
J. Plasma Physics (2002), vol. 67, part 5, pp. 321–328. � 2002 Cambridge University Press

DOI: 10.1017/S0022377802001733 Printed in the United Kingdom

321

Alfvén wings in nonuniform plasmas: analysis
using curvilinear coordinates
P. A. S A L L A G O and A. M. P L A T Z E C K
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Abstract. The results of a previous work, which describes in the magnetohydro-
dynamic approximation Alfvén wings in nonuniform plasmas, are extended in order
to consider more general variations of the background fields. As mathematical
tools we use general curvilinear coordinates and stream functions. We prove the
possibility of existence of Alfvén wings when the background fields have cylindrical
or helical symmetry. For the former, the wings are cylinders, and for the latter, they
have helicoidal form; this last includes the case of uniform background fields. We
also obtain the relations among the different physical magnitudes in the wing.

1. Introduction
A conducting source moving uniformly through a magnetized plasma generates,
among a variety of perturbations, Alfvén waves. An interesting characteristic of
Alfvén waves is that they can build up structures in the plasma similarly to the way
in which electromagnetic radiation builds up Cherenkov cones. These structures are
the regions, characterized by intense electric currents, where the disturbed fields
are different from zero. They are called Alfvén wings, and their shape depends on
the source’s shape and on the background magnetic field; for a point source, in
uniform background fields, they are lines that start on it. The first to appreciate
this phenomenon were Drell et al. (1965). After them, many papers have been
written analyzing Alfvén wings. References can be found in Neubauer (1980) and
McKenzie (1991). In almost every case, a uniform background velocity, magnetic
field, density, and plasma pressure are supposed. In a recent work, Sallago and
Platzeck (2000) have analyzed Alfvén waves and wings in nonuniform magnetized
plasmas using the magnetohydrodynamic (MHD) aproximation; the background
fields were supposed to vary in a direction perpendicular to the background velocity
and magnetic field, which lie in a plane. They showed the existence, under certain
conditions, of nonlinear Alfvén waves and Alfvén wings; the Alfvén group velocity
is given by an expression similar to that for Alfvén waves in the uniform-plasma
case. For the study of Alfvén wings, the methodology of stream functions has been
applied (Tsinganos 1982; Agim and Tataronis 1985; Palumbo and Platzeck 1998),
and it has been shown that the total plasma pressure, density, and magnetic field
modulus are functions of the magnetic flux.

In the present paper, we extend these results for wings, for more general variations
of the background fields. In order to do this, we analyze the problem in general
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curvilinear coordinates. A brief introduction of stream functions in ideal MHD
is given in Sec. 2, and the relations that must be fulfilled in the Alfvén limit by
incompressible and adiabatic perturbations are stated. The consequences of such
relations on the conditions that the background fields must fulfil, in order to support
Alfvén wings, is studied. It is shown that the total pressures (plasma plus magnetic)
in the perturbed and unperturbed zones are uniform and equal, and the relations
between the components of the velocity and magnetic fields of the perturbation are
obtained.

In Sec. 3, the different possible background field structures and the corresponding
Alfvén wing shapes are analyzed. We conclude that there exist Alfvén wings in
some background fields with cylindrical symmetry, or with helical symmetry. In
the former case, the wings are cylinders, while in the latter, they are helicoidal.

Finally, we remark that a conducting source moving in a magnetized plasma
generates a variety of perturbations, and for studying some of these, the MHD
approximation may not be appropriate.

2. Analysis of Alfvén wings in curvilinear coordinates
A conducting source moving in a magnetized plasma, when the background fields
satisfy certain conditions, can generate one or two Alfvén wings. The problem of
one wing is a stationary one, with a symmetry, in some reference system. Because
of this, if an appropriate coordinate system is chosen, one of the coordinates is
ignorable for the physical magnitudes and for the metric tensor. This coordinate
system may be a general curvilinear one.

The fields with zero divergence, in a curvilinear system (α, β, γ) with γ ignorable,
can be derived from stream functions. Since ∇ · B = 0 and ∇ · (ρV) = 0, two dif-
ferent stream functions ψ(α, β), the magnetic flux, and χ(α, β) are defined in such
a way that the following contravariant components Bα, Bβ , ρV α, and ρV β result
(Agim and Tataronis 1985):

Bα =
1√
g

∂ψ

∂β
, (1)

Bβ = − 1√
g

∂ψ

∂α
, (2)

ρV α =
1√
g

∂χ

∂β
, (3)

ρV β = − 1√
g

∂χ

∂α
, (4)

where g is the determinant of the metric tensor.
Stationary problems in MHD, when an ignorable coordinate is present, have been

analyzed by several authors (Tsinganos 1982; Agim and Tataronis 1985; Palumbo
and Platzeck 1998). Using (1)–(4), from the MHD equations, the following relations
can be derived (Palumbo and Platzeck 1998):

χ = χ(ψ), (5)

− χ′Vγ +
Bγ
4π

= F1(ψ), (6)

− V γ +
χ′Bγ

ρ
= F2(ψ), (7)
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where Vγ and Bγ are covariant components, χ′ = dχ/dψ, and F1(ψ) and F2(ψ) are
arbitrary functions of the magnetic flux.

From (6) and (7), using the relation between co- and contravariant components
(Santaló 1961; Jackson 1999), we arrive at(

1− 4πχ′2

ρ

)
Bγ = 4π[F1(ψ)− gγγχ′F2(ψ)]. (8)

This equation allows us to express Bγ as a function of ψ, gγγ , and ρ, except in the
Alfvén limit given by the condition

χ′ = ∓
√

ρ

4π
. (9)

Instead, in the Alfvén wings, (8) gives the following relation between the functions
F1 and F2:

F1(ψ) = ±gγγ
√

ρ

4π
F2(ψ). (10)

In order that the condition (9) be satisfied along the wing, the density ρ must also
be a function of ψ:

ρ = ρ(ψ). (11)

This condition is equivalent to the incompressibility condition (Palumbo and
Platzeck 1998).

In a similar way, the adiabaticity condition implies that

p = p(ψ). (12)

If Alfvén wings grow in a plasma, the background fields B0, V0, ρ0, and p0 must
be invariant in γ. Let us suppose that the background fields depend on only one
variable: α or β, or a function of α and β, η = η(α, β). This means that B0 and ρ0V0

can be derived from stream functions ψ0 and χ0, respectively, with these stream
functions depending on only one variable; ψ0 and χ0 must satisfy (5), χ0 = χ(ψ0),
and (9) for one of the signs. As a consequence, the contravariant components α and
β of the Alfvén velocity in a moving plasma given by

V′A = V0 ± B0√
4πρ0

, (13)

are zero (see (1)–(4)). Therefore, the only nonzero contravariant component of V′A
is (see (7) and (9))

V ′γA = −F2(ψ0). (14)

The upper (lower) sign in (9) corresponds to the upper (lower) sign in (13); in what
follows, we choose the upper sign.

The values of the unperturbed fields also determine the functions F1, ρ, and p
(see (6), (11) and (12)):

ρ0 = ρ(ψ0), (15)

p0 = p(ψ0), (16)

F1(ψ0) = −χ′V0γ +
B0γ

4π
. (17)

On the other hand, in the Alfvén limit, the velocity and total magnetic field satisfy
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the relations (see (1)–(4), (5), (7), and (9))

V α = − Bα√
4πρ

, (18)

V β = − Bβ√
4πρ

, (19)

V γ = − Bγ√
4πρ
− F2(ψ). (20)

The respective relations for the perturbations are

V α1 = − Bα1√
4πρ

+Bα0

(
1√

4πρ0
− 1√

4πρ

)
, (21)

V β1 = − Bβ1√
4πρ

+Bβ0

(
1√

4πρ0
− 1√

4πρ

)
, (22)

V γ1 = − Bγ1√
4πρ

+Bγ0

(
1√

4πρ0
− 1√

4πρ

)
+ F2(ψ0)− F2(ψ), (23)

which are similar to those that are valid when the background fields vary in a
rectilinear direction (Sallago and Platzeck 2000).

Equation (6) takes into account only the γ component of the equation of motion
(Palumbo and Platzeck 1998). This equation in the stationary case can be written
as

ρ(V ·∇)V = −∇p−∇ |B|
2

8π
+
(
B

4π
·∇
)
B. (24)

From the invariance in γ, the relations (18) and (19), and the fact that χ′ is a
function of ψ, the following equation results:

∇P = (B ·∇)
(
B

4π
− χ′V

)
, (25)

where P is the total pressure (plasma plus magnetic):

P = p +
|B|2
8π

. (26)

The covariant γ component of ∇P is zero because of the invariance in γ. From
(18), (19), and (25), the contravariant α and β components also vanish. Then, in
the Alfvén limit,

∇P = 0. (27)

Therefore, for the perturbed and the unperturbed regions, the total pressure remains
constant:

p +
|B|2
8π

= p0 +
|B0|2
8π

= const. (28)

Taking into account that from the adiabaticity condition p = p(ψ) (see (12)), it
results that

|B|2 = |B|2(ψ). (29)

In order to determine the magnetic flux ψ, we take into account that the value of
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the contravariant component Jγ determines a differential equation for the stream
function ψ (Palumbo and Platzeck 1998):

D2ψ

gγγ
−G(Bγ) = −4π

c
Jγ , (30)

where

D2ψ =
gγγ√
g

[
∂

∂α

(
gαα
√
g

gγγ

∂ψ

∂α

)
+

∂

∂β

(
gββ
√
g

gγγ

∂ψ

∂β

)

+
∂

∂α

(
gαβ
√
g

gγγ

∂ψ

∂β

)
+

∂

∂β

(
gαβ
√
g

gγγ

∂ψ

∂α

)]
, (31)

G(Bγ) =
ΓBγ
gγγ

+
1

gγγ
√
g

(
gβγ

∂Bγ
∂α
− gαγ ∂Bγ

∂β

)
, (32)

with

Γ =
gγγ√
g

[
∂

∂α

(
gβγ
gγγ

)
− ∂

∂β

(
gαγ
gγγ

)]
. (33)

Moreover, since

ρV ·∇ψ =
∂χ

∂α

∂ψ

∂β
− ∂χ

∂β

∂ψ

∂α
= 0, (34)

the convective derivative of ψ is zero; therefore the value of ψ for a given plasma
element is the same before and after entering the wing. As a consequence, the same
is true for ρ, p, and |B|2 (see (11), (12), and (29)). This implies also that Jγ cannot
take arbitrary values across all of the wing.

It is important to note that (10) imposes restrictions on the possible functional
dependences of gγγ , F1, and F2 in order to construct Alfvén wings. Since gγγ and
ψ are not related, (10) can only be satisfied in two cases:

(i) when the gγγ component of the metric tensor is a constant;

(ii) when F1(ψ) and F2(ψ) are both zero functions.

This implies a restriction on the kind of spatial dependence of the background fields
in which Alfvén wings can be generated. The shape of the wings is closely related
to the structure of the background fields.

3. Structure of the background fields and the wing shapes
In this section, we analyze the structure of the different background fields that can
support Alfvén wings and the corresponding wing shapes.

3.1. Constant gγγ
If one imposes that gγγ be a constant, there are essentially two kinds of coor-
dinate systems: Cartesian and cylindrical coordinates. The situation in Cartesian
coordinates has been discussed in a previous paper (Sallago and Platzeck 2000). In
cylindrical coordinates, in order that gγγ be constant, z must be the ignorable coor-
dinate; therefore the group velocity V′A is in the direction of the cylinder axis, and
then the Alfvén wing shape is a z-axis cylinder whose section depends on the source
shape. The conducting source, in this case, can be at rest or moving uniformly along
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an axis parallel to the z axis. The problem may be consider as stationary with a
symmetry in a subspace that contains the wing and does not contain the source.

Different configurations are possible according to the variable, r, ϕ, or η(r, ϕ),
on which depends the stream function ψ0 of the background field B0, and, in con-
sequence, ρ0, p0, and |B0|2.

3.1.1. Dependence on r. The contraviariant r components of the magnetic induction
and velocity fields are zero (see (1)–(4)). The other contravariant components Bϕ0 ,
Bz0 , V ϕ0 , and V z0 depend only on r; therefore, the field lines are helices. Notice that
the Alfvén wing axis does not coincide, in general, with the axis of the helices; this
depends on the position of the source.

3.1.2. Dependence on ϕ. In this case the non-zero components of the magnetic in-
duction field are

Br0 =
1
r

dψ0

dϕ
, (35)

Bz0 =

√
|B0|2(ϕ)− 1

r2

(
dψ0

dϕ

)2

. (36)

Using (3), (5), and (7), for the velocity field we have

V r0 = − 1√
4πρ0(ϕ)r

dψ0

dϕ
, (37)

V z0 = − Bz0√
4πρ0(ϕ)

− F2[ψ(ϕ)]. (38)

The field lines of the background fields lie on constant ϕ-planes; the relations (35)–
(38) allow a great variety for their shapes.

In order to avoid the singularity at r = 0, it is necessary to divide the space into
two regions: r < R and r > R, with an appropriate value for R. If the Alfvén wing
exists, it will be located in the region r > R.

3.1.3. Dependence on η(r, ϕ). In the most general case, one can define a variable
η = η(r, ϕ). If the magnetic stream function ψ0 depends on η, then the contravariant
components of the background magnetic field are

Br0 =
1
r

∂η

∂ϕ

dψ0

dη
, (39)

Bϕ0 = −1
r

∂η

∂r

dψ0

dη
, (40)

Bz0 =

√√√√|B0|2(η)−
[

1
r2

(
∂η

∂ϕ

)2

+
(
∂η

∂r

)2
](

dψ0

dη

)2

. (41)

For the components ρ0V
r

0 and ρ0V
ϕ

0 , we have relations similar to (39) and (40),
changing ψ0 to χ0; and the expression for V z0 is similar to (38), where F2 and ρ0

are now functions of η. The magnetic field lines, and the velocity lines also, lie on
surfaces η = const.

Depending on the functional dependence of η, a singularity may appear at r = 0.
If this happens, it is solved as in Sec. 3.1.2.
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3.2. F1(ψ) and F2(ψ) zero

As discussed above, the other possibility for the fulfilment of (10) is that F1(ψ) and
F2(ψ) both be zero functions. This means thatV′A is zero in the reference systemK in
which the problem is a stationary one. In this case, since the restriction gγγ = const
is not necessary, it is possible to choose helicoidal coordinates r = r, ξ = aϕ − z,
and γ = z, where (r, ϕ, z) are the cylindrical coordinates. Since the Alfvén wing is
invariant in γ, its ‘axis’ is along a line r = const, ξ = const. This is a helix whose
axis is the z axis.

The conducting source is moving in a circular motion in a plane perpendicular
to the z axis, in a reference system K∗ that is moving with a constant velocity
v∗ = (ω/2π)h along z, as viewed from K, where h is the pitch of the helical wing
and ω is the angular velocity of the source. In this system, the problem is not a
stationary one, V′A∗ = −v∗, and the helicoidal wing appears to be moving with this
velocity.

If we suppose helical symmetry for the background fields, the variety of possible
structures for them is very large. The simplest situation is when the background
fields V0 and B0 have only z components. Let us analyze the dependence of ψ0 in the
reference system in which the wing is stationary. Since helicoidal coordinates are
not orthogonal, it is convenient to write down the relations between the contravari-
ant components of a vector in this system and the corresponding components in
cylindrical coordinates:

Brcyl = Br, (42)

Bϕcyl =
Bξ +Bγ

|a| , (43)

Bzcyl = Bγ . (44)

Thus, taking into account that
√
g = r/|a|, the cylindrical components of B, using

the current function ψ(r, ξ), can be written as (see (1) and (2))

Brcyl =
|a|
r

∂ψ

∂ξ
, (45)

Bϕcyl =
1
|a|
(
−|a|
r

∂ψ

∂r
+Bγ

)
. (46)

In order that the background field B0 have only z component, Br0 cyl and Bϕ0 cyl must
be zero. Therefore, ψ0 must depend only on r, and

Bγ0 (r) =
|a|
r

dψ0

dr
; (47)

as a consequence, Bz0 cyl depends only on r. From (15), the density ρ0 also depends
only on r; sinceV′A is zero, the only non-zero z component of the plasma unperturbed
velocity is (see (13))

V z0 cyl(r) = − Bz0 cyl√
4πρ0

. (48)

Although this seems to be a restriction on the background plasma velocity, it need
be fulfilled only in the reference system K.

Helical Alfvén wings can also exist in general axisymmetric background fields
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that do not depend on z in order to be invariant in γ. The non-zero components of
the background magnetic field are Bϕ0 cyl and Bz0 cyl, and one can obtain the value of
dψ0/dr from (46).

Note that we have used helicoidal coordinates, but the background fields can
be uniform; any conducting source moving circularly in a plane perpendicular to
B0 generates an Alfvén wing. This looks like a large curled object whose section
depends on the source’s shape.

4. Conclusions
Extending the results of a previous paper, we have proved that Alfvén wings are
solutions of the MHD equations for a magnetized plasma with nonuniform back-
ground fields. The spatial dependence for background fields B0, V0, ρ0, and p0 is
quite general, but a symmetry is needed. We have applied the methodology of
stream functions in ideal MHD. We have considered cylindrical and helicoidal sym-
metries. For the former, the Alfvén wings are cylinders whose sections depend on
the conducting source. For the latter, the wings have helicoidal form; this includes
the case in which the background fields are uniform and the source moves in a
circular motion. In a similar way that happens when the background fields vary
in a rectilinear direction, the plasma pressure, the density, and the magnetic field
modulus are functions of the magnetic flux ψ; therefore, their values for a given
plasma element are the same before and after entering the wing. The total pressure
(magnetic plus plasma) is uniform, so it is equal in the perturbed and unperturbed
regions; the velocity and magnetic field components of the perturbation are related,
and this relation depends on the background fields.
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