
The Journal of Navigation (2021), 74:2 467–487
doi:10.1017/S0373463320000570

RESEARCH ARTICLE

Improved exponential weighted moving average based
measurement noise estimation for strapdown inertial
navigation system/doppler velocity log integrated system
Lanhua Hou, Xiaosu Xu,* Yiqing Yao, Di Wang, and Jinwu Tong

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of
Instrument Science and Engineering, Southeast University, Nanjing, China.
*Corresponding author. E-mail: xxs@seu.edu.cn

Received: 29 April 2020; Accepted: 27 September 2020; First published online: 2 December 2020

Keywords: measurement noise estimation, forgetting factor, adaptive Kalman filter, SINS/DVL

Abstract
The strapdown inertial navigation system (SINS) with integrated Doppler velocity log (DVL) is widely utilised in
underwater navigation. In the complex underwater environment, however, the DVL information may be corrupted,
and as a result the accuracy of the Kalman filter in the SINS/DVL integrated system degrades. To solve this,
an adaptive Kalman filter (AKF) with measurement noise estimator to provide noise statistical characteristics is
generally applied. However, existing methods like moving windows (MW) and exponential weighted moving average
(EWMA) cannot adapt to a dynamic environment, which results in unsatisfactory noise estimation performance.
Moreover, the forgetting factor has to be determined empirically. Therefore, this paper proposes an improved
EWMA (IEWMA) method with adaptive forgetting factor for measurement noise estimation. First, the model for
a SINS/DVL integrated system is established, then the MW and EWMA based measurement noise estimators are
illustrated. Subsequently, the proposed IEWMA method which is adaptive to the various environments without
experience is introduced. Finally, simulation and vehicle tests are conducted to evaluate the effectiveness of the
proposed method. Results show that the proposed method outperforms the MW and EWMA methods in terms of
measurement noise estimation and navigation accuracy.

1. Introduction

Research has shown that there are rich mineral resources in the ocean, which takes up three-quarters
of the Earth’s surface. The exploration of the vast ocean has become a momentous issue for humans.
Underwater navigation technology, as the core technology of ocean exploration, is the most difficult
challenge to tackle (Zhang et al., 2019). In the domain of underwater navigation, the strapdown inertial
navigation system (SINS), with the performance characteristics of high autonomy and anti-interference,
is widely utilised. But SINS has some performance deficiencies (e.g. unbounded position error growth
and position/velocity/attitude Schuler oscillations). In light of this, acoustic positioning system, Doppler
velocity log (DVL), Global Position System (GPS), depthmeter, and terrain matching are commonly
introduced as alternatives to provide navigation information for underwater vehicles (González-García
et al., 2020). Among these, DVL has become one of the main auxiliary navigation devices in underwater
navigation by virtue of its reliability, autonomy and convenience. Recently, the SINS/DVL integrated
system has developed into a reliable and important navigation system in underwater navigation (Yao
et al., 2019).

The errors of the SINS/DVL integrated system can be categorised into inertial measurement unit
(IMU) errors and DVL errors. The IMU is composed of three gyroscopes and three accelerometers to
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provide angular velocity and specific force measurements (Sabet et al., 2018). The DVL is a device with
four identical energy converters to output velocity information (Tal et al., 2017). Both are subject to
scale factor, misalignment error, and random error. The fixed scale factor and misalignment error can
be estimated in the calibration process. However, the random error of the IMU, sensitively influenced
by temperature, pressure, and mechanical stresses, cannot be calculated in advance. To address this
problem, a Kalman filter (KF) is introduced to estimate the random error of the IMU while blending
the navigation information from the SINS and DVL (Narasimhappa et al., 2016, 2020; Eliav and Klein,
2018; Hu et al., 2018).

The optimality of KF relies on the correct prior knowledge of the process noise covariance matrix Q
and the measurements noise covariance R (Mohamed and Schwarz, 1999). The matrix Q is often regarded
as constant because the process noise in the navigation process is relatively invariable. Nevertheless,
due to the complex underwater environment, such as ocean currents, marine organisms, changeable
temperature and salinity, the random error of the DVL is variable and unpredicted. The affiliated
matrix R is inconsistent with the reality and it will result in substantial estimation errors or even filter
divergence. To solve this, two methods are proposed. One is the pure SINS method, which abandons
the DVL information in cases where there is too much noise from the DVL. But then navigation errors
accumulate quickly with time. The other is the adaptive KF (AKF) method, which estimates the statistical
characteristics of the process and measurement noise to attenuate errors (Raman, 1972; Hu et al., 2020).

Since its inception, the use of AKF has become widespread in integrated navigation systems. Xu et al.
researched the use of AKF in the USBL/INS integrated system (Xu et al., 2018). Liu et al. innovated an
improved AKF for the INS/GPS integrated system of autonomous vehicles (Liu et al., 2018). Zhang et al.
applied AKF to position correction based large depth navigation for autonomous underwater vehicles
(AUV) (Zhang et al., 2020). This paper focuses on the application of AKF in the SINS/DVL integrated
navigation system.

The AKF can be divided into four categories: Bayesian, maximum likelihood, correlation, and
covariance matching. Each of them is based on the Bayes theorem and can be regarded as a particular
form of Bayesian estimation. Based on the Bayesian estimation, a variational Bayesian based KF was
proposed and successfully applied to INS/GPS integrated navigation (Huang and Zhang, 2017; Yulong
et al., 2018). However, because of the high computational complexity, it is not widely used in underwater
navigation. Based on the maximum likelihood principle, a novel adaptive unscented KF combining the
maximum likelihood principle with moving horizon estimation was developed (Gao et al., 2017). The
correlation method is based on the correlation of the output either directly or after a known linear
operation. A correlation method based KF with nonlinear models was researched (Yang et al., 2018). To
make the theoretical covariance consistent with the residual, covariance matching estimation is prevalent
in integrated navigation systems by virtue of its simplicity of calculation and high accuracy (Jin et al.,
2017).

As a covariance matching estimation strategy, the Sage–Husa AKF (SHAKF) was proposed and has
become widely utilised (Sage and Husa, 1969; Liu et al., 2019). It estimates the real-time measurement
noise covariance by the statistical information of historical epochs. According to the estimation theory,
there are two kinds of measurement noise estimations: innovation adaptive estimation (IAE) and residual
adaptive estimation (RAE) (Wang, 1999). In IAE the measurement noise is estimated by the average of
innovations, in RAE it is calculated by the average of residuals. Almagbile et al. proved that with the same
filter performance RAE is more reliable than IAE (Almagbile et al., 2010). To simplify computation
and improve estimation accuracy, the moving windows (MW) method was proposed to estimate Q
and R (Yang and Xu, 2003), and the exponential weighted moving average (EWMA) method was also
introduced (Narasimhappa et al., 2018; Franzen and Fingscheidt, 2019; Xu et al., 2019). However, the
optimal window width in MW and the forgetting factor in EWMA have to be determined empirically.
Meanwhile, the fact that window width and forgetting factor cannot adapt to a dynamic environment
results in unsatisfactory noise estimation performance.

Therefore, an improved EWMA (IEWMA) method for measurement noise estimation is proposed
in this paper. An estimation convergence criterion based forgetting factor is improved to adapt to the
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Figure 1. Diagram of SINS/DVL integrated system.

environment. Compared with the MW and EWMA methods, the IEWMA method can be applied to
engineering practice without multiple experiences and the estimation results are more accurate.

The structure of this paper is as follows. In section 2, a SINS/DVL integrated system is designed. In
section 3, the IAE and RAE based AKF methods are specifically illustrated, and MW, EWMA and the
forgetting factor based IEWMA are presented. In section 4, the results of comprehensive simulation and
vehicle tests conducted in this study are presented to illustrate the superiority of the proposed IEWMA
method. Section 5 is devoted to the conclusion.

2. SINS/DVL integrated system

In the SINS/DVL integrated system, the loosely coupled method is frequently utilised. This is because the
information provided by DVL is generally the velocity information rather than the original information
of the four acoustic channels. The diagram of the SINS/DVL integrated system is shown in Figure 1. The
KF fuses the navigation information from the SINS with the velocity from the DVL and then updates
the navigation errors to correct the navigation results. In addition, the gyroscope errors, accelerometer
errors, and DVL scale factor can also be estimated as a part of the state vector. To cast the integrated
process in the KF framework, the state equation and measurement equation are established by the time
rate differential equations of SINS and the velocity difference of SINS and DVL in the body frame.

2.1. State equation

The state equation is established as follows:

𝑿 ′ = 𝑭𝑿 + 𝑮𝑾 (2.1)

where 𝑿 is the state vector, 𝑭 is the state transition matrix, 𝑮 is the system noise matrix and 𝑾 is the
process noise vector. The state vector 𝑿 is defined as (Hu et al., 2019):

𝑿 =
[
𝜙𝑥 𝜙𝑦 𝜙𝑧 𝛿𝑉

𝑛
𝐸 𝛿𝑉𝑛

𝑁 𝛿𝑉𝑛
𝑈 𝛿𝜆 𝛿𝐿 𝛿ℎ 𝜀𝑥

𝜀𝑦 𝜀𝑧 ∇𝑥 ∇𝑦 ∇𝑧 𝐾𝑑

]𝑇 (2.2)
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where 𝐾𝑑 is the DVL scale factor, and the matrix 𝑭, 𝑮, and 𝑾 are expressed as follows:

𝑭 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑭𝑎𝑎 𝑭𝑎𝑣 𝑭𝑎𝑝 −𝑪𝑛
𝑏 03×3

𝑭𝑣𝑎 𝑭𝑣𝑣 𝑭𝑣 𝑝 03×3 𝑪𝑛
𝑏 09×1

03×3 𝑭𝑝𝑣 𝑭𝑝𝑝 𝑪𝑛
𝑏 03×3

07×15

⎤⎥⎥⎥⎥⎥⎥⎦
, 𝑮 =

⎡⎢⎢⎢⎢⎣
−𝑪𝑛

𝑏 03×3
03×3 𝑪𝑛

𝑏

010×3 010×3

⎤⎥⎥⎥⎥⎦
, 𝑾 =

[
𝒘𝑏

𝑔

𝒘𝑏
𝑎

]
(2.3)

where 𝑭𝑎𝑎, 𝑭𝑎𝑣 , 𝑭𝑎𝑝 , 𝑭𝑣𝑎, 𝑭𝑝𝑣 , 𝑭𝑣𝑣 , 𝑭𝑝𝑝 , 𝑭𝑣 𝑝 are determined by the error equation of SINS, 𝑪𝑛
𝑏 is

the transfer matrix from frame b to frame n, and 𝒘𝑏
𝑔and 𝒘𝑏

𝑎 are the error of gyroscope and accelerometer,
respectively.

2.2. Measurement equation

The measurement equation is modelled as follows (Lee et al., 2005):

𝒁 = �̂�𝑏 − 𝑽𝑏𝐷𝑉 𝐿 = 𝑯𝑿 + 𝑽 (2.4)

where 𝒁 is the measured matrix, �̂�𝑏 is the velocity calculated by SINS in the body frame, 𝑽𝑏𝐷𝑉 𝐿 is the
velocity provided by DVL, 𝑯 is the measurement transfer matrix and 𝑽 is the measurement information
noise. The measurement transfer matrix is:

𝑯 =

⎡⎢⎢⎢⎢⎣
𝑪31𝑉𝑁 − 𝑪21𝑉𝑈 𝑪11𝑉𝑈 − 𝑪31𝑉𝐸 𝑪21𝑉𝐸 − 𝑪11𝑉𝑁

𝑪32𝑉𝑁 − 𝑪22𝑉𝑈 𝑪12𝑉𝑈 − 𝑪32𝑉𝐸 𝑪22𝑉𝐸 − 𝑪12𝑉𝑁

𝑪33𝑉𝑁 − 𝑪23𝑉𝑈 𝑪13𝑉𝑈 − 𝑪33𝑉𝐸 𝑪23𝑉𝐸 − 𝑪13𝑉𝑁

𝑪𝑏
𝑛 03×9

−𝑉𝑥_𝑏𝐷𝑉 𝐿

−𝑉𝑦_𝑏𝐷𝑉 𝐿

−𝑉𝑧_𝑏𝐷𝑉 𝐿

⎤⎥⎥⎥⎥⎦
(2.5)

3. AKF

Theoretically, the success of the SINS/DVL integrated navigation system strongly depends on the
precision of the measurement noise estimation. In this sense, IAE and RAE are proposed for measurement
noise estimation by the average of the innovations and residuals over all epochs. However, the historical
statistical information may lead to sluggish and biased noise estimation. To solve this problem, two
methods are commonly employed. The MW method calculates the average of the innovation or residual
information nearing the current epoch in the moving window. The EWMA method calculates the
exponential weighted average of the innovation or residual information. However, inappropriate window
width of MW and the forgetting factor of EWMA in the dynamic environment may result in undesirable
navigation errors. The optimal window width and the forgetting factor have to be determined empirically.
Hence, a more reliable method remains to be elucidated. To best of our knowledge, the fixed forgetting
factor in EWMA represents the oblivion speed of the historical sequence. In order to improve the noise
estimation accuracy, the oblivion speed needs to be adapted to the underwater environment. Therefore,
an adaptive forgetting factor based IEWMA method for measurement noise estimation in the INS/DVL
integrated system is proposed in this paper.

3.1. AKF with noise measurement estimator based on IAE and RAE

First, the dynamic system is modelled as:
{
𝑿𝑘 = 𝚽𝑘,𝑘−1𝑿𝑘−1 + 𝚪𝑘−1𝑾𝑘−1
𝒁𝑘 = 𝑯𝑘𝑿𝑘 + 𝑽𝑘

(3.1)

where 𝑿𝑘 is the state vector, 𝚽𝑘,𝑘−1 is the one-step transfer matrix from epoch k-1 to k, 𝚪𝑘−1 is the
system noise matrix, 𝑾𝑘−1 is the system noise, 𝒁𝑘 is the measurement vector, 𝑯𝑘 is the measurement
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matrix, and 𝑽𝑘 is the measurement noise. 𝑾𝑘−1 and 𝑽𝑘 are supposed to be uncorrelated zero-mean
Gaussian white noise sequences with the statistical characteristics:

⎧⎪⎪⎨
⎪⎪⎩
𝐸 [𝑾𝑘 ] = 𝒒𝑘 , 𝐶𝑜𝑣 [𝑾𝑘 ,𝑾 𝑗] = 𝑸𝑘𝜹𝑘 𝑗

𝐸 [𝑽𝑘 ] = 𝒓𝑘 , 𝐶𝑜𝑣 [𝑽𝑘 ,𝑽 𝑗 ] = 𝑹𝑘𝜹𝑘 𝑗

𝐶𝑜𝑣 [𝑾𝑘 ,𝑽 𝑗] = 0
(3.2)

where 𝒒𝑘 is the mean of the process noise, 𝑸𝑘 is the covariance of the process noise, 𝒓𝑘 is the mean of
the measurement noise, 𝑹𝑘 is the covariance of the measurement noise and 𝜹𝑘 𝑗 is the Kronecker data
function. The conventional KF is described as follows:

𝑿𝑘,𝑘−1 = 𝚽𝑘−1 �̂�𝑘−1 (3.3)
𝑷𝑘,𝑘−1 = 𝚽𝑘−1𝑷𝑘−1𝚽

𝑇
𝑘−1 + 𝚪𝑘−1𝑸𝑘−1𝚪

𝑇
𝑘−1 (3.4)

𝑲𝑘 = 𝑷𝑘,𝑘−1H𝑇
𝑘 (H𝑘𝑷𝑘,𝑘−1H𝑇

𝑘 + 𝑹𝑘 )−1 (3.5)
�̂�𝑘 = �̂�𝑘,𝑘−1 + 𝑲𝑘 (Z𝑘 − 𝑯𝑘 �̂�𝑘,𝑘−1) (3.6)
𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘 )𝑷𝑘,𝑘−1 (3.7)

where 𝑿𝑘,𝑘−1 is the predicted state estimate, 𝑷𝑘,𝑘−1 is the predicted estimate covariance, 𝑷𝑘 is the
updated estimate covariance and 𝑲𝑘 is the Kalman gain matrix.

3.1.1. AKF with noise measurement estimator based on IAE
An AKF with measurement noise estimator based on IAE can be driven as follows:

Defining the innovation as:

𝜺𝑘 = 𝒁𝑘 − 𝑯𝑘 �̂�𝑘,𝑘−1 (3.8)

Using Equation (3.1), it can be directly driven that,

𝜺𝑘 = 𝑯𝑘𝑿𝑘 + 𝒗𝑘 − 𝑯𝑘 �̂�𝑘,𝑘−1 = 𝑯𝑘 (𝑿𝑘 − �̂�𝑘,𝑘−1) + 𝒗𝑘 (3.9)

Calculating the covariance of innovation:

𝐸 (𝜺𝑘𝜺𝑘
𝑇 ) = 𝐸

{{
𝑯𝑘 (𝑿𝑘 − �̂�𝑘,𝑘−1) + 𝑣𝑘

}{
𝐻𝑘

(
𝑋𝑘 − �̂�𝑘,𝑘−1

)
+ 𝑣𝑘

}𝑇 }
= 𝐸

{
𝐻𝑘

(
𝑋𝑘 − �̂�𝑘,𝑘−1

) (
𝑋𝑘 − �̂�𝑘,𝑘−1

)𝑇
𝐻𝑘

𝑇 + 𝑣𝑘𝑣𝑘𝑇
}

= 𝐸
{
𝐻𝑘

(
𝑋𝑘 − �̂�𝑘,𝑘−1

) (
𝑋𝑘 − �̂�𝑘,𝑘−1

)𝑇
𝐻𝑘

𝑇
}
+ 𝐸{𝑣𝑘𝑣𝑘𝑇 }

= 𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 (3.10)

Accordingly, the covariance of measurement noise can be described as:

𝑅𝑘 = 𝐸 (𝜀𝑘𝜀𝑘𝑇 ) − 𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘
𝑇 =

1
𝑘

𝑘∑
𝑖=1

{
𝜀𝑖𝜀𝑖

𝑇
}
− 𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘

𝑇 (3.11)

3.1.2. AKF with noise measurement estimator based on RAE
An AKF with measurement noise estimator based on RAE can be driven as follows:

Defining the residual as:

𝛾𝑘 = 𝒁𝑘 − 𝑯𝑘 �̂�𝑘 (3.12)
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Using Equations (3.6) and (3.8), it can be directly obtained that,

𝜸𝑘 = 𝒁𝑘 − 𝑯𝑘 (
⌢

𝑿𝑘,𝑘−1 + 𝑲𝑘𝜺𝑘 ) = 𝒁𝑘 − 𝑯𝑘

⌢

𝑿𝑘,𝑘−1 − 𝑯𝑘𝑲𝑘𝜺𝑘 = (𝑰 − 𝑯𝑘𝑲𝑘 )𝜺𝑘 (3.13)

Calculating the covariance of residual by the error propagation law (Wang, 1999):

𝐸 (𝛾𝑘𝛾𝑘𝑇 ) = 𝑅𝑘 − 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 (3.14)

Accordingly, the covariance of measurement noise can be described as:

𝑅𝑘 = 𝐸 (𝛾𝑘𝛾𝑘𝑇 ) + 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 =

1
𝑘

𝑘∑
𝑖=1

{
𝛾𝑖𝛾𝑖

𝑇
}
+ 𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 (3.15)

By the way, Equation (3.15) can also be obtained via maximum likelihood criterion (Mohamed
and Schwarz, 1999). Comparing the two methods, subtraction in the IAE method inevitably results in
negative definite R𝑘 and then leads the filter to diverge. For this reason, the RAE method is more reliable
and powerful in practical application. The measurement noise estimator in this paper is based on the
RAE method.

3.2. AKF based on measurement noise estimator

It is noted that the measurement noise estimator based on IAE or RAE calculates R𝑘 by the average
of the innovations or residuals over all epochs. The average of the historical information may result
in estimation latency. For example, when the measurement noise occurs in the hundredth epoch, the
influence of the residual in the hundredth epoch to the system is merely 1% as the same as the epoch 1
to 99. The residuals which approach zero at the epoch 1 to 99 lead to sluggish and biased measurement
noise estimation. From this point of view, it is necessary to reduce the weight of the historical epochs.
Therefore, MW and EWMA are introduced.

The MW method employs a moving window to store the residuals and calculates the average of them
for R𝑘 . The EWMA method averages the residuals over all epochs with the exponential weight. The
principles of the two methods are shown in Figure 2. The colour depth represents the average weight of
the residual. The darker the colour, the greater the weight. It can be seen that R𝑘 in the MW method is
the average of the residuals in the moving window and in the EWMA method the closer to the current
epoch, the greater the weight.

3.2.1. Measurement noise estimator based on MW
The MW method estimates the measurement noise matrix through computing the average of the residuals
in a moving window, which effectively eliminates the influence of the historical information. The general
equation of MW is:

�̂�𝑘 =
1
𝑚

𝑘∑
𝑖=𝑘−𝑚+1

{
𝜸𝑖𝜸

𝑇
𝑖 + 𝑯𝑖𝑷𝑖𝑯

𝑇
𝑖

}
(3.16)

where m is the width of the moving window, and k is the current epoch.
To enhance the operation efficiency, Equation (3.16) can be expressed as:

�̂�𝑘 = �̂�𝑘−1 + 1
𝑚

{(
𝜸𝑘𝜸

𝑇
𝑘 + 𝑯𝑘𝑷𝑘𝑯

𝑇
𝑘

)
−
(
𝜸𝑘−𝑚𝜸

𝑇
𝑘−𝑚 + 𝑯𝑘−𝑚𝑷𝑘−𝑚𝑯𝑇

𝑘−𝑚
)}

(3.17)

The optimal width of the moving window is determined by the dynamic characteristic of the envi-
ronment. In highly dynamic circumstances, the width of the moving window is required to be small to
detect changes sensitively. Conversely, in low dynamic circumstances, the width of the moving window
is required to be great to improve the stability of the system.
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Figure 2. (a) Diagram of MW method. (b) Diagram of EWMA method.

3.2.2. Measurement noise estimator based on EWMA
R𝑘 of the EWMA method is estimated with the exponential weighted average of the residuals over all
epochs. The closer to the current epoch, the greater the weight. It effectively reduces the undesirable
influence of the historical sequence. The general equation of EWMA is (Sun et al., 2016; Narasimhappa
et al., 2018):

�̂�𝑘 = (1 − 𝑑𝑘 ) �̂�𝑘−1 + 𝑑𝑘 (𝜸𝑘𝜸
𝑇
𝑘 + 𝑯𝑘𝑷𝑘𝑯

𝑇
𝑘 )

𝑑𝑘 =
1 − 𝑏

1 − 𝑏𝑘+1
(3.18)

where k is the time step, d𝑘 is the forgetting factor, b is a constant, b∈(0·9,1].
It can be seen that the EWMA method estimates R𝑘 by the residual of the current epoch and the

calculated R𝑘−1 of the previous epoch. Without the space to store the residuals of historical epochs
and complex computing, EWMA is more applicable to implementation. The principle of EWMA is
illustrated as follows:

To calculate the measurement noise covariance matrix R𝑘 in the k-th epoch with the exponential
weighted average of the residuals over the whole historical epochs, the recursive formula is given:

�̂�𝑘 = (1 − 𝑑) �̂�𝑘−1 + 𝑑 �̂�′
𝑘 (3.19)

where �̂�
′
𝑘 = 𝜸𝑘𝜸

𝑇
𝑘 + 𝑯𝑘𝑷𝑘𝑯

𝑇
𝑘 .

With the recursive formula, �̂�𝑘 can be expanded as:

�̂�1 = (1 − 𝑑) �̂�0 + 𝑑 �̂�′
1

�̂�2 = (1 − 𝑑) �̂�1 + 𝑑 �̂�′
2 = (1 − 𝑑)2 �̂�0 + (1 − 𝑑)𝑑 �̂�′

1 + 𝑑 �̂�
′
2

�̂�3 = (1 − 𝑑) �̂�2 + 𝑑 �̂�′
3 = (1 − 𝑑)3 �̂�0 + (1 − 𝑑)2𝑑 �̂�

′
1 + (1 − 𝑑)𝑑 �̂�′

2 + 𝑑 �̂�
′
3

. . .

�̂�𝑘 = (1 − 𝑑) �̂�𝑘−1 + 𝑑 �̂�′
𝑘 = (1 − 𝑑)𝑘 �̂�0 + (1 − 𝑑)𝑘−1𝑑 �̂�

′
1 + (1 − 𝑑)𝑘−2𝑑 �̂�

′
2 + · · · + 𝑑 �̂�′

𝑘

(3.20)
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Figure 3. (a) Weight in each epoch before bias correction. (b) d𝑘 in bias correction. (c) Weight in each
epoch after bias correction. (d) Relation between weight in each epoch and b..

where �̂�0 is set from experience and d is the forgetting factor, d∈(0,0·1]. It can be seen in the last
equation of Equation (3.20) that R𝑘 is the exponential weighted average over the historical epochs.
Regretably, the multiplier d for the exponential item is missed in the first coefficient. For clarity,
the weight of historical epoch in the 200th epoch (k= 200) is shown in Figure 3(a). It can be seen that
the weight increases exponentially, but there is a conspicuous bias in the initial epoch. Consequently, the
weight of the initial epoch is bigger than others. To address this problem, bias correction is introduced:

𝑑𝑘 =
1 − 𝑏

1 − 𝑏𝑘+1 , 𝑏 ∈ [0.9, 1) (3.21)

The value of d𝑘 is shown in Figure 3(b). As k increases, d𝑘 decreases from a large value to 1–b.
When k= 1, 1/ d𝑘 is a small value. In consequence, the weight of the first epoch is reduced and the bias
is corrected. The weight of each epoch with bias correction is shown in Figure 3(c). Compared with
Figure 3(a), the bias is distinctly corrected.

Different b represents the different average performance. Figure 3(d) shows the relation of weight and
b. It can be seen that the smaller b, the bigger the weight of the current epoch and the smaller the weight
of the historical epochs. In highly dynamic circumstances, b is required to decrease to immediately detect
changes. Conversely, in low dynamic circumstances, b is required to increase to improve the stability of
the system. Therefore, an improved EWMA based on the adaptive b is proposed in the next section.
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Figure 4. Relation between b and the exponential term.

3.2.3. Measurement noise estimator based on IEWMA
In order to estimate the variable measurement noises in different dynamic environments and improve
navigation accuracy, the measurement noise estimator based on IEWMA with adaptive forgetting factor
is proposed in this paper.

Conceptually, the discrepancy between the residual covariance estimation and the theoretical residual
covariance can be employed to evaluate the stability of the measurement noise estimator (Gao et al.,
2015). The estimation convergence criterion can be represented as:

���𝜸𝑇 𝜸 − 𝜅𝑡𝑟 (�̂�𝑘 − 𝐻𝑘𝑃𝑘,𝑘−1𝐻
𝑇
𝑘 )
��� { > 0 unstable

= 0 stable (3.22)

Where 𝜅 is constant and determined by the empirical knowledge.
According to the analysis in section 3.2, when the measurement noise is stable, the forgetting factor b

is required to be large, whereas when the measurement noise is unstable, the forgetting factor b is
required to be small. When b= 0·9, R𝑘 is approximately the average over the 10 epochs before the
current epoch. When b= 0·98, R𝑘 is approximately the average over the 50 epochs, and it is the average
over the whole epochs when b approaches 1. Empirically, it is appropriate to calculate R𝑘 according to
the average over 10 more epochs. Therefore, 𝑏 ∈ [0.9, 1) is supposed in the paper. Accordingly, in this
paper the adaptive b is defined as:

𝑏 = 0.9 + 0.1𝑒−|𝜸𝑇𝜸−𝜅𝑡𝑟 (�̂�𝑘−𝐻𝑘𝑃𝑘,𝑘−1𝐻
𝑇
𝑘 ) | (3.23)

where 𝜅 is constant and 𝜅 = 5.
Figure 4 shows the relation between b and the exponential term. It can be seen that, with the increasing

exponential term, the value of b increases from 0·9 to 1. In high dynamic circumstances, the exponential
term is large and b approaches 0·9. Conversely, in low dynamic circumstances, the exponential term
goes to zero and b approaches 1.

The superiority of the AKF based on IEWMA with the adaptive forgetting factor is listed as follows:

1. It is adaptable for various dynamic characteristics.
2. It can be applied to engineering practice without multiple experiences.
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Figure 5. Trajectory of the vehicle in simulation.

Figure 6. Dynamic characteristics of vehicle in simulation.

3. The estimation result is more stable in low dynamic circumstances and more sensitive in highly
dynamic circumstances.

4. Simulation and vehicle tests

The performances of the SINS/DVL integrated system based on AFK with measurement noise estimator
of MW, EWMA and IEWMA are evaluated on simulation and vehicle tests.

4.1. Simulation

A trajectory lasting for about 1,000 s with three straight lines and two curves is simulated. The simulated
trajectory and vehicle dynamic characteristics are shown in Figures 5 and 6. The start point is set as
latitude 34◦ N and longitude 108◦ E. The initial attitude is set as [0°, 0°, −90°]. The initial attitude error
is set as [0·1°, 0·1°, 0·5°]. The drift bias and the random walk noise of the accelerometer are set as 50 𝜇g
and 50 𝜇g/

√
Hz, and those of the gyroscope are set as 0.01◦/

√
ℎ and 0.01◦/

√
ℎ. The DVL scale factor

is set as 0·005. The update rates of the IMU and DVL are set as 200 Hz and 1 Hz, respectively.
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Figure 7. Attitude errors of four methods in simulation.

Figure 8. Velocity errors of four methods in simulation.

In order to compare the performances of these methods, it is simulated that a graded noise with
the sine function of 5 m/s occurs from 750 s to 900 s whereas the noise at other times is zero-mean
white noise with standard deviation of 0·1 m/s. Fairly, the optimal window length was found to be 50,
and the forgetting factor b= 0·97 after quite a few experiments to compare with the proposed method.
Meanwhile, the conventional KF was also carried out to emphasise the performance of the proposed
method. The comparisons of attitude, velocity and position errors of the four algorithms are shown in
Figures 7–9, where the blue line, red line, green line and orange line represent KF, MW, EWMA and
IEWMA, respectively. When noise occurs, the conventional KF immediately diverges. Conversely, with
the measurement noise estimator, other methods are relatively stable. Looking at the enlarged drawing,
we can find that the errors of IEWMA method are more stable and smaller than the others.

In order to compare intuitively the performances of the four methods, the horizontal position errors
of KF and AKF with the measurement noise estimators of MW, EWMA and IEWMA are shown in
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Figure 9. Position errors of four methods in simulation.

Figure 10. Horizontal position errors of four methods in simulation.

Figure 10. It can be seen that the horizontal position error of IEWMA is more stable and smaller than
the others.

Quantitative analysis was carried out on the navigation errors via the mean representing the size of
the errors and the root mean square (RMS) representing the stability of the errors. The mean and RMS
of the attitude, velocity and position errors are shown in Tables 1 and 2, respectively. The mean and
RMS of horizontal position errors in the four methods are shown in Table 3.

From Table 1, we can see that the mean of velocity and position errors in IEWMA is smaller than the
others. The differences of attitude error in MW, EWMA and IEWMA are negligible. Meanwhile, the
RMS of all errors in the IEWMA method is smaller than the others in Table 2. It is also obvious that the
mean and RMS of horizontal position error in IEWMA are smaller than the others in Table 3. Therefore,
it is concluded that IEWMA outperforms MW and EWMA in both navigation accuracy and stability.

As mentioned, performance of the integrated system depends on the accuracy of the estimated R𝑘 .
The estimated R𝑘 is shown in Figure 11. As anticipated, R𝑘 of IEWMA is the nearest to the true value.
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Table 1. Mean of attitude, velocity and position errors in four methods.

Method Attitude (pitch) Attitude (roll) Attitude (yaw) Velocity (E) Velocity (N) Velocity (U) Position (E) Position (N) Position (U)

KF 0·02334 0·008384 0·680781 0·490694 0·71575 0·43585 159·2005 37·31923 115·0909
MW 3·09E-03 3·84E-03 0·075191 0·046104 0·037349 0·016047 16·42181 14·48248 9·074417
EWMA 4·55E-03 2·49E-03 0·058677 0·0322 0·060196 0·045957 8·879652 5·618469 2·983621
IEWMA 3·23E-03 2·41E-03 0·058535 0·016455 0·029387 0·007298 8·319802 5·427956 2·037195

Table 2. RMS of attitude, velocity and position errors in four methods.

Method Attitude (pitch) Attitude (roll) Attitude (yaw) Velocity (E) Velocity (N) Velocity (U) Position (E) Position (N) Position (U)

KF 5·08E-02 1·40E-02 1·300867 1·156426 1·653638 0·875787 321·2462 72·78223 234·7398
MW 3·42E-03 4·56E-03 7·87E-02 0·058616 0·052076 0·022114 27·70016 17·11626 13·28029
EWMA 5·00E-03 3·05E-03 8·20E-02 0·040637 0·081803 0·058244 13·20689 7·145725 4·160389
IEWMA 3·41E-03 3·02E-03 7·84E-02 0·021147 0·044574 9·19E-03 11·11109 6·773047 2·706211
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Table 3. Mean and RMS of horizontal position errors in four methods.

Method KF MW EWMA IEWMA

Mean 169·1027 24·12699 11·36973 10·39009
RMS 329·3879 32·56171 15·0161 13·01271

Figure 11. Diagram of estimated R𝑘 in simulation.

Figure 12. Installation structure for land trial.

On the one hand, R𝑘 of IEWMA is more stable than the others in 0 s to 600 s. This is because, in
cases where the measurement noise is stable, adaptive forgetting factor b becomes as small as possible.
Accordingly, the weight of the current epoch decreases and the weight of historical sequence increases.
On the other hand, R𝑘 of IEWMA is more susceptible than others in 750 s to 900 s. Similarly, when
noise occurs, adaptive forgetting factor b becomes as large as possible. Accordingly, the weight of the
current epoch increases and the weight of the historical sequence decreases. The undesirable influence
of historical sequence in IEWMA is eliminated. However, R𝑘 of MW and EWMA is still influenced by
the historical sequence and it is hysteretic to the volatile noise.
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Figure 13. Trajectory of the vehicle in land trial.

Figure 14. Dynamic characteristics of vehicle in land trial.

Figure 15. Attitude errors of four methods in land trial.
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Table 4. Specifications of IMU and PHINS.

Sensor Parameter Accuracy Rate

IMU Gyroscope bias stability ≤0·02◦/h 200 Hz
Gyroscope random walk ≤0·005◦/√h 200 Hz
Accelerometer bias variation ±50 𝜇g 200 Hz
Accelerometer output noise ≤50 𝜇g/√Hz 200 Hz

PHINS Attitude (GPS aided mode) ≤0·01◦ 200 Hz

Figure 16. Velocity errors of four methods in land trial.

4.2. Vehicle test

The proposed method was evaluated in land vehicle field testing to predict the feasibility of its operation
in underwater environments. In the SINS/DVL navigation system used in the vehicle test, the inertial
information is provided by the IMU and the velocity information of DVL is replaced by the PHINS
which is developed by French firm IXBLU. PHINS transforms its own velocity from navigation frame
to body frame using the true attitude information to provide the DVL information. A computer was
utilised to perform a series of navigation operations. The installation structure is shown in Figure 12.
The specifications of the IMU and PHINS are listed in Table 4.

The land trial was conducted near 31° 88′N, 118° 82′E, on the campus of Southeast University. The
vehicle trajectory, lasting for 1,200 s, is shown in Figure 13 and vehicle dynamic characters are shown
in Figure 14.

In the vehicle test, the graded noise with the sine function of 5 m/s is contrived from 800 s to 950 s
to compare the performances of these methods. Fairly, the optimal width of the moving window for
MW is set as 50 and the optimal forgetting factor b for EWMA is set as 0·98 after multiple experiences.
The attitude, velocity and position errors of the four methods are shown in Figures 15–17. Meanwhile,
horizontal position errors are shown in Figure 18. Similarly, the errors of the IEWMA method are the
most stable and lowest in the four methods, which effectively verifies the feasibility of the proposed
method.

Simultaneously, quantitative analysis is performed. The mean and RMS of attitude, velocity, indi-
vidual position and horizontal position errors are shown in Tables 5–7. From Tables 5 and 6, we can see
that the mean and RMS of errors for IEWMA is smaller than for KF, MW and EWMA. In Table 7, it
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Figure 17. Position errors of four methods in land trial.

Figure 18. Horizontal position errors of four methods in land trial.

is obvious that the mean and RMS of horizontal position error for IEWMA are smaller than the others.
Therefore, the IEWMA method outperforms the other methods in both navigation accuracy and stability.

As mentioned, the performance of the integrated system depends on the accuracy of R𝑘 . The estimated
R𝑘 is shown in Figure 19. It can be seen that R𝑘 of IEWMA is more stable than MW and EWMA at the
initial moments (0 s to 600 s). This is because the width of the moving window in MW and the forgetting
factor b of EWMA cannot meet the requirements of the environment. Conversely, the adaptive forgetting
factor b of IEWMA can decrease to adapt to the stable environment. Additionally, the estimated R𝑘 of
IEWMA is the closest to true value, while MW and EWMA are sluggish when noise occurs (800 s to
950 s). When the measurement noise occurs, the forgetting factor of IEWMA becomes smaller, and the
weight of the residual in current time increases, which can be sensitive to changes. However, because
of the fixed width of the moving window and forgetting factor b, MW and EWMA are still affected by
the historical sequence and are too sluggish to estimate the noise accurately.
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etal.Table 5. Mean of attitude, velocity and position errors in four methods.

Method Attitude (pitch) Attitude (roll) Attitude (yaw) Velocity (E) Velocity (N) Velocity (U) Position (E) Position (N) Position (U)

KF 0·02334 0·008384 0·680781 0·490694 0·71575 0·43585 159·2005 37·31923 115·0909
MW 0·003086 0·003837 0·075191 0·046104 0·037349 0·016047 16·42181 14·48248 2·983621
EWMA 0·004551 0·002491 0·058677 0·0322 0·060196 0·045957 8·879652 5·618469 9·074417
IEWMA 0·003026 0·002412 0·089535 0·016455 0·029387 0·007298 8·319802 5·427956 2·037195

Table 6. RMS of attitude, velocity and position errors in four methods.

Method Attitude (pitch) Attitude (roll) Attitude (yaw) Velocity (E) Velocity (N) Velocity (U) Position (E) Position (N) Position (U)

KF 0·050807 0·013957 1·300867 1·156426 1·653638 0·875787 321·2462 72·78223 234·7398
MW 0·003424 0·004563 0·078695 0·058616 0·052076 0·022114 27·70016 17·11626 4·160389
EWMA 0·005003 0·003052 0·081959 0·040637 0·081803 0·058244 13·20689 7·145725 13·28029
IEWMA 0·003418 0·003044 0·078417 0·021147 0·044574 0·009189 11·11109 6·773047 2·706211
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Table 7. Mean and RMS of horizontal position errors in four methods.

KF MW EWMA IEWMA

Mean 169·1027 24·12699 11·36973 10·39009
Variance 329·3879 32·56171 15·0161 13·01271

Figure 19. Diagram of the estimated R𝑘 in land trial.

5. Conclusions

To eliminate navigation errors introduced by the DVL error in complex underwater environments, an
AKF with measurement noise estimator is proposed in this paper. The measurement noise estimator
provides accurate noise statistical characteristics for the filter to improve navigation performance. In
order to reduce the influence of the historical sequence on the estimated R𝑘 , an adaptive forgetting factor
is introduced to the measurement noise estimator for applying to various noise dynamic characteristics.
The proposed IEWMA method can be directly utilised in an unknown environment and can adapt to
various noise dynamic characteristics. Results of simulation and experience tests show that the AKF
based on the measurement noise estimator of the proposed IEWMA method has better performance than
MW and EWMA methods in terms of the measurement noise estimation and the navigation accuracy.
The navigation results are more stable in low dynamic circumstances and more sensitive in highly
dynamic circumstances.
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