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On the normalized dissipation parameter Cε in
decaying turbulence
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The Reynolds number dependence of the non-dimensional mean turbulent kinetic
energy dissipation rate Cε = εL/u′3 (where ε is the mean turbulent kinetic energy
dissipation rate, L is an integral length scale and u′ is the velocity root-mean-square)
is investigated in decaying turbulence. Expressions for Cε in homogeneous isotropic
turbulent (HIT), as approximated by grid turbulence, and in local HIT, as on the
axis of the far field of a turbulent round jet, are developed from the Navier–Stokes
equations within the framework of a scale-by-scale energy budget. The analysis shows
that when turbulence decays/evolves in compliance with self-preservation (SP), Cε

remains constant for a given flow condition, e.g. a given initial Reynolds number.
Measurements in grid turbulence, which does not satisfy SP, and on the axis in the
far field of a round jet, which does comply with SP, show that Cε decreases in the
former case and remains constant in the latter, thus supporting the theoretical results.
Further, while Cε can remain constant during the decay for a given initial Reynolds
number, both the theory and measurements show that it decreases towards a constant,
Cε,∞, as Reλ increases. This trend, in agreement with existing data, is not inconsistent
with the possibility that Cε tends to a universal constant.

Key words: homogeneous turbulence, isotropic turbulence, turbulence theory

1. Introduction
It is commonly believed that the constancy of the non-dimensional dissipation

rate parameter Cε = εL/u′3 (where ε is the dissipation rate of the mean turbulent
kinetic energy, Cε is the dissipation coefficient and constant, u′ is the velocity
root-mean-square and L an integral length scale; the overbar represents time average)
is a cornerstone assumption of turbulence, e.g. Tennekes & Lumley (1972), McComb
et al. (2015), Vassilicos (2015); see also McComb (2014) for a brief review. It is
often interpreted as representing the transfer of energy from larger to smaller scales of
motion (Tennekes & Lumley 1972). Interestingly, this interpretation was not made by
Taylor (1935) who first introduced this constant. In fact, it is his attempt to connect
ε to the velocity correlation function that led him to this dissipation scaling. Since
the focus of this study is on Cε , it is worthwhile reproducing Taylor’s introduction
of Cε . He wrote:
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It has been shown by von Kármán that if the surface stress in a pipe is
expressed in the form τ = ρv2

x then

Uc −U
vx

= f (r/a), (1.1)

where Uc is the maximum velocity in the middle of the pipe and U is
the velocity at radius r. This relationship is associated with the conception
that the Reynolds stresses are proportional to the squares of the turbulent
component of velocity. It seems that the rate of dissipation of energy in
such a system must be proportional, so far as changes in linear dimension,
velocity and density are concerned, to ρu′3/l, where l is some linear
dimension defining the scale of the system. For turbulence produced by
geometrically similar boundaries therefore

ε = const.
(
ρu′3

l

)
= 15

νu′2

λ2
. (1.2)

For such systems therefore

λ2

l2
=C

( ν
lu′

)
, (1.3)

where C depends on the positions relative to the solid boundaries of the
point at which observations are made and on the element used for defining
l.

Here, ρ is the fluid density, λ is the Taylor microscale, τ is the shear stress and
vx is a scaling velocity. For convenience we identify the constant in (1.2) as CT .
Note also that there is some ambiguity about l, which is not necessarily the integral
length scale L, although it should characterize the large-scale motion. A few remarks
can be made. First, equation (1.2) leads immediately to CT = (15/Rel)l2/λ2, where
Rel = lu′/ν is a scaling Reynolds number. Clearly, since CT is constant, then l/λ ∼√

Rel. Second, Taylor uses dimensional arguments for stating that ε ∼ ρu′3/l. Third,
he uses the local isotropy assumption as is evident from the last term on the right
in (1.2). Fourth, the constant C = (15/CT) may depend on the initial and boundary
conditions. Fifth, the statement referring to the Reynolds stresses and expression (1.1)
indicates that Taylor assumes the turbulent flow to be in self-preservation (hereafter
denoted SP). The hypothesis of SP development of a turbulent flow assumes that all
aspects of motion have similar forms at all stages, the differences being described
by changes of velocity and length scales which are functions of time (in decaying
turbulence) or of position in the flow direction (Townsend 1976); in other words, all
mean turbulent quantities are expressible non-dimensionally through suitable scales of
length and velocity, and the forms of the normalized distributions remain unchanged
at all stages of the flow evolution. Thus, Taylor introduced the constant CT under the
condition that the flow is in SP and isotropy is satisfied. Interestingly, no reference to
the Reynolds number is made by Taylor.

Kolmogorov (1941b) showed that ε = Ck3/2/L (k is the turbulent kinetic energy)
with C = (2g/CK)

2/3, not necessarily the same as in (1.2), where g is supposed to
be a constant and CK the Kolmogorov constant (defined in (δu)2 = CK(εr)2/3, δu
is the velocity increment and r is the spatial increment). Here, L is related to the
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Loitsiansky length scale Λ as L = (Λ/k)1/5. Kolmogorov developed the expression
of Cε for separations in the range λ � r � L and by assuming SP for (δu)2, i.e.
(δu)2 = kψ(r/L), ψ is a dimensionless function of r/L. Clearly, Kolmogorov used L
as a SP scaling variable. It is evident that he assumed the existence of an inertial
range, which suggests that he assumed a very, if not infinitely, large Reynolds number.

It is interesting to note that both Taylor and Kolmogorov required some form of SP
in their respective approaches to obtain Cε , suggesting that the constancy of Cε too
requires some form of SP. Accordingly, testing the constancy of Cε , as defined by both
Taylor and Kolmogorov, requires that SP should be closely approximated. However,
since the work of Taylor and Kolmogorov, the reference to the SP requirement
for obtaining Cε appears to have been largely ignored (with some exceptions, e.g.
Antonia, Satyaprakash & Hussain (1980)) and the focus has been almost invariably
on the dimensional arguments (e.g. Batchelor 1953; Tennekes & Lumley 1972;
Sreenivasan 1984; Monin & Yaglom 2007). This has led to testing the constancy of
Cε in many turbulent flows which do not necessarily comply with SP, as originally
assumed by Taylor and Kolmogorov, such as grid turbulence (Djenidi, Kamruzzaman
& Antonia 2015; Sinhuber, Bodenschatz & Bewley 2015). For example, Batchelor
(1953) presented values of Cε for grid turbulence at several Reynolds numbers.
Despite the scatter in the data, the trend is clear: Cε shows a systematic, albeit weak,
decrease with increasing downstream distance and increasing Reynolds number. The
Reynolds number dependence was further confirmed by Sreenivasan (1984), who
showed that Cε varies strongly when 06Reλ6 50, but becomes constant with a value
of approximately 1 when Reλ > 50. Recently Vassilicos (2015) presented a review of
Cε over the past 60 years and discussed its non-universality. He further proposed, on
empirical grounds, that for decaying turbulence, such as wake and grid turbulence,
Cε ∼Rem

I /Ren
L with m' n' 1 where ReI =Ulb/ν is a global or inlet Reynolds number

characterizing the inlet condition (lb is a length scale defined by the grid e.g. the grid
mesh size M).

While dimensional analysis has proven to be quite useful, it lacks the rigour
of an analysis based on the equations of motion. Only a very few analyses of
Cε were carried out within the framework of the Navier–Stokes equations. Lohse
(1994) was probably first to transcend dimensional analysis. He used a mean field
theory closure of the Kármán–Howarth equation and obtained Cε =Cε,∞

√
1+ α/Re2

λ,
where Cε,∞ is the value of Cε as Reλ → ∞ and α a constant. He ignored the
term accounting for the large-scale motions in the Kármán–Howarth equation. Using
the Navier–Stokes equations, Doering & Foias (2002) established the following
expression Cε 6 (a/Rel + b) (a and b are constants independent of the Reynolds
number) or equivalently Cε 6 (b/2)(1 +√1+ (4a/b2)/Re2

λ) for a ‘steadily’ driven
turbulence in a periodic domain without boundary. It should be noted that in their
expression (28) of ε, Doering & Foias (2002) used the following form for the
time-independent forcing, f = FΦ(x/l) with l = αL where α and L are an integer
and the size of the system, respectively. More recently, McComb et al. (2015) used
the Kármán–Howarth equation with a forcing term to develop a model for Cε for
forced homogeneous isotropic turbulence (HIT). Using L as a scaling length scale
and applying asymptotic expansions for the second- and third-order velocity structure
functions into the Kármán–Howarth equation, they obtained Cε =Cε,∞+C/ReL, where
Cε,∞ = 0.468 ± 0.006 and C = 18.9 ± 1.3 are constant with respect to ReL and the
dimensionless variable r/L. Further, they used the expression ReL = CεRe2

λ/15, albeit
without justification, to show that Cε = A(1 + √1+ (B)/Re2

λ), where A and B are
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constant with respect to Reλ, which is similar to the upper bound of Cε of Doering
& Foias (2002). In this paper, we present a derivation for an analytical expression
of Cε based on the Navier–Stokes equations. The approach follows the work of
Lohse (1994) and McComb et al. (2015), in that the starting point of the analysis
is the transport equation for (δu)2. However, we avoid using any model closure or
asymptotic expansion in the analysis, although we work within the framework of SP,
which is aligned with the approach taken by both Taylor (1935) and Kolmogorov
(1941b).

The aim of the study is to assess the Reynolds number dependence of Cε in
decaying turbulence. Two cases of decaying turbulence are considered: HIT such
as closely approximated in grid turbulence and locally homogeneous and isotropic
turbulence such as on the axis of a turbulent round jet (§ 2). The analytical results are
tested against the experimental data in § 3. It should be stressed that the quest for an
answer to the issue regarding whether or not Cε is Reynolds number dependent or has
a universal value (i.e. independent of the Reynolds number and flow configurations)
has an important practical implication considering that ε plays a fundamental role in
the theory of turbulence and is a critical controlling variable in many processes (e.g.
mixing, chemical reactions, interfacial exchanges). For example, considering that ε is
practically impossible to measure during field experiments (e.g. atmospheric, oceanic
and industrial measurements) the knowledge (i) that Cε is universal and (ii) of its
actual value would greatly benefit such experiments. Indeed, if Cε is a universal
constant, then it allows a relatively simple practical way for estimating ε in any
turbulent flow, at least at high Reynolds numbers. One would be required to measure
both the turbulence intensity, u′, and the integral length scale, L, which are relatively
straightforward to measure.

2. Theoretical considerations
2.1. Homogeneous and isotropic turbulence

For the sake of convenience, we reproduce here the first stages of the SP analytical
development of Djenidi & Antonia (2015) (hereafter denoted DA15), which we then
extend to derive an expression for Cε . The starting point of the analysis is the
transport equation for the second-order velocity structure function, (δu)2 where the
velocity increment is δu= (u(x+ r, t)− u(x, t)), (Danaila et al. 1999; Antonia et al.
2003)

− (δu)3 + 6ν
∂(δu)2

∂r
− 3

r4

∫ r

0
s4 ∂(δu)2

∂t
ds= 4

5
εr, (2.1)

where ε = −(2/3)(∂u2/∂t) is the mean turbulent kinetic energy dissipation rate
((2.1) is also called the scale-by-scale (SBS) energy budget). Following Barenblatt &
Gavrilov (1974), we assume the following SP expressions for (δu)2 and (δu)3 viz.

(δu)2 = u2
2(t)f (r

∗) (2.2)

(δu)3 = u3
3(t)g(r

∗), (2.3)

where r∗ = r/l(t); l(t), u2(t) and u3(t) are the length scale and velocity scaling
functions to be determined while f and g are dimensionless functions. For convenience,
we hereafter drop the variable t. Their analysis introduces the skewness of the
longitudinal velocity increment, S(r)(≡ (δu)3/(δu)23/2

), as a SP controlling parameter.
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Using (2.2) and (2.3), one can write S = c(t)φ(r/l) where c(t) and φ(r/l) are
dimensionless functions of time and (r/l), respectively. DA15’s SP framework allowed
a critical appraisal of the specific assumptions that have been made in previous SP
analyses. Specifically, SP is achieved when cRel = const., where Rel = u2l/ν is the
‘scaling’ Reynolds number. DA15 further show that when c(t) is constant, then
Rel= const., the length scale l can hence be identified not only with the Kolmogorov
length scale η, but with any other characteristic length scale which is proportional to η.
The implication is that SP is complete or exact i.e. the ratio between any two length
scales is constant (similarly for any two velocity scales) even when Rel is relatively
small. Recent measurements in the far field of a cylinder wake (Tang et al. 2015b)
show that S(r) collapses onto a single distribution, confirming that S= c(t)φ(r/l) with
c(t) = const. (i.e. Rel = const.). This is remarkable considering that the turbulence
in the far wake is neither homogeneous nor isotropic, and the Taylor microscale
Reynolds number is small. This suggests that the DA15 SP analysis can be extended
to anisotropic turbulence and in particular that the SP constraint cRel= const. appears
to be a general requirement that needs to be satisfied in any turbulent flow if SP is
to be achieved. This constraint presents two cases of SP, discussed in DA15. One, as
observed in Tang et al. (2015b) (see their figure 13), in which c(t) is constant and
the second which allows c(t) to vary. However, so far, experimental and numerical
evidence show that SP is observed when Rel is constant during decay, implying that
c(t) is constant too. The case of non-constant c(t) under SP is yet to be observed.
Accordingly, the SP analysis presented below concerns mainly SP where c(t) is
constant during the decay, which we know can be observed experimentally and
numerically.

Following Djenidi & Antonia (2015), we substitute (2.2), (2.3) and S(r) into (2.1).
After some trivial manipulations, we obtain

6f ′(r∗)− cu2l
ν
φ(r∗)f (r∗)3/2 − 3l2

νu2
2

∂u2
2

∂t
Γ1

r∗4
+ 3
ν

l
∂l
∂t
Γ2

r∗4
= 4

5
ε

l2

νu2
2
r∗, (2.4)

with

Γ1 =
∫ r∗

0
s∗4f (s∗) ds∗ (2.5)

Γ2 =
∫ r∗

0
s∗5f ′(s∗) ds∗, (2.6)

where s∗ is a dummy variable of integration. Equation (2.4) holds at all scales if
Γ1∼ r∗5 and Γ2∼ r∗5 when r∗→∞. Since f (r∗)→ const. and f ′(r∗)→0 when r∗→∞,
it is easy to show that these conditions are satisfied. Note also that when r∗ → 0,
f ∼ r∗2. Thus, Γ1 ∼ r∗7 and Γ2 ∼ r∗7; they approach zero more rapidly than r∗4.

The SP constraints are:

cRel =C0 (2.7)
l2

νu2
2

∂u2
2

∂t
=C1 (2.8)

l
ν

∂l
∂t
=C2 (2.9)

εl2

νu2
2
=C3, (2.10)
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where Rel = u2l/ν is a scaling Reynolds number. Evidently, the above constraints,
i.e. Ci must be independent of t (since the coefficient of the first term on the left-hand
side of (2.4) is a constant), apply for all separations r∗ while the numerical value of
the constants Ci depend on the scaling variables. Combining (2.7) and (2.10) and using
the definition of Rel yields

l=
(√

C3C0

c

)1/2 (
ν3

ε

)1/4

. (2.11)

Now, substituting (2.11) into (2.10) leads to

u2 =
(

C0√
C3c

)1/2

(νε)1/4 . (2.12)

Recognizing that η= (ν3/ε)1/4 and vK = (νε)1/4, the Kolmogorov length and velocity
scales, respectively, we can write l = Cηη and u2 = CvKvK . Clearly, Cη and CvK are
constant if c or equivalently Rel is constant. So far, experimental and numerical
evidence indicate that SP occurs when the scaling Reynolds number is constant. We
thus will take c or Rel to be constant under SP. Note that if c is constant, one can,
without loss of generality, take u3 = u2 and (2.7) becomes Rel = C0. Expressions
(2.11) and (2.12) reveal that, under SP, ε and ν are the relevant natural parameters
for the velocity increments.

The above derivation of the SP constraints (2.7)–(2.10) is similar to that of DA15.
The rest of the analysis departs from DA15. We can now rewrite (2.4) as

−S(r∗)= f (r∗)−3/2 1
Rel

{
−6f ′(r∗)+ 4

5
C3r∗ + 3

r∗4
(C1Γ1 −C2Γ2)

}
. (2.13)

C1 =−2C2 under SP (DA15), then

−S(r∗)=−6
f (r∗)−3/2f ′(r∗)

Rel
+ f (r∗)−3/2

Rel

{
4
5

C3r∗ + 3
r∗4

C1

(
Γ1 + 1

2
Γ2

)}
. (2.14)

First we write (2.14) as

−S(r∗)f (r∗)3/2 =−6
f ′(r∗)
Rel
+ 1

Rel

{
4
5

C3r∗ + 3
r∗4

C1

(
Γ1 + 1

2
Γ2

)}
. (2.15)

If l= λ and u2= u′ (i.e. λ and u′ are scaling variables satisfying SP requirements) and
writing C3,λ = (ελ2/νu′2)=Cε(λ/L)Reλ, we have the following expression for Cε:

Cε = 15
L
λ

1
Reλ
=
{
−5

4
S(r∗)f (r∗)3/2 + 15

2
f ′(r∗)
Reλ
− 1

Reλ

(
15

4r∗4
C1

(
Γ1 + 1

2
Γ2

))}
∗ r∗L

r∗
,

(2.16)
where r∗L = L/λ and C3,λ = 15; L is a length scale characteristic of the large-scale
motions. This expression reveals a non-trivial Reλ dependency of Cε felt at all scales
of motion. Also, Cε must be independent of r∗, which is easily verified. For example,
when r∗→∞, we obtain these asymptotic values, f (r∗)' 2, f ′(r∗)= 0, S(r∗)= 0. Then
it follows that Γ1 ' (2/5)r∗5, Γ2 ' 0 and the right-hand side of (2.16) becomes

Cε = 15
L
λ

1
Reλ
= 15

ReL

Re2
λ

, (2.17)
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where r∗L = ReL/Reλ and C1 =−10 (for HIT under SP, i.e. constant Reλ; see DA15).
We can also recover this expression when r∗ → 0. Indeed, expanding f (r∗) around
r∗ = 0 and using Taylor series expansion to order 4 yields

f (r∗)' αr∗2 − 1
12βr∗4, (2.18)

where α= (l2/u2
2)(∂u/∂x)2 and β= (l4/u2

2)(∂
2u/∂x2)2 are constant under SP and whose

values depend on the choice of l and u2. Since we selected u2 = u′ and l = λ then
α = 1, and β =G= (u′2(∂2u/∂x2)2/(∂u/∂x)2

2
), often called the enstrophy destruction

coefficient of ε. Substituting (2.18) into (2.16) with (Γ1+ 1/2Γ2)= (2/7)r∗7 as r∗→ 0
yields

Cε =
(
−5

4
S(r∗→0) − 5

2
G

Reλ
+ 15

14
C1

Reλ

)
r∗2

L
λ
+ 15

L
λ

1
Reλ

, (2.19)

which leads to Cε ' 15(L/λ)/Reλ for very small r∗. The expression inside the
parentheses is of interest. Since Cε must be independent of r∗

−S(r∗→0) − 2
G

Reλ
+ 6

7
C1

Reλ
= 0. (2.20)

This expression, which is in fact the transport equation for ε first written and tested
by Batchelor & Townsend (1947) and analysed in detail by Djenidi & Antonia
(2014) using direct numerical simulation based on the lattice Boltzmann method
(Succi 2001), was recently extensively used to determine the behaviours of S(r∗→0)
and G when Reλ→∞ in several turbulent flows (Lee et al. 2013; Thiesset, Antonia
& Djenidi 2014; Antonia et al. 2015; Tang et al. 2015a,b,c) in the context of
assessing whether the small-scale statistics are consistent with the original similarity
hypothesis (Kolmogorov 1941a) or the modified one (Kolmogorov 1962), i.e. whether
S(r∗→0) → const. or S(r∗→0) ∼ Reαλ ; S(r∗→0) is the velocity derivative skewness. If
one accepts that Cε approaches a constant as Reλ increases, then one must accept
that (2.20) holds. Thus, since C1 is constant (≡ −10), equation (2.20) reduces to
S(r∗→0) + 2G/Reλ→ 0 as Reλ increases.

We can write (2.16) in the generic form

Cε =
{

A(r∗)+ B(r∗)
Reλ

}
L
λ
, (2.21)

where A(r∗) and B(r∗) are functions of r∗, possibly of the Reynolds number too, and

A(r∗)+ B(r∗)
Reλ
= 15

Reλ
. (2.22)

We can easily relate Cε to the SP constants C0 and C3. If we rewrite (2.7) as

l= C0ν

cu2
(2.23)

and substitute it into (2.10), we obtain

εl
u3

2
= C3c

C0
. (2.24)
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If l= L (i.e. L is assumed to be a scaling length satisfying the SP requirement) and
u2 = u′, then we have

εL
u′3
=Cε = C3,Lc

C0,L
= C3,L

ReL
, (2.25)

where ReL = u′L/ν. Note that C3,L 6= 15. This is readily shown as follows. In the
context of SP, if both λ and L are scaling lengths then (2.10) holds for both these
quantities and we have

C3,L = L2

λ2
15, (2.26)

where we used u2 = u′. This leads to

Cε = 15
L2

λ2

1
ReL
= 15

ReL

Re2
λ

. (2.27)

2.2. Locally homogeneous and isotropic turbulence
The analysis carried out above for HIT can be experimentally tested only approximately
in grid turbulence, which remains, as far as we are aware, the closest approximation
to HIT in the laboratory. Another flow that is amenable to a SP analysis and where
HIT can be locally observed is the far field of a turbulent round jet. Burattini, Lavoie
& Antonia (2005b) showed that the SBS energy budget on the axis of the jet is given
the following generic form:

− (δu)3 + 6ν
∂(δu)2

∂r
+ Iu = 4

5
εr, (2.28)

where Iu represents the contribution of the large-scale motions. The term Iu is

Iu(r)=−U
r4

∫ r

0
s2 ∂(δu)2

∂x
ds− 6

∂U
∂x

1
r4

∫ r

0
s4((δu)2 − (δv)2) ds (2.29)

and represents the contributions from the advection (first term) and production (second
term) mechanisms, respectively. Darisse, Lemay & Benaissa (2015) showed that the
energy contribution from the pressure diffusion, turbulent diffusion and molecular
diffusion are negligible in the turbulent kinetic energy budget on the axis of the
round jet, which allows us to neglect them in Iu(r). Seeking SP solutions of similar
forms as (2.2) and (2.3) and after following the same trivial manipulations as above
we obtain

Cε =−5
4

S(r∗Lu
)fu(r∗Lu

)3/2 + 15
2

f ′u(r
∗
Lu
)

Reλ

r∗Lu

r∗
− 1

Reλ

r∗Lu

r∗

{
15

4r∗4Lu

(C2Γ1 −C3Γ2 + 2C4Γ3)

}
,

(2.30)
where Γ1 and Γ2 are similar to (2.5) and (2.6), respectively, and

Γ3 =
∫ r∗

0
s∗2( fu(s∗)− fv(s∗)) ds∗. (2.31)

In the Appendix we reproduce, for the sake of convenience, the first stages of the
analytical development of Djenidi et al. (2016) for the transport equation of (δq)2 =
(δu)2 + (δv)2 + (δw)2 and then develop a similar expression to (2.30), albeit with
different numerical coefficients.

The objective of the next section is to test the analysis against experimental data in
grid turbulence and on the axis of a turbulent round jet.
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FIGURE 1. (Colour online) Streamwise variation of Cε in grid turbulence and on the axis
of a round jet. LSQ43: perforated plate with large square holes with solidity 43 %; SSQ36:
perforated plate with small square holes with a solidity 36 %; WMG36: woven mesh grid
with a solidity 36 %; FG: fractal grid; for FG, M corresponds to the mesh size of the
background grid supporting the fractal elements.

3. Discussion and experimental results
The theoretical analysis developed above indicates that the constancy of Cε in a

decaying turbulence for a given Reynolds number is a consequence of the turbulence
decaying under the SP requirement. To assess these theoretical results, we report
measurements of Cε in decaying grid turbulence and on the axis of a turbulent round
jet in figure 1. Whilst grid turbulence does not satisfy SP (Djenidi et al. 2015), the
far-field flow along the jet axis complies well with SP (Djenidi et al. 2016). The
measurements in grid turbulence were made using three different grids; two were
constructed from perforated plates, but with different (square) hole sizes (denoted
LSQ43 and SSQ36, 46 and 36 % solidity), and one is a woven mesh (WMG36, 36 %
solidity). Details of the grid turbulence experiments can be found in Djenidi et al.
(2015), while details of the round jet measurements can be found in Djenidi et al.
(2016). Figure 1 reports also the measurements of Hearst & Lavoie (2014) obtained in
fractal grid (FG) turbulence and the results of Burattini, Antonia & Danaila (2005a)
in the turbulent round jet. All values of Cε are calculated using L defined as

Lu = 1

u2

∫ ro

0
u(x)u(x+ r) dr, (3.1)

where ro is the first zero crossing of the auto-correlation of the longitudinal velocity.
The trend in the variation of Cε along x in grid turbulence is clear: Cε decreases
with increasing x. This is consistent with the measurements of Krogstad & Davidson
(2011) in decaying turbulence downstream of multiscale grids. For the SSQ and WMG
data, Cε first increases before decreasing. The increase reflects the non-homogeneity
of the turbulence which is still in a development stage immediately downstream of
the grid. This region expands as ReM decreases, as the comparison between the SSQ
and LSQ data illustrates. This region is further extended behind a FG as Hearst &
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FIGURE 2. (Colour online) Streamwise variation of Lu/λ in grid turbulence and along the
axis of a turbulent round jet. The dashed line is used only as a visual guide to make it
clearer that the data for RM = 2000 actually decrease as x increases.

Lavoie (2014) showed in their comparative study between a classical grid and a FG.
After an initial increase behind the FG, Cε appears to decrease. However, a much
longer distance is required to assess the definitive trend for this type of grid turbulence.
The data for the round jet indicate that Cε remains practically constant along the axis
for a given Reynolds number, after an initial increase. The variation of Cε with x/M
in grid turbulence is consistent with a lack of SP at all scales of motion. Djenidi
et al. (2015) showed that decaying grid turbulence obtained in the laboratory is not
in SP. Their experimental results confirm the results of the eddy-damped quasi-normal
Markovian (EDQNM) simulation of decaying HIT by Meldi & Sagaut (2013) and
the analysis of Djenidi & Antonia (2015) for decaying HIT. The latter derived an
analytical expression relating the power-law decay exponent n and Reλ, which shows
that SP at all scales of motion can only be achieved if Reλ'∞ or finite Reλ provided
Reλ is constant, which would lead to n = −1. So far, experimental and numerical
evidence point to a decrease in Reλ in decaying HIT. By contrast, the constancy of
Cε on the jet axis reflects the validity of SP at all scales of motion (e.g. Burattini
et al. 2005a; Djenidi et al. 2016). Djenidi et al. (2016) showed analytically that the
requirement for SP on the axis of a turbulent round jet is similar to that for decaying
HIT (i.e. constancy of Reλ). Their measurements along the jet axis showed not only
that Reλ is constant, but both the one-point and two-point turbulence statistics evolve
in a manner which complies with SP, in the far field. Accordingly, for a given initial
condition, (i.e. a given global Reynolds number such as ReM in grid turbulence or ReD
for a jet), one should expect that Cε varies with x in decaying grid turbulence, and
to remain constant along the axis in the far field of a turbulent round jet.

Likewise, SP at all scales of motion also implies that r∗L = L/λ must be a constant
as the turbulence decays at any one Reynolds number. We show in figure 2 the
variation of Lu/λ(= r∗Lu

) with x for the data reported in figure 1; a log scale is used
for the ordinate to highlight more effectively any streamwise variation at small r∗Lu

. In
grid turbulence, r∗Lu

' 3.3–7 for LSQ43, r∗Lu
' 1.5–2.5 for SSQ43, r∗Lu

' 1.1–1.25 for
WMG36 (the measurement uncertainties are 6 %, 7.3 % and 9.65 % for LSW, SSQ
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Fractal grid (Mazellier & Vassilicos 2010)
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FIGURE 3. (Colour online) Dependence of Lu/λ on Reλ in grid turbulence and along
the axis of a turbulent round jet and a plane jet. The dashed line is a linear fit
used only as reference for the behaviour Lu/λ ∼ Reλ. The data for Gomes-Fernandes,
Ganapathisubramani & Vassilicos (2012) are for two fractal grids defined as SFG8 and
SFG17 with the same solidity. Inset: comparison between the distributions of the main
plot (black circles) with the distribution from the forced HIT of Kaneda et al. (2003).

and WWG, respectively). For the FG data (not shown here), r∗Lu
' 6–7.3 and decreases

with x; Reλ also decreases (see figure 10 of Hearst & Lavoie (2014)). The variation
of r∗Lu

with x is consistent with a lack of SP. On the jet axis, the ratio r∗Lu
increases

initially at a steep rate. It then approaches a plateau, notwithstanding the jitter in the
data at high x/D, associated with the difficulty in determining the first zero crossing
of the velocity auto-correlation function; the distance x/D for the r∗Lu

distributions to
approach a plateau increases with the Reynolds number. This is consistent with the
observation that the onset of the SP solutions moves downstream as ReD increases.
For example, Djenidi et al. (2016) showed that SP starts at x/D ' 15 and 40 when
ReD = 3.4 × 104 and 13 × 104, respectively. It should be noted that these far-field
measurements in a turbulent jet are difficult because the turbulence intensity becomes
(i) low and (ii) susceptible to the environment (the measurement uncertainty in Lu
varies from 8 % for ReD = 33 000 to 15 % for ReD = 105 000). This explains in part
the jitter in the data and why far-field data are rather scant in a turbulent jet.

For a given flow configuration, the streamwise behaviour of r∗Lu
with downstream

distance is independent of the ‘inlet’ Reynolds number, ReD for the jet and ReM for
grid turbulence: r∗Lu

becomes constant after an increase in the former case, while it
decreases continuously in the latter. However, for both flows, r∗Lu

increases with the
‘inlet’ Reynolds number or equivalently with Reλ. This is well illustrated in figure 3,
which shows the variation of r∗Lu

with Reλ. The value of r∗Lu
for each grid turbulence

is taken at the last x/M position, while for the round jet we used the value of r∗Lu
averaged over the region over which it is practically constant. Sreenivasan (1984)
showed that Lu/λ' (π/2)1/2 for grid turbulence at very low Reynolds numbers where
the energy transfer is very weak such as in the final period of decay. The present
results suggest that the final period of decay has not yet been reached, even though
the smallest Reλ is approximately 9 in the woven mesh grid turbulence. Note however
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that Djenidi et al. (2014) showed that the Kolmogorov scaling breaks down when Reλ
drops below approximately 20, underlining the persistence of the Reynolds number
dependence of Lu/λ. We have also added data for a plane jet (Pearson & Antonia
2001; Zhou, Pearson & Antonia 2001) and the fractal grid turbulence of Mazellier &
Vassilicos (2010) (see also figure 3 in Vassilicos (2015)) and Gomes-Fernandes et al.
(2012) (for both fractal grids only the last x station was used, but similar results are
observed upstream of that position). It is evident that r∗Lu

increases with increasing Reλ,
regardless of the flow configuration. Further, the data seem to collapse remarkably and
unexpectedly well onto a single line, as suggested in the inset of figure 3 where the
data are redrawn but without differentiating between the sets of data. For comparison,
we have reported r∗Lu

for the high Reynolds number direct numerical simulation
(DNS) of a three-dimensional periodic forced turbulence or forced HIT (Kaneda et al.
2003). It seems that the distribution of r∗Lu

for all decaying turbulence (black circles)
tends to become parallel to the r∗Lu

distribution of forced turbulence as Reλ increases.
Note the latter is relatively well represented by Lu/λ ∼ Reλ for the whole range of
Reλ used, although there is a deviation from that behaviour for the largest Reynolds
number. At this stage, it is unfortunately not possible to determine whether or not
the curve formed by the black circles will eventually remain parallel to the data for
forced HIT and thus behave like Lu/λ ∼ Reλ. If, from a purely practical point of
view, one considers the flow configurations separately, one may argue that, in a first
approximation, Lu/λ∼ Reλ with the constant of proportionality changing between the
flows (this is represented by the dashed-dotted lines). It is interesting to note that it is
perhaps not a coincidence that the value of the constant of proportionality corresponds
to different ranges of Reλ, and that it decreases as Reλ increases. Applying a simple
linear curve fit to each set of data (grid turbulence, round jet and plane jet) of
figure 3 we then obtain

r∗Lu
' a† + b†Reλ, (3.2)

where the pair of coefficients (a†, b†) is (0.6, 0.0533), (1.23, 0.042), (3, 0.0357) and
(6.015, 0.0281) for the grid turbulence, the fractal grid turbulence and the axes of
the round and plane jets, respectively (the symbol † in (3.2) and in (3.3), below,
is a reminder that the empirical constants, which, by the empirical nature of their
derivation, may be Reynolds number dependent and flow dependent). Using (2.17)
with (3.2) yields the following empirical relation for Cε

Cε ' c†

Reλ
+ d†, (3.3)

where (c†, d†) is (9, 0.7995), (18.45, 0.623), (45, 0.5355) and (90.4, 0.421) for
standard grid turbulence, fractal grid turbulence, the axis of the round jet and
the centreline of the plane jet, respectively. It seems that (3.3) would provide the
asymptotic value Cε,∞ = d† when Reλ→∞, which would appear to depend on the
flow configuration; Cε,∞'0.8, 0.62, 0.54 and 0.42 for standard grid turbulence, fractal
grid turbulence, round jet axis and plane jet centreline, respectively. These results
suggest that Cε,∞ is controlled by the rate of growth of r∗Lu

; the larger the growth, the
larger Cε,∞. This rate of growth decreases with increasing Reλ. However, it is clear
that the empirical constants obtained above are only valid for the corresponding flow
configuration considered and the range of Reλ over which the curve fit was applied,
which leads to an important issue requiring further investigation and which relates
to the asymptotic behaviour of r∗Lu

with increasing Reλ in different turbulent flows.
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FIGURE 4. (Colour online) Dependence of Cε on Reλ in several turbulent flows.

Determining whether this behaviour is universal (i.e. the same for all turbulent flows)
or not requires measurements in a various turbulent flows at very high Reynolds
numbers. As stated above, if the trend shown in the inset of figure 3 is confirmed,
that is Lu/λ = αReλ (α is a constant and the same for all turbulent flows) at very
large Reynolds numbers, then Cε,∞ would reach an asymptotic (universal) limit, yet to
be properly determined. When Reλ approaches infinitely large values, the turbulence
reaches its isotropic steady state regardless of the turbulent flow configuration (at
least away of any solid boundaries). If one accepts that such turbulence is adequately
represented by forced HIT at a finite but large Reynolds number, then Cε for such
turbulence is equal to Cε,∞. Thus, the possibility that Cε,∞ is a universal constant
should not be excluded.

The derivation of the empirical expression (3.3) is based on the relation (2.17)
valid for isotropic or locally isotropic turbulence. Thus, a convenient and simple way
to test isotropy or local isotropy is to compare the measured Cε with the calculated
one using (2.17). However, this requires the true dissipation ε t, which necessitates the
measurement of 12 terms. So far, only in grid turbulence can ε t be estimated reliably
from the turbulence kinetic energy budget in HIT (ε t =−(Uo)(dk/dx), Uo is the local
velocity). Of course, ε t is easily calculated with DNS data. Often in measurements,
ε t is approximated by its (local) isotropic surrogate ε iso. We reported in figure 4 the
measured Cε and the calculated one using (2.17) for the same flows as reported in
figure 3; we also added the DNS data for forced HIT (Wang et al. 1996; Donzis,
Sreenivasan & Yeung 2005; Yeung, Donzis & Sreenivasan 2012). For grid turbulence,
we used ε t while for the two jets we used ε iso. For the jet flows, it was found that
ε iso is a reasonable surrogate for ε (Darisse et al. (2015); Djenidi et al. (2016) for
the round jet, and Antonia, Anselmet & Chambers (1986) for the plane jet), justifying
the use of ε iso; in any case, the comparison between Cεiso and (2.17) constitutes a
check for self-consistency. Also reported in the figure, are the values calculated using
the second equality of (2.16) for grid turbulence where we evaluated all the terms on
the right-hand side at r = Lu; in the case of the round jet, we used (2.30) in which
we ignored the term Γ3 because we did not have the data for fv(r). Of course, this
is strictly not correct, and the values of Cε obtained with (2.30) will be only an
approximation. Note though that one should expect Γ3 to be smaller than Γ1 since
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( fu(r) − fv(r)) is smaller than fu(r). There is a general good agreement between the
measured Cε and that calculated using either (2.17) or (2.16) and (2.30) for each
turbulent flow. The agreement between the measurements and (2.17) for the grid
turbulence indicates that local isotropy is well approximated. For forced HIT where
all turbulence statistics are time independent, the agreement is perfect. Notice also
the good agreement between the forced HIT data obtained in various DNS studies.
For the round jet, the measurements too agree well with (2.17). This is not surprising
since the constraint (2.10), which leads to Cε = 15(L/λ)(1/Reλ), applies equally to
equation (2.28) and we used εiso as a surrogate to ε. The agreement with (2.30) is
not as good (notice the systematic downward shift), possibly due to the neglect of Γ3.
Whilst the agreement between (2.30) and the measurements is expected because the
turbulence decays in conformity with SP on the jet axis, the agreement observed for
grid turbulence between the measurements and (2.16) may be less evident, since SP is
strictly not satisfied, as can be seen in figure 1. The most possible explanation for this
rather unexpected observation relates to the fact that the large-scale inhomogeneity in
grid turbulence is weak, as reflected in the weak decrease of Reλ with the distance
x/M; the lower the initial Reynolds number, the smaller the rate of decrease. If this
inhomogeneity is small enough for allowing Reλ to be considered approximately
constant over the distance x/M covered by the measurements, then one can expect to
observe an approximately constant Cε over that distance. Interestingly, the observation
that the measurements satisfy both equalities of (2.16) suggests that local isotropy
and SP are verified by the small scales even though globally both SP and isotropy
are not strictly satisfied. While direct comparisons between DNS and experiments
of HIT are not possible, one can still compare decaying grid turbulence, a close
surrogate for decaying HIT, to DNS data for decaying HIT. To carry out such a
comparison, we report in figure 4 the data of Wang et al. (1996) for decaying HIT.
The DNS data follow the measurement trend adequately, thus lending confidence in
the measurements.

The behaviour of Cε depicted in figure 4 is similar to that reported by McComb
(2014) (see also Kaneda et al. 2003; Burattini et al. 2005b) for DNS data of decaying
and forced HIT. It is worthwhile commenting on this similarity considering that none
of the turbulent flows investigated here, with the exception of grid turbulence, are
considered HIT nor are they in ‘steady state’ (they decay spatially). Although it
should be pointed out that while grid turbulence and the jets decay in the direction
of the mean flow, there is still some ‘forcing’ associated with the large-scale
non-homogeneity, as seen in (2.1) and (A 1). Kaneda et al. (2003) reported that Cε

can be grouped in two groups when Reλ6 250, which was also noted by Sreenivasan
(1998): decaying HIT and forced HIT. However, the two groups merge as Reλ
increases beyond 250 and Cε becomes independent of Reλ. Figure 4 also shows
that while the data for forced HIT can be clearly distinguished from those for
grid turbulence and jets when Reλ 6 500, they tend to merge at higher Reλ where
Cε appears to become independent of Reλ. These observations lead naturally to
the issue of the universality of Cε (i.e. the Reλ independence of Cε for any flow).
Unfortunately, it is not possible to address this question at present but, as figure 4
shows, it is essential that any assessment of this universality to be carried out at very
large Reynolds numbers.

Finally, it is worth commenting on the following seemingly paradox: the present
analysis indicates that, under SP, Cε (or any SP constant) remains constant during
decay and yet its value can vary with the Reynolds number as seen in figure 1. This
paradox may be cleared by considering the two forms of similarity hypothesis
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introduced by Townsend (1956). The first similarity hypothesis asserts that at
sufficiently high Reynolds numbers non-dimensional mean-value functions are
independent of the Reynolds number; this is often called Reynolds number similarity.
The second similarity hypothesis is that of self-preservation at any one Reynolds
number, where the flow structure at all values of t (or x in the case of spatially
evolving turbulent flows) is similar. Figure 1 illustrates the second similarity
hypothesis for the round jet centreline: SP is satisfied at different Reynolds numbers,
as illustrated by the constancy of both Reλ and Cε along x. On the other hand,
figure 4 illustrates the Reynolds number similarity, where Cε becomes independent of
as Reλ becomes large. Townsend stated that ‘if, as must be assumed, Reynolds number
similarity of self-preserving flows exits, the form of the self-preserving functions are
universal for any one type of flow’. The question that remains to be answered is: are
all turbulent flows at an infinitely large Reynolds number of one type only? The fate
of the universality of Cε may well rest on the answer to this question.

4. Conclusions
It is shown that, for decaying HIT and decaying local HIT, Cε can be recovered

from the Navier–Stokes equations when self-preservation is assumed, thus avoiding the
use of dimensional analysis for its derivation. It is further shown that Cε is intimately
related to SP requirements, which fits well with Taylor’s initial introduction of Cε .
When the turbulence decays/evolves in accordance with SP requirements, Cε remains
constant for a given flow condition. Measurements in grid turbulence, which do
not satisfy SP, and a turbulent round jet, which comply with SP in the far field,
confirm these analytical results. The measurements show that after an initial increase
associated with the development of turbulence, Cε decreases with increasing x in grid
turbulence and is constant along the axis in the far field of a round jet. However,
the measurements also show that Cε decreases when the Reynolds number (e.g. Reλ)
increases in grid turbulence, a round jet and a plane jet. The rate at which Cε

decreases continues to diminish as Reλ increases. This trend, in agreement with earlier
studies (e.g. Sreenivasan 1984; Pearson, Krogstad & van de Water 2002), suggests
that one cannot exclude the possibility that Cε decreases towards a universal constant,
which would be equal to the magnitude of Cε in forced HIT, i.e. approximately 0.5.

A final word may be worthwhile on the SP solutions of the present analysis. Both
the theory and experiments show that Reλ is constant under SP. However, the theory
also shows that SP under which Reλ varies can exist. Whether or not this form of SP
leads to a constant or non-constant Cε during decay cannot be answered by the present
theory and is yet to be observed experimentally (or numerically), but which may well
exist. This situation is reminiscent of the SP solutions of Sedov (see Batchelor 1948)
who showed two possible cases of SP for HIT; one with constant Reλ during decay
and the other with Reλ increasing with time toward an asymptotic value.
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Appendix. SP analysis of locally homogeneous and isotropic turbulence based on
(δq)2

In § 2.2 we developed an expression of Cε based on the transport equation for (δu)2.
To make the analysis somewhat more general, here, we develop an expression of Cε
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based on the transport equation for (δq)2= (δu)2+ (δv)2+ (δw)2 whose generic form
is (Burattini et al. 2005a; Djenidi et al. 2016):

− (δu)(δq)2 + 2ν
∂(δq)2

∂r
+ Iq = 4

3
εr, (A 1)

where Iq represents the contribution of the large-scale motions which varies from flow
to flow. Let us for example focus on the centreline of a turbulent round jet. The term
Iq is of the form

Iq(r)=−U
r2

∫ r

0
s2 ∂(δq)2

∂x
ds− 2

∂U
∂x

1
r2

∫ r

0
s2((δu)2 − (δv)2) ds, (A 2)

which represents the contributions from the advection and production mechanisms,
respectively. We now follow Djenidi et al. (2016) and seek SP requirements for (A 1)
by assuming the following SP expressions

(δq)2 = q2
∗(x)fq(r∗), (δu)2 = u2

∗(x)hu(r∗), (A 3a,b)

(δv)2 = v2
∗(x)hv(r

∗), (δw)2 =w2
∗(x)hw(r∗), (δu)(δq)2 = (uq)∗(x)g(r∗), (A 4a−c)

with r∗ = r/lq, and lq, q∗, u∗, v∗, w∗ and (uq)1/3∗ the length and velocity scaling
functions to be determined; fq, g, hu, hv and hw are dimensionless functions. Note
that (δv)2 = (δw)2 on the axis of the jet. Let us introduce the mixed skewness
increment, Sq(r)(≡ (δu)(δq)2/[(δu)21/2

(δq)2]), as a SP controlling parameter; this
helps for expressing (δu)(δq)2 in terms of (δq)2. If SP is satisfied, then Sq has also
the SP expression Sq(r)= cqφq(r∗) (where cq is in general a function of x and φq(r∗)
a function of r∗), and we can write (uq)∗ = cqu∗q2

∗. Note also that since we can
express fq as

fq = u2
∗

q2∗
hu + v

2
∗

q2∗
hv + w2

∗
q2∗

hw, (A 5)

and it is independent of x, we must have q2
∗∼ u2

∗∼ v2
∗ ∼w2

∗ if SP holds. Thus, we can
take u∗= v∗=w∗ without loss of generality. Substituting (A 3), (A 4) and the definition
of Sq(r) in (A 1) leads to

−cq
u∗lq

ν
G(r∗)+ 2f ′q(r

∗)− Ul2
q

νu2∗

∂u2
∗

∂x
Γ1

r∗2
+ Ulq

ν

∂lq

∂x
Γ2

r∗2
− 2

l2
q

ν

∂U
∂x

Γ3

r∗2
= 4

3
εl2

q

νu2∗
r∗, (A 6)

with

G(r∗)= fq(r∗)h1/2
u (r∗)φq(r∗) (A 7)

Γ1 =
∫ r∗

0
s∗2fq(s∗) ds∗, Γ2 =

∫ r∗

0
s∗3f ′q(s

∗) ds∗, Γ3 =
∫ r∗

0
s∗2(hu(s∗)− hv(s∗)) ds∗,

(A 8a−c)

where s∗ is a dummy variable of integration. SP implies that all coefficients

cqRlq =C1 (A 9)
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Ul2
q

νu2∗

∂u2
∗

∂x
=C2 (A 10)

Ulq

ν

∂lq

∂x
=C3 (A 11)

l2
q

ν

∂U
∂x
=C4 (A 12)

εl2
q

νu2∗
=C5, (A 13)

where Rlq = u∗lq/ν is a scaling Reynolds number, are independent of x, since the
coefficient of the second term in (A 6) is a constant. We can now write

− S(r∗)' fq(r∗)−1hu(r∗)−1/2 1
Relq

{
−2f ′q(r

∗)+ 4
3

C5r∗ + 1
r∗2
(C2Γ1 −C3Γ2 + 2C4Γ3)

}
.

(A 14)
After trivial manipulations we obtain:

Cε = −3
4

S(r∗Lq
)fq(r∗Lq

)hu(r∗Lq
)1/2

r∗Lq

r∗
+ 3

2

f ′q(r
∗
Lq
)

Reλq

r∗Lq

r∗

− 1
Reλq

r∗Lq

r∗

{
3

4r∗2Lq

(C2Γ1 −C3Γ2 + 2C4Γ3)

}
, (A 15)

where we used lq = λq (q = 2k) and u∗ = q1/2 (q = 2k). We can now apply similar
arguments as in HIT to find an expression for Cε when r∗ is large enough so that
fq = hu = hv ' 2 and S(r∗)= 0. This leads to

Cε '−1
2

C2
ReLq

Re2
λq

= 1
2

C2
1

Reλq

Lq

λq
, (A 16)

which is equivalent to the isotropic form (2.17).
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