on n vertices with δ+(G)+
δ−(G)� n contains a Hamilton cycle. In particular, if δ0(G)� n/2, then G contains a Hamilton
cycle.

Let Dn,n denote the complete bipartite balanced digraph in which both vertex classes have size
n and every vertex has in- and out-degree n. A result by Ng [20] implies that the edge set of Dn,n
can be decomposed into Hamilton cycles. We use this to prove the following.

Lemma 2.4. There exists n0 ∈N such that, for all n� n0, the complete bipartite digraph Dn,n con-
tains n disjoint Hamilton paths starting in the same vertex class of the bipartition. Moreover, every
vertex of Dn,n is an end-point of at most 2

√
log n of these paths.

Proof. Let A and B denote the vertex classes of Dn,n. It follows from Ng [20] that there is a
decomposition of Dn,n into n Hamilton cycles, say C1, . . . , Cn. For every i ∈ [n] choose an edge
ei = (ai, bi) of Ci with ai ∈A uniformly at random among all n such edges, all choices being inde-
pendent. Denote their union by H. We claim that with positive probability �0(H) is at most
2
√
log n.
Fix a vertex v ∈A. Then for each vertex w ∈ B, the edge (v,w) is in H with probability 1/n.

Moreover, the events Ew = {the edge (v,w) is in H} are independent, since for any two distinct
vertices w,w′ ∈ B the edges (v,w) and (v,w′) are in different cycles of the decomposition.
Therefore the out-degree of v in H has a binomial distribution with parameters n and 1/n.
Similarly, the in-degree of w in H has a binomial distribution with parameters n and 1/n for
every w ∈ B. Therefore the probability that there exists v ∈A with d+

H(v)> 2
√
log n or w ∈ B

with d−
H(w)> 2

√
log n is at most 4ne−4 log n/3 = o(1), by Chernoff ’s inequality (Lemma 2.1) and

the union bound. It follows that with positive probability H has maximum semidegree at most
2
√
log n. The claim follows by taking {Ci − ei}i∈[n] as the collection of Hamilton paths. By the

choice of ei, all these paths start in B.

Finally, we use the following from [6].

Lemma 2.5. (Lemma 24 in [6]). Let ε > 0 and m, r ∈Nwith m sufficiently large and 2m24/25 � r�
(1− ε)m/2. Suppose that G= (A∪ B, E) is a bipartite graph with |A| = |B| =m and r� δ(G)�
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�(G)� r + r2/3. Then G contains a collection of r −m24/25 edge-disjoint matchings, each of which
has size at least m−m7/8, and whose union has minimum degree at least

r −m24/25 − 2m5/6.

Remark 2.6. Note that practically the same assertion holds when |A| =m= |B| + 1, up to an
additive constant of 1 which we neglect due to the asymptotic nature of the statement. To see
this, apply the lemma to the graph obtained by adding an auxiliary vertex v to B and δ(G) edges
between v and A.

3. Proof of Theorems 1.3 and 1.4
In this section we prove our main theorems. The two proofs are very similar and we treat them
together for a large part of this section. We state lemmas along the way that we prove either in the
Appendix (Lemma 3.1) or at the end of the section (Lemmas 3.2, 3.3 and 3.4). We introduce some
notation specific to the proof.

A path cover of size k of a directed graph H is a set P of k directed paths in H such that every
vertex is contained in exactly one path of P . Every digraph H contains a trivial path cover in
which every path consists of exactly one vertex of H, whereas a Hamilton path, if it exists, is a
path cover of size one. We call two path covers P1 and P2 edge-disjoint if any two paths P1 ∈ P1
and P2 ∈ P2 are edge-disjoint. Given a set of path covers P of a digraph H, we let GP denote the
graph whose edge set is formed by taking the union of all sets E(P), for all paths P ∈ P , for all
path covers P ∈ P.

Let c> ε > 0, where we may assume for the proof that ε is sufficiently small. Let n be a suffi-
ciently large integer. Let d = cn and assume that G is a balanced d-regular bipartite digraph on 2n
vertices.

The next lemma asserts that we can split G into roughly ( log n)3 spanning subgraphs, each
with good degree conditions into certain subsets.

Lemma 3.1. Let c> ε > 0 be constants, let n be sufficiently large. Let D be a d-regular bipartite
digraph with bipartition (A, B) such that |A| = |B| = n, where d = cn. Then for K = log n there are
K3 edge-disjoint spanning subdigraphs H1, . . . ,HK3 of D with the following properties.

(P1) For each 1� i� K3, there is a partition V(G)=Ui ∪Wi with |WA
i | = |WB

i | = n/K2 ± 1.
(P2) For some r = (1± ε)d/K3 and all 1� i�K3, the induced subgraph Hi[Ui] satisfies

δ0(Hi[Ui]),�0(Hi[Ui])= r ± r3/5.
(P3) For all 1� i�K3 and all u ∈Ui, we have that d±

Hi
(u,Wi)� εc|Wi|/8K.

(P4) Each induced subgraph Hi[Wi] has minimum semidegree at least (c− ε)|Wi|/2.

The proof of the lemma is a straightforward adaptation of Lemma 27 in [6] to the bipartite
setting. We include it in the Appendix for completeness.

We now claim that each Hi[Ui] as given by the previous lemma has many edge-disjoint path
covers. Precisely, we prove the following.

Lemma 3.2. There exists a positive integer m0 ∈N, such that for m�m0 and m49/50 � r�m/3 the
following is true. Let H be a balanced bipartite digraph on 2m vertices such that d±(v)= r ± r3/5 for
every vertex v of H. Then H contains a collection P of at least r −m24/25 logm edge-disjoint path
covers, each of size at most m/ log4 m. Moreover, δ0(GP)� r −m/( logm)39/10.

In the proofs of Theorems 1.3 and 1.4, respectively, we will apply Lemma 3.2 to each H =
Hi[Ui]. The strategy is then to connect the paths of each path cover in Hi[Ui] to a Hamilton cycle
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(Theorem 1.3) or to a long cycle (Theorem 1.4) using the vertices in Wi in such a way that the
cycles corresponding to distinct path covers are edge-disjoint. We make this precise using the
following two lemmas. A subset S of the vertices of a bipartite digraph F with bipartition (A, B) is
called balanced if |SA| = |SB|.

Lemma 3.3. Let c′ > 1/2, and let a, n′ be positive integers such that, a	 n′/ log n′. Let F be a bal-
anced bipartite digraph on 2n′ vertices such that δ0(F)� c′n′. Then, given a balanced set of distinct
vertices s1, t1, . . . , sa, ta ∈V(F) with respect to a balanced bipartition of F, there exists a path cover
P = {P1, . . . , Pa} of F such that each path Pi starts at si and ends at ti.

Lemma 3.4. Let c′ > 1/4, and let a, n′ be positive integers such that, a	 n′/ log n′. Let F be
a balanced bipartite oriented graph on 2n′ vertices such that δ0(F)� c′n′. Then, given a set of
distinct vertices s1, t1, . . . , sa, ta ∈V(F), there exists a collection of pairwise vertex-disjoint paths
{P1, . . . , Pa} of F such that each path Pi starts at si and ends at ti.

We are ready to prove our main theorems.

Proof of Theorem 1.3. Let c> 1/2, ε > 0, where wemay assume for the proof that ε is sufficiently
small. Let n be a sufficiently large integer. Let d = cn and assume that G is a balanced d-regular
bipartite digraph on 2n vertices. Let K = log n and let H1, . . . ,HK3 be the subdigraphs given by
Lemma 3.1 satisfying the properties (P1)–(P4).

For each i ∈ [K3] we apply Lemma 3.2 with m= |UA
i | = |UB

i | = n− n/K2 ± 1 and r given by
(P2). Note that r = (1± ε)d/K3 = �(n/K3) and Hi[Ui] is balanced so that the assumptions of
Lemma 3.2 are satisfied forH =Hi[Ui]. Therefore, for every i ∈ [K3], we obtain a collection P(i) of
at least r′ = r − n24/25 log n edge-disjoint path covers ofHi[Ui], each of size at most a= n/ log4 n,
and such that

δ0(GP(i) )� r − n/( log n)39/10. (3.1)

Now fix i ∈ [K3] and let P(i)
1 , . . . ,P(i)

r′ be r′ path covers of P(i) as above. We iteratively find r′

edge-disjoint Hamilton cycles C(i)
1 , . . . , C(i)

r′ in Hi such that C(i)
k [Ui] consists exactly of the edges

in P(i)
k , for all 1� k� r′. In other words, the paths in P(i)

k are connected to a cycle C(i)
k via

edges in E(Ui,Wi)∪ E(Wi,Ui)∪ E(Wi). For 1� k� r′ suppose that we have obtained such k− 1
edge-disjoint Hamilton cycles C(i)

1 , . . . , C(i)
k−1. Let Fk be the graph obtained from Hi by remov-

ing the edges of those k− 1 cycles. Let (x1, y1), . . . , (x�, y�) be the pairs of start- and end-points
of the paths in P(i)

k , and note that �� n/ log4 n. We now greedily pick pairwise distinct vertices
s1, t1, . . . , s�, t� ∈Wi such that

(y1, s1), (t1, x2), . . . , (y�, s�), (t�, x1) ∈ E(Fk). (3.2)
We verify briefly that this is indeed possible. For a vertex v ∈ {x1, y1, . . . , x�, y�} ⊆Ui we have that
d±
Hi
(v,Wi)� ε|Wi|/16K, by (P3) and since c> 1/2. An edge in E(v,Wi) (or E(Wi, v), respectively)

is removed from Hi only if v is the end-point (or start-point, respectively) of a path in
⋃k−1

j=1 P(i)
j

(and in this case, at most one edge is removed from Hi). Since δ0(GP(i) )� r − n/( log n)39/10 �
r′ − n/( log n)39/10 by (3.1), it follows that every v ∈Ui is the start-point (or end-point) of at most
n/( log n)39/10 paths in

⋃r′
j=1 P(i)

j . Thus

d+
Fk(v,Wi)� d+

Hi
(v,Wi)− n/( log n)39/10 > 0

at each step, and we can indeed pick s1, t1, . . . , s�, t� greedily inWi such that (3.2) holds.
We verify that Fk[Wi], together with the set {s1, t1, s2, t2, . . . , t�} satisfies the assumptions of

Lemma 3.3. Note that n′ = |WA
i | = n/K2 ± 1. Furthermore, the path cover P(i)

k has size at most
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n/ log4 n, hence �� n/ log4 n	 n′/ log n′. Now, δ0(Fk[Wi])� (c− ε)n′ − (k− 1) by (P4) and
since the only edges incident to vertices in Wi that were removed from Hi are those belonging
to the Hamilton cycles C(i)

1 , . . . , C(i)
k−1. This implies that δ0(Fk[Wi])� c′n′ for some c′ > 1/2, since

c> 1/2, ε > 0 is small enough, and k	 n′. Finally, the set of vertices s1, t1, s2, t2, . . . , t� is balanced
because the set x1, y1, . . . , x�, y� of end-points of paths in P is also balanced.

Therefore, by Lemma 3.3, Fk[Wi] contains a path cover P = {P1, . . . , P�} such that Pj is an
sj–tj-path for 1� j� �. These paths, together with the paths in P(i)

k and the edges in (3.2), form
a Hamilton cycle C(i)

k in Fk ⊆Hi that is edge-disjoint from C(i)
1 , . . . , C(i)

k−1 and from the paths in
P(i)

k+1, . . . ,P
(i)
r′ .

Thus, after r′ iterations, we obtain the desired edge-disjoint Hamilton cycles C(i)
1 , . . . , C(i)

r′ of
Hi. Treating all K3 subgraphsHi in parallel (recall that they were edge-disjoint), we obtain K3r′ �
(1− 2ε)d edge-disjoint Hamilton cycles of G.

Proof of Theorem 1.4. The proof is similar to the proof of Theorem 1.3 and so we merely sketch
it and point out the differences.

Let c> 1/4, ε > 0 where we may assume for the proof that ε is sufficiently small. Let n be a
sufficiently large integer. Let d = cn and assume that G is a balanced d-regular bipartite oriented
graph on 2n vertices. Obviously, an oriented graph is a digraph, and so Lemmas 3.1 and 3.2 apply
to this case just as above. Thus we obtain K3 = log3 n oriented subgraphs H1, . . . ,HK3 satisfying
the properties (P1)–(P4) as in the previous proof. Furthermore, for every i ∈ [K3], we obtain a
collection P(i) of at least r′ = r − n24/25 log n edge-disjoint path covers of Hi[Ui], each of size at
most a= n/ log4 n, and such that (3.1) holds.

Now fix i ∈ [K3] and let P(i)
1 , . . . ,P(i)

r′ be r′ of those path covers of P(i). We iteratively find r′

edge-disjoint cycles C(i)
1 , . . . , C(i)

r′ in Hi such that C(i)
k [Ui] consists exactly of the edges in P(i)

k ,
for all 1� k� r′. That is, again, the paths in P(i)

k are connected to a cycle C(i)
k via edges in

E(Ui,Wi)∪ E(Wi,Ui)∪ E(Wi). For 1� k� r′ suppose that we have obtained such k− 1 edge-
disjoint cyclesC(i)

1 , . . . , C(i)
k−1. Let Fk be the graph obtained fromHi by removing the edges of those

k− 1 cycles. The argument why we can greedily pick pairwise distinct vertices s1, t1, . . . , s�, t� ∈
Wi satisfying (3.2) only differs in the constant factor in the lower bound d±

Hi
(v,Wi)� ε|Wi|/32K,

but the rest of the argument is essentially the same.
Similarly, we obtain analogously to above that δ0(Fk[Wi])� c′n′ for some c′ > 1/4.
Now, instead of Lemma 3.3, we use Lemma 3.4 to find a collection {P1, . . . , P�} of pairwise

vertex-disjoint paths in Fk[Wi] such that Pj is an sj–tj-path for 1� j� �. These paths, together
with the paths inP(i)

k and the edges in (3.2), form a cycle C(i)
k in Fk ⊆Hi that is edge-disjoint from

C(i)
1 , . . . , C(i)

k−1 and from the paths in P(i)
k+1, . . . ,P

(i)
r′ . Since C

(i)
k covers all the vertices of Ui this

implies that the length of C(i)
k is at least |Ui| = n−O(n/ log2 n). The rest is analogous to the proof

above.

It remains to prove Lemmas 3.1, 3.2, 3.3 and 3.4. As noted earlier, we have moved the proof of
Lemma 3.1 to the Appendix due to its similarity to its counterpart in [6].

Proof of Lemma 3.2. Let (A, B) be a bipartition ofH such that |A| = |B| =m, and let b= 2 log4 m.
Let VA

1 , . . . ,V
A
b and VB

1 , . . . ,V
B
b be partitions of A and B respectively, chosen independently and

uniformly at random among all partitions such that |VA
i | = |VB

i | =m/b for all i. For a fixed i ∈
[b] and a fixed vertex v ∈A, the random variable d+(v,VB

i ) has a hypergeometric distribution
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with parameters (m, d+(v),m/b). Therefore the probability that |d+(v,VB
i )− r/b| > (r/b)3/5 is at

most exp (− (r/b)1/5/6), by Remark 2.2 and since d+(v, B)= r ± r3/5 by assumption. A similar
concentration argument applies to d−(v,VB

i ) as well as to d±(w,VA
j ) for every vertex w ∈ B and

j ∈ [b]. It follows by the union bound that with probability at least 1− 8mb exp (− (r/b)1/5/6)=
1− o(1) we have

d±(v,VB
i )=

r
b

±
(
r
b

)3/5
for all v ∈A, i ∈ [b], (3.3)

d±(w,VA
j )=

r
b

±
(
r
b

)3/5
for all w ∈ B, j ∈ [b]. (3.4)

Fix partitions of A and B that satisfy (3.3) and (3.4).
Let (WA,WB) denote a bipartition of the complete bipartite digraph Db,b, where the elements

of the two sets are labelledWA = {wA
j | 1� j� b} andWB = {wB

j | 1� j� b}. ThenDb,b contains b
edge-disjoint Hamilton paths, say P1, . . . , Pb, all of which have their start vertex inWA, and such
that no vertex inWA ∪WB is the end-point of more than 2

√
log b of these paths, by Lemma 2.4.

Let P1 =wA
i1 · · ·wB

i2b and let F1, . . . , F2b−1 be the corresponding bipartite subgraphs of H
having edge sets

E(VA
i1 ,V

B
i2 ), E(V

B
i2 ,V

A
i3 ), . . . , E(V

A
i2b−1

,VB
i2b),

respectively (recall that E(V ,W) denotes the set of all edges of a digraph that are oriented from V
to W).

For each j ∈ [2b− 1], we apply Lemma 2.5 to the digraph Fj (and keep Remark 2.6 in mind
if |VA

ij | and |VB
ij+1

|, say, differ by 1). Note that the assumptions are satisfied with some slack for
m′ =m/b and r′ = r/b− (r/b)3/5, by (3.3) and (3.4). We conclude that Fj contains at least

r
b

−
(
r
b

)3/5
−

(
m
b

)24/25
� r

b
− 2

(
m
b

)24/25

edge-disjoint matchings, each of size at least (m/b)− (m/b)7/8. Moreover, every vertex in VA
ij ∪

VB
ij+1

(or VB
ij ∪VA

ij+1
, respectively) is contained in at least

r
b

−
(
r
b

)3/5
−

(
m
b

)24/25
− 2

(
m
b

)5/6
� r

b
− 2

(
m
b

)24/25

of these matchings.
Note that, for each j ∈ [2b− 1], all edges of Fj are oriented from VA

ij to VB
ij+1

if j is odd, and
from VB

ij to VA
ij+1

if j is even. Therefore we may pick an arbitrary such matching from Fj for every
j ∈ [2b− 1] and concatenate those matchings to form a path cover P of H.

Then P contains at least (2b− 1)(m/b− (m/b)7/8) edges and so it must be of size at most
m/b+ (2b− 1)(m/b)7/8 �m/ log4 m, since each of the 2m vertices of H is in exactly one of the
paths of P .

Iteratively picking distinct matchings for each Fj, we obtain r/b− 2(m/b)24/25 such path cov-
ers for P1. We do the same for all b Hamilton paths P1, . . . , Pb of Db,b. Denote the union of all
path covers obtained this way by P, and note that P contains at least b(r/b− 2(m/b)24/25)�
r −m24/25 logm path covers since m is large enough. Since the paths P1, . . . , Pb are pairwise
edge-disjoint it follows that the path covers in P are pairwise edge-disjoint.
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It remains to show that the graph GP has minimum semidegree at least r −m/( logm)39/10. As
noted above, for every bipartite graph Fj of P1, 1� j< 2b− 1, every vertex in VA/B

ij is in at least

r/b− 2(m/b)24/25 matchings. That is, every such v has d+(v,VB/A
ij+1

) at least r/b− 2(m/b)24/25 in
the graph formed by the union of those matchings. The same lower bound holds for every path
Pj and every v that is not in the vertex class of the end-point of Pj. Since a particular VA/B

ij is the
‘end-point’ of at most 2

√
log b of the paths P1, . . . , Pb, we get that for all v ∈V(H)

d+(v)� (b− 2
√
log b) ·

(
r
b

− 2
(
m
b

)24/25)
� r − m

( logm)39/10

in the graph formed by the union
⋃

Pi of all path covers. A similar argument applies to d−(v) in
GP, which finishes the proof the lemma.

Proof of Lemma 3.3. Let (A, B) be a bipartition of F such that |A| = |B| = n′. Choose a partition
W1∪̇ . . . ∪̇Wa of A∪ B uniformly at random from all partitions that satisfy

(a) si, ti ∈Wi for all i,
(b) ||Wi| − |Wj||� 2 for all i, j,
(c) |WA

i | − |WB
i | = |{si, ti} ∩A| − 1.

To see that such a partition exists, let S= {s1, t1, . . . , sa, ta}, let IA ⊆ [a] be the set of indices such
that si, ti ∈A, let IB ⊆ [a] be the set of indices such that si, ti ∈ B, and let Im = [a] \ (IA ∪ IB).
Since S is balanced, |IA| = |IB|, which we denote by a′. Let A′ =A \ S, B′ = B \ S and assume
first that x= (n′ − a− a′)/a is an integer. Let W′

1∪̇ . . . ∪̇W′
a be a partition of A′ ∪ B′ such that

|W′
i ∩A| = x if i ∈ IA ∪ Im, |W′

i ∩A| = x+ 1 if i ∈ IB, and similarly |W′
i ∩ B| = x if i ∈ IB ∪ Im,

|W′
i ∩ B| = x+ 1 if i ∈ IB. Note that this is possible by the choice of x and since |IA| = |IB|. Then

the partitionW1∪̇ . . . ∪̇Wa is a partition, as desired, if we letWi =W′
i ∪ {si, ti} for all i ∈A. In this

case the bound in (b) is even 1. When x is not an integer then a similar construction works (some
occurrences of x replaced by �x� and some by 
x�), in which case the set sizes may differ by 2.

Fix v ∈V(F) and i ∈ [a]. Note that d+(v,Wi \ {si, ti}) has a hypergeometric distribution
with parameters (n′, d+(v,V(F) \ S),m), where m= n′/a± 1 and d+(v,V(F)\S)� d+(v)− a.
Therefore, for all ε > 0 the probability that d+(v,Wi)< (c′ − ε)n′/a is at most exp (− ε2n′/12a),
since d+(v)� c′n′ and by Remark 2.2. A similar bound holds for d−(v,Wi). Taking the union
bound, we deduce that with probability 1− 4n′a exp (− ε2n′/12a)= 1− o(1)

d±(v,Wi)� (c′ − ε)
n′

a
>

m′ + 3
2

for all v ∈V(F), i ∈ [a], (3.5)

wherem′ =min{|WA
i |, |WB

i |}, ε satisfies 0< ε < c′ − 1/2, and we use that a	 n′/ log n′.
Fix a partition that satisfies (3.5). We claim that this is sufficient to find a Hamilton si–ti-path

in F[Wi], for every i ∈ [a]. The following implies this already when si ∈A, ti ∈ B (or vice versa),
when, by (c), we have |WA

i | = |WB
i |.

Claim 1. Let m′ be a non-negative integer and let G= (A, B) be a bipartite digraph such that |A| =
|B| =m′. Let x ∈A, y ∈ B. If δ0(G)�m′/2+ 1, then G contains a Hamilton path from x to y.

Proof of claim. Let A′ =A \ {x} and B′ = B \ {y}, and let G′ be the (undirected) bipartite graph
with vertex set V ′ =A′ ∪ B′ and edge set E′ = {ab:(b, a) ∈ E(G)}.

We claim that G′ contains a perfect matching. Note that dG′(a)� d−
G (a)− 1� (m′ − 1)/2 for

all a ∈A′ and dG′(b)� d+
G (b)− 1� (m′ − 1)/2 for all b ∈ B′. Now let X ⊆A′ be non-empty and

assume that |NG′(X)| < |X|. Since every vertex in X has at least (m′ − 1)/2 neighbours in G′, it
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follows that |X| > (m′ − 1)/2. Moreover, the set B′ \NG′(X) is non-empty, so for any vertex v ∈
B′ \NG′(X) we have NG′(v)⊆A′ \ X. This, however, implies that dG′(v)� |A′ \ X| < (m′ − 1)/2,
a contradiction. Thus |NG′(X)|� |X| for all X ⊆A′, which implies that G′ contains a perfect
matching, by Hall’s theorem.

Let {(v1,w1), . . . , (vm′−1,wm′−1)} denote the corresponding matching of directed edges in G
such that vi ∈ B′ and wi ∈A′ for all 1� i�m′ − 1, and let wm′ = x and vm′ = y. Now consider the
following auxiliary digraph H on vertex set V(H)= {z1, . . . , zm′ }. For each pair (i, j) let (zi, zj) be
an edge of H if (wi, vj) is an edge of G. Note that H satisfies δ0(H)� δ0(G)− 1�m′/2. Therefore
H contains a Hamilton cycle, say with edge set C, by Theorem 2.3. Now this Hamilton cycle corre-
sponds to a Hamilton path from x to y in G, which can be obtained by replacing each edge (zi, zj)
in C with the edges (wi, vj) and (vj,wj) (the latter only if j �=m′) in G.

Clearly this implies that every F[Wi] has a Hamilton si–ti-path in the case when si ∈WA
i and

ti ∈WB
i , or vice versa. Assume now that both si and ti are on the same side of the bipartition,

say without loss of generality in WA
i . In that case |WA

i | = |WB
i | + 1 by ??. The balanced bipartite

digraph F[(WA
i ∪WB

i ) \ {si}] satisfies the assumptions of the claim and thus contains a Hamilton
path from u to ti for any out-neighbour u of si. Adding the edge (si, u) to that path yields a
Hamilton path from si to ti in F[Wi], as required.

Proof of Lemma 3.4. Let (A, B) be a bipartition of F such that |A| = |B| = n′. Similarly to the
proof of Lemma 3.3 we choose a partition W1∪̇ . . . ∪̇Wa of A∪ B uniformly at random from all
partitions that satisfy

(a) si, ti ∈Wi for all i,
(b) ||Wi| − |Wj||� 1 for all i, j,
(c) |WA

i | = |WB
i |.

Analogously to (3.5), we deduce that with probability 1− o(1)

d±(v,Wi)� (c′ − ε)
n′

a
>

m′

4
for all v ∈V(F), i ∈ [a], (3.6)

where m′ = |WA
i |. Fix a partition such that (3.6) is satisfied. We now find an si–ti-path in F[Wi]

using the following.

Claim 2. Let G be a balanced bipartite oriented graph on 2m′ vertices. Assume that the minimum
semidegree of G satisfies δ0(G)>m′/4. Then G is strongly connected.

Proof. Let v be an arbitrary vertex in G and let R+(v) be the set of vertices w such that there is a
v–w-path in G. We first show that |R+(v)| >m′.

Suppose not. Let G′ =G[R+(v)]. Then δ+(G′)>m′/4 as all out-neighbours of all w ∈ R+ are
elements of R+(v), by definition. Since G is bipartite, so is G′. Let A∪ B be some bipartition of G′.
By the minimum degree assumption, the set E(A, B) has size greater than |A|m′/4, and so there is
a vertex b in B of in-degree greater than |A|m′/4|B|. As the in- and out-neighbours of b are distinct
elements of A (since G′ is an oriented graph), we obtain that

|A| > m′

4

( |A|
|B| + 1

)
.

Counting the edges in E(B,A) gives analogously that

|B| > m′

4

( |B|
|A| + 1

)
.
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Combining the two inequalities implies that

|R+(v)| = |A| + |B| > m′

4

( |A|
|B| + |B|

|A| + 2
)
�m′,

where the last step follows from the AM–GM inequality.
Analogously one can show that the set R−(v) of vertices w such that there is a w–v-path in G

has size greater than m′. Since this is true for any v ∈V(G), it follows that for any two vertices v
and v′ of G, the sets R+(v) and R−(v′) intersect, that is, there is a path from v to v′.

This finishes the proof of the lemma since all graphs F[Wi] are balanced bipartite oriented
graphs and satisfy the degree condition (3.6).

4. Conclusion
In this paper we prove that, for every c> 1/2, every cn-regular bipartite digraph on 2n vertices
admits an almost decomposition of its edge set into Hamilton cycles, as long as n is large enough.
We also prove that, for every c> 1/4, every cn-regular bipartite oriented graph on 2n vertices
admits an almost decomposition of its edge set into nearly Hamilton cycles, as long as n is large
enough. This gives a first approximate version of Conjecture 1.2. The following two would each
constitute a strengthening towards Conjecture 1.2.

Conjecture 4.1. Let c> 1/2 and let n be sufficiently large. Then every cn-regular bipartite digraph
G on 2n vertices has a Hamilton cycle decomposition.

Note that this is a bipartite analogue of [14, Theorem 1.4]: a digraph on n vertices with
minimum semidegree cn for c> 1/2 has a Hamilton decomposition, provided that n� n0(c).

Conjecture 4.2. Let ε > 0, let n be sufficiently large, and let d > n/4 be an integer. Then every d-
regular bipartite oriented graph on 2n vertices contains at least (1− ε)dn edge-disjoint Hamilton
cycles.

The condition d > n/4 would be best possible since the oriented graph may be disconnected
otherwise. Furthermore, the assumption of being regular is necessary for such a statement. To see
this, consider, for example, a blow-up of a C4 with slightly uneven vertex classes. This oriented
graph has minimum semidegree slightly below n/2, yet fails to be Hamiltonian.

A further direction for exploration may be multi-partite tournaments. Let a regular r-partite
tournament be a regular orientation of the complete r-partite graph K(n; r) with equal size vertex
classes. In [14], Kühn and Osthus not only prove Kelly’s conjecture, but more generally, that every
sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust
outexpander contains a Hamilton cycle decomposition. In [15, Section 1.6] they then argue that,
for r� 4, every sufficiently large r-partite tournament is a robust outexpander and thus has a
Hamilton cycle decomposition. The approach via robust outexpanders does not cover the bipartite
or the tripartite case. Yet it is conjectured in [15], additionally to Jackson’s conjecture, that every
regular tripartite tournament has a Hamilton cycle decomposition.

A possible approximate version of the conjecture for tripartite tournaments could be the
following.

Conjecture 4.3. Let ε > 0, c> 1 and let n be sufficiently large. Let G be a cn-regular tripartite
digraph with vertex classes each of size n. Then G contains at least (1− ε)cn edge-disjoint Hamilton
cycles.

Parts of our arguments do work for such an approximate version. The equivalent of Claim 1,
however, does not seem to transfer easily. In fact, assuming just a lower bound of roughly n on the
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minimum semidegree of a balanced tripartite digraph on 3n vertices does not necessarily imply
that the graph is Hamiltonian.
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Appendix A. Proof of Lemma 3.1
Select at random K equipartitions of A and K equipartitions of B, each into K2 sets: for each i ∈ [K]
let {SAi,k}K2

k=1 be the ith partition of A and let {SBi,k}K2

k=1 be the ith partition of B. Note that all parts of all
partitions have size either �n/K2� or 
n/K2�, and for each index i and each vertex v ∈A (respectively
B) there exists a unique index k(i, v) such that v ∈ SAi,k(i,v) (respectively SBi,k(i,v)). Let Si,k denote the union
of SAi,k and SBi,k.
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Consider the following random sets. For v ∈V(D), i ∈ [K], let X±(v, i) be the set of vertices u ∈
N±

D (v)∩ Si,k(i,v) such that u, v ∈ Sj,� for some j �= i and some �. Further, let Y±(v) be the set of vertices
w ∈N±

D (v) such that both v and w are in the same set Si,k for some i, k. In other words, if we colour
the edges of all induced subgraphsD[Si,k] in colour i (allowing multiple colours), X±(v, i) is the set of
all vertices w such that the edge (v,w) (or (w, v), respectively) received colour i and at least one other
colour, and Y±(v) is the set of vertices w such that the edge (v,w) (or (w, v), respectively) received
at least one colour. Set s= n/K2 and b=E (|Y±(v)|), where we note that b is independent of v since
all degrees in D are equal and since the partitions were chosen uniformly. We claim that all of the
following properties hold with high probability:

(a) for all v ∈V(D) and all sets Si,k,

d±
D (v, Si,k)=

d|Si,k|
2n

± 2
√
s log n,

(b) for all v ∈V(D) and i ∈ [K],

|X±(v, i)| = o(s),

(c) for all v ∈V(D),

|Y±(v)| = b± 2
√
K2s log n.

For property (a) note that for fixed v ∈V(D), i ∈ [K], and k ∈ [K2], both d+
D (v, Si,k) and d−

D (v, Si,k)
are hypergeometric random variables, each with parameters (n, d, |Si,k|/2). Hence it follows that (a)
holds with probability at least 1− 16nK3e−4 log n/3 = 1− o(1), by Remark 2.2 and the union bound.

For fixed v ∈V(D) and i ∈ [K], the random variable |X±(v, i)| is dominated by a binomial random
variable with parameters (nK, (1/K2)2). Thus

E (|X±(v, i)|)�
(

1
K2

)2

nK = o(s),

and (b) follows from a straightforward application of Chernoff ’s inequality (Lemma 2.1).
For property (c) fix a vertex v ∈A and note that

|Y±(v)| =
∣∣∣∣N±

D (v)∩
K⋃
i=1

SBi,k(i,v)

∣∣∣∣.
For every i ∈ [K] and every w ∈ B, the probability that w ∈ SBi,k(i,v) is 1/K2. Thus the probability that
such a vertex w is in

⋃K
i=1 SBi,k(i,v) is p′ = 1− (1− 1/K2)K . It follows that b=E (|Y±(v)|)= dp′. For

each i ∈ [K], let Ui be a random subset of B, where every w ∈ B is an element of Ui with probability
1/K2, all choices being independent. Let U = ⋃K

i=1 Ui and let E be the event that |Ui| = |SBi,k(i,v)| for
all i. Then the random variable |N±

D (v)∩U| is binomially distributed with parameters (d, p′), and
thus E (|N±

D (v)∩U|)= b. Furthermore, the random variable |Y±(v)| has the same distribution as
|N±

D (v)∩U| conditioned on E . Hence

P(||Y±(v)| − b| > t)� P(||N±
D (v)∩U| − b| > t)/P(E ) (A.1)

for all t. Now, each |Ui| has a binomial distribution with mean s, thus P(|Ui| = j) is maximized when
j= s. Thus, by independence,

P(E )=
K∏
i=1

P(|Ui| = s)� 1/(n+ 1)−K .

Hence we deduce from (A.1) that

P(||Y±(v)| − b| > t)� 2e−t2/3b(n+ 1)K ,
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by Chernoff ’s inequality (Lemma 2.1). If t = 2
√
n log n then the expression on the right-hand side is

of order o(1/n), where we use that b= dp′ ∼ cn/K. The same inequality holds for all vertices v ∈ B,
so (c) follows by taking the union bound over all v ∈V(D).

Now fix K partitions {SAi,k}K2

k=1 of A, and K partitions {SBi,k}K2

k=1 of B, such that (a), (b) and (c) are
satisfied.

LetD′ be the digraph consisting of all edges ofD which are not contained in anyD[Si,k]. It follows
directly from (c) that

d±
D′(v)= d − b± 2

√
K2s log n (A.2)

for every v ∈V(D).
Relabel the sets {Si,k}(i,k)∈[K]×[K2] asW1, . . . ,WK3 and define the digraphs Hj on vertex setsWj to be

the edges of D[Wj] that are not in D[Wj′] for any j′ �= j. Finally, let Ui =V(D) \Wi.
Property (P1) of the lemma statement is trivially satisfied by definition. Furthermore, for every

1� i�K3 and every v ∈Wi, we have that

d±
Hi
(v,Wi)= d|Wi|

2n
± (2

√
s log n+ o(s)),

by (a) and (b). Hence property (P4) follows since d = cn and |Wi| = n/K2.
It remains to choose edge sets EHi(Ui,Wi), EHi(Wi,Ui) and EHi(Ui) such that properties (P2) and

(P3) are satisfied. For a vertex u ∈V(D), let Iu denote the set of indices i such that u ∈Wi, and
note that by construction |Iu| =K. Furthermore, for an edge e= (u, v) ∈D′ we have Iu ∩ Iv = ∅ by
definition of D′. Define random edge sets E1, . . . , EK3 and D1, . . . ,DK3 as follows. For every edge
e= (u, v) ∈D′, add e to exactly one of E1, . . . , EK3 ,D1, . . . ,DK3 with the following probabilities. For
each i ∈ [K3]:

• add e to Ei with probability ε/(2K) if i ∈ Iu ∪ Iv,
• add e to Di with probability (1− ε)/(K3 − 2K) if i �∈ Iu ∪ Iv,

choices being independent for distinct edges. Note that the probabilities indeed add up to 1. Now,
for all i ∈ [K3] and all v ∈Ui,

E (d±
Di
(v))= d±

D′(v)
1− ε

K3 − 2K
and

E (d±
Ej(v,Wj))= d±

D (v,Wj)
ε

2K
.

Hence, by (A.2), Chernoff ’s inequality (Lemma 2.1) and the union bound, with probability at least
1− 8nK3e−ω( log n) = 1− o(1) we have that d±

Di
(v)= r ± r3/5 for all i ∈ [K3] and all v ∈Ui, for some

suitable r = (1± ε)d/K3. Similarly we obtain that with probability at least 1− 4nK3e−ω( log n) = 1−
o(1), we have that for all i ∈ [K3] and all v ∈Ui,

d±
Ei(v,Wi)�

ε

2K

(
d|Wi|
2n

− 2
√
n/ log n

)
� εc|Wi|/8K,

by (a), Chernoff ’s inequality (Lemma 2.1), the union bound, and where we use in the last inequality
that d = cn and |Wi| �

√
n log n.

Finally, fix choices of Ei and Di that satisfy d±
Di
(v)= r ± r3/5 and d±

Ei(v,Wi)� εc|Wi|/8K for all
i ∈ [K3] and all v ∈Ui, and set Hi = Ei ∪Di ∪Hi[Wi].
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