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We perform large-eddy simulation (LES) and theoretical analysis to investigate the effects
of opposing waves on overlying turbulent wind. The LES results show that opposing
waves induce nearly antisymmetric vertical velocity w̃ in the wind on the two sides
of the wave crest, while the streamwise velocity ũ away from the surface and the air
pressure p̃ seem symmetric. To study the mechanisms for the wave-induced airflow, we
develop a viscous model by linearising the phase-averaged Navier–Stokes equations in
the mapped computational curvilinear coordinate. To illustrate the flow dynamics, we
split w̃ into an antisymmetric component and a symmetric component. The solution
of the antisymmetric component of w̃ from the viscous curvilinear model agrees well
with the LES results for different opposing wave conditions. According to the viscous
curvilinear model, the large-magnitude antisymmetric component of w̃ is driven by the
wave kinematics at the surface and amplified by the mean shear and viscous stress in
the air, and it causes the strong symmetric components of ũ and p̃. In contrast, the
small-magnitude symmetric component of w̃ is forced by the antisymmetric w̃ through
viscous and turbulent stresses near the surface, and it can be described by a further
simplified inviscid curvilinear model away from the surface. It is discovered that the weak
symmetric w̃ causes a slight asymmetry in ũ and p̃, and generates a mean wave-coherent
stress and the form drag on the wave surface. The wave attenuation rates quantified using
the form drag agree with the published experiments.

Key words: wind–wave interactions, surface gravity waves, wave–turbulence interactions

1. Introduction

The interaction between ocean surface waves and turbulent wind is of significant
importance to many applications. Examples range from weather models in marine
environments, navigation safety of ocean vehicles, offshore wind energy harvesting, to the
forecasting of extreme wind waves. There is a critical need for a deep understanding of the
physical mechanism underlying the turbulent wind–wave interaction, which is currently
far from adequate given the complexity of the problem.

In the past few decades considerable attention has been paid to the scenario of wind and
waves in the same direction, which is related to the problem of how the waves are generated

† Email address for correspondence: shen@umn.edu
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by the wind. The effects of the critical layer and wave-induced turbulent stress have been
identified and extensively studied. The critical layer, defined as the height at which the
mean wind speed equals the celerity of a wave, drew people’s attention and has been shown
to be one of the key mechanisms governing the energy flux from the wind to the wave (e.g.
Miles 1957; Lighthill 1962; Hristov, Miller & Friehe 2003). The wave-induced turbulent
stress, defined as the difference between the phase- and ensemble-averaged turbulent
stress, has become another research focus later. Some theoretical studies have adopted the
eddy viscosity or mixing-length models to relate the wave-induced turbulent stress to the
wave-induced velocity (which is the difference between the phase- and ensemble-averaged
air velocity) to quantify the contribution of turbulent stress to the energy flux between
wind and waves (e.g. Jacobs 1987; Van Duin & Janssen 1992; Belcher & Hunt 1993;
Miles 1993, 1996). Meanwhile, experimental and numerical studies have also examined
the structures and effects of wave-induced turbulent stress in the wave boundary layer
(e.g. Hsu, Hsu & Street 1981; Rutgersson & Sullivan 2005; Kihara et al. 2007; Yousefi
& Veron 2020; Yousefi, Veron & Buckley 2020). While there still exists discrepancy in
the wave growth rate between theoretical predictions and measurements (see the review
by Sullivan & McWilliams 2010), the physical processes in the wind-following-wave case
are relatively well understood, at least in a qualitative sense (Belcher & Hunt 1998).

On the contrary, the scenario of wind blowing oppositely to the waves has received
less attention in previous research compared to the wind-following-wave case and is less
understood, but is also an important problem. Such a scenario can happen in the conditions
of hurricanes where the direction of the wind changes rapidly (Wright et al. 2001), storms
(Bowers, Morton & Mould 2000) or even normal wind sea (Ardhuin et al. 2007). Below,
we briefly summarize the main findings in the previous studies on wind opposing waves.

There have been a number of measurements of air pressure in laboratory and field to
quantify the momentum flux at the air–sea interface, such as Shemdin & Hsu (1967),
Snyder et al. (1981), Young & Sobey (1985), Banner (1990), Hasselmann & Bösenberg
(1991), Donelan et al. (2006), and Grare et al. (2013b), amongst others, which are
summarized in detail by Peirson, Garcia & Pells (2003) and Grare et al. (2013b). Among
those studies, Snyder et al. (1981) and Hasselmann & Bösenberg (1991) showed that the
opposing wave-induced air pressure is nearly anti-phase with the wave elevation in the
field conditions. This feature of air pressure induced by opposing waves is also reflected
in the laboratory measurement by Young & Sobey (1985) and the numerical simulation
using the Reynolds-averaged Navier–Stokes (RANS) equations by Al-Zanaidi & Hui
(1984). However, because measurements are usually performed only at several heights
above the wave surface, the detailed spatial structures of the opposing wave-induced
pressure and velocity have not been fully accessed, with the opposing wave effects on the
turbulence statistics studied even less. Therefore, a comprehensive study on the interaction
of turbulent wind with opposing waves is called for.

In addition, the physical mechanisms underlying the opposing wave effects on the
airflow have not been fully understood. On one hand, it can be inferred from some previous
studies that the wave-induced turbulent stress is unimportant for the main feature of
wave-induced airflow. For instance, Wen & Mobbs (2015) performed two-dimensional
coupled air–water laminar flow simulation for progressive waves opposing wind without
considering the turbulence effect, and they obtained a similar phase difference between
the wave-induced air velocity and the wave surface as that measured in the turbulent wind
by Young & Sobey (1985), implying the dominance of linear dynamics of wave-induced
airflow. On the other hand, Young & Sobey (1985) discovered that the linear potential
flow theory of Lamb (1932) is inadequate in explaining the opposing wave-induced air
motions, especially their magnitude. Note that the potential flow theory of Lamb (1932)
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neglects the viscous stress, the mean wind shear, and the elevation of the wave surface.
A more sophisticated model with these effects incorporated is critically needed, which is
developed in the present study.

Moreover, there exist different opinions among previous studies on the wave attenuation
rate for the opposing waves and the underlying mechanisms. In their field studies, Snyder
et al. (1981) and Hasselmann & Bösenberg (1991) measured the correlation between the
air pressure and wave slope, and showed that the wave attenuation rate is very small.
However, the laboratory measurement of the pressure-slope correlation by Donelan (1999)
showed that the air pressure can induce appreciable wave attenuation, and this result is
also reflected in the numerical simulations using the RANS equations (e.g. Al-Zanaidi
& Hui 1984; Mastenbroek 1996; Harris, Fulton & Street 1995; Cohen 1997). Based on
the measured air velocity and pressure above opposing waves in the laboratory, Young
& Sobey (1985) proposed another mechanism for the wave attenuation based on the
self-correlation of the wave-induced streamwise velocity, which was however contradicted
by Hasselmann & Bösenberg (1991).

As pointed out by Peirson et al. (2003), the pressure-slope correlation at the wave
surface is difficult to measure directly and is usually extrapolated from the measurement
above the surface, which might be affected by the complex airflow behaviour very close
to the surface. For example, Grare et al. (2013b) performed a thorough measurement of
the pressure-slope correlation above the wave surface and found that its vertical gradient
has a significant change near the surface. With this factor considered, Peirson et al. (2003)
performed measurement of the evolution of surface waves, which showed a higher wave
attenuation rate for the waves opposing the wind direction than the previous experimental
and numerical studies. Mitsuyasu & Yoshida (2005) also directly measured the evolution
of waves opposing the wind direction and obtained a wave attenuation rate smaller
than Peirson et al. (2003). Mitsuyasu & Yoshida (2005) stated that more data on the
wind-induced current in the wind-wave tank are needed to examine the discrepancy of
the wave decay rate due to wave–current interaction between these two studies.

Based on the review above, the present study aims to study the opposing wave-induced
airflow velocity, pressure and turbulence statistics. The focus of our study is the physical
mechanisms underlying the wave-induced airflow, especially the effects of the nonlinear
forcing, e.g. the turbulent stress, and the linear forcing, e.g. the viscous stress. We also aim
to examine the relationship between the wave-induced airflow and wind–wave momentum
flux, and quantify the resulting wave attenuation rate.

In this study we carry out wall-resolved large-eddy simulation (LES) of the turbulent
wind field with the surface wave propagating in the opposite direction of the wind as
sketched in figure 1. In the past two decades, because of their high fidelity, direct numerical
simulation (DNS) and LES have played an increasingly important role in the study of
turbulent wind–wave interaction (e.g. Sullivan, McWilliams & Moeng 2000; Sullivan
et al. 2008; Yang & Shen 2009, 2010; Druzhinin, Troitskaya & Zilitinkevich 2012, 2016;
Jiang et al. 2016; Yang & Shen 2017; Akervik & Vartdal 2019; Hao & Shen 2019; Wang
et al. 2020). The advantage of the wall-resolved LES is that it allows for a Reynolds
number higher than the DNS, but still resolves the viscous sublayer near the wave surface,
without the parameterizations of surface roughness and surface stress (Pope 2000). From
the wall-resolved LES, the three-dimensional turbulent wind field in the presence of the
opposing water waves is obtained, and the wave-induced air motions are extracted and
examined. To explain the arising of the wave-induced airflow, we also perform a theoretical
analysis of the linearised viscous momentum equation for the wave-induced air motions in
a mapped computational curvilinear coordinate in the presence of wind shear for the first
time.
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FIGURE 1. Sketch of the computational configuration of LES of a wind opposing water wave.
The turbulent wind field is driven by a constant velocity U0 at the top of the computational
domain, with the Dirichlet boundary condition applied at the wave surface and periodic boundary
condition applied in the horizontal directions. The surface wave propagates in the −x direction,
with a wavelength λ, an amplitude a and a phase speed c.

The remainder of the paper is organized as follows. The configuration of simulation
and the methodology for the statistical analysis are shown in § 2. The features of the
wave-coherent airflow are illustrated in § 3. The derivation of the viscous linearised
equation is provided in § 4, and the physical mechanisms underlying the wave-induced
airflow are discussed in § 5. In § 6 we perform a comparison of the wave attenuation rate
between the present study and the previous studies. At last, conclusions and discussion are
given in § 7.

2. Configuration of simulation and methodology for data analysis

2.1. Configuration of simulation
To solve for the turbulent wind field following or opposing waves, we perform LES of wind
turbulence over waves. The filtered Navier–Stokes (NS) equations for the air motions are
given as

∂uj

∂xj
= 0, (2.1)

∂uj

∂t
+ um

∂uj

∂xm
= − 1

ρa

∂p
∂xj

− ∂τ d
jm

∂xm
+ ν

∂2uj

∂xm∂xm
, (2.2)

where x , y and z denote the coordinates (figure 1) in the streamwise, spanwise and vertical
directions, respectively, uj( j = 1, 2, 3) = (u, v,w) is the filtered velocity in LES at the
grid scale, p is the filtered modified pressure, τ d

jm is the trace-free part of the subgrid-scale
(SGS) stress tensor, ρa is the density of air and ν is the kinematic viscosity of air.

The progressive waves are imposed as a Dirichlet boundary condition for the air velocity
at the water surface, ui(z = η) = (us, vs,ws), where η is the surface wave elevation and
(us, vs,ws) is the orbital velocity of the wave at the surface, given as

η(x, y, z, t) = a sin k(x − ct), (2.3)

us(x, y, z, t) = akc sin k(x − ct), (2.4)
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vs(x, y, z, t) = 0, (2.5)

ws(x, y, z, t) = −akc cos k(x − ct), (2.6)

where a is the amplitude of the surface wave, k = 2π/λ is the wavenumber, λ is the
wavelength and c is the phase speed. Here, an Airy wave solution is adopted. In the case
of a Stokes wave, the effect of nonlinearity by the higher harmonics is of O((ak)2). In our
derivation and analysis of the linearised equations in the following sections, the O((ak)2)
terms in the governing equations are neglected. Therefore, we only consider the dominant
Fourier component in the water wave solution to be consistent.

To accurately capture the effects of the surface wave geometry and motions on the
turbulent wind field, the LES solver utilizes a boundary-fitted grid that follows the
instantaneous wave surface at each time step. For discretizing the governing equations,
we transform the irregular physical domain (x, y, z, t) above the wave to a rectangular
computational domain (ξ, ψ, ζ, τ ) using the following algebraic mapping:

τ = t, ξ = x, ψ = y, ζ = z + g(ζ )η, where g(ζ ) = ζ

H
− 1. (2.7)

Here, H is the mean physical domain height and g(ζ ) denotes the transformation
function. We use the index notation to denote the physical and computational coordinates
as xj( j = 1, 2, 3) = (x, y, z) and ξj( j = 1, 2, 3) = (ξ, ψ, ζ ), respectively. The Jacobian
matrix corresponding to the above transformation is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ξ

∂x

∂ξ

∂y

∂ξ

∂z
∂ψ

∂x

∂ψ

∂y

∂ψ

∂z
∂ζ

∂x

∂ζ

∂y

∂ζ

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 0

0 1 0
gηξ

1 − gζ η
gηψ

1 − gζ η
1

1 − gζ η

⎤
⎥⎥⎥⎦ , (2.8)

where gζ = dg/dζ . Because of the surface wave motions, the transformation (2.7) varies
with time, resulting in a transformation of time derivative between the computational space
and the physical space

∂

∂t
= ∂

∂τ
+ ∂ξj

∂t
∂

∂ξj
= ∂

∂τ
+ ∂ζ

∂t
∂

∂ζ
, where

∂ζ

∂t
= gητ

1 − gζ η
. (2.9)

The transformed LES equations in the computational space read as

Jpj
∂uj

∂ξp
= 0, (2.10)

∂uj

∂τ
+ δp3

∂ζ

∂t
∂uj

∂ξp
+ Jlp

∂(ujup)

∂ξl
= − Jlj

ρa

∂p
∂ξl

+ Jlp
∂τ d

jp

∂ξl
+ νJnp

∂

∂ξn

(
Jlp
∂uj

∂ξl

)
, (2.11)

where Jlp is the (l, p) entry of the mapping matrix J and δlp is the Kronecker delta.
Equations (2.10) and (2.11) are discretized and solved in the rectangular computational

space. A Fourier-series-based pseudo-spectral method is used for the (ξ, ψ) plane
discretization with evenly spaced grid points in both directions. A second-order finite
difference method is employed for the discretization in the ζ direction with grid points
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clustered near the upper and lower boundaries. For the filtering operators in the LES, a
two-dimensional spectral cutoff filter in the (ξ, ψ) plane is adopted. In the momentum
equation the SGS stress tensor is calculated using the dynamic Smagorinsky model
(Smagorinsky 1963; Germano et al. 1991; Lilly 1992). To integrate the momentum
equations in time, we use a fractional-step method. First, the advection and viscous
terms are advanced in time with the second-order Adam–Bashforth scheme. Second, a
nonlinear Poisson equation is solved using iteration to obtain the pressure field, which
is used to correct the velocity field such that the continuity equation is satisfied. The
detailed numerical procedure and the validation of our numerical method can be found in
Yang & Shen (2011a). The present LES solver simulates the system in a time-dependent
domain. The solver was developed for turbulent airflows over a complex wave field
(Yang & Shen 2011a,b). The conservation of momentum is examined in appendix A. The
present solver has been extensively utilized to study a turbulent wind field in the presence
of monochromatic water waves (Yang & Shen 2009, 2010, 2017) and broadband water
wave fields (Yang, Meneveau & Shen 2013, 2014a,b; Hao & Shen 2019), with extensive
validations performed in the references cited above. We note that for monochromatic
waves, it is also feasible to perform the simulation in the frame travelling with the wave,
where the domain geometry does not change in time (e.g. Sullivan et al. 2000; Druzhinin
et al. 2012).

As sketched in figure 1, the turbulent wind is driven by a fixed velocity at the top
of the simulation domain: (u, v,w) = (U0, 0, 0), and a periodic boundary condition is
applied in the horizontal directions on the lateral boundaries. This canonical setup has
been extensively used in the previous simulations of turbulent air flows over surface waves
(e.g. Sullivan et al. 2000; Druzhinin et al. 2012, 2016). In the present study the wave age
c/U0 of the waves varies between −0.8 and 0.1. Two wave steepness values are considered,
ak = 0.08 and 0.15 (table 1). Here, a negative wave age denotes the surface wave
propagating against the wind direction, while a positive wave age denotes the
following-wind surface wave. The wave steepness in the present study is comparable
to the typical values adopted in the previous studies of wind opposing waves, e.g.
ak = 0.06 − 0.19 in Peirson et al. (2003) and ak ≈ 0.06–0.13 in Mitsuyasu & Yoshida
(2005). The Reynolds number based on the wavelength of the surface wave and the driving
velocity at the top, U0λ/ν, is 30 000, which is higher than the previous DNS of wind over
water waves, e.g. 8800 in Sullivan et al. (2000), 10 000 in Yang & Shen (2010) and 15 000
in Druzhinin et al. (2012), but is one to two orders of magnitude lower than the laboratory
studies of wind opposing waves (Young & Sobey 1985; Peirson et al. 2003; Mitsuyasu
& Yoshida 2005) as limited by the computation cost of the wall-resolved LES. However,
as reviewed by Sullivan & McWilliams (2010), despite the lower Reynolds number, DNS
and LES are capable of revealing many key physical processes in the turbulent wind–wave
interaction. The corresponding Reynolds number based on the friction velocity uτλ/ν
varies slightly from case to case, but is around 800 for all cases as summarized in table 1.
Here, uτ is defined as the friction velocity uτ = √

τs/ρa, where τs is the mean viscous
shear stress at the top of the simulation domain, which equals the mean total stress at any
given height in the wave surface layer and the summation of viscous shear stress and form
drag at the wave surface.

To fully capture the wave-coherent motions in the wind field, a simulation domain of
the size (Lx ,Ly,H) = (6λ, 4λ, λ) is adopted. The same domain size has been employed
in the previous studies (e.g. Sullivan et al. 2000; Druzhinin et al. 2012, 2016). The
turbulent flow field is discretized in the computational space with 3842 × 192 grid points,
providing a resolution of Δξ+ � 21, Δψ+ � 14, and Δζ+

min � 0.2, where Δζ+
min denotes

the minimum grid space near the boundary in the ζ direction. The superscript ‘+’ indicates
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Case c/U0 Direction ak uτ × 102 uτλ/ν Nx × Ny × Nz (Δξ+,Δψ+,Δζ+
min)

WFW01 0.1 Following 0.15 2.89 867 3842 × 192 (20.32, 13.55, 0.18)
WOW01 −0.1 Opposing 0.15 2.77 831 3842 × 192 (19.48, 12.98, 0.17)
WOW01L −0.1 Opposing 0.08 2.67 802 3842 × 192 (18.79, 12.52, 0.16)
SWOW01L −0.1 Opposing 0.08 2.67 802 5122 × 256 (14.09, 9.39, 0.12)
WOW015L −0.15 Opposing 0.08 2.66 797 3842 × 192 (18.68, 12.45, 0.16)
WOW02L −0.2 Opposing 0.08 2.63 790 3842 × 192 (18.52, 12.34, 0.16)
WOW03L −0.3 Opposing 0.08 2.68 803 3842 × 192 (18.82, 12.55, 0.16)
WOW04 −0.4 Opposing 0.15 2.83 849 3842 × 192 (19.90, 13.27, 0.17)
WOW04L −0.4 Opposing 0.08 2.56 767 3842 × 192 (17.98, 11.98, 0.15)
WOW08 −0.8 Opposing 0.15 2.98 893 3842 × 192 (20.93, 13.95, 0.18)
WOW08L −0.8 Opposing 0.08 2.60 781 3842 × 192 (18.31, 12.21, 0.15)

TABLE 1. List of LES cases for turbulent wind opposing and following progressive water waves.
In the table WFW stands for wind following wave and WOW for wind opposing wave. The bulk
Reynolds number U0λ/ν is prescribed as 30 000 for all the wave cases, while uτλ/ν and the grid
resolution are quantified a posterior.

normalisation by the viscous length scale ν/uτ . The grid resolution is sufficient for
wall-resolved LES according to the criterion given in Choi & Moin (2012), and we have
confirmed the grid convergence with tests described in appendix B. The parameters and
resolution of the wave cases considered in this study are summarized in table 1.

For data sampling, the simulations of all cases evolve for approximately 120 times of
the largest eddy turnover time, i.e. 120H/uτ . Snapshots of three dimensional instantaneous
velocity fields were output every 0.17H/uτ , corresponding to 150 viscous time units, i.e.
150ν/u2

τ , with a total number of 200 snapshots for the statistical analysis in this study.

2.2. Methodology for data analysis
To extract the effects of the progressive water waves on the overlying turbulent wind field,
we apply a triple decomposition to the instantaneous flow field (Hussain & Reynolds 1970)

f (x, y, z, t) = f̄ (ξ, ζ )+ f ′(x, y, z, t) = 〈 f 〉(ζ )+ f̃ (ξ, ζ )+ f ′(x, y, z, t), (2.12)

where f denotes an arbitrary physical quantity in the wind field, f̄ is its phase-averaged
part, 〈 f 〉 is its mean value, which is obtained through the average in time and over the
(ξ, ψ) plane, f̃ is its wave-induced fluctuation and f ′ is its turbulent fluctuation. The
phase-averaged quantify f̄ is calculated using the snapshots of the turbulent flow field with
two steps: first, because the wave phase is known at each time step from the prescribed
surface elevation information (2.3) with k(ξ − ct) quantified, each instantaneous flow field
is averaged along the spanwise direction and then shifted to the same phase with respect
to the surface wave; then an ensemble average of the shifted velocity fields is performed

f̄ (ξ, ζ ) = 1
Nt

1
Ny

Nt∑
p=1

Ny∑
m=1

f (ξ(l)− ct( p), ψ(m), ζ(n)), (2.13)

where the indices l, m, n, p denote the discrete points in ξ , ψ , ζ , and t, respectively, and
Nt and Ny are the total number of the snapshots employed and the number of the grid
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points in the spanwise direction, respectively. Then the turbulent fluctuation is calculated
by subtracting the phase-averaged part from the instantaneous part, i.e. f ′(x, y, z, t) =
f (x, y, z, t)− f̄ (ξ, ζ ), and the wave-induced part is obtained by subtracting the mean value
from the phase-averaged quantity, i.e. f̃ (ξ, ζ ) = f̄ (ξ, ζ )− 〈 f 〉(ζ ).

In (2.12), f̃ is the Cartesian wave-coherent quantity, with the physical coordinate
(x, y, z) transformed to the mapped curvilinear coordinate (ξ, ψ, ζ ). Although performing
average in the (x, y, z) coordinate has the advantage of being independent of the mapped
computational curvilinear grid, f̃ is not defined for all of the region below the wave
crest and above the wave trough. Moreover, for theoretical analysis, because the boundary
conditions imposed by the wave elevation and kinematics for the airflow are applied on a
curved surface, it is challenging to derive the boundary conditions for f̃ in the (x, y, z)
coordinate. Therefore, many previous experimental, numerical and theoretical studies
conducted averaging in the mapped curvilinear coordinates (e.g. Hsu et al. 1981; Hsu
& Hsu 1983; Belcher & Hunt 1993; Sullivan et al. 2000; Yang & Shen 2010; Hara &
Sullivan 2015; Buckley & Veron 2016; Akervik & Vartdal 2019). Using the various forms
of mapped coordinates employed in previous studies, the underlying physical mechanisms
revealed are the same (see, e.g. Yang & Shen 2010; Hara & Sullivan 2015).

Previous studies showed that f̃ is dominated by its fundamental mode, i.e. the Fourier
coefficient f̂ corresponding to the wavenumber k (Hussain & Reynolds 1970),

f̃ = f̂ eikξ + f̂ ∗e−ikξ + harmonics, (2.14)

where f̂ ∗ is the complex conjugate of f̂ . The phase difference between f̃ and η̃ is quantified
according to

f̃ = 2 Re[f̂ ] cos(kξ)− 2 Im[f̂ ] sin(kξ) = 2|f̂ | sin(kξ − φf̃ η̃)+ harmonics. (2.15)

Here, ‘| · |’ is the modulus operator for complex numbers and φf̃ η̃ = arctan(Re[f̂ ]/Im[f̂ ])
is the phase difference from the wave surface η̃ = a sin(kξ). For the analyses in §§ 4
and 5, we focus on the fundamental mode of the wave-induced quantity, following
the previous studies (e.g. Miles 1957; Hsu et al. 1981; Hsu & Hsu 1983; Belcher
& Hunt 1993; Kihara et al. 2007). The real and imaginary parts of f̂ have different
spatial structures and different physical meanings. Specifically, Re[f̂ ] corresponds to a
cosinusoidal perturbation, which is π/2 out-of-phase with the wave surface, while Im[f̂ ]
corresponds to a sinusoidal perturbation, which is in-phase with the wave surface. In other
words, Re[f̂ ] is antisymmetric about the surface wave crest, while Im[f̂ ] has a symmetric
spatial distribution.

It is noted that the phase average is adopted to extract the wave-induced quantity f̃ in
the triple decomposition (2.12), which has been widely employed in studies where the
effects of a monochromatic wave or the dominant wave component of the wind waves
are considered (e.g. Hsu et al. 1981; Hsu & Hsu 1983; Sullivan et al. 2000; Kihara et al.
2007; Yang & Shen 2010; Druzhinin et al. 2012; Hara & Sullivan 2015; Buckley & Veron
2016; Yang & Shen 2017; Akervik & Vartdal 2019). The wave-coherent quantity can also
be identified through the correlation with the wave elevation (Hristov, Friehe & Miller
1998; Hristov & Ruiz-Plancarte 2014) or through the spectral method (Grare, Lenain &
Melville 2013a, 2018). For the monochromatic wave form considered in the present study,
the difference among these methods is small as the wave-induced quantity is dominated
by the fundamental mode. However, the latter two methods have the advantage of being
able to extract the wave-coherent quantity above a broadband wave field.
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In the following sections we first show the opposing wave effects on the velocity,
pressure and turbulence statistics in the airflow (§ 3). In § 4 we present a physical model to
explain the opposing wave-induced airflow. The underlying physical mechanisms and the
wave attenuation rate are examined in §§ 5 and 6, respectively. We note that in §§ 3 and 5,
we focus on four representative wave cases in table 1, namely WFW01 (c/U0 = 0.1, ak =
0.15), WOW01 (c/U0 = −0.1, ak = 0.15), WOW01L (c/U0 = −0.1, ak = 0.08) and
WOW04 (c/U0 = −0.4, ak = 0.15), to show the effects of wave propagation direction,
wave steepness and wave speed. The other wave cases have consistent results as the
four wave cases and thus are not presented in these two sections for space and clarity
consideration. In § 6 we present the wave attenuation rates in all of the wave cases listed
in table 1 to compare with previous studies.

3. Features of opposing wave effects in the airflow

In this section we show the wave-coherent velocity (§ 3.1), wave-coherent stress −ũw̃
and pressure p̃ (§ 3.2), and wave-coherent turbulence variance ũ′u′ + w̃′w′ and turbulent
stress −ũ′w′ (§ 3.3) in the wall-resolved LES. Note that in the expressions of the
wave-coherent stress and turbulent stress used here, the constant air density is omitted.

3.1. Wave-induced velocity
The propagation of a surface wave can induce velocity perturbation in the airflow travelling
at the same speed as the surface wave celerity, which is usually referred to as the
‘wave-coherent’ or ‘wave-induced’ velocity in the literature. For a plane progressive
gravity wave, the wave-induced velocity also exhibits a two-dimensional pattern. In the
instantaneous fields the perturbations by the wave are more pronounced in the vertical
velocity than in the streamwise velocity owing to the mean shear in the latter. Therefore,
we use the instantaneous vertical velocity to illustrate the effects of water waves. Figure 2
shows snapshots of the vertical velocity for the four wave conditions: WFW01, WOW01,
WOW01L and WOW04 (table 1). For the same wave speed, both the following wave case
WFW01 (figure 2a) and the opposing wave case WOW01 (figure 2b) display a structure
of alternating positive and negative vertical velocity w, which corresponds to upward and
downward airflow along the wave crest, respectively, with the magnitude in the opposing
wave case being slightly larger especially near the wave surface. The strength of this flow
structure varies with wave steepness and speed. Compared with case WOW01 (figure 2b),
the velocity perturbation becomes weaker for a less steep opposing wave in case WOW01L
(figure 2c), while it is strengthened for a faster opposing wave in case WOW04 (figure 2d).

To show the statistical results of the structure of the upward and downward
wave-coherent airflows, we present the wave-induced vertical velocity w̃ in figure 3. It
is noted that in figure 3, the contours are plotted up to z/λ = 0.4, because the magnitudes
of wave-induced quantities are small above this height, which is also the case for the other
figures in §§ 3 and 5. In general, the opposing wave cases (figure 3b–d) show a positive
w̃ at the windward face and a negative w̃ at the leeward side with a nearly antisymmetric
structure throughout the wave boundary layer, indicating that its phase difference from
the wave profile η̃ is roughly π/2. In the following wave case (figure 3a), although w̃ is
positive at the windward face and negative at the leeward face as in the opposing wave
cases, it does not display antisymmetry. Near the wave surface, w̃ is tilted because of the
effect of wave orbital velocity at the surface, which induces a negative w̃ at the windward
side below the critical height (which is comparable to the viscous sublayer thickness in
case WFW01 which has c/uτ < 5). Hence, the region corresponding to negative w̃ transits
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FIGURE 2. Instantaneous field of the vertical velocity w, normalised by the top-driven velocity
U0, for the simulation cases: (a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1,
ak = 0.15; (c) WOW01L, c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. For
positive wave age, the surface wave travels in the +x direction, while for negative wave age, the
surface wave travels in the −x direction. The wind is along with the +x direction in all cases.

sharply from the windward face to the leeward face across the critical height, resulting in
the tilting of w̃ near the wave surface. As the Reynolds number increases, the viscous
sublayer becomes thinner compared to the wavelength and correspondingly the transition
of w̃ occurs in a thinner region in the airflow, which causes the tilting of w̃ to be less
obvious as shown in the case (c/uτ , ak) = (3.7, 0.13) in Buckley & Veron (2016). This
phenomenon does not happen in the opposing wave cases, as the pattern of w̃ induced
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FIGURE 3. Spatial distribution of the wave-induced vertical velocity w̃ for the wave conditions:
(a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15; (c) WOW01L,
c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are normalised
by uτ .

by the wave kinematics at the wave surface is the same as the behaviour of w̃ away from
the wave surface. Also shown in figure 3 is that not only the spatial structure but also
the magnitude of w̃ is affected by the wave conditions. A comparison of the magnitude
of w̃ between cases WFW01 (figure 3a) and WOW01 (figure 3b) shows that the wave
propagating against the wind induces stronger w̃ than that induced by the wave following
the wind. Additionally, compared with case WOW01, a less steep opposing wave causes
a weaker w̃ (figure 3c), while a faster opposing wave results in a larger magnitude of w̃
(figure 3d), which is consistent with the observation in figure 2.

Figure 4 shows the spatial distribution of the wave-induced streamwise velocity ũ for
the wave conditions corresponding to figure 3. For the opposing waves, on the contrary
to the antisymmetric distribution of w̃, ũ displays nearly symmetric spatial distribution
about the wave crest away from the wave surface (figure 4b–d), which is not exhibited in
the following wave case (figure 4a). However, near the opposing wave surface, ũ deviates
from the symmetric distribution noticeably and reaches its maximum on the windward
side near the wave crest, which is similar to the following wave case. While the spatial
structure of ũ is similar among different opposing wave cases, its magnitude varies with
the opposing wave parameters. Similar to w̃, the magnitude of ũ increases with the wave
speed and wave steepness.
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FIGURE 4. Spatial distribution of the wave-induced streamwise velocity ũ for the wave
conditions: (a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15;
(c) WOW01L, c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are
normalised by uτ .

We note that although a strong negative ũ is present near the surface at the leeward
face in all of the four wave cases, no apparent flow separation is observed in the mean
flow. While the flow separation past a steady sinusoidal wavy surface was found to cause a
recirculation zone downstream of the wave crest (e.g. Buckles, Hanratty & Adrian 1984),
the feature and criterion for the occurrence of airflow separation over water waves are
still not fully understood, especially when the waves do not break, as pointed out by
Buckley & Veron (2016). For the non-breaking following waves, airflow separation has
been found to happen only sporadically in the instantaneous field, and is difficult to
visualize in the mean field. For instance, in their experimental studies, Veron, Saxena
& Misra (2007) and Buckley & Veron (2016) only visualized the airflow separation in
individual detachment events. In DNS, Yang & Shen (2010) and Druzhinin et al. (2012)
found that although airflow separation presents occasionally in the instantaneous flow
field, no apparent separation in the mean flow is observed. For opposing waves, the study
of airflow separation has received even less attention in the research literature and requires
data of turbulent wind opposing waves with the wave steepness and Reynolds numbers
systematically varied, which should be considered in future studies with a large number of
simulation cases conducted.

As a summary of this subsection, the LES results illustrate the key features of
the wave-induced vertical velocity w̃ and streamwise velocity ũ under the opposing
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FIGURE 5. Spatial distribution of the wave-induced stress −ũw̃ for the wave conditions:
(a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15; (c) WOW01L,
c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are normalised
by u2

τ .

wave condition. The w̃ appears antisymmetric throughout the wave boundary layer while ũ
is symmetric away from the surface, which has led some previous studies to use potential
flow theory to explain their arising. However, near the wave surface, ũ is no longer
symmetric, suggesting that the potential flow theory is inadequate to describe the flow
dynamics. The detailed physical mechanisms for w̃ and ũ are investigated in §§ 5.1 and
5.2, respectively.

3.2. Wave-induced stress and pressure
The proceeding subsection shows that the wave direction is a key factor in determining
the pattern of wave-induced velocity. Consequently, the wave-coherent stress, −ũw̃, also
reflects the impact of the wave direction, which is shown in figure 5. In the following wave
case WFW01 (which has c/uτ = 3.46), −ũw̃ is mostly negative, especially near the wave
surface (figure 5a), which is consistent with the results of the case (c/uτ , ak) = (3.7, 0.13)
in Buckley & Veron (2016), but is different from the pattern in the case (c/uτ , ak) =
(6.27, 0.07) in Yousefi et al. (2020) because the latter used curvilinear coordinate variables
to define the wave-coherent stress. The corresponding opposing wave (figure 5b) results
in alternating positive and negative −ũw̃ along the wave surface, which displays an
antisymmetric distribution away from the surface. This feature of −ũw̃ is also exhibited
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FIGURE 6. Spatial distribution of the wave-induced pressure p̃ for the wave conditions:
(a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15; (c) WOW01L,
c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are normalised
by ρau2

τ .

by the other two opposing wave cases (figures 5c and 5d), and is caused by the nearly
antisymmetric w̃ and symmetric ũ (figures 3 and 4). Near the wave surface, because ũ
deviates from the symmetric distribution, −ũw̃ no longer exhibits antisymmetry there.

In addition to −ũw̃, surface waves also induce pressure perturbation in the airflow to
impact the momentum flux. Previous laboratory and field measurements have reported
that the pressure induced by opposing waves is nearly symmetric about the surface wave
crest (Snyder et al. 1981; Young & Sobey 1985; Hasselmann & Bösenberg 1991), which
is also reflected in the present LES results. In figure 6 we plot the spatial distribution
of p̃ for the four wave conditions. It is obvious that for the same wave parameters, the
pressure induced by the opposing wave (figure 6b) is much stronger and more symmetric
about the wave crest compared with that induced by the following wave (figure 6a). In the
latter case, the pressure distribution is mostly positive on the windward face of the wave
and negative on the leeward side. The seemingly symmetric distribution of p̃ induced by
opposing waves is also present with a lower wave steepness (figure 6c) and a faster wave
speed (figure 6d).

In this subsection the LES results show that the opposing waves induce nearly
antisymmetric wave-coherent stress −ũw̃ away from the wave surface, and nearly
symmetric wave-coherent pressure p̃ throughout the wave boundary layer. Similar to w̃
and ũ, the pattern of −ũw̃ and p̃ are similar among the different opposing wave cases,
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FIGURE 7. Spatial distribution of the wave-induced turbulence variance ũ′u′ + w̃′w′ for the
wave conditions: (a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15;
(c) WOW01L, c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are
normalised by u2

τ .

but with their magnitudes varying. The detailed physical mechanisms for −ũw̃ and p̃ are
investigated in § 5.3.

3.3. Wave-induced turbulence variance and turbulent stress
In this subsection we examine the modulation of turbulence variance u′u′ + w′w′ and
turbulent stress −u′w′ by the opposing waves. In the present study, the turbulence
variance and turbulent stress are defined using the variables in the Cartesian coordinate.
Adopting definitions based on the curvilinear coordinate variables may result in a
different appearance, as discussed in Yousefi et al. (2020). Figure 7 presents the spatial
distribution of the wave-induced turbulence variance ũ′u′ + w̃′w′ = 	u′u′ − 〈u′u′〉 + 	w′w′ −
〈w′w′〉 (see § 2.2 for definitions of averaging) for different wave conditions to illustrate how
the turbulence intensity is affected by the presence of surface waves. It is shown that in the
following wave case WFW01 (figure 7a) there is a strong positive ũ′u′ + w̃′w′ above the
leeward face of the wave. In the corresponding opposing wave case WOW01 (figure 7b),
the region for the intensified turbulence variance moves further downstream towards the
wave trough. More importantly, in the opposing wave case WOW01, the region for strong
ũ′u′ + w̃′w′ is concentrated in a much thinner region compared with the following wave
case WFW01. In the less steep wave case WOW01L (figure 7c), the pattern of ũ′u′ + w̃′w′
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FIGURE 8. Spatial distribution of the wave-induced turbulent stress −ũ′w′ for the wave
conditions: (a) WFW01, c/U0 = 0.1, ak = 0.15; (b) WOW01, c/U0 = −0.1, ak = 0.15;
(c) WOW01L, c/U0 = −0.1, ak = 0.08; (d) WOW04, c/U0 = −0.4, ak = 0.15. The results are
normalised by u2

τ .

is similar to case WOW01 but with a smaller magnitude. In the fast opposing wave case
WOW04 (figure 7d), ũ′u′ + w̃′w′ is much weaker and is confined within an even thinner
region compared with case WOW01.

In figure 8 we plot the spatial distribution of the wave-induced turbulent shear
stress −ũ′w′ = − 	u′w′ − 〈−u′w′〉 for different wave conditions, which quantifies how
the turbulent shear stress −u′w′ is modulated by the presence of surface waves. The
comparison between cases WFW01 (figure 8a) and WOW01 (figure 8b) shows that, near
the wave surface, both the following wave and opposing wave induce a negative −ũ′w′ at
the windward side and a positive −ũ′w′ further downstream. However, the strong −ũ′w′
is limited to a much thinner region in the opposing wave cases, which is similar to the
behaviour of ũ′u′ + w̃′w′ shown in figure 7. Furthermore, the region of strong −ũ′w′
becomes even thinner as the opposing wave becomes faster in case WOW04 (figure 8d).
Away from the wave surface, −ũ′w′ is relatively weak and exhibits a quasi-antisymmetric
spatial distribution about the wave crest for the opposing wave cases WOW01 and
WOW04, which is not observed in the following wave case WFW01 for the same wave
steepness.

To summarize this subsection, we have observed that the strong opposing wave-induced
turbulence variance and turbulent stress is limited to a much thinner region in the airflow,
compared with the wind over a slow following wave case. This result is consistent with
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the conclusion we obtain in § 5.1.2 below that the region where the in-phase component of
w̃ is affected by the wave-induced turbulent stress is much thinner for the opposing wave
than the corresponding following wave.

To conclude § 3, we have investigated the features of wave-induced velocity, pressure
and turbulence statistics in the opposing wave condition. Next, we present a viscous
linearised model for w̃ in the mapped computational curvilinear coordinate in § 4, based
on which the physical mechanisms underlying the arising of the opposing wave-induced
airflow w̃, ũ, −ũw̃ and p̃ shown in § 3 are explained in § 5.

4. Viscous linearised model for the opposing wave effects

In § 3 we have shown the key characteristics of the opposing wave effects on the velocity,
pressure and turbulence statistics in the airflow based on the LES data. To investigate
the mechanisms underlying the opposing wave effects, in this section, we develop a
new viscous model for the wave-induced velocity by linearising the phase-averaged
Navier–Stokes equations for the mean wind velocity in the mapped computational
curvilinear coordinate.

The transformation between the physical coordinate (x, y, z) and mapped computational
curvilinear coordinate (ξ, ψ, ζ ) given by (2.7) is non-orthogonal and follows the form
of Hsu et al. (1981) and Hsu & Hsu (1983), which has been widely adopted in the
literature to study the wave-induced quantities using a variety of mapping functions
(e.g. Snyder et al. 1981; Young & Sobey 1985; Mastenbroek 1996; Yang & Shen 2010;
Hara & Sullivan 2015; Akervik & Vartdal 2019). As suggested by Hsu et al. (1981),
in principle, any function g can be considered if it satisfies g(0) = −1 and increases
monotonically to zero at the top of the boundary layer. A function that satisfies this
condition guarantees that the transformation is one to one but may result in sampling
points that are not at the ideal offset, e.g. constant distance, from the wave surface, and
the resulting transformed coordinate is not necessarily aligned with the mean streamlines.
The use of the transformation of the form (2.7) has been able to reveal important results
of the turbulent wind–wave interaction (see the above mentioned studies). In the following
derivation we assume that the transformation follows the form of (2.7), but we do not
specify a particular transformation function g.

To derive the viscous linearised model, we use the LES equations in the mapped
computational curvilinear coordinate in the strongly conservative form (e.g. Hara &
Sullivan 2015)

∂(J−1uj)

∂t
+ ∂

∂ξm

(
ujUm + J−1p

∂ξm

∂xj
+ J−1σjl

∂ξm

∂xl
+ J−1τ d

jl
∂ξm

∂xl

)
= 0, (4.1)

∂Uj

∂ξj
= 0, (4.2)

where J is the determinant of the transformation matrix J , and σjm = −2νSjm is the
viscous stress tensor with Sjm = (∂uj/∂xm + ∂um/∂xj)/2 being the deformation tensor, τ d

jm

is the SGS stress tensor in (2.2), and Uj = J−1um∂ξj/∂xm is the velocity in the curvilinear
coordinate system. Physically, Uj is the velocity component perpendicular to the constant
ξj surface and quantifies the volume flux in the curvilinear coordinate. In (4.1), uiUj
represents the flux of the xi-component momentum across a constant ξj plane caused by
the advection velocity Uj (Sullivan et al. 2000; Chou & Fringer 2010; Hara & Sullivan
2015).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.591


901 A27-18 T. Cao, B.-Q. Deng and L. Shen

The equations governing the phase-averaged flow field are obtained by the phase average
of (4.1) and (4.2) in the reference frame travelling with the surface wave ξ − ct,

∂

∂ξm

(
ūjŪm + τ̄jm + τ̄

p
jm + τ̄ vjm

) = 0, (4.3)

∂Ūj

∂ξj
= 0, (4.4)

where τjm = u′
jU

′
m + J−1τ d

jl ∂ξm/∂xl, τ
p
jm = J−1p∂ξm/∂xj and τ vjm = J−1σjl∂ξm/∂xl are the

turbulent stress, pressure stress and viscous stress, respectively. Here, τij is the sum of the
resolved turbulent stress and SGS stress, both of which represent the turbulence effect.

The mean momentum and continuity equations can be obtained by applying the triple
decomposition (2.12) to each term in (4.3) and (4.4), and then performing spatial average
in the (ξ, ψ) plane, which yields

∂

∂ζ

(〈τw
j3〉 + 〈τj3〉 + 〈τ p

j3〉 + 〈τ vj3〉
) = 0, (4.5)

∂〈W〉
∂ζ

= 0, (4.6)

where τw
jm = ũjŨm is the wave-induced stress, resulting from the correlation between the

components of the wave-induced velocity. In (4.6), ∂〈U〉/∂ξ = 0 because 〈U〉 is averaged
over the (ξ, ψ) plane and, thus, its derivative with respect to ξ is zero.

Next, we extract the momentum equations governing the wave-coherent air motions by
subtracting the mean equations (4.5) and (4.6) from the phase-averaged equations (4.3)
and (4.4), respectively,

∂

∂ξm

(
ũj〈Um〉 + 〈uj〉Ũm + τ̃w

jm + τ̃
p
jm + τ̃jm + τ̃ vjm

)
= 0, (4.7)

∂Ũj

∂ξj
= 0, (4.8)

where τ̃w
jm, τ̃ p

jm, τ̃jm and τ̃ vjm are the wave-induced fluctuations of τw
jm, τ p

jm, τjm and τ vjm (4.3),
respectively.

Inspired by Young & Sobey (1985) that the opposing wave-induced airflow may be
dominated by the linear dynamics, in this study, we first neglect the nonlinear forcing in
(4.7), i.e. τ̃jm and τ̃w

jm, to investigate the linear dynamics in the generation of wave-induced
velocity. Equations (4.7) and (4.8) are complex owing to the introduction of the curvilinear
coordinate velocity Uj to the various stress terms and also owing to the correlation
between the velocity and the grid transformation terms. To better illustrate the physical
processes therein, we simplify (4.7) and (4.8) using the primitive variables in the physical
space based on the properties of the wave-induced quantities. The simplification of the
wave-induced velocity Ũj, the pressure stress τ̃ p

jm and the wave-induced viscous stress τ̃ vjm
is presented in § 1 of the supplementary material available at https://doi.org/10.1017/jfm.
2020.591. The resulting momentum and continuity equations for the wave-induced air
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motions are

(〈u〉 − c)
∂ ũ
∂ξ

+ (w̃ + (〈u〉 − c)gη̃ξ )
d〈u〉
dζ

+ ∂ p̃
∂ξ

= ν

(
∂2ũ
∂ζ 2

− ∂2w̃
∂ξ∂ζ

)
+ ν

d
dζ

(
d〈u〉
dζ

gζ

)
η̃ + O((ak)2)+ n.l.f ., (4.9)

(〈u〉 − c)
∂w̃
∂ξ

+ ∂ p̃
∂ζ

= ν

(
∂2w̃
∂ξ 2

+ ∂2w̃
∂ζ 2

)
+ O((ak)2)+ n.l.f ., (4.10)

∂ ũ
∂ξ

+ ∂w̃
∂ζ

+ d〈u〉
dζ

gη̃ξ = 0 + O((ak)2), (4.11)

where O((ak)2) denotes the neglected second- and higher-order terms, and ‘n.l.f .’
represents the neglected nonlinear forcing, i.e. τ̃ij and τ̃w

ij .
Equations (4.9)–(4.11) can be combined into the following equation governing the

wave-coherent vertical velocity,

− ν

ik

[
d4

dζ 4
− 2k2 d2

dζ 2
+ k4

]
ŵ +

[
(〈u〉 − c)

(
d2

dζ 2
− k2

)
− d2〈u〉

dζ 2

]
ŵ

= νη̂
d2

dζ 2

[
g

d2〈u〉
dζ 2

]
+ O((ak)2)+ n.l.f , (4.12)

where ŵ is the Fourier coefficient of w̃. The left-hand side of (4.12) has the same form
as the Orr–Sommerfeld equation (e.g. Lin 1955; Orszag 1971), with the first bracket
representing the viscous effect and the second bracket associated with the advection
effect (note that the present formulation is in the mapped computational coordinate),
while the right-hand side has a source term. We remark that (4.12) is derived based
on the strongly conservative equations (4.1) and (4.2), which can be obtained from
the weakly conservative equations (2.10) and (2.11) by rearranging all of the terms
into the forms of the derivatives of the curvilinear coordinate quantities with respect
to (ξ, ψ, ζ, τ ) (e.g. Anderson, Tannehill & Pletcher 1984). The strongly conservative
equations induce simplifications in the derivation process, as the derivatives of different
quantities with respect to the same variable are grouped together. Nevertheless, in § 2 of
the supplementary material we show that (4.12) can also be derived from (2.10) and (2.11).

Equation (4.12) can be solved to obtain the Fourier coefficient of w̃, i.e. ŵ, given the
Dirichlet boundary condition for ŵ,

ŵ
∣∣
ζ=0 = ŵs, ŵ

∣∣
ζ=∞ = 0, (4.13a,b)

where ŵs is the Fourier coefficient of the vertical wave orbital velocity and also the
boundary condition for dŵ/dζ , which is obtained from the continuity equation (4.11),

dŵ
dζ

∣∣∣∣
ζ=0

= −ikûs − ikη̂
(

g
d〈u〉
dζ

)∣∣∣∣
ζ=0

,
dŵ
dζ

∣∣∣∣
ζ=∞

= 0. (4.14a,b)

With (4.12)–(4.14a,b), we see that the water wave affects the airflow in two ways. First, the
wave elevation η̂ leads to a source term on the right-hand side of (4.12). Second, the wave
kinematics impose the velocity boundary condition for (4.12).
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Next, it is instructive to examine how Re[ŵ] and Im[ŵ] arise in (4.12). With (4.13a,b)
and (4.14a,b) and using (2.4) and (2.6), the real and imaginary parts of ŵ and dŵ/dζ at the
wave surface can be obtained as

Re[ŵ]
∣∣
ζ=0 = −1

2
akc,

d Re[ŵ]
dζ

∣∣∣∣
ζ=0

= −1
2

ak2c − 1
2

ak
(

g
d〈u〉
dζ

)∣∣∣∣
ζ=0

, (4.15a,b)

Im[ŵ]
∣∣
ζ=0 = 0,

d Im[ŵ]
dζ

∣∣∣∣
ζ=0

= 0. (4.16a,b)

Hence, through affecting the values of Re[ŵ] and d Re[ŵ]/dζ at the wave surface, the
wave orbital velocity impacts the arising of Re[ŵ] throughout the wave boundary layer.
On the contrary, Im[ŵ] and d Im[ŵ]/dζ have homogeneous boundary conditions at the
wave surface, and, thus, the generation of Im[ŵ] are not directly affected by the wave
orbital velocity at the surface.

Although not driven by the motions of the surface waves, Im[ŵ] can still arise in the
viscous equation (4.12) through the interaction with Re[ŵ], which is triggered by the
viscous stress therein. This physical process can be shown by taking the imaginary part of
(4.12) with respect to the advection term

ν

k

[
d4

dζ 4
− 2k2 d2

dζ 2
+ k4

]
Re[ŵ] +

[
(〈u〉 − c)

(
d2

dζ 2
− k2

)
− d2〈u〉

dζ 2

]
Im[ŵ]

= −ν 1
2

a
d2

dζ 2

[
g

d2〈u〉
dζ 2

]
+ O((ak)2)+ n.l.f ., (4.17)

where Re[ŵ] and Im[ŵ] are present in the viscous and advection terms, respectively,
indicating that a non-zero Re[ŵ] can lead to the arising of Im[ŵ]. This mechanism
expressed by (4.17) illustrates how viscous stress induces Im[ŵ] to cause w̃ to deviate
from the perfect antisymmetry.

Outside of the viscous layer, the viscous equation (4.12) reduces to the inviscid equation,
which is obtained by neglecting the terms related to viscosity in (4.12),

[(
d2

dζ 2
− k2

)
− 1

〈u〉 − c
d2〈u〉
dζ 2

]
ŵ = 0 + O((ak)2)+ n.l.f .+ v.i.s., (4.18)

where ‘v.i.s.’ represents the neglected viscous terms. To solve (4.18), only the boundary
condition for ŵ given in (4.13a,b) is needed.

The key feature of (4.18) is that in the absence of turbulent stress and viscous effects, the
behaviour of w̃ does not depend on the geometric transformation function, i.e. g, which
transforms the physical coordinate to the mapped computational curvilinear coordinate
as shown in (2.7) and appears in the viscous equation (4.12). In other words, using the
transformation (2.7), w̃ follows the general form given by (4.18) away from the wave
surface, where the advection of the wave-coherent airflow dominates the nonlinear stress
and viscous stress. Under the wind-opposing-wave condition, due to the large magnitude
of 〈u〉 − c away from the wave surface caused by the negative wave celerity, the dynamic
effect of the second term in (4.18) is small. Asymptotically, for sufficiently fast opposing
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waves, the inviscid linear equation (4.18) reduces to a Laplacian equation

(
d2

dζ 2
− k2

)
ŵ = 0, (4.19)

which gives a solution with an exponential decay rate e−kζ . This result provides a
perspective on the exponential decay of the opposing wave-induced vertical velocity away
from the wave surface in the previous laboratory measurement by Young & Sobey (1985)
(not plotted here for space consideration).

In summary of this section, we present a new viscous linearised model formulated in the
mapped computational curvilinear coordinate to incorporate several key effects neglected
in the potential flow theory, including the viscous stress, mean wind shear and the wave
elevation. Next, in § 5, the solutions of the linearised equations are compared with the LES
results to show the physical dynamics underlying the opposing wave-induced flow field.

5. Physical mechanisms underlying opposing wave-induced airflow

In § 4 we have obtained the viscous (4.12) and inviscid (4.18) linearised equations for
the wave-induced airflow. In this section we numerically solve (4.12) using the mean wind
velocity 〈u〉 from the LES. Through the comparison between the linear solutions and LES
results, we analyse the mechanisms for the arising of w̃ (§ 5.1), ũ (§ 5.2), −ũw̃ and p̃ (§ 5.3),
and explain their spatial structures observed in § 3.

5.1. Wave-induced vertical velocity w̃
We first investigate the wave-induced vertical velocity, w̃, which can be directly solved
from (4.12). With (2.15), w̃ is represented as

w̃ = 2|ŵ| sin(kξ − φw̃η̃), (5.1)

where 2|ŵ| is the magnitude of w̃ and φw̃η̃ is the phase difference between w̃ and η̃. Figure 9
presents the comparison of |ŵ| (figure 9a), Re[ŵ] (figure 9b), Im[ŵ] (figure 9c) and φw̃η̃
(figure 9d) between the LES results and solutions of the viscous linearised equation (4.12)
for the four representative wave conditions. As shown, for opposing waves, the magnitude
of |ŵ| is close to Re[ŵ], and for both of them the solutions of (4.12) agree well with
the LES results (figures 9a and 9b), while Im[ŵ] does not change the behaviour of |ŵ|
significantly because of its small magnitude, and is underestimated by the present viscous
model (figure 9c). Because |Im[ŵ]| � |Re[ŵ]|, φw̃η̃ ≈ π/2 in both the linear solutions and
the LES results (figure 9d). This result indicates that w̃ is dominated by its out-of-phase
component Re[ŵ] and is thus nearly antisymmetric as shown in figure 3. On the contrary,
in the following wave case WFW01, Im[ŵ] is comparable to Re[ŵ] throughout the wave
boundary layer, and, thus, both of them affect w̃. In addition, there exists a sharp change
of φw̃η̃, from approximately 0.5π for ζ < 0.006λ to about −0.2π for ζ > 0.012λ, which
is related to the effect of the critical height located at ζ ≈ 0.008λ and causes the tilting
of w̃ in figure 3(a). Note that the present φw̃η̃ difference across the critical height may not
be quantified by the inviscid Rayleigh equation of the critical layer theory because c/uτ <
5 (Miles 1957, 1993); at intermediate c/uτ , the Rayleigh equation predicts a near π/2
difference of φw̃η̃ (Miles 1957; Hristov et al. 2003), which is reflected in field observations
(Hristov et al. 2003; Grare et al. 2013a).
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FIGURE 9. Comparison of (a) |ŵ|, (b) Re[ŵ], (c) Im[ŵ] and (d) φw̃η̃ between the LES results:
WFW01 ( ), WOW01 ( ), WOW01L ( ) and WOW04 ( ); and the solutions of the
viscous linearised equation (4.12): WFW01 ( ), WOW01 ( ), WOW01L ( ) and WOW04 ( ).
The superscript ‘+’ denotes normalisation by uτ . Note the scale difference between (b) and (c).

5.1.1. Linear dynamics for Re[ŵ] induced by wave kinematics
As shown above, the behaviour of w̃ in the wind opposing waves depends mostly on

its strong out-of-phase component Re[ŵ], which is antisymmetric about the wave crest. In
general, Re[ŵ] corresponds to the alternating upward and downward air motions across
the wave crest, which can be seen from its contribution to w̃ in the physical space (2.15),

w̃ = 2 Re[ŵ] cos(kξ) = 2
Re[ŵ]

ak
dη̃
dξ
, (5.2)

where the last equality holds because η̃ = a sin(kξ), and dη̃/dξ is the slope of the wave
surface. When the wind blows from left to right, because dη̃/dξ > 0 on the windward side
and dη̃/dξ < 0 on the leeward side, we see that a positive Re[ŵ] corresponds to an upward
airflow on the windward face and a downward airflow at the leeward face, and vice versa
for a negative Re[ŵ]. At the wave surface, Re[ŵ] is driven by the wave kinematics through
the boundary condition (4.15a,b).

Figure 9(b) shows that the arising of Re[ŵ] can be accurately described by the viscous
linearised equation (4.12), suggesting the negligible effect of the nonlinear forcing, i.e.
the wave-correlated turbulence stress τ̃ij and the wave-correlated wave-induced stress τ̃w

ij
(4.7), compared with the wave-induced advection and viscous stress, in affecting Re[ŵ].
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FIGURE 10. Comparison of Re[ŵ] solved from the viscous linearised equation (4.12) with ( )
and without ( ) the effect of the wave kinematics for the opposing wave cases: (a) WOW01 and
(b) WOW04. The superscript ‘+’ denotes normalisation by uτ .

While the arising of Re[ŵ] is a quasi-linear process, it exhibits rather different behaviours
between the opposing and following wave conditions: in the following wave case, Re[ŵ]
is weak and alternates its sign across the critical height, while in the opposing wave cases,
Re[ŵ] has a large magnitude and maintains a positive value throughout the wave boundary
layer (figure 9b).

We found that for the opposing waves, the wave kinematics play an important role in
generating the large-magnitude Re[ŵ]. Figure 10 depicts a comparison of Re[ŵ] solved
from the viscous linearised equation (4.12) with and without (by setting us = ws = 0)
the effect of the wave kinematics for the opposing wave cases WOW01 and WOW04.
The results show that without the effect of the wave kinematics, Re[ŵ] becomes much
smaller for both wave speeds, suggesting that the strong Re[ŵ] is related to the wave orbital
velocity. By contrast, under the following wave condition, the wave kinematics do not
cause a strong Re[ŵ] in the airflow as shown in figure 9(b).

To explain the different effects of the wave kinematics between following and opposing
wave conditions, we sketch the streamline perturbation associated with Re[ŵ] in the
frame travelling with the wave in figure 11. In the wind-following-wave case sketched
in figure 11(a), below the critical height, because 〈u〉 − c < 0, the wind velocity is in the
−x direction and the airflow is blocked by the wave at the leeward side (named based
on the wind direction viewed in the fixed frame on the Earth) and needs to go upward
along the wave surface. Meanwhile, the wave orbital velocity induces an upward airflow
at the leeward face by (4.15a,b): Re[ŵ](ζ = 0) = Re[ŵs] = −akc/2 < 0 owing to c > 0.
This upward air motion at the leeward side (corresponding to Re[ŵ] < 0) caused by the
wave orbital velocity plays an important role in pushing up the air. Because the relative
wind speed c − 〈u〉 decreases away from the wave surface to zero at the critical height,
a negative wind shear arises, which damps the airflow perturbation induced by the wave
orbital velocity, and the perturbation becomes zero at the critical height, as illustrated by
the profile of the following wave case in figure 9(b). Above the critical height, although
a positive Re[ŵ] is generated by the blocking of the airflow at the windward face of the
wave because 〈u〉 − c > 0, it is not directly related to the wave kinematics.

On the contrary, in the wind-opposing-wave case sketched in figure 11(b), because 〈u〉 −
c > 0 such that the critical height is not present, the blocking of the airflow always takes
place at the windward side of the wave. Concurrently, the wave orbital velocity induces
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FIGURE 11. Sketch of streamline perturbation induced by Re[ŵ] in the frame travelling with the
surface wave under the (a) following-wave and (b) opposing-wave conditions. In the figure the
vectors on the wave surface are the wave orbital velocity and ws is its vertical component. Note
that Re[ŵ] is the real part of the Fourier coefficient of the wave-induced vertical velocity w̃ (5.2).
The windward side and leeward side are named based on the wind direction viewed in the frame
fixed on the Earth.

an upward motion at the windward side: Re[ŵ](ζ = 0) = Re[ŵs] = −akc/2 > 0 owing to
c < 0. Because the relative wind speed 〈u〉 − c increases away from the wave surface, a
positive wind shear arises, which amplifies the airflow perturbation induced by the wave
orbital velocity all the way up until the mean wind shear vanishes. Consequently, Re[ŵ]
maintains a positive value and has a large magnitude throughout the wave boundary layer.
This explains the results of the opposing wave cases in figure 9(b).

5.1.2. Nonlinear dynamics for Im[ŵ] near wave surface
Under the opposing wave condition, while the viscous linear model quantitatively

explains the arising of strong Re[ŵ], it underestimates the weak Im[ŵ] as shown in
figure 9(c). Unlike Re[ŵ], with which the airflow changes the vertical velocity direction
on the two sides of the wave crest, Im[ŵ] corresponds to either an upward or a downward
air motion near the wave crest on both sides, which can be seen from its contribution to w̃
in the physical space (2.15),

w̃ = −2 Im[ŵ] sin(kξ) = −2 Im[ŵ]η̃/a, (5.3)

where η̃ = a sin(kξ) has been applied. Considering that η̃ > 0 near the wave crest, we see
that a negative Im[ŵ] corresponds to an upward airflow there, and vice versa for a positive
Im[ŵ]. Another difference from the Re[ŵ]-associated airflow is that the Im[ŵ]-associated
air motion is not initiated by the wave orbital velocity at the surface, which can be seen
from the boundary condition (4.16a,b), but only by the viscous stress and nonlinear forcing
in the vicinity of the wave surface as discussed subsequently.
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The underestimation of Im[ŵ] by the viscous linear solution indicates that the viscous
stress is not the only crucial mechanism for its generation and that the effect of the
nonlinear forcing, i.e. the wave-correlated turbulent stress τ̃ij and the wave-correlated
wave-induced stress τ̃w

ij , can be important too. In turbulent wind following slow water
waves it has been shown theoretically that the wave-correlated turbulent stress τ̃ij can result
in the generation of Im[ŵ] in the air (Belcher & Hunt 1993). In their study, Belcher &
Hunt (1993) used the mixing-length turbulence model to solve the asymptotic equations
for the wave-coherent velocity and found that τ̃ij affects Im[ŵ] significantly near the wave
surface. The height of this turbulent stress-influenced region is very small compared with
the wavelength of the surface wave, suggesting that Im[ŵ] is strongly affected by the
nonlinear forcing only in the vicinity of the wave surface. Compared with τ̃ij, the effect
of τ̃w

ij has received less attention and was neglected in the previous asymptotic studies
(e.g. Jacobs 1987; Belcher & Hunt 1993; Miles 1993, 1996).

To show the effect of the nonlinear forcing on generating Im[ŵ] in wind opposing waves,
we examine the vertical momentum budget of wave-coherent airflow, which reads as

(〈u〉 − c)
∂w̃
∂ξ

+ ∂ p̃
∂ζ

− ν

(
∂2w̃
∂ξ 2

+ ∂2w̃
∂ζ 2

)
+ ∂τ̃3j

∂ξj
+ ∂τ̃w

3j

∂ξj
= 0 + O((ak)2). (5.4)

Equation (5.4) is the vertical component of the full momentum equations for
wave-coherent airflow (4.7), with the advection, viscous and pressure terms simplified
according to (4.10). Taking the imaginary part of (5.4) with respect to (〈u〉 − c)∂w̃/∂ξ , we
obtain the equation governing Im[ŵ] as

k(〈u〉 − c) Im[ŵ]︸ ︷︷ ︸
Adv

−d Re[p̂]
dζ︸ ︷︷ ︸

Pre

−ν
(

k2 Re[ŵ] − d2 Re[ŵ]
dζ 2

)
︸ ︷︷ ︸

Vis

+k Im[τ̂31] − d Re[τ̂33]
dζ︸ ︷︷ ︸

Tub

+k Im[τ̂w
31] − d Re[τ̂w

33]
dζ︸ ︷︷ ︸

Wav

= 0 + O((ak)2). (5.5)

Here, ‘Adv’ is the advection by the wave-coherent velocity, ‘Pre’ is the vertical gradient of
the wave-induced pressure and ‘Vis’ is the divergence of the wave-induced viscous stress.
Note that Im[ŵ] appears in the ‘Adv’ term, while Re[ŵ] is present in the ‘Vis’ term so that
it can impact Im[ŵ]. The last two groups, ‘Tub’ and ‘Wav,’ represent the nonlinear forcing
by the wave-correlated turbulence stress τ̃ij and the wave-correlated wave-induced stress
τ̃w

ij , respectively.
Calculated from the LES data, the stress terms in (5.5) are presented in figure 12. As

shown, in the four wave cases plotted, the wave boundary layer can be divided into two
regions by the thin solid black line in the figure, including a near-surface region, or the
inner region, and a faraway region, or the outer region. The line is defined such that the
following condition is satisfied above it,

|Tub| + |Wav| < 0.05 min(|Adv|, |Pre|). (5.6)

It is shown that in the inner region, the magnitude of the nonlinear forcing, with τ̃ij
dominating τ̃w

ij , is not negligible compared with that of the wave-induced pressure and
advection, suggesting the nonlinear mechanisms for the generation of Im[ŵ] near the wave
surface. In the outer region, as suggested in (5.6), the magnitude of τ̃ij and τ̃w

ij is small.
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FIGURE 12. Profiles of the terms in the budget equation (5.5) for Im[ŵ], normalised by u2
τ /λ,

for surface wave conditions: (a) WFW01, (b) WOW01, (c) WOW01L and (d) WOW04. In the
figure the thin black line represents the height of the inner region defined in (5.6).

This combined with the small magnitude of the viscous stress indicates that the
wave-induced pressure and advection are in balance with each other, i.e. the inviscid linear
dynamics are dominant there.

The predicted inviscid linear behaviour of Im[ŵ] in the outer layer is verified in figure 13,
which compares the inviscid linear solutions of (4.18) and the LES results in the outer
region. To obtain the inviscid linear solutions, we impose the value of Im[ŵ] at the
top of the inner region from the LES data as the Dirichlet boundary condition for the
inviscid equation (4.18), which is then numerically solved in the outer region. As shown in
figure 13, the linear solutions and the LES results are almost indistinguishable from each
other, indicating the linear behaviour of Im[ŵ] in the outer layer.

Figure 13 shows that the height of the inner region depends more on the wave phase
speed than the wave amplitude. The heights of the inner region for cases WFW01,
WOW01, WOW01L and WOW04 are ζ/λ = 0.163, 0.075, 0.065 and 0.031, respectively.
This variation of the inner region height can be explained using the time scale argument.
As pointed out by Belcher & Hunt (1998), in the turbulent wind following water waves, the
height of the inner region is qualitatively determined by the relative magnitude between
two time scales, the advection time scale TA and the Lagrangian time scale TL. The
advection time scale TA is proportional to the inverse of the mean relative velocity, i.e.
1/(〈u〉 − c), and it measures how fast the turbulence eddies are distorted and advected.
The Lagrangian time scale TL is proportional to the distance from the wave surface, i.e. ζ,
and it quantifies the decorrelation time of the large turbulence eddies. The inviscid region
is characterized by TA < TL, indicating that the turbulence eddies are rapidly distorted.
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FIGURE 13. Comparison of Im[ŵ] profiles in the outer region between the LES results: WFW01
( ), WOW01 ( ), WOW01L ( ) and WOW04 ( ); and the solutions of the inviscid
linearised equation (4.18): WFW01 ( ), WOW01 ( ), WOW01L ( ) and WOW04 ( ). The outer
region is defined in (5.6), indicating that the effect of nonlinear forcing vanishes there.

Based on this argument, we attribute the lower inner region height for the opposing wave
to the larger mean relative velocity 〈u〉 − c, because c < 0, such that the condition TA < TL
is satisfied at a lower height. The thinner inner region to generate Im[ŵ] for opposing waves
explains the corresponding smaller magnitude of Im[ŵ] compared with the following wave
case.

Although the turbulent stress-influenced region is confined to the proximity of the wave
surface, its impact on Im[ŵ] extends to the entire wave boundary layer because the value
of Im[ŵ] at the top of the inner region sets the boundary condition for Im[ŵ] in the outer
region. This mechanism of how the nonlinear forcing affecting Im[ŵ] is similar between
the wind opposing waves and the wind following slow wave. Hence, the negligence of the
turbulent stress by the viscous linear equation (4.12) leads to its underestimation of the
magnitude of Im[ŵ] in the inner region, resulting in a further underestimation in the outer
region, as shown in figure 9(c).

For all of the four wave conditions shown, Im[ŵ] maintains a negative value. To illustrate
the underlying physical processes, we sketch the streamline perturbation induced by Im[ŵ]
in the frame travelling with the surface wave in figure 14. In the wind-following-wave case
sketched in figure 14(a), unlike Re[ŵ] plotted in figure 11(a), the critical height has no
direct effect on Im[ŵ]. In particular, near the wave crest, both below and above the critical
height, Im[ŵ] is negative, corresponding to an upward motion to bring up the air blocked
by the wave surface. This effect of Im[ŵ]-induced air motion, together with that of the
Re[ŵ]-induced airflow as illustrated in figure 11(a), push the air up. Because Re[ŵ] is not
strong enough and thus can only push up part of the blocked air, an appreciable Im[ŵ]
is generated to further lift up the air. On the contrary, in the wind-opposing-wave case
sketched in figure 14(b), only a weak negative Im[ŵ] is generated, as the air blocked by the
wave surface is moved up mainly by the strong Re[ŵ]-induced air motion (see figure 11b).

As a summary of this subsection, the wave kinematics induce airflow perturbation at the
surface, which is damped out at the critical height of the following wave, but is amplified
by the mean wind velocity in the opposing wave cases and results in the seemingly
antisymmetric w̃ in the air. The viscous stress acts in concert with the turbulent stress
to cause w̃ to deviate slightly from a perfect antisymmetry. In the following subsections
we further perform analyses on the effects of the wave kinematics-induced airflow on the
streamwise velocity, wave-coherent stress and pressure in the opposing wave condition.
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FIGURE 14. Sketch of the streamline perturbation in the airflow induced by Im[ŵ] in the frame
travelling with the surface wave under the (a) wind-following-wave and (b) wind-opposing-wave
condition. Note that Im[ŵ] is the imaginary part of the Fourier coefficient of the wave-induced
vertical velocity w̃ (5.3). The windward side and leeward side are named based on the wind
direction viewed in the frame fixed on the Earth.

5.2. Wave-induced streamwise velocity ũ
In this subsection we examine how the wave-coherent streamwise velocity ũ is affected
by the wave kinematics, viscous stress and turbulent stress for the opposing waves, and
then explain its spatial structure observed in § 3.1. The wave-induced streamwise velocity
ũ can be obtained using w̃ through the modified continuity equation (4.11). With (2.15), ũ
is represented as

ũ = 2|û| sin(kξ − φũη̃), (5.7)

where 2|û| is the magnitude of ũ and φũη̃ is the phase difference between ũ and η̃. Figure 15
presents the comparison of |û| (figure 15a), Re[û] (figure 15b), Im[û] (figure 15c) and
φũη̃ (figure 15d) between the LES results and the solutions of the viscous linearised
equation (4.12) for the opposing wave cases. The comparison between figures 15(a) and
15(c) shows that the behaviour of |û| is mainly determined by Im[û], and for both of
them the solutions of (4.12) agree reasonably with the LES results. This result is caused
by the larger magnitude of Im[û] than Re[û], especially for ζ/λ > 0.03, as can be seen
from the comparison between figures 15(b) and 15(c), because Im[û] is associated with
the strong Re[ŵ] as suggested by (4.11),

Im[û] = 1
k

d Re[ŵ]
dζ

+ a
2

g
d〈u〉
dζ

. (5.8)

Equation (5.8) also indicates that following the behaviour of Re[ŵ], Im[û] is also related
to the flow perturbation by the wave kinematics and controlled by the linear mechanisms.
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FIGURE 15. Comparison of (a) |û|, (b) Re[û], (c) Im[û] and (d) φũη̃ between the LES results:
WOW01 ( ), WOW01L ( ) and WOW04 ( ); and the solutions of the viscous linearised
equation (4.12): WOW01 ( ), WOW01L ( ) and WOW04 ( ). The superscript ‘+’ denotes
normalisation by uτ .

The dominance of Im[û] also results in φũη̃ ≈ 0 for ζ/λ > 0.03 in both the linear solutions
and LES results (figure 15d), which indicates that the wave kinematics-induced airflow
results in the symmetry of ũ away from the wave surface, consistent with figure 4(b–d).

In the region ζ/λ < 0.03, though |Im[û]| > |Re[û]|, their magnitudes are comparable,
which causes φũη̃ to deviate from zero and, consequently, ũ to not be symmetric near the
opposing wave surface (figure 4b–d). To see why a strong Re[û] arises near the surface,
we can obtain the following relation from (4.11):

Re[û] = −1
k

d Im[ŵ]
dζ

. (5.9)

This suggests that Re[û] is caused by the sharp arising of Im[ŵ] close to the surface
(figure 9c). This mechanism further indicates that Re[û], or the asymmetry of ũ near the
wave surface, results from the effects of the viscous stress and turbulent stress. Same
as Im[ŵ] is underpredicted by the viscous linear model owing to the negligence of the
turbulence stress (see § 5.1.2), Re[û] is underestimated too as shown in figure 15(b).

In summary of this subsection, we found that the seemingly symmetric distribution of
ũ away from the opposing wave surface is caused by the flow perturbation related to the
wave kinematics. Near the surface, the viscous stress and turbulent stress cause ũ to deviate
from the symmetric distribution noticeably.
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FIGURE 16. Comparison of (a) −〈ũw̃〉 and (b) |̂̃uw̃| between the LES results: WOW01 ( ),
WOW01L ( ) and WOW04 ( ); and the solutions of the viscous linearised equation (4.12):
WOW01 ( ), WOW01L ( ) and WOW04 ( ). The superscript ‘+’ denotes normalisation by u2

τ .

5.3. Wave-induced stress −ũw̃ and pressure p̃
In this subsection we investigate how the wave kinematics, viscous stress and turbulent
stress affect the wave-coherent stress −ũw̃ and pressure p̃ in the wind opposing waves.
The wave-induced stress −ũw̃ can be decomposed into a mean part and a wave-coherent
part

− ũw̃ = 〈−ũw̃〉 − ˜̃uw̃ = 〈−ũw̃〉 − (̂̃uw̃ ei2kξ + ̂̃uw̃
∗

e−i2kξ ), (5.10)

where 〈−ũw̃〉 is the mean of −ũw̃, and −˜̃uw̃ is the wave-coherent part of −ũw̃, with
−̂̃uw̃ being its Fourier coefficient. In figure 16 we compare −〈ũw̃〉 and |̂̃uw̃| between
the viscous solutions (4.12) and LES results for the opposing waves. As shown, −〈ũw̃〉
(figure 16a) is significant only near the surface, ζ/λ < 0.03, because −〈ũw̃〉 is mainly
contributed by the correlation between Re[û] and Re[ŵ], and, thus, is significant only in
the region where Re[û] is appreciable (see figure 15). In other words, −〈ũw̃〉 is closely
related to the asymmetry of ũ near the surface and results from the effects of the viscous
stress and turbulent stress. Because of the nonlinear mechanism of Re[û], 〈−ũw̃〉 is
slightly underestimated by the viscous model (figure 16a). By contrast, the effect of |̂̃uw̃|
(figure 16b) can reach a much higher altitude, ζ/λ ≈ 0.5, because |̂̃uw̃| mainly results
from the correlation between Im[û] and Re[ŵ], and both of them are significant up to
ζ/λ ≈ 0.5. This behaviour explains the alternating positive and negative −ũw̃ in figure 5.
Because of the linear mechanism for Im[û] and Re[ŵ], |̂̃uw̃| can also be described by the
viscous linearised model.

The wave-induced pressure p̃ can be obtained through the vertical momentum equation
(4.10). With (2.15), p̃ is represented as

p̃ = 2|p̂| sin(kξ − φp̃η̃), (5.11)

where 2|p̂| is the magnitude of p̃ and φp̃η̃ is the phase difference between p̃ and η̃. Figure 17
compares |p̂| (figure 17a), Re[p̂] (figure 17b), Im[p̂] (figure 17c) and φp̃η̃ (figure 17d)
between the LES results and the solutions of the viscous linearised equation (4.12)
for the three opposing waves. Through comparing figures 17(a) and 17(c), we see that
|p̂| is contributed mainly by the large-magnitude Im[p̂], which is related to the wave
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FIGURE 17. Comparison of (a) |p̂|, (b) Re[p̂], (c) Im[p̂] and (d) φp̃η̃ between the LES results:
WOW01 ( ), WOW01L ( ) and WOW04 ( ); and the solutions of the viscous linearised
equation (4.12): WOW01 ( ), WOW01L ( ) and WOW04 ( ). The superscript ‘+’ denotes
normalisation by ρau2

τ . Note the scale difference between (b) and (c).

kinematics-induced Re[ŵ],

Im[p̂]
∣∣
ζ

≈
∫ λ

ζ

k(〈u〉 − c)Re[ŵ] dζ, (5.12)

and thereby is controlled by the linear mechanism. As a result, the linear solutions of
|p̂| and Im[p̂] agree with the LES results. The derivation of (5.12) is given in § 3 of the
supplementary material. Equation (5.12) also explains why p̃ is significantly stronger under
the opposing wave condition than the following wave condition (figure 6): in the wind
opposing wave, Re[ŵ] is much stronger, and 〈u〉 − c is also larger owing to c < 0, resulting
in a significantly larger Im[p̂]. Meanwhile, because Im[p̂] dominates Re[p̂] throughout the
boundary layer, φp̃η̃ is close to π for both the linear solutions and LES results (figure 17d).
Therefore, the symmetry of p̃ in the wind opposing waves (figure 6b–d) is explained by
the wave kinematics-induced airflow.

In the wind opposing waves, only the out-of-phase pressure Re[p̂] can generate form
drag on the wave surface. Starting from (4.10) and with the derivation given in § 3 of the
supplementary material, we can obtain the following relation between Re[p̂] and Im[ŵ]:

Re[p̂]
∣∣
ζ

≈
∫ λ

ζ

−k(〈u〉 − c) Im[ŵ] dζ. (5.13)
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This suggests that although Im[ŵ] is small for the opposing waves, it can still result in
appreciable Re[p̂] to cause a form drag on the wave surface owing to the large 〈u〉 −
c, despite the fact that Im[ŵ] is concealed by its strong out-of-phase counterpart Re[ŵ].
Owing to the underestimation of Im[ŵ] by the linear model, Re[p̂] is also underestimated
as shown in figure 17(b).

As a conclusion of § 5, we would like to emphasize that in the wind opposing waves,
the dominant components of w̃, ũ, p̃, i.e. Re[ŵ], Im[û] and Im[p̂], respectively, and the
wave-coherent part of −ũw̃, i.e. −˜̃uw̃, are caused by the linear interaction between the wave
kinematics-induced airflow at the surface and the mean wind speed 〈u〉 − c. The effects
of turbulent stress have two aspects. First, the turbulent stress is important to maintain a
logarithmic profile of 〈u〉 and thus a strong shear, which is important for the amplification
of airflow perturbation initiated by the wave kinematics. Second, the turbulent stress, in
concert with the viscous stress, result in an asymmetry in ũ and w̃, which is crucial for
the strong mean wave-coherent stress 〈−ũw̃〉 and an out-of-phase pressure near the wave
surface to generate the form drag.

6. Wave attenuation rate

In this section we investigate the attenuation rate of water waves due to the forcing by
the opposing wind. As reviewed by Belcher & Hunt (1998) and Sullivan & McWilliams
(2010), the wind impacts the evolution of a wave mainly through exerting a form drag on
the wave surface, which is defined as

Fp = 1
λ

∫ λ

0

p̃
ρau2

τ

dη̃
dx

dx = ak Re[p̂]|ζ=0

ρau2
τ

. (6.1)

The resultant non-dimensional wave attenuation rate γ /f under an opposing wind is (Li,
Xu & Taylor 2000; Donelan et al. 2006)

γ

f
= − 1

Ef
dE
dt

= −2π
ρa

ρw
β

(uτ
c

)2
, where β = − 2Fp

(ak)2
. (6.2)

Here, γ and f are the dimensional wave attenuation rate and the wave frequency,
respectively, E = ρwgη2 is the wave energy density, ρw is the water density and β is the
wave attenuation rate parameter. The values of γ /f calculated from (6.1) and (6.2) using
the pressure data from the present LES are compared with the results of parameterizations
based on the measurements of opposing wave-induced airflow (Young & Sobey 1985;
Donelan 1999) and evolution of the wave field (Mitsuyasu & Honda 1982; Peirson et al.
2003), and the numerical simulations using the RANS equations (Harris et al. 1995; Cohen
1997).

Figure 18 compares the wave attenuation rate γ /f as a function of the inverse wave age
|uτ /c| between the present and previous studies. Overall, the values of γ /f calculated using
the air pressure in the present LES results are compared reasonably well with the previous
studies, especially the parameterization of Mitsuyasu & Yoshida (2005) and the numerical
simulations of Harris et al. (1995) and Cohen (1997). The parameterization of Young &
Sobey (1985) with ak = 0.08 is smaller than most of the studies shown in the figure, while
their result with ak = 0.15 is comparable to the other studies. The parameterization of
Peirson et al. (2003) shows a higher γ /f than most of the results in the figure, which
is likely caused by the contribution to the wave decay by the interaction between the
wave and wind-induced current at the water side in their study, as suggested by Peirson
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FIGURE 18. Comparison of non-dimensional wave attenuation rate γ /f as a function of the
inverse wave age |uτ /c| between the present and previous studies. The filled squares ( )
and open diamonds ( ) denote the LES results and the solutions of the viscous linearised
equation (4.12), respectively. The dotted lines are the results of Young & Sobey (1985) γ /f =
1.4π(ak)2ρa/ρw(1 − U∞/c)2 with ak = 0.15 ( ) and ak = 0.08 ( ), where U∞ ≈ 30uτ
in their study. The dash–dot ( ) and dash–dot–dot ( ) lines show the results of Harris
et al. (1995) and Cohen (1997), respectively. The solid lines are the parameterization of Peirson
et al. (2003) γ /f = 2.275(ak)0.238|uτ /c|2.112 with ak = 0.15 ( ) and ak = 0.08 ( ). The
parameterization of Mitsuyasu & Yoshida (2005) γ /f = 0.52|uτ /c|2.37 is plotted with the dashed
line ( ). As a reference, the parameterization of wave growth rate in the following wind
γ /f = 0.34(uτ /c)2 by Mitsuyasu & Honda (1982) is shown using the line with circles ( ).

et al. (2003). In addition, the wave attenuation rates in the present LES and the result of
Mitsuyasu & Yoshida (2005) have magnitudes comparable with the wave growth rate in
the following wind condition measured by Mitsuyasu & Honda (1982), indicating that the
time scale of wave decay by an opposing wind is comparable to that of the wave growth by
a following wind. Figure 18 also shows the values of γ /f estimated using the pressure in
the solution of the viscous linearised equation (4.12). Although the estimated γ /f is lower
than the LES results because of the negligence of the nonlinear forcing (§ 5.3), they still
fall in the range of the various studies and have the same trend of variation, suggesting
that the pressure asymmetry induced by the viscous stress plays an important role in the
wave decay. Figure 19 compares the wave attenuation rate −γ /(2πf ) · ρw/ρa as a function
of (uλ/2/c − 1)|uλ/2/c − 1| between the present LES results and the previous studies. As
shown, the wave attenuation rates in the LES fall into the measurement data of Donelan
(1999) and exhibit a behaviour consistent with the three parameterizations.

To summarize this section, we have shown that the wave attenuation rates in the
LES agree reasonably well with the previous studies. The comparison of the theoretical
prediction based on the viscous linear model in the present study with the wave attenuation
rates in the previous studies suggests that the viscous stress plays an important role in
causing the wave decay by inducing a slight pressure asymmetry in the wind opposing a
wave.

7. Conclusions and discussion

A deep understanding of the interaction between the wind and opposing water waves
is important for the study of air–sea interactions under complex oceanic conditions, such
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FIGURE 19. Comparison of wave attenuation rate as a function of (uλ/2/c − 1)|uλ/2/c − 1|
between the present LES results and the previous studies. The filled squares ( ) and open circles
( ) denote the present LES results and the measurement by Donelan (1999), respectively. The
solid line ( ) is the parameterization of Donelan (1999) −γ /(2πf ) = −0.11ρa/ρw|uλ/2/c −
1|2. The dotted ( ) and dashed–dot ( ) lines are the parameterization of Peirson et al.
(2003) γ /f = 2.36 × 10−4(ak)0.240|uλ/2/c − 1|3.265 with ak = 0.08 and the parameterization
of Mitsuyasu & Yoshida (2005) γ /f = 5.8 × 10−5|uλ/2/c − 1|3.3, respectively.

as in the presence of tropical cyclones or fronts. To uncover the physical mechanisms
underlying the wave-induced airflow by the opposing waves, we have performed LES of
turbulent wind following and opposing water waves. To explain the flow dynamics, we
have derived the viscous and inviscid linearised equations for the wave-induced velocity
in the mapped computational curvilinear coordinate. Below, we provide perspectives on
this problem based on the results of the present study.

We have shown that the opposing wave-induced airflow exhibits features very different
from that induced by the following wave with the same wave parameters. In particular,
our study illustrates that compared with the following wave, the opposing wave induces
a significantly stronger vertical velocity perturbation that is out-of-phase with the wave
surface, i.e. Re[ŵ] for the wave form η̃ = a sin(kξ), with a much weaker vertical velocity
perturbation that is in-phase with the wave surface, i.e. Im[ŵ], resulting in a nearly
antisymmetric spatial distribution of the wave-induced vertical velocity w̃ in the air. In
addition, the modulation on the turbulent statistics in the airflow by the opposing wave is
confined to a much thinner region than the following wave.

It is discovered that Re[ŵ] and Im[ŵ] are governed by different physical mechanisms.
The large-magnitude Re[ŵ] induced by the opposing waves is driven by the wave orbital
velocity at the surface and is amplified by the viscous stress and mean shear in the wind.
Consequently, Re[ŵ] from the LES result agrees well with the solution of the curvilinear
viscous linearised equation for different opposing wave parameters. The strong Re[ŵ]
results in a large-amplitude in-phase streamwise velocity perturbation Im[û] and pressure
perturbation Im[p̂] in the wind, leading to a seemingly symmetric spatial distribution of
the wave-induced streamwise velocity ũ (away from the wave surface) and pressure p̃
observed from the previous studies and the present LES result. On the contrary, Im[ŵ]
is not directly affected by the wave kinematics at the surface. Near the wave surface,
Im[ŵ] is forced by Re[ŵ] through the viscous and turbulent stresses. The phenomenon
that viscous stress affects w̃ is also observed in the study of wind following fast waves by
Akervik & Vartdal (2019). In the outer region, Im[ŵ] displays an inviscid decay behaviour.
In the wind opposing waves, the region for generating Im[ŵ] is thinner than that in the
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counterpart following wave case owing to the smaller advection time scale under the
former condition, and correspondingly, a weaker Im[ŵ] is generated by the opposing
waves. The weak Im[ŵ] causes a moderate out-of-phase streamwise velocity perturbation
Re[û] and pressure perturbation Re[p̂] in the air, which cause a slight asymmetry in ũ
and p̃, respectively. It is found that Re[û] plays an important role in generating a strong
mean wave-induced stress 〈−ũw̃〉 in the proximity of the surface. Away from the wave
surface, 〈−ũw̃〉 is small, and the perturbation of the wave-induced stress −˜̃uw̃ displays an
antisymmetric distribution and can be described by the viscous linearised model.

We have further explained the arising of form drag on the opposing waves, which is
caused by Re[p̂]. An important finding is that for the same wave speed, despite the smaller
value of Im[ŵ] for the opposing wave than that for the following wave, it can still induce
an appreciable Re[p̂] for the opposing wave, because of the much larger mean relative
velocity. While this result is consistent with the intuition as wind is expected to exert
form drag on opposing waves to attenuate the waves, our study has illustrated this process
systematically with a quantitative model.

At last, we remark that because the dominant effect of opposing waves on the air is
to induce strong asymmetric vertical velocity perturbation and symmetric streamwise
velocity and pressure perturbation by the interaction between the wave kinematics and
mean wind shear, the curvilinear viscous model developed in this study can be used
to describe the wave-induced airflow given the mean wind profile. In the case of
nonlinear waves, such as a Stokes wave, because the wave orbital velocity is dominated
by the solution of the leading order mode, which is the same as the linear wave
solution, it is expected to induce airflow perturbation similar to the linear wave. The
wave-induced airflow affects the turbulence momentum and scalar fluxes, resulting in
their wave-phase-dependent spatial distribution. The parameterization for these processes
is important for a variety of applications and should be the subject of study in the future.
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Appendix A. Conservation of momentum in simulation

In this appendix we examine the momentum conservation of the numerical scheme
employed in the present study. As indicated by (4.5), the summation of viscous stress
−〈τ v13〉, turbulent stress −〈τ13〉, wave-induced stress −〈τw

13〉 and wave-induced pressure
−〈τ p

13〉 should equal the driving force u2
τ throughout the wave boundary layer:

〈τtot〉 = −〈τ v13〉 − 〈τ13〉 − 〈τw
13〉 − 〈τ p

13〉 = u2
τ . (A 1)
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FIGURE 20. Profiles of the stress terms in (A 1) for cases (a) WOW01 and (b) WOW04.
The superscript ‘+’ denotes normalisation by u2

τ .

0 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

WOW01L

SWOW01L

10−4 10−3 10−2 10−1 100
−0.2

0

0.2

0.4

0.6

ζ/λ ζ/λ

〈u〉
/U

0

|ŵ 
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FIGURE 21. Comparison of (a) the mean wind speed 〈u〉 and (b) the magnitude of
wave-coherent vertical velocity |ŵ| between case WOW01L and case SWOW01L.

In figure 20 we plot the stress terms normalised by u2
τ in the two steep opposing wave cases,

WOW01 and WOW04. As shown, the normalised total stress 〈τtot〉 equals 1 at all heights
in both cases. Quantitatively, the difference of 〈τtot〉 between the wave surface and the
top of the simulation domain, i.e. |〈τtot〉(ζ = 0)− 〈τtot〉(ζ = λ)|, is 0.0022 in WOW01 and
0.0045 in WOW04, which is negligibly small and indicates the conservation of momentum
in the simulation.

Appendix B. Grid convergence

In this appendix we show the grid convergence in the simulation results. In figure 21 we
compare the profiles of the mean wind speed 〈u〉 and magnitude of wave-induced vertical
velocity |ŵ| between case WOW01L and case SWOW01L of the same physical parameters,
with case SWOW01L at a super resolution as summarised in table 1. As shown, the results
between the two cases are almost indistinguishable from each other, indicating that the
grid resolution adopted in the present study is sufficient to capture the flow dynamics.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

59
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.591


Wind opposing water waves 901 A27-37

Comparisons of other quantities (not plotted due to space consideration) also show grid
convergence.
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