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Abstract It is shown that, for every prime number p, the complete lattice of all semidirectly closed
pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal
to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is
shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids
whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all
finite solvable groups has also the cardinality of the continuum.
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1. Introduction

The study of the operation of semidirect products of finite semigroups on the
pseudovariety level has attracted considerable attention in recent years. See Chapter
10 in the book [1] by Almeida for an account of the hitherto development in this area.
Consult also the paper [2] by Almeida and Weil for the current progress in this direction.
The collection of all pseudovarieties of finite semigroups forms a monoid with respect to
the mentioned operation of semidirect products. Particular attention has been paid to
the identification of the idempotents of this monoid. These idempotents are exactly the
semidirectly closed pseudovarieties of finite semigroups. Yet otherwise stated, a pseu-
dovatiety of finite semigroups is said to be semidirectly closed if it is closed under
the formation of semidirect products of its members. The study of semidirectly closed
pseudovarieties of finite semigroups was initiated by Eilenberg in [4, Chapter V]. More
recently, research in this area was pursued by Almeida in his book [1]. See Section 10.10
in [1] for an overview of the results obtained so far along this line.
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The present paper can be viewed as a contribution to the solution of certain open
problems posed in [1] regarding semidirectly closed pseudovarieties of finite semigroups.
Although all problems posed in [1] in this connection are formulated as questions about
pseudovarieties of finite semigroups, the particular problems we want to resolve in this
paper can also be treated as questions about pseudovarieties of finite monoids. And it
is this point of view, which is apparently more appropriate with regard to the answers
obtained in this paper, that we will adopt here. Therefore, henceforth, in this paper, we
will deal exclusively with pseudovarieties of finite monoids.

The family SC� of all semidirectly closed pseudovarieties of finite monoids forms
a complete lattice under the ordering given by inclusion. For every semidirectly closed
pseudovariety H of finite groups, we may consider the subfamily SC�H of all semidirectly
closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of
all finite groups forms just the given pseudovariety H. This subfamily SC�H constitutes
a complete sublattice in the just mentioned complete lattice SC�. Thus SC�H forms alone
a complete lattice. The least element in this complete lattice is just the pseudovariety H
itself and the greatest element is the pseudovariety H of all finite monoids all of whose
subgroups belong to H.

Let us confine our attention, for the time being, to the case of non-trivial semidirectly
closed pseudovarieties H of finite groups. Then the respective complete lattices SC�H
consist of non-aperiodic semidirectly closed pseudovarieties of finite monoids. It is known
that, for every such pseudovariety H, the complete lattice SC�H is atomic and coatomic
and it contains exactly one atom and one coatom. Let us denote provisionally this unique
atom by P, and let us also denote the unique coatom in question by Q. Thus every pseu-
dovariety in SC�H, which is distinct from H and from H, must lie in the interval [P,Q].
It is also known that, if the pseudovariety H is distinct from the pseudovariety G of all
finite groups, then the respective interval [P,Q] is non-trivial, that is, the pseudovariety
P is a proper subpseudovariety of Q.

However, up until now, no additional information on the nature of the mentioned
intervals [P,Q] in the complete lattices SC�H, for various non-trivial semidirectly closed
pseudovarieties H of finite groups other than G, has been available. It is the purpose of
the present paper to fill in this gap to a certain extent. The principal results obtained
in this paper state that, for every prime number p and for the semidirectly closed pseu-
dovariety Gp of all finite p-groups, the interval [P,Q] in the complete lattice SC�Gp

has
the cardinality of the continuum, and likewise, for the semidirectly closed pseudovariety
Gsol of all finite solvable groups, the interval [P,Q] in the complete lattice SC�Gsol also
has the cardinality of the continuum.

So that’s it as far as the main results gained in this paper are concerned. However, the
interested reader may wish to learn more about the subject treated in this paper. For
example, he or she may wonder what are the atom P and the coatom Q in the complete
lattice SC�H like. Therefore, so as to provide the reader with the right perspective on
the material presented in this paper, we have chosen to include a short exposition of the
fundamentals of the subject in question in the remainder of this introduction.

Recall once more that, for every semidirectly closed pseudovariety H of finite groups,
the family SC�H of all semidirectly closed pseudovarieties of finite monoids whose inter-
section with the pseudovariety G of all finite groups forms just the given pseudovariety
H constitutes a complete sublattice in the complete lattice SC�. In particular, if we take
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up in this way for H the pseudovariety of all trivial groups, we thus get the family of all
semidirectly closed pseudovarieties of finite aperiodic monoids, which therefore creates
a complete sublattice. The least element in this complete sublattice is the pseudovari-
ety I of all trivial monoids and the greatest element is the pseudovariety A of all finite
aperiodic monoids.

Every non-trivial pseudovariety of aperiodic monoids contains the two-element semi-
lattice Y2. It has been shown already by Stiffler in [8] that the semidirectly closed
pseudovariety of finite monoids [[Y2]] generated by this semilattice Y2 is equal to the
whole pseudovariety R of all R-trivial monoids. Thus, of course, every non-trivial semidi-
rectly closed pseudovariety of aperiodic monoids must contain this pseudovariety R of all
R-trivial monoids. On the other hand, let R2 be the two-element right zero semigroup
and let R1

2 be the monoid obtained from the semigroup R2 by adjoining an identity to
it. From the well-known Krohn-Rhodes decomposition theorem, whose exposition can be
found in [4, Chapter II], or, specifically for monoids, in [6, Chapter 4] by Lallement,
for instance, it follows that the semidirectly closed pseudovariety of finite monoids [[R1

2]]
generated by the latter monoid R1

2 is already equal to the entire pseudovariety A of all
aperiodic monoids. Moreover, the mentioned monoid R1

2 is prime, which means that if R1
2

divides the semidirect products of any two finite monoids, then R1
2 must divide at least

one of these two factors. Hence it ensues that every semidirectly closed pseudovariety of
finite monoids, which does not contain all aperiodic monoids, must be included in the
exclusion �R1

2� of the monoid R1
2, that is, in the class �R1

2� of all finite monoids,
which do not have R1

2 as a divisor, and that this class �R1
2� is itself a semidirectly closed

pseudovariety of finite monoids. Furthermore, it follows from the work of Stiffler [8] and
it has been explicitly stated in [1, § 10.10] that the latter class �R1

2� is equal to the
pseudovariety ER consisting of those finite monoids whose idempotent generated sub-
monoids are R-trivial monoids. Consequently, every semidirectly closed pseudovariety of
aperiodic monoids except the pseudovariety A alone is contained in the pseudovariety
A ∩ ER. In this way, we arrive at the chain

I ⊆ R ⊆ A ∩ ER ⊆ A

of semidirectly closed pseudovarieties of aperiodic monoids. In this chain, the inclusion
R ⊆ A ∩ ER is obviously proper, and every semidirectly closed pseudovariety of aperi-
odic monoids distinct from I and A must occur in the interval [R,A ∩ ER]. Let further
B2 be the five-element aperiodic Brandt semigroup and let B1

2 be the monoid obtained
from the semigroup B2 by adjoining an identity to it. Then it turns out that every pseu-
dovariety of aperiodic monoids included in the pseudovariety ER, but not included in the
pseudovariety R, contains the monoid B1

2 . Hence it ensues that every semidirectly closed
pseudovariety of aperiodic monoids distinct from I and R must contain the semidirectly
closed pseudovariety [[B1

2 ]] generated by the monoid B1
2 . Now one of the open questions

posed in [1, § 10.10] can be stated as follows. Is it true that the pseudovariety A ∩ ER
covers the pseudovariety R in the lattice of all semidirectly closed pseudovarieties of ape-
riodic monoids? That is, does the pseudovariety A ∩ ER coincide with the pseudovariety
[[B1

2 ]]? However, this question has been in the end answered in the negative by Teixeira
in [9]. In fact, she has shown in her paper that the interval [ [[B1

2 ]],A ∩ ER] in the lattice
of all semidirectly closed pseudovarieties of aperiodic monoids has actually the cardinality
of the continuum.
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The mentioned question for semidirectly closed pseudovarieties of aperiodic monoids
being thus settled, we next turn to semidirectly closed non-aperiodic pseudovarieties of
finite monoids, that is, to semidirectly closed pseudovarieties of finite monoids containing
some non-trivial groups. The collection of all groups from such a semidirectly closed pseu-
dovariety then forms itself a non-trivial semidirectly closed pseudovariety of finite groups.
Thus let us now deal with an arbitrary non-trivial semidirectly closed pseudovariety H of
finite groups. As it has been mentioned above already, the family SC�H of all semidirectly
closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of
all finite groups forms exactly the given semidirectly closed pseudovariety H constitutes
a complete sublattice in the complete lattice SC�. As also mentioned above, the least
element in this complete sublattice is just the pseudovariety H itself and the greatest
element is the pseudovariety H of all finite monoids all of whose subgroups belong to H.

Every pseudovariety of finite monoids whose intersection with the pseudovariety G of all
finite groups forms just the given semidirectly closed pseudovariety H but which is distinct
from the pseudovariety H itself must contain the two-element semilattice Y2. Therefore
every semidirectly closed pseudovariety of finite monoids lying in SC�H, which is distinct
from the given pseudovariety H, must contain aside from the pseudovariety H also the
semidirectly closed pseudovariety [[Y2]] generated by the mentioned semilattice Y2, that is,
the pseudovariety R of all R-trivial monoids. However, as observed in [1, § 10.10], from the
results of Stiffler established in [8] it follows that the inclusion of semidirect products H ∗
R ⊆ R ∗ H of the just mentioned pseudovarieties holds. Hence it ensues straightforwardly
that already the pseudovariety R ∗ H is semidirectly closed. Note also that, since the
pseudovariety H is non-trivial, one can show that the pseudovariety R ∗ H contains the
monoid B1

2 , and so it contains the entire semidirectly closed pseudovariety [[B1
2 ]] generated

by the monoid B1
2 . Every semidirectly closed pseudovariety of finite monoids lying in

SC�H, which is distinct from the pseudovariety H, must contain the pseudovariety R ∗ H.
Furthermore, from the Krohn-Rhodes decomposition theorem it follows that, for our
non-trivial semidirectly closed pseudovariety H of finite groups, the least semidirectly
closed pseudovariety of finite monoids containing the pseudovariety H and the above-
mentioned monoid R1

2 is already equal to the entire pseudovariety H. Therefore every
semidirectly closed pseudovariety of finite monoids lying in SC�H, which is distinct from
the pseudovariety H, must be contained in the exclusion �R1

2� of the monoid R1
2, that

is, in the pseudovariety ER. Consequently, every such semidirectly closed pseudovariety
must be contained, in fact, in the pseudovariety H ∩ ER. In this way, we arrive at the
chain

H ⊆ R ∗ H ⊆ H ∩ ER ⊆ H

of semidirectly closed pseudovarieties of finite monoids whose intersection with the pseu-
dovariety G of all finite groups is equal to the pseudovariety H. At this point, every
semidirectly closed pseudovariety of finite monoids lying in SC�H and distinct from the
pseudovarieties H and H must occur in the interval [R ∗ H,H ∩ ER]. Now another
open question posed in [1, § 10.10] can be stated as follows. Is it true that the inter-
val [R ∗ H,H ∩ ER] in the complete lattice SC� is always trivial? That is, is it true
that, for every non-trivial semidirectly closed pseudovariety H of finite groups, the pseu-
dovariety H ∩ ER coincides with the pseudovariety R ∗ H? From the results attained by
Stiffler in [8] it ensues that, for H equal to the entire pseudovariety G of all finite groups,

https://doi.org/10.1017/S0013091520000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000218


On semidirectly closed pseudovarieties 917

this question is answered positively, that is, the remarkable equality of pseudovarieties
ER = R ∗ G holds. However, against the expectations expressed in [1], it has been sub-
sequently proved by Higgins and Margolis in [5] that the whole pseudovariety G is the
sole exception for which the equality of the above-mentioned pseudovarieties holds. Or,
to put it in different terms, Higgins and Margolis have proved in their paper that, for
every non-trivial proper subpseudovariety H of finite groups, the pseudovariety R ∗ H is
a proper subpseudovariety of the pseudovariety H ∩ ER.

Nevertheless, as also pointed out above, the situation just outlined leaves still some
questions unanswered. For example, it is still unknown what is the actual cardinality of
the interval [R ∗ H,H ∩ ER] in the complete lattice SC�, for various non-trivial proper
semidirectly closed subpseudovarieties H of finite groups. The present paper aspires to
answering this question for some particular such pseudovarieties H. Minimal non-trivial
semidirectly closed pseudovarieties of finite groups are exactly the pseudovarieties Gp

of all p-groups, for arbitrary prime numbers p. We intend to elaborate on the methods
employed by Higgins and Margolis in [5] and to show hereby that, for every prime num-
ber p, the above interval where the pseudovariety H is equal to the pseudovariety Gp of
all p-groups, that is, the interval [R ∗ Gp,Gp ∩ ER] has the cardinality of the continuum.
As a larger semidirectly closed pseudovariety of finite groups we mention the pseudovari-
ety Gsol of all solvable groups. We intend to apply some rudimentary knowledge of finite
simple group theory and number theory in order to show that the above interval where
the pseudovariety H is equal to the pseudovariety Gsol of all solvable groups, that is,
the interval [R ∗ Gsol,Gsol ∩ ER] also has the cardinality of the continuum. As a small
bonus, we conclude the present paper by showing that the uncountably many semidirectly
closed pseudovarieties of finite monoids constructed so far are all not local in the sense
of Tilson [10].

2. Preliminaries

As mentioned already in the introduction, we shall deal in this paper exclusively with
pseudovarieties of finite monoids. Therefore we will allow only such semidirect products
S ∗ T of two finite monoids S and T where the underlying left action of T on S is both
left and right unitary. The semidirect product U ∗ V of two pseudovarieties U and V
of finite monoids is then defined as the pseudovariety of finite monoids generated by the
class of all such semidirect products S ∗ T where S ∈ U and T ∈ V. It can be easily shown
that then the pseudovariety U ∗ V consists, in fact, of all divisors of the just mentioned
semidirect products S ∗ T .

Rarely shall we meet in this paper also the notion of the Mal’cev product of two
pseudovarieties of finite monoids. In fact, we shall make do here merely with the case when
the latter of the two pseudovarieties in question is a pseudovariety of finite groups. Recall
that a monoid S is said to be a co-extension of a group G by a monoid T , if there exists
a surjective homomorphism ϑ : S → G such that the submonoid ϑ−1(1) of S is isomorphic
to T . Now consider any pseudovariety V of finite monoids and any pseudovariety H
of finite groups. Then the Mal’cev product V �m H of these two pseudovarieties is the
pseudovariety of finite monoids generated by the class of all finite monoids S, which are
co-extensions of a group G from H by a monoid T from V. In fact, the Mal’cev product
V �m H then consists exactly of all homomorphic images of the monoids S just specified.
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There is yet an alternative way how the Mal’cev product V �m H can be determined.
Namely, this Mal’cev product consists precisely of all finite monoids S for which there
exists a group G in H and a relational morphism ϕ : S −→	 G such that the submonoid
ϕ−1(1) of S belongs to V.

Occasionally in this paper, we shall have to deal also with pseudovarieties of finite
categories. Roughly speaking, by a category we mean a directed graph endowed with an
associative partial binary operation of composition of consecutive edges admitting local
identities. In more detail, a graph Γ consists of a set V (Γ ) of vertices and a set E(Γ ) of
edges together with two mappings α, ω : E(Γ ) → V (Γ ) assigning to every edge e ∈ E(Γ )
its beginning α(e) and its end ω(e). For any vertices u, v ∈ V (Γ ), we write Γ (u, v) for
the set of all edges e ∈ E(Γ ) such that α(e) = u and ω(e) = v. By a category we mean
a graph C endowed with an associative partial binary operation of multiplication of
edges which, for arbitrary vertices u, v, w ∈ V (C), assigns to any edges e ∈ C(u, v) and
f ∈ C(v, w) an edge ef ∈ C(u,w) and which has, for every vertex v ∈ V (C), an identity
edge 1v ∈ C(v, v) acting as an identity element with respect to the mentioned operation
of multiplication. In this context, we also call the sets of edges of the form C(u, v) the
hom-sets of C. We also write shortly C(v) instead of C(v, v). For every vertex v ∈ V (C),
the set C(v) together with the multiplication from C restricted to C(v) forms a monoid.
This monoid is called the local monoid of C at v.

If Γ and Δ are graphs, then a graph mapping ϕ : Γ → Δ consists of two map-
pings V (Γ ) → V (Δ) and E(Γ ) → E(Δ), also denoted by ϕ, such that, for every edge
e ∈ E(Γ ), one has α(ϕ(e)) = ϕ(α(e)) and ω(ϕ(e)) = ϕ(ω(e)). If C and D are categories,
then a homomorphism ψ : C → D of these categories is a graph mapping such that,
for any vertices u, v, w ∈ V (C) and any edges e ∈ C(u, v) and f ∈ C(v, w), the equality
ψ(ef) = ψ(e)ψ(f) holds and, in addition, for any vertex v ∈ V (C), also the equality
ψ(1v) = 1ψ(v) holds. Furthermore, we say that the mentioned homomorphism ψ : C → D
is faithful if it is injective on hom-sets of C, that is, if for arbitrary vertices u, v ∈ V (C),
the restriction of ψ to C(u, v) is injective. We say that the homomorphism ψ : C → D
is a quotient homomorphism if it is bijective on the vertices of C, that is, if it deter-
mines a bijection of V (C) onto V (D), and if it is surjective on hom-sets, that is, if for
arbitrary vertices u, v ∈ V (C), the restriction of ψ to C(u, v) is a surjection of C(u, v)
onto D(ψ(u), ψ(v)). In the end, we say that a category C divides a category D if there
exists a category B, a faithful homomorphism ϕ : B → D and a quotient homomorphism
ψ : B → C. Then we write C ≺ D. Note that then the underlying category B is isomor-
phic to a certain subcategory of the direct product of categories C ×D. Thus, if C and
D are finite categories, then the mentioned category B must also be finite.

A class W of finite categories is said to be a pseudovariety of finite categories if it
is closed under taking finitary direct products of finite categories and under division of
finite categories. Every monoid S can be viewed as a category having a single vertex in
such a way that the monoid S itself then becomes identified with the local monoid of the
category under consideration at its unique vertex. Thus, as a particular case of the notion
of divisibility of categories introduced at the end of the previous paragraph, we obtain
what it means that a category C divides a monoid S. If this is the case, then we write
C ≺ S. Furthermore, in this manner, various classes of monoids can be viewed as classes
of categories. For instance, every pseudovariety V of finite monoids can be viewed as
a class of finite categories. In such a situation, it is possible to consider the pseudovariety
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W of finite categories generated by this pseudovariety V of finite monoids. Then W
consists of all finite categories C such that C ≺ S for some finite monoid S from V. This
pseudovariety W is commonly denoted by gV. Furthermore, it is customary to denote
by �V the pseudovariety of all finite categories all of whose local monoids lie in V. Then,
of course, the inclusion gV ⊆ �V holds. Following the terminology introduced by Tilson
in [10, § 13], we say that our pseudovariety V of finite monoids is local if the equality
gV = �V holds.

We conclude our considerations in this section with the following quite familiar fact
which, however, has not been proved thoroughly anywhere. If V is any local pseudovariety
of finite monoids and if H is any pseudovariety of finite groups, then the equality of
pseudovarieties V ∗ H = V �m H holds. The inclusion V ∗ H ⊆ V �m H can be verified
straightforwardly. Namely, every semidirect product T ∗G of a monoid T ∈ V and a group
G ∈ H can be readily seen to be a co-extension of the group G by the monoid T . The
verification of the reverse inclusion V �m H ⊆ V ∗ H requires some apparatus, which can
be taken over from Tilson’s paper [10]. Thus let S be a co-extension of a group G ∈ H
by a monoid T ∈ V and let ϑ : S → G be a surjective homomorphism such that the
submonoid ϑ−1(1) of S is isomorphic to T . Then, as in [10, § 4], one can construct
the derived category Dϑ of the homomorphism ϑ. The local monoids of this derived
category Dϑ can be easily seen to be homomorphic images of the monoid T , and so they
belong to V. Therefore the derived category Dϑ itself belongs to the pseudovariety �V.
However, since the pseudovariety V is local, this category Dϑ belongs, in fact, to the
pseudovariety gV. Hence this category Dϕ divides some monoid Y from V. Now one
can apply the derived category theorem provided in [10, § 5]. According to this theorem,
the monoid S divides the wreath product Y ◦G of the monoid Y and the group G. But
this wreath product Y ◦G evidently belongs to the pseudovariety V ∗ H. Thus also the
monoid S belongs to V ∗ H.

3. The construct of Higgins and Margolis

The purpose of this section is to lay the groundwork to the deliberations evolved in the
subsequent sections. This foundation of our future reasonings consists in a construction
provided by Higgins and Margolis in [5]. They have conceived this structure in [5] for
finite semigroups, but it can be straightforwardly carried over to finite monoids. We
proceed to give the details of this construction hereinafter.

Take the set Xn = {1, 2, . . . , n} and consider arbitrary partial one-to-one mappings
β1, β2, . . . , βk of the set Xn into itself. Let U be the submonoid of the symmetric inverse
monoid on the set Xn generated by the one-to-one mappings β1, β2, . . . , βk. Let X ′

n =
{1′, 2′, . . . , n′} be a disjoint copy of the set Xn. We build a submonoid M(U) of the
symmetric inverse monoid on the set Xn ∪X ′

n as follows. First, for every subset Z =
{i1, i1, . . . , ir} of the set Xn, denote by Z ′ the set {i′1, i′2, . . . , i′r}. Further on, for every
j ∈ {1, 2, . . . , k}, let Dj be the domain of the mapping βj , let Rj be the range of the
mapping βj , and let β′

j be the partial one-to-one mapping of the set Xn into the set X ′
n

such that the domain of β′
j is the set Dj , the range of β′

j is the set R′
j , and the mapping

β′
j itself is given by the formula β′

j(h) = βj(h)′, for all h ∈ Dj . In addition, let α′ be the
mapping whose domain is the set Xn, whose range is the set X ′

n, and which is itself
given by the formula α′(h) = h′, for all h ∈ Xn. Finally, let B2n be the aperiodic Brandt
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semigroup consisting of all partial one-to-one mappings of the set Xn ∪X ′
n into itself of

rank no more than 1, and let B1
2n be the monoid obtained from the semigroup B2n by

adjoining the identity on the set Xn ∪X ′
n to it. Having all of these ingredients at hand,

we let M(U) be the submonoid of the symmetric inverse monoid on the set Xn ∪X ′
n

generated by the set of one-to-one mappings {α′, β′
1, β

′
2, . . . , β

′
k} ∪B1

2n. Then M(U) is,
in fact, the union of the monoid B1

2n and the set {α′, β′
1, β

′
2, . . . , β

′
k}, and this latter set

generates only a zero semigroup, since the domains and the ranges of all mappings in this
set are subsets of the sets Xn and X ′

n, respectively, and the sets Xn and X ′
n are disjoint.

Hence it readily follows that M(U) is an aperiodic monoid with commuting idempotents.
Notice yet in passing that the notation M(U) might seem slightly misleading, since the
monoid M(U) depends not only on U but, more precisely, on the set {β1, β2, . . . , βk} of
generators of U . But we will encounter no true difficulty hereinafter resulting from this
minor ambiguity.

The following statement comes from [5, Theorem 3.2] and it represents the principal
result of [5, § 3].

Theorem 3.1. If the monoid M(U) divides some finite inverse monoid I, then the
monoid U divides this inverse monoid I as well.

In particular, we will apply this theorem in the situation when U will be a finite
group G. Of course, for this purpose, this group G must be represented as a permutation
group in accordance with Cayley’s theorem. We will use the usual right regular represen-
tation of the group G by its right translations in a standard manner. That is, for every
element g ∈ G, we consider the function ρg : G→ G, which maps every element f ∈ G
to the element fg and which is called the right translation of G by g. Then the mapping
assigning to every element g ∈ G the corresponding right translation ρg is an embedding
of the group G into the symmetric group on the set G. This embedding is called the right
regular representation of the group G. Let further G′ be a disjoint copy of the set G. In
such a situation, by M(G) we will mean the submonoid M(U) of the symmetric inverse
monoid on the set G ∪G′ where U will be the subgroup of the symmetric group on the
set G formed by all right translations ρg, for arbitrary elements g ∈ G.

In the introduction already, we have denoted by R the pseudovariety of all R-trivial
monoids. Furthermore, we denote by Sl the pseudovariety of all semilattice monoids. Now
we are in a position to state and prove the following assertion.

Theorem 3.2. Let H be any non-trivial pseudovariety of finite groups. Then, for every
finite group G, we have M(G) ∈ R ∗ H if and only if G ∈ H.

Proof. Assume first that G ∈ H. If this group G is trivial, then M(G) is isomorphic
to the monoid B1

2 , and as the pseudovariety H is non-trivial, this monoid B1
2 belongs to

R ∗ H. Thus we may further assume that the group G is non-trivial. Once again, since the
pseudovariety H is non-trivial, there exists a prime number p such that H contains the
finite cyclic group of order p. Let us represent this finite cyclic group as the additive group
Zp = {[0], [1], . . . , [p− 1]} of all residue classes modulo p. Then, along with the mentioned
groupG, the pseudovariety H contains also the groupG× Zp. Consider next the relational
morphism ϕ : M(G) −→	 G× Zp defined as follows. Recall that M(G) is the union of the
monoid B1

2n and the set {α′, β′
1, β

′
2, . . . , β

′
k}, where n = |G|, k = |G|, and {β1, β2, . . . , βk}
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is the set of all right translations of the group G. Since the group G is non-trivial, the
mentioned union is, in fact, disjoint. Note that, for arbitrary elements f, h ∈ G, there
exists a unique element g ∈ G such that fg = h. The monoid B1

2n consists of the empty
mapping ∅, the one-to-one mappings of rank 1, which are of the forms {(f, h)}, {(f, h′)},
{(f ′, h)}, {(f ′, h′)}, for any elements f, h ∈ G, and the identity on the set G ∪G′. Then
we put ϕ(∅) = G× Zp, further ϕ(f, h) = (g, [0]), ϕ(f, h′) = (g, [1]), ϕ(f ′, h) = (g, [p− 1]),
ϕ(f ′, h′) = (g, [0]), where g ∈ G is the unique element for which fg = h, and, at last, we
let ϕ map the identity on the set G ∪G′ to the identity (1, [0]) of the group G× Zp.
Furthermore, we let ϕ(α′) = (1, [1]). As far as the mappings β′

1, β
′
2, . . . , β

′
k are concerned,

we first recall once more that the initial mappings β1, β2, . . . , βk are exactly the right
translations ρg of G by g, for arbitrary elements g ∈ G. Therefore the set of mappings
{β′

1, β
′
2, . . . , β

′
k} can be represented as the set {ρ′g : g ∈ G}. Then, for every element g ∈ G,

we put ϕ(ρ′g) = (g, [1]). It can be checked straightforwardly that then ϕ indeed is a rela-
tional morphism of the monoid M(G) onto the group G× Zp. The preimage ϕ−1(1, [0]) of
the identity (1, [0]) of G× Zp consists of the idempotents ∅, {(f, f)}, {(f ′, f ′)}, for all ele-
ments f ∈ G, and the identity on the set G ∪G′. These idempotents form a semilattice
submonoid in M(G). Therefore the monoid M(G) itself belongs to the Mal’cev prod-
uct Sl �m H of the pseudovarieties Sl and H. But Sl is a local pseudovariety according to
Simon’s theorem (see [4, Chapter VIII, Theorem 7.1] and [10, Example 15.6]). Therefore,
in compliance with the conclusions made in the last paragraph of the previous section, we
have the equality of pseudovarieties Sl ∗ H = Sl �m H. Consequently, the monoid M(G)
belongs to the semidirect product Sl ∗ H of the aforementioned pseudovarieties. But Sl is
a subpseudovariety of R, and so Sl ∗ H is a subpseudovariety of R ∗ H. Thus the monoid
M(G) belongs to the semidirect product R ∗ H, as desired.

Conversely, assume that G is a finite group such that the monoid M(G) belongs to
R ∗ H. We wish to show that then the group G itself belongs to the pseudovariety H. If
the group G is trivial, then, of course, G belongs to H. Thus we may further assume that
the group G is non-trivial. The arguments in this part of the proof then generally follow
those included in the proof of Theorem 5.3 in [5]. For the reader’s convenience, however,
we repeat here the details. Since the monoid M(G) belongs to R ∗ H, it divides some
semidirect product of the form T ∗K where T is an R-trivial monoid and K is a group
from H. Thus there exists a submonoid V of T ∗K and a surjective homomorphism
η : V →M(G). Let further π : T ∗K → K be the semidirect product projection. Put
σ = π ◦ η−1. Then σ : M(G) −→	 K is a relational morphism and σ−1(1) = η(π−1(1) ∩ V )
is a homomorphic image of the submonoid π−1(1) ∩ V of π−1(1). Here π−1(1) is a sub-
monoid of T ∗K, which is isomorphic to the monoid T , and hence it is R-trivial. Therefore
also the submonoid σ−1(1) of the monoid M(G) is R-trivial. Recall now once again that
the monoid M(G) is the disjoint union of the monoid B1

2n and the set {α′, β′
1, β

′
2, . . . , β

′
k},

where n = |G|, k = |G|, and {β1, β2, . . . , βk} is the set of all right translations of the
group G. Recall also from the previous paragraph that the pseudovariety H contains
the cyclic group Zp of order p for some prime number p. Consider now the relation
τ ⊆M(G) × Zp such that τ(α′) = τ(β′

1) = τ(β′
2) = . . . = τ(β′

k) = [1], τ maps the iden-
tity on the set G ∪G′ to the element [0], and τ relates all non-identity elements of the
monoid B1

2n to the entire set Zp. Then τ : M(G) −→	 Zp is evidently a relational mor-
phism and the submonoid τ−1([0]) ofM(G) coincides with the monoid B1

2n. Consider next
the product relational morphism σ × τ : M(G) −→	 K × Zp given by the prescription
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(σ × τ)(s) = σ(s) × τ(s), for all elements s ∈M(G). Point yet that the identity of the
group K × Zp is of the form (1, [0]). Then obviously (σ × τ)−1(1, [0]) = σ−1(1) ∩ τ−1([0]).
Thus, according to the above notes about the submonoids σ−1(1) and τ−1([0]), the
submonoid (σ × τ)−1(1, [0]) is R-trivial and it is contained in the monoid B1

2n. This
submonoid (σ × τ)−1(1, [0]) therefore consists of some regular elements of the monoid
M(G). It can be shown that, under these circumstances, this submonoid (σ × τ)−1(1, [0])
is itself a regular monoid. Indeed, if m is the exponent of the finite group K, if s is
any element in (σ × τ)−1(1, [0]) and if t is any element in M(G) such that sts = s, then
s(ts)pm = s and the element t(st)pm−1 can be seen to belong again to (σ × τ)−1(1, [0]).
Thus the initial element s is regular already in the submonoid (σ × τ)−1(1, [0]). Conse-
quently, this submonoid is regular and R-trivial, whence it ensues that it consists merely
of the idempotents of the monoid B1

2n. But these idempotents form a semilattice monoid.
This shows that the monoid M(G) belongs to the Mal’cev product Sl �m H of the forego-
ing pseudovarieties Sl and H. Once more we evoke here the equality of pseudovarieties
Sl ∗ H = Sl �m H. Thus we see that the monoid M(G) belongs to the semidirect product
Sl ∗ H of the mentioned pseudovarieties. But this semidirect product consists of all divi-
sors of inverse monoids of the form S ∗ F where S is a semilattice monoid and F is a group
from H. It can be readily shown that subgroups of such an inverse monoid S ∗ F are all
isomorphic to subgroups of the group F , and therefore they belong to H. Subgroups of
arbitrary divisors of such an inverse monoid S ∗ F then also belong to H. Consequently,
the class of all groups contained in Sl ∗ H forms exactly the pseudovariety H. Finally,
the monoid M(G) belongs to Sl ∗ H, and hence it divides an inverse monoid of the form
S ∗ F as above. But then, by Theorem 3.1, the group G itself divides this inverse monoid
S ∗ F . Thus the group G belongs to Sl ∗ H, and by virtue of what has just been inferred,
it must belong to H, as desired. �

We conclude this section by indicating how can Theorem 3.2 be applied in order to show
that, for certain non-trivial semidirectly closed pseudovarieties H of finite groups, there
exist uncountably many semidirectly closed pseudovarieties of finite monoids contained
in the interval [R ∗ H,H ∩ ER] that has been exhibited in the introduction. Assume that
K is a semidirectly closed pseudovariety of finite groups containing the pseudovariety H.
Then R ∗ K is a semidirectly closed pseudovariety of finite monoids, and, consequently,
H ∩ (R ∗ K) is also a semidirectly closed pseudovariety of finite monoids. Further on, on
the one hand, one then has R ∗ H ⊆ R ∗ K, whence it ensues that R ∗ H ⊆ H ∩ (R ∗ K),
and, on the other hand, one further has R ∗ K ⊆ R ∗ G = ER, which entails that
H ∩ (R ∗ K) ⊆ H ∩ ER. Thus the semidirectly closed pseudovariety H ∩ (R ∗ K) occurs
in the interval [R ∗ H,H ∩ ER], which has been mentioned above. Recall that, for every
finite group G, the monoid M(G) is aperiodic, and hence it belongs to the pseudova-
riety H. Furthermore, this monoid M(G) has the property that its idempotents form
a semilattice monoid, and hence it belongs to the pseudovariety ER. Therefore, for every
finite group G, the monoid M(G) belongs to the pseudovariety H ∩ ER. Let us now dis-
cuss for which finite groups G does the monoid M(G) belong to the subpseudovarieties
H ∩ (R ∗ K) of the pseudovariety H ∩ ER, for various semidirectly closed pseudovarieties
K of finite groups that contain the pseudovariety H. Since the monoid M(G) belongs to
the pseudovariety H, we have M(G) ∈ H ∩ (R ∗ K) if and only if M(G) ∈ R ∗ K. Now,
since the pseudovariety K is also non-trivial, by Theorem 3.2, we have M(G) ∈ R ∗ K
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if and only if G ∈ K. Thus, altogether, we get that M(G) ∈ H ∩ (R ∗ K) if and only if
G ∈ K. Therefore, for distinct semidirectly closed pseudovarieties K of finite groups con-
taining the pseudovariety H, the semidirectly closed pseudovarieties H ∩ (R ∗ K) of finite
monoids lying in the interval [R ∗ H,H ∩ ER] will be likewise distinct. Consequently, in
order to provide uncountably many semidirectly closed pseudovarieties of finite monoids
lying in the just mentioned interval, it suffices to exhibit uncountably many semidirectly
closed pseudovarieties K of finite groups containing the pseudovariety H.

4. Uncountably many semidirectly closed non-aperiodic pseudovarieties

This is the central section of the present paper. We apply here the tools prepared in the
preceding section in order to exhibit uncountably many semidirectly closed non-aperiodic
pseudovarieties of finite monoids lying in the intervals that have been specified in the last
paragraph of the introduction.

For every prime number p, we denote by Abp the pseudovariety of all elementary
abelian p-groups. Furthermore, we have already denoted by Gp the pseudovariety of all
finite p-groups. Note that this pseudovariety Gp is just the semidirectly closed pseudova-
riety of finite groups generated by the pseudovariety Abp. Let further p be a fixed prime
number. Then, for the corresponding pseudovariety Gp, we have the subsequent finding.

Theorem 4.1. The interval [R ∗ Gp,Gp ∩ ER] in the complete lattice of all semidi-
rectly closed pseudovarieties of finite monoids has the cardinality of the continuum.

Proof. According to the considerations performed at the close of the previous section,
all that remains to be done is to show a continuum of semidirectly closed pseudovarieties
of finite groups containing the pseudovariety Gp. But this is easy to do. For every non-
empty set Q of prime numbers, consider the semidirectly closed pseudovariety of finite
groups GQ generated by the collection of all pseudovarieties Abq with q ∈ Q. Then GQ

contains finite cyclic groups of orders q for all prime numbers q ∈ Q, but it contains no
finite cyclic group of order q for any prime number q /∈ Q. Indeed, the orders of finite
groups which may appear in GQ can only be divisible by a couple of prime numbers
from the set Q. Thus, for distinct non-empty sets Q of prime numbers, the semidirectly
closed pseudovarieties GQ are distinct. In particular, for distinct sets Q of prime num-
bers containing the number p, we obtain distinct semidirectly closed pseudovarieties GQ

of finite groups containing the pseudovariety Gp. This collection of semidirectly closed
pseudovarieties has the cardinality of the continuum. �

We next continue considering the pseudovariety Gsol of all finite solvable groups. This
pseudovariety can be obtained as the semidirectly closed pseudovariety of finite groups
generated by the collection of the pseudovarieties Abp for all prime numbers p. We are
about to prove the following notable statement.

Theorem 4.2. The interval [R ∗ Gsol,Gsol ∩ ER] in the complete lattice of all
semidirectly closed pseudovarieties of finite monoids has the cardinality of the continuum.

Proof. Once again, according to the considerations carried out at the close of the
previous section, all that remains to be done is to show a continuum of semidirectly
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closed pseudovarieties of finite groups containing the pseudovariety Gsol. Observe that
the statement that there is a continuum of semidirectly closed pseudovarieties of finite
groups containing the pseudovariety Gsol subsumes the statement appearing in the proof
of Theorem 4.1 saying that there is a continuum of semidirectly closed pseudovarieties of
finite groups containing the pseudovariety Gp, for any given prime number p. In order
to achieve our objective, we exhibit first a suitable family of finite simple groups lying
beyond the pseudovariety Gsol.

Let us first recall some standard concepts from finite group theory. For arbitrary nat-
ural numbers n, k and for any prime number p, one denotes by GL(n, pk) the general
linear group consisting of all invertible n× n matrices with entries in the finite field of
order pk. This set of matrices forms a group under matrix multiplication. The center
ζGL(n, pk) of this group consists of all non-zero scalar matrices. The quotient group
GL(n, pk)/ζGL(n, pk) is called the projective general linear group and it is denoted by
PGL(n, pk). Further on, one denotes by SL(n, pk) the special linear group consisting of all
n× n matrices with entries in the finite field of order pk whose determinant is equal to 1.
The center ζSL(n, pk) of this group is equal to the intersection SL(n, pk) ∩ ζGL(n, pk).
The quotient group SL(n, pk)/ζSL(n, pk) is called the projective special linear group and
it is denoted by PSL(n, pk). Now it is a standard fact from finite group theory that,
assuming n � 2, this group PSL(n, pk) is simple, except when n = 2, k = 1 and p = 2 or
p = 3. See [3, § 6] for a proof of this fact, for instance.

We continue by selecting from the latter family of finite simple groups an infinite
subset, which will be suitable for our purposes. We will consider further only the case
of 2 × 2 matrices, that is, we will confine ourselves to the instance n = 2 in the previous
deliberations. Moreover, we will consider further only finite fields of prime orders, that is,
we will limit ourselves to the instance k = 1 in the above definitions. Thus we will think
merely of projective special linear groups of the form PSL(2, p) where p � 5 is a prime
number. As it is shown in [3, § 6], the order of such a group PSL(2, p) is equal to the
number 1

2 (p3 − p). At last, we will still narrow the scope of possible values of the prime
number p to a certain subsequence of prime numbers, which will be constructed as follows.

We will need Dirichlet’s theorem on arithmetic progressions from number theory.
According to this theorem, whenever a, b are two relatively prime natural numbers, there
exist infinitely many prime numbers in the sequence of natural numbers {am+ b}∞m=1.
See the paper [7] by Selberg for a relatively elementary proof of Dirichlet’s theorem.
Note also that this theorem can be easily seen to be equivalent to the seemingly weaker
assertion that, for any two relatively prime natural numbers a, b, there exists at least one
prime number in the sequence of natural numbers {am+ b}∞m=1.

Now the subsequence of prime numbers {qi}∞i=1 as advised in the last paragraph but
one will be constructed by induction in the following manner. Firstly, let q1 = 5. Sec-
ondly, assume that for some natural number j, the prime numbers q1, q2, . . . , qj such that
q1 < q2 < . . . < qj have already been constructed. Then all of these prime numbers are
odd, and hence the product q1q2 . . . qj is an odd number, and so it is relatively prime
to the number 2. Therefore, by Dirichlet’s theorem, there exists a natural number m
such that q1q2 . . . qjm+ 2 is a prime number. Then put qj+1 = q1q2 . . . qjm+ 2. Then, of
course, qj < qj+1. In this way, proceeding by induction, the entire subsequence of prime
numbers {qi}∞i=1 is determined.

https://doi.org/10.1017/S0013091520000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000218


On semidirectly closed pseudovarieties 925

Now consider the projective special linear groups PSL(2, qi), for all natural numbers i.
For every subset A of the set {1, 2, . . .} of all natural numbers, consider the semidirectly
closed pseudovariety of finite groups GA generated by the family of all cyclic groups of
prime orders and by the family of projective special linear groups of the form PSL(2, qj),
for all j ∈ A. Then, of course, the pseudovariety GA contains the pseudovariety Gsol of
all finite solvable groups. We are going to show thereinafter that, for distinct subsets A of
the set {1, 2, . . .} of all natural numbers, the corresponding pseudovarieties GA are also
distinct.

For this purpose, let us recall yet another familiar fact about finite simple groups.
It turns out that every finite simple group H is prime, which means that, whenever H
divides a semidirect product K ∗ L of two groups K and L, then either H divides K or
H divides L. See [6, Chapter 4, § 1] by Lallement for a proof of this assertion. Hence it
also readily follows that, for any class C of finite groups, the following statement holds
true. If a finite simple group H belongs to the semidirectly closed pseudovariety of finite
groups generated by the mentioned class C, then the group H itself divides some group
from this class C.

Finally, we are in a position to complete our actual proof. We want to show that,
for every subset A of the set {1, 2, . . .} of all natural numbers, the pseudovariety GA of
finite groups introduced in the last paragraph but one contains the finite simple groups
PSL(2, qj), for all j ∈ A, but it does not contain the finite simple groups PSL(2, qj̄), for any
natural numbers j̄ /∈ A. The former of these two statements is clear. We proceed to verify
the latter of these two statements. Thus let j̄ /∈ A be any natural number and assume,
by contradiction, that the finite simple group PSL(2, qj̄) belongs to the pseudovariety
GA. We have seen above that the order of the group PSL(2, qj̄) is equal to the number
1
2 (q3j̄ − qj̄). Consequently, the group PSL(2, qj̄) cannot divide any cyclic group of prime
order, since its order is a composite number. The group PSL(2, qj̄) also cannot divide
any finite simple group of the form PSL(2, qi) with i < j̄, since the order of such a group
is less than the order of the given group PSL(2, qj̄). Therefore, according to what has
been said in the previous paragraph, our group PSL(2, qj̄) must divide some finite simple
group of the form PSL(2, qj) with j ∈ A satisfying j > j̄. As we have also seen above,
the order of this group PSL(2, qj) is equal to the number 1

2 (q3j − qj), that is, it is equal
to the number 1

2qj(qj − 1)(qj + 1). Thus the prime number qj̄ must divide the number
qj(qj − 1)(qj + 1). But qj̄ cannot divide the number qj , since qj and qj̄ are distinct prime
numbers. Furthermore, by the construction of the sequence of prime numbers {qi}∞i=1,
the number qj − 1 is of the form q1q2 . . . qj−1m+ 1 for some natural number m, and the
number qj̄ occurs among the numbers q1, q2, . . . , qj−1. This shows that qj̄ cannot divide the
number qj − 1. In a similar manner, the number qj + 1 is of the form q1q2 . . . qj−1m+ 3
for the same natural number m. This yields that qj̄ also cannot divide the number qj + 1,
since it occurs among the numbers q1, q2, . . . , qj−1 and it is greater than 3. All in all, this
entails that the prime number qj̄ cannot divide the number qj(qj − 1)(qj + 1), which is
the desired contradiction. Therefore we may conclude that the pseudovariety GA contains
exactly those finite simple groups of the form PSL(2, qj), for which j ∈ A. This ensures
that, for distinct subsets A of the set {1, 2, . . .} of all natural numbers, the corresponding
semidirectly closed pseudovarieties GA are also distinct. In this way, we gain a collection
of semidirectly closed pseudovarieties of finite groups containing the pseudovariety Gsol,
which has the cardinality of the continuum. �

https://doi.org/10.1017/S0013091520000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000218


926 J. Kad’ourek

5. The non-locality

In this concluding section of the present paper we show that, for every proper non-trivial
semidirectly closed pseudovariety H of finite groups and for every proper semidirectly
closed pseudovariety K of finite groups containing the pseudovariety H, the semidirectly
closed pseudovariety of finite monoids H ∩ (R ∗ K) lying in the interval [R ∗ H,H ∩ ER],
which has been discussed in the closing paragraph of Section 3, is not local. Thus, in
particular, the uncountably many semidirectly closed pseudovarieties of finite monoids
provided in Theorems 4.1 and 4.2 are all not local. This piece of information will prove
useful in a sequel to the present paper.

As in Section 3, take again the set Xn = {1, 2, . . . , n} and consider arbitrary partial
one-to-one mappings β1, β2, . . . , βk of the set Xn into itself. Let U be the submonoid
of the symmetric inverse monoid on the set Xn generated by the one-to-one mappings
β1, β2, . . . , βk. Let also X ′

n = {1′, 2′, . . . , n′} be a disjoint copy of the set Xn. In Section 3,
we have built a submonoid M(U) of the symmetric inverse monoid on the set Xn ∪X ′

n.
Now we will build in a similar fashion a category C(U) having for its vertices the sets
Xn and X ′

n and having for its edges certain partial one-to-one mappings determined
as follows. At first, as in Section 3, for every subset Z = {i1, i2, . . . , ir} of the set Xn,
denote by Z ′ the set {i′1, i′2, . . . , i′r}. Further on, for every j ∈ {1, 2, . . . , k}, let Dj be
the domain of the mapping βj and let Rj be the range of the mapping βj . Then, for
every j ∈ {1, 2, . . . , k}, we let β′

j be the partial one-to-one mapping of the set Xn into
the set X ′

n such that the domain of β′
j is the set Dj , the range of β′

j is the set R′
j , and

the mapping β′
j itself is given by the formula β′

j(h) = βj(h)′, for all h ∈ Dj . In addition,
we let α′ be the mapping whose domain is the set Xn, whose range is the set X ′

n, and
which is itself given by the formula α′(h) = h′, for all h ∈ Xn. Furthermore, let Bn be the
aperiodic Brandt semigroup consisting of all partial one-to-one mappings of the set Xn

into itself of rank no more than 1, let B1
n be the monoid obtained from the semigroup Bn

by adjoining the identity on the set Xn to it, let B′
n be the aperiodic Brandt semigroup

consisting of all partial one-to-one mappings of the set X ′
n into itself of rank no more

than 1, and let B′1
n be the monoid obtained from the semigroup B′

n by adjoining the
identity on the set X ′

n to it. Having all that at hand, we determine the hom-sets of
the category C(U) in the following way. We let the hom-set C(U)(Xn) be equal to the
monoid B1

n, we let the hom-set C(U)(X ′
n) be equal to the monoid B′1

n , we let the hom-set
C(U)(Xn,X

′
n) consist of the partial one-to-one mappings α′, β′

1, β
′
2, . . . , β

′
k together with

all partial one-to-one mappings of the set Xn into the set X ′
n of rank no more than 1, and

we let the hom-set C(U)(X ′
n,Xn) consist of all partial one-to-one mappings of the set

X ′
n into the set Xn of rank no more than 1. Then it can be readily seen that C(U) thus

indeed becomes a category with respect to the usual composition of partial one-to-one
mappings.

We next clarify what is the relationship between our present category C(U) and the
monoid M(U) constructed in Section 3. On the one hand, the category C(U) divides
the monoid M(U). In order to see this, consider, for each of the hom-sets C(U)(Xn),
C(U)(X ′

n), C(U)(Xn,X
′
n), and C(U)(X ′

n,Xn) of the category C(U), the obvious identity
mapping of this hom-set into the set M(U). These identity mappings constitute together,
in fact, a faithful homomorphism of the category C(U) into the monoid M(U). Thus,
indeed, our category C(U) divides the monoid M(U).
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On the other hand, the monoid M(U) can be produced from the category C(U) in the
following way. In order to present here how this can be done, we need the concept of the
consolidation of a category introduced by Tilson in [10, § 3]. According to his definition,
the consolidation of a category D is the semigroup S whose set of elements consists of
the set E(D) of all edges of D together with a new element 0. This new element 0 is
a multiplicative zero in S, and the product of any two edges from E(D) is as in D when
it is defined and it is equal to 0 otherwise. Having this concept at hand, we claim that
our initial monoid M(U) can be seen to divide the monoid T 1 obtained by adjoining an
identity to the consolidation T of our current category C(U). Indeed, it is possible to
draw out the monoid M(U) from the monoid T 1 by deleting first the identities on the
sets Xn and X ′

n from T 1, and then by identifying the empty mappings from all of the
hom-sets C(U)(Xn), C(U)(X ′

n), C(U)(Xn,X
′
n), and C(U)(X ′

n,Xn) of the category C(U)
with the zero 0 of the consolidation T of C(U).

Once again, as in Section 3, we will apply the above machinery in the situation when U
will be a finite group G. For this purpose, this group G must be represented as a permu-
tation group. Just as before, in the paragraph following Theorem 3.1 in Section 3, we will
use in this connection the usual right regular representation of the group G by its right
translations. Having this in view, by C(G) we will mean the category C(U) where U will
be the subgroup of the symmetric group on the set G formed by all right translations of
the group G by its arbitrary elements. Now we are ready to state and prove the following
assertion.

Theorem 5.1. Let H be any non-trivial pseudovariety of finite groups. Then, for every
finite group G, we have C(G) ∈ g(R ∗ H) if and only if G ∈ H.

Proof. In view of Theorem 3.2, we need to show that, for every finite group G, we have
M(G) ∈ R ∗ H if and only if C(G) ∈ g(R ∗ H). We have seen above that the category
C(G) divides the monoidM(G). Thus ifM(G) ∈ R ∗ H, then certainly C(G) ∈ g(R ∗ H).
Consequently, we are left with the need to prove the converse statement.

Thus assume that C(G) ∈ g(R ∗ H). Since the pseudovariety H is non-trivial, the
pseudovariety R ∗ H contains the monoid B1

2 obtained by adjoining an identity to the
five-element aperiodic Brandt semigropup B2. Now we are in a position to apply Proposi-
tion 13.4 from [10]. By this proposition, the monoid T 1 obtained by adjoining an identity
to the consolidation T of the catgegory C(G) belongs to the pseudovariety R ∗ H. Or
else, since C(G) ∈ g(R ∗ H), C(G) divides some monoid F from R ∗ H. Then it is quite
easy to see that the monoid T 1 obtained from the consolidation T of C(G) divides the
direct product F ×B1

2 . See also [10, Proposition 3.3]. Therefore this monoid T 1 indeed
belongs to the pseudovariety R ∗ H. We have seen above that the monoid M(G) divides
the mentioned monoid T 1. Hence it ensues that M(G) ∈ R ∗ H, as desired. �

Finally let us return to what has been promised at the beginning of this section. We
want to show that, for arbitrary proper non-trivial pseudovarieties H and K of finite
groups such that H ⊆ K, the pseudovariety of finite monoids H ∩ (R ∗ K) is not local.
For this purpose, let us take any finite group G such that G /∈ K. Consider the cor-
responding category C(G). Then, by its construction, the local monoids of the category
C(G) are just the monoids B1

n and B′1
n , where n = |G|. We have already mentioned above
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that the monoid B1
2 belongs to the pseudovariety R ∗ K. Since the monoids B1

n and B′1
n

can be easily seen to divide a suitable finite direct power of B1
2 , also these monoids

belong to the pseudovariety R ∗ K. Moreover, the monoids B1
n and B′1

n are aperiodic,
and hence they belong also to the pseudovariety H. Altogether these monoids B1

n and
B′1
n belong to the pseudovariety H ∩ (R ∗ K). Therefore the category C(G) belongs to

the pseudovariety �(H ∩ (R ∗ K)). But, since G /∈ K, from Theorem 5.1 it follows that
this category C(G) does not belong to the pseudovariety g(R ∗ K). Consequently, this
category does not belong to the pseudovariety g(H ∩ (R ∗ K)). Thus g(H ∩ (R ∗ K)) is
a proper subpseudovariety of �(H ∩ (R ∗ K)). This finding verifies that the pseudovariety
H ∩ (R ∗ K) is not local.
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