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SUMMARY

In disturbed environments, infected organisms have to face both parasitic and chemical stresses. Although this situation is
common, few studies have been devoted to the effects of infection on hosts’ energy reserves and antitoxic defence capacities,
while parasite survival depends on host survival. In this study, we tested the consequences of an infection by Polymorphus
minutus on the energy reserves (protein, lipid and glycogen) and antioxidant defence capacities (reduced glutathione,
γ-glutamylcysteine ligase activity) of Gammarus roeseli males and females, in the absence of chemical stress. Moreover,
malondialdehyde concentration was used as a toxicity biomarker. The results revealed that in infected G. roeseli, whatever
their gender and the sampling month, protein and lipid contents were lower, but glycogen contents were higher. This could
be explained by the fact that the parasite diverts part of the host’s energy for its own development. Moreover, glutathione
concentrations and γ-glutamylcysteine ligase activity were both lower, which could lead to lower antitoxic defence in
the host. These results suggest negative effects on individuals in the case of additional stress (e.g. pollutant exposure). In the
absence of chemical stress, the lower malondialdehyde level in infected gammarids could imply a probable protective effect
of the parasite.
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INTRODUCTION

Among the numerous parasite species known to alter
the phenotype of their intermediate hosts, acantho-
cephalan parasites have been shown tomanipulate the
behaviour of their intermediate arthropod host to
make it more prone to predation by their final
vertebrate host (Poulin, 1995; Lafferty, 1999;
Kennedy, 2006). The behavioural changes induced
by acanthocephalans can vary and include reaction
to light (Bauer et al. 2000; Cézilly et al. 2000; Perrot-
Minnot, 2004), vertical distribution (Cézilly et al.
2000; Bauer et al. 2005; Médoc et al. 2006), drift
behaviour (McCahon et al. 1991; Maynard et al.
1998), activity level (Dezfuli et al. 2003) or the refuge
use and the escape performance faced with non-host
predators (Baldauf et al. 2007; Perrot-Minnot et al.
2007; Médoc and Beisel, 2009; Médoc et al.
2009; Beisel and Médoc, 2010). Behavioural
changes make gammarids more likely to be preyed
upon by the parasite’s final host (Lagrue et al. 2007;

Perrot-Minnot et al. 2007; Cézilly et al. 2010).
Although much attention has been focused on
behavioural changes, few studies have been devoted
to the physiological consequences of acanthocephalan
infection in the intermediate host. For example,
Cornet et al. (2009) described that acanthocephalans
reduced the immune capacity of Gammarus pulex.
In addition, parasites need their host to survive
both in terms of energy supply for their own
development and of their transmission to a final
host (Plaistow et al. 2001). In disturbed environ-
ments, antitoxic defence capacities may play a key-
role to allow the survival of the intermediate host
faced with biotic (parasites) and abiotic (pollutants)
stresses. A conflict between these two factors
may occur and compromise the future of infected
individuals. The parasite could also protect the host
from a pollutant, as sometimes demonstrated for
adult acanthocephalans in their fish hosts (Sures and
Siddall, 1999; Sures et al. 2003).

Gammarus roeseli is a widespread amphipod
crustacean of Balkan-European origin (Jazdzewski,
1980; Barnard and Barnard, 1983), often used as a
biological model in ecotoxicological studies that aim
at developing biomarkers, especially antitoxic de-
fence system biomarkers (Sroda and Cossu-Leguille,
2011a,b). In natural populations, G. roeseli
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commonly serves as an intermediate host for numer-
ous acanthocephalan parasites, including the water
bird acanthocephalan Polymorphus minutus (Médoc
and Beisel, 2009). G. roeseli get infected as a result of
eating P. minutus eggs released in the final host’s
feces. They hatch in the intestine and release acanthor
which move into the haemocoel, where they develop
into cystacanths (infective larvae). This larval stage
is characterized by an orange carotenoid-based
colour which makes it visible through the translucent
cuticle of infested gammarids (Kennedy, 2006).
The aim of our study was to investigate the

influence of P. minutus on the energy reserves and
antitoxic defence capacities of its intermediate host
G. roeseli in May, June and August, which corre-
spond to the period of high prevalence in our study
site (Médoc and Beisel, 2009). As parasite survival
and transmission depend on host survival, we
hypothesized that P. minutus could protect its
host. We therefore assumed that P. minutus-infected
gammarids could have higher defence capacities
(higher GSH concentrations) as well as lower cell
damage (lower MDA levels) as compared to unin-
fected ones. Energy reserves were assessed by
assaying protein concentrations as well as total
lipid and glycogen contents. Glycogen levels are
representative of the energy available for current
activities (Sparkes et al. 1996) whereas lipids are
stored in fat bodies and serve as nutrients used during
starvation or reproduction periods (Cargill et al.
1985). Antitoxic defences were estimated by measur-
ing reduced glutathione (GSH) concentrations. GSH
is a tripeptide whose role is essential in the
detoxification system thanks to its thiol function,
and its action as a scavenger of organic or metal
xenobiotics (Griffith, 1999; Vasseur and Leguille,
2004). GSH is commonly used in ecotoxicology
studies on invertebrates; its concentration may be
reduced in organisms exposed to copper (Doyotte
et al. 1997; Canesi et al. 1999) or lead (Yan et al.
1997). It also plays an important role as a substrate
for several antioxidant enzymes like selenium-
dependent glutathione peroxidase (SeGPx, EC
1.11.1.9) or glutathione-S-tranferases. The activity
of γ-glutamylcysteine ligase (GCL, EC 6.3.2.2), the
enzyme that limits de novo synthesis of glutathione,
was measured in parallel to glutathione concen-
trations. Finally, we measured the level of malon-
dialdehyde (MDA), which is a product of lipid
peroxidation reflecting cellular damage (Correia et al.
2002; Neuparth et al. 2005). This toxicity biomarker
enables us to assess the probable protective effect
of the parasite on its host: lower MDA levels reflect
lower cell damage. In this study, we also hypoth-
esized that gender could have an influence on
biomarker variation, as shown by Sroda and Cossu-
Leguille (2011a,b), on antioxidant enzyme activities;
therefore measurements were performed separately
on males and females.

MATERIALS AND METHODS

Gammarus roeseli sampling

Male and female G. roeseli were collected using
hand nets and artificial traps in the Nied River
(Laquenexy, North-eastern France, 49°05′N and
6°19′E) in May, June and August 2009. The low
number of infected gammarids in July did not allow
us to perform any comparisons. Infected G. roeseli
were easily identified as the parasite appears as an
intense orange dot through the cuticle. Dissection
was performed to confirm infection by P. minutus.
According to a previous study, the overall prevalence
of P. minutus varied over the sampling period,
ranging from 0·08 in May and October to 0·13 in
August (Médoc and Beisel, 2009). Male and female
gammarids were sorted on the spot according to
gnathopod size, a sexual dimorphism character. The
animals were immediately transported to the labora-
tory in river water, where they were frozen in liquid
nitrogen and stored at −80 °C. Four pools of 7 males
and 4 pools of 10 non-gravid females were prepared
for each analysis. Prior to analyses, G. roeseli gender
was checked by observing genital papillae (found
in males only) on the 7th ventral segment. Two
conditions were studied: (i) uninfected gammarids
corresponding to controls, and (ii) infected gammar-
ids out of which the parasite was removed by
dissection.

Sample preparation

Each pool was homogenized with a manual Potter
Elvejhem tissue grinder in a 50mMphosphate buffer
KH2PO4/K2HPO4 (pH 7·6) supplemented with
1mM phenylmethylsulphonylfluoride (PMSF) and
1mM L-serine-borate mixture as protease inhibitors
and 5mM phenylglyoxal as a γ-glutamyl transpepti-
dase inhibitor. The homogenization buffer was
adjusted at a volume 2-fold the wet weight of the
sample pool (e.g. 400 μl of homogenization buffer
for 200mg of wet weight tissue). All homogenates
were used for the assays immediately after being
prepared. The homogenate was divided into 5 parts
to measure the different parameters. For each
replicate, 2 independent measures were performed
for each biomarker. Then, the average of the 2
independent measures was estimated.

Lipid and glycogen assays

The measurement of total lipid and glycogen con-
tents was adapted fromPlaistow et al. (2001). Twenty
microlitres of 2% sodium sulphate (w/v) and 540 μl of
chloroform/methanol 1:2 (v/v) were added to 40 μl of
total homogenate. After 1 h on ice, the samples were
centrifuged at 3000 g for 5 min at 4 °C. The resulting
supernatant and the pellet were used to determine the
total lipid and glycogen contents, respectively.
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Samples of 100 μl of the supernatant were trans-
ferred to culture tubes and placed in a dry bath at
95 °C to evaporate the solvent. Then, 200 μl of 95%
sulphuric acid were added in each tube and left for
10min. The culture tubes were cooled on ice and
4·8 ml of a vanillin-phosphoric acid reagent, com-
posed of 120mg of vanillin, 20ml of ultrapure
ethanol (95%) and 80ml of phosphoric acid (85%),
were added. After a 10-min reaction time, optical
density was measured at 535 nm. Commercial
cholesterol was used as a standard and lipid contents
were expressed in mg.ml−1.

Total dissolution of the pellet was performed in
400 μl of deionized (milliQ) water for 10min in an
ultrasonic bath, and 100 μl of sample were placed in
culture tubes and 4·9 ml of anthrone reagent were
added. The anthrone reagent is a mixture of 1·13 g
of anthrone, 170ml of ultrapure water and 630ml of
sulphuric acid (95%). The mixture was placed in a
dry bath at 95 °C for 17min and then cooled on ice.
Optical density was measured at 625 nm. Glucose
was used as a standard and concentrations were
expressed in μg.mg−1 tissue.

Total protein assay

The total protein content of each sample was
quantified according to the method of Bradford
(1976) with bovine serum albumin (BSA) as a
standard. The results were expressed in mg.ml−1.

Reduced glutathione assay

Reduced glutathione (GSH) concentration measure-
ment was adapted from Leroy et al. (1993) using
High-Pressure Liquid Chromatography (HPLC)
separation, which consisted in a post-column deri-
vatization with ortho-phtaldialdehyde solution and
fluorimetric detection at 340 nm excitation and
440 nm emission wavelengths. The proteins from
40 μl of the total homogenate were precipitated with
10% perchloric acid (v/v). After centrifugation for
10min at 20000 g at 4 °C, the resulting supernatant
was diluted 40-fold in 0·1Mhydrochloric acid (HCl).
Then 20 μl of the diluted supernatant were injected in
a reverse-phase LiChrospher 100 RP18-encapped
column (125mm×4mm, 5 μm) and separation was
carried out at 25 °C. Elution was performed with 7%
acetonitrile (Chromanorm, 95%) in a 0·01M phos-
phate buffer KH2PO4/Na2EDTA (pH 2·50) contain-
ing 0·5 mM n-decylsodiumsulfate as an ion-pairing
reagent. Commercial GSH diluted in 0·1MHCl was
used as a standard and GSH concentrations were
expressed in nmol GSH.mg−1 protein.

Enzymatic assay

The activity of γ-glutamylcysteine ligase (GCL) was
assayed using an HPLC method adapted from

Parmentier et al. (1998). Measurements were carried
out on the S12000 fraction obtained after centrifu-
ging 40 μl of the total homogenate for 15min at 500 g
and then centrifuging the resulting supernatant at
12000 g and 4 °C for 30min. The resulting S12000
fraction was diluted 20-fold in the homogenization
buffer and 40 μl of this diluted solution were added
to 112 μl of incubation cocktail (0·5M Tris-HCl,
200mM MgCl2 6H2O, 500mM KCl, 45mM glu-
tamic acid, 90mM cystein, 1 mM DTT, 90mM
ATP, 0·5 mM phénylglyoxal, pH 8·25) in a 1·5 ml
tube to initiate the reaction. After a 20-min incu-
bation period at 25 °C, the reaction was stopped
by a 4-fold dilution with 0·1M HCl and 20 μl of
the resulting solution were injected into a
LiChrospher 100 RP18-encapped HPLC column
(125mm×4mm, 5 μm). Commercial glutamylcys-
teine (GC) solution was used as a standard and GCL
activity was expressed in nmol GC.min−1.mg−1

protein.

Lipoperoxidation

Malondialdehyde (MDA) levels were measured
with an HPLC method adapted from Behrens and
Madère (1991) withUVdetection at 267 nm. Seventy
microlitres of the total homogenate were diluted
4-fold in 95% ethanol (HPLC grade) and cooled
on ice for 1·5 h to de-proteinize them. The mixture
was then centrifuged at 18000 g for 30min at
4 °C and 100 μl of the resulting supernatant were
injected directly into a reserved-phase LiChrospher
100RP18-encapped HPLC column. Separation was
performed at 25 °C and elution was carried out with
sodium phosphate buffer (pH 6·5) containing 25%
ethanol and 0·5 mM tetradecylmethylammoniun
bromide as an ion-paring reagent. MDA levels were
expressed in ng MDA.mg−1 lipid.

Statistical analyses

Data analysis was performed using a multivariate
analysis of variance (MANOVA, Pillai’s trace) with
respect to ‘gender’, ‘infection status’ and ‘sampling
month’ as fixed factors. All data met normality and
homogeneity of variance assumptions. MDA levels
were not included in this analysis because the low
number of infected gammarids in August did not
allow us to measure them. As the MANOVA test was
significant, each biomarker was then analysed using
the ANOVA test, followed by the TukeyHSD post-
hoc test. All tests were performed with a 5% type I
error risk, using R 2.9.0 Software.

RESULTS

Acanthocephalan effect on G. roeseli biomarker

Global MANOVA and ANOVA analysis revealed an
effect of the sampling month, of individual gender, of
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parasite infection and of their interactions on
the variations of biomarker levels (Tables 1 and 2).
The results are detailed below for each biomarker
category.

Parasitism and energy reserves

Energy reserves (protein, lipid and glycogen) were
influenced by P. minutus infection, gender and
sampling month (Table 2). Gammarid protein
concentrations were lower in the presence of
P. minutus in the two genders whatever the sampling
month (Fig. 1A). Moreover, no significant monthly
variations were observed in uninfected and infected
males and females. The same trend was observed for
total lipid contents, which were lower in the presence
of P. minutus in the two genders at each sampling
month, except for males in August (Fig. 1B). Total
lipid contents in infected females were on average
1·5-fold lower as compared to uninfected ones; while
in infected males, they were on average 1·2-fold lower
than in uninfected ones. Comparison of males and
females showed that lipid contents were higher in
uninfected females than in uninfectedmales whatever
the sampling month, whereas there was no significant
difference between infected males and females. In
males, monthly variations of total lipid contents were
observed only in uninfected individuals, whereas in
females, these variations were marked whatever the
infection status (Fig. 1B).
Conversely, the presence of the acanthocephalan

P. minutus increased glycogen contents whatever the
gender and the samplingmonth, except for females in
May (Fig. 1C). In infected males, the glycogen
contents were 1·7-fold higher as compared to unin-
fected ones, whereas in infected females they were
2·4-fold higher as compared to uninfected ones.
The differences in glycogen contents were highest in
August in both genders. Indeed during that month,
glycogen contents in infected males were 1·5-fold
higher than in uninfected ones and were 3-fold
higher in infected females as compared to uninfected
ones. Unlike in uninfected males and females, no

significant difference in glycogen contents was
observed between infected males and females de-
pending on the sampling month, except in June.

Parasitism and antitoxic defences

P. minutus has an influence on the defence capacities
of G. roeseli by decreasing GSH concentrations in
both genders whatever the sampling month
(Fig. 2A). Indeed, infected males and females
displayed on average 1·5- to 2·5-fold less GSH than
uninfected ones, whatever the sampling month. The
same variation in GSH concentration was observed
in uninfected and infected individuals, whatever
the gender and the sampling month. The decrease
in GSH concentrations could be linked with the
decrease in GCL activity, which was also marked in
infected males and females (Fig. 2B). GCL activity
was on average 2-fold lower in infected gammarids,
whatever their gender and the sampling month. No
significant difference was observed between males
and females each month, whatever the infection
status.

Parasitism and toxic effect biomarker

MDA levels were not measured in August due to the
lack of infected G. roeseli, which led to a low total
homogenate quantity. Univariate analysis of MDA
levels revealed an effect of the presence of P. minutus
(Table 2). MDA levels were lower in infected
gammarids as compared to uninfected ones, whatever
their gender and the sampling month (Table 3).
Indeed, MDA levels were 1·5-fold lower in infected
males and females than in uninfected ones. In
addition, MDA levels were 1·5-fold higher in males
than in females, whatever the infection status.
Monthly variations were observed in uninfected
and infected gammarids whatever the gender.

DISCUSSION

This study was carried out (i) to improve knowledge
about the physiological effects of the acanthocephalan

Table 1. Multivariate analyses of variance (Pillai’s trace) investigating variations in energy reserves (protein,
lipid, glycogen) and defence capacity (GSH, GCL) of Gammarus roeseli, as a function of infection by
acanthocephalan parasites, month sampling and individual gender

Source of variation num D.Fa, den D.F.b F P value

Whole model 55, 180 18·94 <0·0001
Month 5, 36 41·75 <0·0001
Gender 5, 36 30·10 <0·0001
Infection status 5, 36 102·27 <0·0001
Month×Gender 5, 36 10·57 <0·0001
Month×Infection status 5, 36 10·33 <0·0001
Gender×Infection status 5, 36 6·37 0·0002
Month×Gender×Infection status 5, 36 5·83 0·0004

a Numerator degrees of freedom. b Denominator degrees of freedom.
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parasite Polymorphus minutus on its intermediate host
Gammarus roeseli, especially on its energy reserves,
and (ii) to assess the potential of infected individuals
to deal with chemical stress by measuring defence
capacities.

The presence of P. minutus in G. roeseli clearly
influenced the energy reserves of its host by de-
creasing protein and total lipid concentrations
and increasing glycogen contents in both genders.
Plaistow et al. (2001) demonstrated that the acantho-
cephalan parasite P. laevis decreased total lipid
content in infected G. pulex gravid females, but did
not observe any difference in males depending on the
infection status. Additionally, they also observed an
increase in glycogen content in P. laevis-infected

G. pulexwhatever the gender. However, Médoc et al.
(2011) showed no difference in neutral lipid contents
in P. minutus-infected G. roeseli as compared to
uninfected ones. While a decrease in total lipid
content in infected individuals has already been
observed, the results obtained for glycogen content
are rather more contrasting. Some studies high-
lighted an increase (P. laevis in G. pulex – Plaistow
et al. 2001) as in our study, or an absence of
modification (P. ringueletti – Isopoda ectoparasite –
in P. argentinus –Neves et al. 2004); but no one
reported a glycogen decrease in an acanthocephalan-
infected host although such a decrease was observed
in other host-parasite systems as in Norway lobsters
Nephrops norvegicus infected by the dinoflagellate

Table 2. Univariate analyses of variance (ANOVA) investigating variations in energy reserves (protein,
lipid, and glycogen), in defence capacity (GSH, GCL) and the variation of a toxicity biomarker (MDA),
in Gammarus roeseli, according to sampling month, gender and infection by Polymorphus minutus

D.F. Mean square F P value

Protein Month 2 4·96 6·52 0·004
Gender 1 59·05 77·61 <0·001
Parasite 1 117·09 156·49 <0·001
Month:Gender 2 4·8 6·30 0·004
Month:Parasite 2 1·46 1·91 0·162
Gender:Parasite 1 0·28 0·37 0·548
Gender:Parasite:Month 2 12·76 16·76 <0·001

Lipid Month 2 9·31 64·76 <0·001
Gender 1 33·99 236·4 <0·001
Parasite 1 14·98 104·16 <0·001
Month:Gender 2 1·99 13·81 <0·001
Month:Parasite 2 1·1 7·67 0·001
Gender:Parasite 1 7·8 54·26 <0·001
Gender:Parasite:Month 2 0·06 0·40 0·671

Glycogen Month 2 14·73 25·42 <0·001
Gender 1 10·38 17·91 <0·001
Parasite 1 28·52 49·23 <0·001
Month:Gender 2 5·12 8·84 <0·001
Month:Parasite 2 23·89 41·23 <0·001
Gender:Parasite 1 6·87 11·86 0·001
Gender:Parasite:Month 2 0·52 0·9 0·417

GSH Month 2 4·06 93·26 <0·001
Gender 1 0·51 11·64 0·001
Parasite 1 4·81 110·46 <0·001
Month:Gender 2 1·47 33·82 <0·001
Month:Parasite 2 0·11 2·63 0·086
Gender:Parasite 1 0·04 0·82 0·371
Gender:Parasite:Month 2 0·13 2·91 0·067

GCL Month 2 0·2440 67·61 <0·001
Gender 1 0·0010 0·19 0·668
Parasite 1 0·2000 55·44 <0·001
Month:Gender 2 0·0260 7·12 0·002
Month:Parasite 2 0·0240 6·75 0·003
Gender:Parasite 1 0·0001 0·04 0·849
Gender:Parasite:Month 2 0·0060 1·62 0·211

MDA Month 1 87·09 244·33 <0·001
Gender 1 12·97 36·38 <0·001
Parasite 1 38·70 108·57 <0·001
Month:Gender 1 0·18 0·49 0·489
Month:Parasite 1 0·51 1·44 0·242
Gender:Parasite 1 0·01 0·01 0·904
Gender:Parasite:Month 1 1·58 4·43 0·046
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Hematodinium sp. (Stentiford et al. 2001). Our study
underlined higher glycogen contents in P. minutus-
infected G. roeseli as compared to uninfected ones,
whatever the gender. We can hypothesize that the
higher glycogen content in infected gammarids could
be due to their immobility, since P. minutus-infected
gammarids are known to stay at the water surface
where they become more vulnerable to final host
predation (Bakker et al. 1997; Bauer et al. 2000, 2005;
Cézilly and Perrot-Minnot, 2005;Médoc et al. 2006).

It could also be due to a feeding rate increase as
described in G. pulex infected by Echinorhynchus
truttae (Dick et al. 2010) but another study showed
that P. minutus-infectedG. roeseli consumed as many
dead isopods, but fewer living isopods and less leaf
material as compared to uninfected ones (Médoc et al.
2011). We can also hypothesize that glycogen could
be stored by gammarids as an alternative energy
source because lipids are partly used by P. minutus.
The decrease in total lipid contents measured in

our study could be due to the parasite’s development.
It is well known that parasites need energy for their
own development inside their hosts, as demonstrated
for P. minutus, which must store up host nutriments
to attain the last larval stage (Crompton and Nickol,
1985; Taraschewski, 2000). So, the reduction of total

Fig. 1. Protein concentrations (A), total lipid (B) and
glycogen contents (C) depending on sampling period,
Gammarus roeseli gender and infection status. Different
letters above the bars indicate significantly different
values (Tukey’s HSD test, P values <0·05). White bars
represent uninfected G. roeseli and black bars represent
infected G. roeseli.

Fig. 2. GSH concentration (A) and GCL activity
(B) depending on sampling month, Gammarus roeseli
gender and infection status. Different letters above the
bars indicate significantly different values (Tukey’s HSD
test, P values <0·05). White bars represent uninfected
G. roeseli and black bars represent infected G. roeseli.

Table 3. MDA levels depending on sampling period, Gammarus roeseli gender and infection status

(P values highlight significant differences depending on the infection status and asterisks indicate seasonal variation.)

Males Females

Uninfected Infected P values Uninfected Infected P values

May 5·47±0·47* 3·11±0·70* 0·00216 3·63±0·60* 2·10±0·33* 0·00754
June 8·43±0·58* 6·45±0·52* 0·00227 7·78±0·85* 4·85±0·59* 0·00193
August nd nd nd nd nd nd

nd, not determined.
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lipid contents in infectedG. roeseli could be explained
by their consumption by P. minutus by osmotrophy.
This hypothesis is supported by the study of
Barrett and Butterworth (1968) who demonstrated
that P. minutus gets its carotenoids from its host.
Carotenoids, which are lipid constituents, are the
main compound of the crustacean vitellus (Mantiri
et al. 1996). Polymorphus minutus diverts carotenoids
for its own development and consequently G. roeseli
females become castrated (Bollache et al. 2002).

Polymorphus minutus decreased G. roeseli defence
capacities: whatever the gender, a drop in reduced
glutathione concentrations linked with a decrease in
GCL activity was observed in P. minutus-infected
G. roeseli as compared to uninfected ones. Several
studies of gammarids infected by an acanthocephalan
parasite have shown a decrease in host defence
capacities. Cornet et al. (2009) measured a reduction
of the prophenoloxidase system as well as of haemo-
cyte concentration, 2 major parameters of crustacean
immunity, inG. pulex infected by 1 of the 3 following
acanthocephalan parasites: Pomphorhynchus laevis,
Pomphorhynchus tereticollis and P. minutus. Sures
and Radszuweit (2007) also demonstrated that the
cystacanth stage ofP. minutus prevented the synthesis
of heat shock protein 70 in G. roeseli subjected to
a thermal disturbance or palladium exposure.
Additionally, a decrease in defence capacities was
also observed in other host-parasite relationships.
For example, digenean-infected cockles exposed to
cadmium displayed lower metallothionein concen-
trations than uninfected ones (Baudrimont et al.
2006). According to our results, malondialdehyde
(MDA), a product of lipid peroxidation reflecting
cellular damage, was weaker in infected individuals.
Thus, on the one hand the drop in antitoxic defences
in infected gammarids suggests a higher sensitivity
to stress conditions but, on the other hand, a decrease
in MDA levels suggests a protective effect of the
parasite on its host. Inside the host, the parasite has to
escape from/survive the host’s defence system
and consequently weaken it, but if the host’s antitoxic
defence capacities are too low, the survival of the host-
parasite pair can be compromised in stressful
conditions. A compensation system may occur to
counterbalance the weakening of the host’s defence
system.

Sures and Radszuweit (2007) demonstrated that
P. minutus cystacanths of G. roeseli exposed to
palladium had accumulated 10 times as much metal
as their hosts. In a previous study, we demonstrated
that P. minutus cystacanths could accumulate cad-
mium (Gismondi et al. unpublished data). So, we can
hypothesize that if the parasite can accumulate toxic
contaminants, toxicity to the host may be reduced.
Consequently, the host may need lower antitoxic
defences, and the parasite may protect it during
environmental stress. However, this hypothesis
remains to be tested.

The present study confirms that an acanthocepha-
lan parasite reduces the energy reserves of its host.We
also observed lower defence capacities in infected
individuals as compared to uninfected ones, in the
absence of stressors. We cannot rule out that parasites
may infect organisms with a low defence system
but the information provided by glutathione concen-
trations and MDA levels altogether suggests that
the physiological modifications we observed resulted
from infection, but did not cause it. To go further,
the consequences of the modifications we observed in
P. minutus-infected gammarids on fitness will have to
be assessed in a contamination context.
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