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By endowing his agents with simple forecasting models, or representations, M. Woodford
(“Learning to Believe in Sunspots,” Econometrica 58, 277–307, 1990) found that finite
state Markov sunspot equilibria may be stable under learning. We show that common
factor representations generalize to all sunspot equilibria the representations used by
Woodford. We find that if finite state Markov sunspots are stable under learning then all
sunspots are stable under learning, provided common factor representations are used.

Keywords: Indeterminacy, Sunspot Equilibria, E-Stability

1. A BRIEF HISTORY OF STABLE SUNSPOTS

Sunspot equilibria provide avenues through which agents’ expectations can drive
fluctuations in real economic activity. Interest in these equilibria developed through
the work of Shell (1977), Azariadis (1981), Cass and Shell (1983), and Guesnerie
(1986), but remained couched primarily in the theoretical literature until Benhabib
and Farmer (1994) and Farmer and Guo (1994) demonstrated the existence of
sunspot equilibria in RBC-type models modified to incorporate externalities or
monopolistic competition: see Farmer (1999) for a detailed development. These
authors, and many other since, have used calibrated DSGE models to argue that
fluctuations in agents’ expectations explain at least part of the business cycle. These
arguments have been extended to New Keynesian monetary models: Clarida et al.
(2000) and Lubik and Schorfheide (2004) suggest that passive monetary policy in
the seventies produced an economic environment conducive to sunspot equilibria
and the associated high volatility.

The simple existence of sunspot equilibria in a model does not imply their rele-
vance: it may not be possible for agents to coordinate their behavior appropriately.
A benchmark coordination device in macroeconomics is stability under learning:
for details, see Evans and Honkapohja (2001).
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In an OLG model, Woodford (1990) found that finite state Markov sunspots
may be stable under learning, thus lending credence to the relevance of sunspots
to applied models, and in part inspiring the work of Farmer and others. However,
Evans and Honkapohja (2001) found that the sunspot equilibria studied by Farmer
and Guo, which, unlike Woodford’s finite state sunspots, are driven by martingale
difference sequences with continuous support, are not stable under learning. This
finding was further supported by Evans and McGough (2005a) and Duffy and
Xiao (2007), who searched for stable sunspots in a host of RBC-type models and
found none.

The stability of equilibria may depend on the values of the model’s param-
eters; this has been known since Bray and Savin (1986). However, that Wood-
ford’s sunspots are stable and Farmer’s sunspots are not cannot be explained
so easily. In the linearized version of Woodford’s model, Farmer’s sunspots are
never stable: see Evans and Honkapohja (2003). Perhaps then the explanation
lies in the stochastic properties of the equilibria in question; after all, Woodford’s
sunspots are finite state and Farmer’s sunspots have continuous support. However,
as we will see below, the stochastic nature of an equilibrium has no impact on its
stability.

The stability of sunspot equilibria turns on the way they are viewed by private
agents. More specifically, a given equilibrium may often be associated with a par-
ticular recursive formulation: for example, Farmer considers equilibria in AR(1)
form. We call these recursions representations. When stability under learning is
investigated, a representation specifies a natural functional form for the forecasting
model that agents estimate and use to form their expectations; and, in the case of
indeterminacy, a given equilibrium may have several natural recursions associated
with it.1 It is known that the stability of a particular equilibrium may depend in
part on the form of the forecasting model used by agents. Evans and Honkapohja
(2003) provide an early example of this phenomenon: in a forward-looking linear
model they show that, under a natural representation, finite state Markov sunspot
equilibria are stable for a subset of the parameter region, but that if agents use
an AR(1) representation to form forecasts then these equilibria are unstable. In
Evans and McGough (2005b), we obtain another striking example: we investigate
the relationship between representations and E-stability in models with lags and
under the assumption that the extrinsic sunspot process has continuous support;
we find that sunspot equilibria previously thought to be unstable under learning
become stable if agents use a forecasting model consistent with what we call a
common-factor representation.

The notion of a representation allows us to fully investigate why, in a linearized
version of Woodford’s model, Farmer’s sunspots are never stable and Woodford’s
sunspots sometimes are. In this paper we show that the representation used in
Woodford’s analysis is, in fact, a special case of a common-factor representation
we developed in Evans and McGough (2005b); indeed, common-factor repre-
sentations generalize to all sunspot equilibria the learning mechanism used by
Woodford for finite state Markov processes.2 We conclude that whenever these
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finite state Markov sunspots are stable under learning, all sunspot equilibria will
be stable, provided a common-factor representation is used.

2. EXPECTATIONAL STABILITY AND ADAPTIVE LEARNING

Although stability under adaptive learning has become the dominant equilibrium
selection mechanism in macroeconomics, its language and techniques are still
relatively new and warrant discussion. We couch this discussion within the context
of the nonstochastic linearized version of Woodford’s model, as it is sufficient both
for the development of adaptive learning analysis and for our main results, which
are presented in the next section. The model is given by

yt = βEtyt+1, (1)

where yt ∈ R. A rational expectations equilibrium (REE) is any bounded stochas-
tic process yt satisfying (1).3 Sunspot equilibria exist in this model provided that
|β| > 1: we consider this case in detail in Section 3 below. Here, for our intro-
ductory discussion on learning, we assume that |β| < 1, in which case the unique
REE is given by yt = 0.

Fully rational agents know that yt+1 = 0 and they form expectations accord-
ingly. We back off the assumption of full rationality and instead model our agents
as adaptive learners: we assume that agents form expectations using a forecasting
model, or perceived law of motion (PLM), which has a functional form consistent
with the equilibrium under examination; specifically,

PLM:yt = a + εt , (2)

where a is the perceived conditional mean and εt is a perceived error term.
As adaptive learners, agents use past data to estimate their forecasting models;

but, as discussed below, the E-stability principle allows us to bypass this estimation
procedure and instead focus on a stylized notion of learning. Given the perceived
law of motion (2), agents form the forecast Etyt+1 = a. This forecast may be
imposed on the model (1), thus generating the time t value of y. This value
identifies the relationship between yt and the regressors in the agents’ forecasting
model; this relationship is known as the actual law of motion (ALM):4

ALM: yt = βa. (3)

The ALM defines a function, known as the T -map, that takes perceived coefficients
to actual coefficients; in this case, T (a) = βa. A fixed point of the T -map indicates
the alignment of perceived and actual coefficients and thus corresponds to a rational
expectations equilibrium.

Under adaptive learning, agents use recursive least squares (RLS) or other
updating algorithms to reestimate their forecasting model. The economy’s rational
expectations equilibrium is said to be stable under learning if these estimates
converge to the associated fixed point of the T -map. Even within the context of
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a simple linear model such as (1), asymptotic analysis of the agents’ estimators
is nontrivial and relies on the theory of stochastic recursive algorithms: see Evans
and Honkapohja (2001) for details. However, stylized learning via the notion
of E-stability provides a simple, tractable alternative, which, according to the
E-stability principle, provides conditions sufficient to guarantee stability under
adaptive learning.

E-stability analysis proceeds as follows: using the T -map, we may write down
the ordinary differential equation ȧ = T (a) − a. Notice that a rest point a∗ of
this ODE corresponds to an REE of (1). We say that the REE is E-stable if it
corresponds to a Lyapunov stable fixed point of the ode. The E-stability principle
states that E-stable REE are locally learnable under least squares or related learning
algorithms.

The appeal of E-stability is in part due to the tractable nature of its computation:
a sufficient condition for Lyapunov stability is that the eigenvalues of DT (the
T -map’s derivative evaluated at the fixed point) have real part less than unity.5

This formulation also provides a converse to the E-stability principle: if DT has
an eigenvalue with real part larger than one, then the agents’ estimators do not
converge to the T -map’s fixed point. Thus we say that a rational expectations
equilibrium is E-stable if all eigenvalues of DT have real part less than one and
we say that it is E-unstable if at least one eigenvalue has real part greater than one.
For the univariate model under consideration in this section, E-stability analysis
is particularly simple to perform: DT = β ∈ (−1, 1) so that the unique REE is
always stable under learning.

3. REPRESENTATIONS AND SUNSPOT EQUILIBRIA

We return to the model (1), reproduced here for convenience,

yt = βEtyt+1,

and now examine the case |β| > 1. Let yt be an REE, and set εt = yt − Et−1yt .
Then yt satisfies the recursion

yt = β−1yt−1 + εt . (4)

We call this recursion the general form representation of the equilibrium yt .
Because yt is bounded, we know that either εt = 0 (so that yt+k = 0 for k ∈ Z) or
|β| > 1; in the latter case, εt can be any martingale difference sequence (MDS)
with uniformly bounded support. For the remainder of the paper we assume
|β| > 1. Note that yt is an REE of (3) if and only if there exists an MDS εt such
that yt satisfies (4). The MDS εt captures variation in yt resulting from fluctuations
in agents’ expectations; it is often called a sunspot, and the associated REE yt is
often called a sunspot equilibrium. If εt has continuous support then so does yt

and (4) describes a standard AR(1) process, which is the type of sunspot solution
studied in Farmer (1999).
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Let yt be an REE of (3), and consider its stability by providing agents with a
PLM consistent with the representation (4),

yt = θ ′Xt = θ1 + θ2yt−1 + θ3εt ,

where Xt = (1, yt−1, εt )
′ is the vector of regressors. The actual law of motion is

yt = T (θ)′Xt = β(1 + θ2)θ1 + βθ2
2 yt−1 + βθ2θ3εt ,

giving the T -map

θ1 → β(1 + θ2)θ1,

θ2 → βθ2
2 ,

θ3 → βθ2θ3. (5)

Computing the Jacobian yields

DT =
⎛
⎝β(1 + θ2) βθ1 0

0 2βθ2 0
0 βθ3 βθ2

⎞
⎠. (6)

Evaluating DT at the fixed point θ∗ = (0, β−1, θ3) corresponding to the sunspot
equilibrium identified above yields an eigenvalue equal to two; thus, by the con-
verse of the E-stability principle, the REE is unstable.6 We obtain the well-known
result that yt is not stable under learning, and because yt was arbitrary, no sunspot
equilibria of (3) are learnable—at least if agents use a PLM consistent with general
form representations.

Equilibria generated by coordination on an arbitrary MDS were the type studied
by Farmer and others in applied models; however, Woodford had a different type
of sunspot in mind. Take as primitive a two-state Markov process st ∈ {s̄1, s̄2} ≡
{0, 1}, with transition matrix π : thus,

πij = prob{st = s̄j |st = s̄i}.
For any ȳ ∈ R2, we may construct the associated Markov process

yt = ȳi ⇔ st = i − 1, for i = 1, 2. (7)

Evans and Honkapohja (2003) showed that yt is an REE of (3) if and only if the
following two conditions hold:

π11 + π22 = 1 + β−1, (8)

ȳ2(1 − π11) = −ȳ1(1 − π22). (9)

In case yt is an REE, we call (7) its natural representation.7 These yt are the
two-state Markov sunspots for the linear model (3) analogous to those studied in
Woodford (1990).
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To analyze the stability under learning of these types of equilibria we follow
Evans and Honkapohja (2003): we specify a PLM consistent with (7), that is,
we assume that agents observe st , know that the transition matrix for st is π , and
believe the equilibrium of the model is a two-state Markov process; but we assume
they do not know the values of yt in these two states. Instead, we provide agents
with perceived values for the states, and thus we may identify their perceptions
with points ỹ ∈ R2. For given perceptions ỹ, the PLM is formally given by8

yt = ỹi ⇔ st = i − 1, for i = 1, 2. (10)

To obtain the ALM, notice that if agents observe st = 0 then they will forecast
yt+1 as

Êt (yt+1|st = 0) = π11ỹ1 + (1 − π11)ỹ2.

It follows that if st = 0 then

yt = β (π11ỹ1 + (1 − π11)ỹ2) .

A symmetric computation holds for st = 1, so that if agents have perceptions
given by ỹ then the economy follows a two-state Markov process with transition
matrix π and states ŷ ∈ R2 given by

ŷ = βπỹ ≡ TN(ỹ). (11)

We call TN : R2 → R2 the “natural T-map.”
When perceptions and truth coincide, that is, when TN(ỹ) = ỹ, an REE is

identified. It follows that ỹ is an REE if and only if the matrix βπ has a unit
eigenvalue and ỹ is an associated eigenvector: these conditions are guaranteed by
the restrictions (8) and (9).

Now notice that DTN = βπ . The eigenvalues of DTN evaluated at a fixed point
are unity and β, which means that the associated REE are E-stable precisely when
β < −1. Appealing to the E-stability principle, we obtain Evans and Honkapohja’s
conclusion that the two-state Markov sunspot equilibria yt are stable under learning
provided β < −1. This is the result for the linear model analogous to the celebrated
stability result of Woodford (1990).

Above we noted that if yt is an REE then there is an MDS εt such that yt

satisfies (4); thus finite state Markov sunspot equilibria must also have general
form representations. Also, even in this case, if agents use a forecasting model
consistent with (4) then the equilibrium is unstable. We conclude, as did Evans
and Honkapohja, that stability of finite state Markov sunspots under learning is
representation-dependent.

We now turn to the main question of this paper: “What’s so special about finite
state Markov sunspots?” The answer, of course, is “Nothing.” We will now show
that if β < −1 then all sunspots are stable under learning, provided agents have
perceptions consistent with Woodford’s natural PLM. To facilitate the argument,
we first show how to write Woodford’s finite state PLM in a way that naturally
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generalizes to all sunspot equilibria, regardless of support cardinality; and to do
this, we begin by constructing the general form representation of a two-state
Markov sunspot equilibrium ȳ ∈ R2 (the equilibrium is again associated with the
fundamental process st with transition matrix π ).

Define a stochastic process εt (st−1, st ) as follows:

st−1 st εt (st−1, st )

0 0 (1 − β−1)ȳ1

0 1 ȳ2 − β−1ȳ1

1 0 ȳ1 − β−1ȳ2

1 1 (1 − β−1)ȳ2

Because the two-state process (ȳ, π) satisfies the restrictions (8) and (9), it can
be shown that εt is a martingale difference sequence, and further, by construction,
the two-state process (ȳ, π) solves

yt = β−1yt−1 + εt . (12)

Equation (12) is the general form representation of the two-state sunspot equilib-
rium ȳ.

Using the lag operator, we may solve (12) for yt to obtain

yt = ηt , (13)

ηt = (1 − β−1L)−1εt .

Equation (13) is the common-factor representation of the two-state sunspot equi-
librium ȳ. Because yt is a two-state Markov process, it follows that ηt is a two-state
Markov process. We think of ηt as a serially correlated extrinsic noise process on
which agents coordinate to form expectations, and we call it a common-factor
sunspot.9

That an REE may have multiple representations raises an obvious question: is
one representation more natural than another? This question cannot be answered
from the perspective of rationality: the stochastic structure of the equilibrium is in-
dependent of the representation, so rational agents will arrive at the same forecasts
regardless of the representation they are assumed to use. To compare different
representations of a given equilibrium, then, we must consider the behavior of,
and the information available to, an adaptive learner.

A representation provides the functional form of the forecasting model used
by the adaptive agent. Within the context of (3), a general form representation
requires that agents view a nonforecastable sunspot shock, and that they regress
current y on lagged y and the sunspot: this has some appeal in that little structure
is placed on the extrinsic sunspot shock, but it also is somewhat awkward in the
sense that agents incorporate a lag into their regression model when no such lag
is indicated by the economic model.10
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Within the context of (3), a common-factor representation requires that agents
view and regress y on an exogenous serially correlated shock. The simplicity of
the model under examination makes this representation and associated forecasting
model seem somewhat forced; however, the common factor representation has a
natural, and quite general interpretation. Every linear model has a finite number of
minimal state-variable (MSV) solutions, which are usually viewed as fundamental;
for the model (3) there is a unique MSV solution, given by yt = 0. A common-
factor representation is obtained by simply appending a common-factor sunspot
to an MSV solution. In particular, when using a common-factor representation,
agents include in their regression model only those lagged endogenous variables
indicated by the economic model.11 For an extended discussion of common-factor
representations and their relation to minimal state variable solutions, see Evans
and McGough (2005b).

To study the stability under learning of yt , we provide agents with a PLM
consistent with (13):

yt = a + bηt . (14)

Notice that because ηt is a two-state Markov process, the perceptions identified
by this PLM are entirely analogous to the perceptions identified by Woodford’s
natural PLM (10): agents believe the economy follows a two-state Markov process.
We compute

Etyt+1 = a + bEtηt+1,

and because
Etηt+1 = β−1ηt ,

we find that the T -map associated with a common factor representation is

TCF (a, b) = (βa, b).

It follows that the eigenvalues of DTCF are 1 and β. We conclude that if agents use
common-factor representations to form their forecasting models then yt is stable
under learning provided that β < −1, just as in Woodford.

Our stability argument was made in the context of an MDS constructed to
replicate the two-state Markov sunspot (ȳ, π); however, nothing in the argument
relied on the two-state nature of the equilibrium: indeed, the common-factor
representation was intentionally constructed to be independent of the specific
properties of the MDS εt . To see this, let yt be any REE of the model, and let
εt be the associated martingale difference sequence. Let ηt = (1 − β−1L)−1εt .
Then yt = ηt . Again, provide agents with the PLM (14). Exactly the same T -
map obtains. We conclude that if β < −1 then all sunspot equilibria are stable
under learning, provided that agents use a common-factor representation as their
forecasting model.

Although this result generalizes Woodford’s stability result to all sunspots, we
have yet to formally establish the connection between the stability of common-
factor representations and the stability of natural representations. Recall our
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primitive assumption that agents believe the economy follows a two-state Markov
process with transition matrix π , where π satisfies (8). Let � be the set of all
two-state Markov processes with transition matrix π and notice that � may be
identified with R2. We think of � as the set of all possible agent beliefs.

We may also think of � as the set of all PLMs consistent with natural represen-
tations: simply recall that st is the primitive sunspot with transition matrix π , let
y ∈ �, and see equation (7). Although the identification of � with this set is, in a
sense, trivial, distinguishing the sets will aid clarity; therefore, let �N be the set of
all PLMs consistent with natural representations [as captured by R2 together with
equation (7)] and let SN : � → �N be the identity map on R2. The map SN , then,
takes an agent’s beliefs to the associated natural PLM.

Finally, we must characterize the set of all PLMs consistent with common-factor
representations. To this end, let yt be a two-state Markov sunspot equilibrium with
transition matrix π and states ȳ ∈ R2 satisfying (9), let εt be the MDS such
that yt solves (4), and let ηt be the common factor sunspot generated by εt .
Recall that ηt is a two-state Markov process with ηt = ȳi if st = i − 1, for
i = 1, 2. Now let �CF be the set of PLMs (a, b) consistent with the common-
factor representation of yt , and notice that a PLM is uniquely determined by its
coefficients: a + bηt = c + dηt ⇔ a = c and b = d. Recalling that � is just R2,
we may define SCF : � −→ �CF by

SCF (y) =
(

y1(ȳ2 − ȳ1) − ȳ1(y2 − y1)

ȳ2 − ȳ1
,
y2 − y1

ȳ2 − ȳ1

)′
.

Straightforward computation shows that SCF is a bijection. Finally, define S :
�N −→ �CF by S = SCF ◦ S−1

N and note that S is bijective by construction.

PROPOSITION 1. The following diagram commutes:

A commutative diagram is an efficient way to make statements about equivalence
of functions. To understand the diagram’s meaning, start with a point in any set
(the “initial” set) and pick any other set (the “final” set) that can be reached from
the initial set by following a path of arrows. Under the composition of the functions
corresponding to the arrows in your path, the point you chose in the initial set is
mapped to a point in the final set. Because the diagram commutes, the path of
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arrows you chose to reach the final set is irrelevant. An important example is

S−1
N ◦ TN ◦ SN = S−1

CF ◦ TCF ◦ SCF . (15)

To prove this statement, note that SN is the identity map; so it suffices to show that
for any point y ∈ R2 it follows that

SCF ◦ TN(y) = TCF ◦ SCF (y).

Notice that

ŷ = TN(y) = (β[π11y1 + (1 − π11)y2], β[(1 − π22)y1 + π22y2])′

so that, using (8), ŷ2 − ŷ1 = y2 − y1. Using this, direct computation yields

SCF ◦ TN(y) =(
1

ȳ2 − ȳ1
[β(π11y1 + (1 − π11)y2)(ȳ2 − ȳ1) − ȳ1(y2 − y1)] ,

y2 − y1

ȳ2 − ȳ1

)′
.

Using restrictions (8) and (9), we obtain that

π11(ȳ2 − ȳ1) = ȳ2 − β−1ȳ1.

Combining, we get

SCF ◦ TN(y)

=
(

1

ȳ2 − ȳ1
[βπ11(ȳ2 − ȳ1)(y1 − y2) + βy2(ȳ2 − ȳ1) − ȳ1(y2 − y1)] ,

y2 − y1

ȳ2 − ȳ1

)′

=
(

1

ȳ2 − ȳ1
[(βȳ2 − ȳ1)(y1 − y2) + βy2(ȳ2 − ȳ1) − ȳ1(y2 − y1)] ,

y2 − y1

ȳ2 − ȳ1

)′

=
(

1

ȳ2 − ȳ1
[β(y2(ȳ2 − ȳ1) − ȳ2(y2 − y1))] ,

y2 − y1

ȳ2 − ȳ1

)′

=
(

1

ȳ2 − ȳ1
[β(−y2ȳ1 + ȳ2y1)] ,

y2 − y1

ȳ2 − ȳ1

)′

=
(

1

ȳ2 − ȳ1
[β(y1(ȳ2 − ȳ1) − ȳ1(y2 − y1))] ,

y2 − y1

ȳ2 − ȳ1

)′

= TCF ◦ SCF (y).

The commutativity of this diagram allows us to make several precise statements
about the relationship between common factor representations and Woodford’s
natural representations.

COROLLARY 2. PLMs consistent with common factor representations and
PLMs consistent with natural representations identify the same set of agent beliefs.
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COROLLARY 3. Viewed as acting on agents’ beliefs, the maps TN and TCF

coincide.

Corollary 2 acknowledges that S is bijective and Corollary 3 is an interpretation
of equation (15). Taken together, these corollaries indicate the sense in which, when
restricted to finite state Markov sunspot equilibria, common-factor representations
may be identified with Woodford’s natural representations; importantly, however,
common-factor representations may be used to analyze the stability of any sunspot
equilibrium. In this sense, we may view common-factor representations as a
generalization of Woodford’s natural representations to all sunspot equilibria.

Finally, by applying the chain rule and the inverse function theorem to equation
(15), we find that the eigenvalues of DTN and DTCF coincide. Thus,

COROLLARY 4. Common-factor representations and natural representations
have the same stability properties.

Furthermore, because the eigenvalues of the associated T -maps are independent
of the cardinality of the sunspot’s support, we may conclude that whenever finite
state Markov sunspots are stable under learning, all sunspot equilibria are stable
under learning, provided common-factor representations are used for the stability
analysis.12

It may be useful to conclude this section with a summary of the key results on
the stability of stationary sunspot equilibria for the model (3): (i) if β > 1 then
sunspot equilibria are not stable under learning, regardless of the representation
used by agents; (ii) if β < −1 then all sunspot equilibria are stable under learning,
provided agents use common-factor (or natural) representations of the solutions,
and (iii) although stability of sunspot equilibria depends on the parameter region
and on the representation of the equilibrium, it does not depend on whether the
sunspot solution has finite support.

4. CONCLUSIONS

The implications for learning stability, of distinguishing between REE and their
representations, can be striking. For the forward-looking model, such as the lin-
earization of the OG setup used by Woodford (1990), Evans and Honkapohja
(2003) show that for a subset of the indeterminacy region, finite-state sunspot
solutions can be stable under learning for a natural representation, whereas they
are not stable when put into an AR(1) representation. One might think that this
is a reflection of the type of sunspot equilibria being considered. In particular,
one might hypothesize that in this model a sunspot solution with continuous
support would never be stable under learning, because such a solution cannot
be represented as a function of an exogenous finite-state Markov process. Our
central finding is that this conjecture is incorrect. We show that for the subset
of the indeterminacy region in which finite-state sunspot solutions are stable
under learning using the natural representation, any sunspot equilibrium is also
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stable under learning, provided agents use what is known as the common-factor
representation of the sunspot solution.

NOTES

1. A linear model is indeterminate if it admits multiple REE.
2. In this way, we provide a converse to the result of Evans and Honkapohja (2003): they find

that finite state sunspot equilibria are unstable if agents use an AR(1) representation; we show that all
sunspot equilibria are stable if agents use a common-factor representation, and provided the model’s
parameters are in the correct subset of the indeterminacy region.

3. We consider only doubly infinite processes.
4. When trying to learn the unique REE of the model (1) under the assumption that |β| < 1, agents

regress on a constant; in general, the PLM, and hence the ALM, will condition on several explanatory
variables.

5. In case the stability of sunspot equilibria in linear models is being analyzed, the appropriate
E-stability condition is that the eigenvalues of DT be less than or equal to unity: for details see Evans
and Honkapohja (2001, 2003).

6. Here, θ3 can be any real number, reflecting the fact that if εt is an MDS then so too is θ3εt .
7. The term “natural representation” emphasizes the simple connection between the equilibrium

dynamics of the REE and the forecasting model implied by the representation (7): agents believe that
the economy transitions between unknown states as the sunspot st fluctuates, and their forecasting
model naturally reflects these beliefs.

8. Incorporating an error into the PLM, as in (2), makes realistic the assumption that agents perceive
the economy as a two-state process even though the observations do not support this perception. We
omit the error term here without loss of generality to facilitate exposition. Also, stability under learning
of a two-state Markov sunspot equilibrium does not require that agents know the transition matrix π :
agents could use standard econometric techniques to estimate π and the stability conditions would be
unaltered.

9. The name “common-factor representation” comes from their construction, which may be thought
of as obtained by dividing out the common factor (1−β−1L). This construction is less trivial in higher
dimensions and with the incorporation of lags into the reduced-form model. Also, in higher-dimensional
models, the “factors” may be complex—this sometimes occurs, for example, in nonconvex business-
cycle models; we have developed the construction of common-factor representations in the case of
complex factors, but the paper detailing the analysis is still being written.

10. In fact, it is the inclusion of the unnecessary lagged endogenous variable in the representation
that drives the instability result; in particular, reduced-form models with lags may have stable equilibria
when agents use AR(1) representations.

11. One drawback of the common-factor representation is that the common-factor sunspot is
required to satisfy a knife-edge “resonance frequency” condition—for the model (3), the common-
factor sunspot’s serial correlation must be β−1—but this condition is an artifact of our focus on linear
models: in the nonlinear case, open sets of resonance frequencies exist.

12. Although this conclusion applies only to the simple model considered in this paper, we con-
jecture that it holds more generally.
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