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We study a problem related to the spin-coating process in which a fluid coats a rotating surface.

Our interest lies in the contact-line region for which we propose a simplified travelling wave

approximation. We construct solutions to this problem by a shooting method that matches

solution branches in the contact-line region and in the interior of the droplet. Furthermore,

we prove uniqueness and qualitative properties of the solution connected to the fourth-order

nature of the equation, such as a global maximum in the film height close to the contact line,

elevated from the average height of the film.

Key words: PDEs for fluid mechanics, travelling wave solutions, non-linear fourth-order equa-

tions, existence and uniqueness, thin fluid films.

1 Introduction

In this paper, we investigate the axisymmetric thin-film equation

∂th+ r−1∂r
(
r2m(h)h

)
+ r−1∂r

(
rm(h)h∂r

(
r−1∂r (r∂rh)

))
= 0, t > 0, r > 0. (1.1)

Equation (1.1) models the height h = h(t, r) of a viscous thin fluid film moving on a rotating

substrate as a function of time t and radius r. It can be derived from the Navier–Stokes

equations including the action of centrifugal force due to the rotation of the surface.

Here, m(h) = h + h2 is called mobility and the terms r−1∂r
(
rm(h)h∂r

(
r−1∂r (r∂rh)

))
and r−1∂r

(
r2m(h)h

)
are due to capillary and centrifugal forces, respectively. Note that

r−1∂r
(
rm(h)h∂r

(
r−1∂r (r∂rh)

))
can be seen as the analogue of a viscous regularizing term
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of the problem, despite being not a second but a fourth-order term. We refer to the

Appendix for details on the derivation and the dependence on physical parameters.

The motivation to study this problem comes from the spin-coating process, which is

a mechanism used to apply thin films to substrates. In this procedure, the fluid is first

deposited on the centre of a substrate, the substrate is then rotated which leads to spreading

of the fluid until the substrate is ultimately covered by the fluid uniformly. Spin-coating

processes have been an interesting subject in a variety of industrial applications such

as photolithography used in semiconductor and nanotechnology. At the same time, the

corresponding models have attracted interest in the physical and mathematical community.

A related model to (1.1) for the spin-coating problem has been introduced in [18] where the

authors investigated the rate of thinning of the flow. The model introduced in [18] has been

modified through subsequent studies to include various factors such as thermal effects [46],

the effect of the Coriolis force [37], air flow [34], air shear [32], surface tension [43],

non-Newtonian fluids [1], topographic effects [30, 39], fingering instabilities [29, 40] and

evaporation [11].

In this paper, we consider a spreading viscous thin film on an axisymmetric rotating

plate. We construct travelling wave solutions to an ordinary differential equation (ODE),

obtained by approximating (1.1), and analyse its properties. More precisely, in Section 2,

we approximate the thin-film equation (1.1) to obtain the following ODE:

d

dx

(
Vh− m(h)h+ m(h)h

d3h

dx3

)
= 0, (1.2)

for travelling wave solutions h = h(x + Vt), where V denotes the speed of propagation.

Existence for solutions of (1.2) has been established by [4] by Beretta, Hulshof and

L.A. Peletier in a general setting. In this paper, we prove uniqueness and derive further

properties for these solutions. In particular, we show that there is a unique solution which

is analytic as a function of the two variables x2/3 and xβ where β = 1
4
(
√

13 − 1). We will

compare their result and their proof method with ours in Section 3 after the statement

of Theorem 3.1. Due to the different dominant forces, we divide the analysis into two

regions: the region where the flow spreads by a centrifugal force and the region where the

flow is near the contact line, i.e., in contact with a solid. We use two directional shooting

arguments and standard ODE theory in order to obtain solutions for two regions. Finally,

we match the solutions in the intermediate region to find appropriate solutions having

bumps as sketched in Figures 1 and 2 in Section 2.

Our interest to investigate (1.2) is motivated by its relevance for the spin-coating process

where the spreading is driven by centrifugal forces. We note, however, that the model

(1.2) can also be used to describe the evolution of thin films for other types of forcing.

An example is a thin liquid film spreading down an inclined or vertical wall driven by

gravitation. Corresponding thin-film models have been intensively studied in the literature.

Relevant third-order ODEs have been investigated by Tuck and Schwarz in [44] where

a series of ODEs has been formulated and solved numerically. The derived ODEs have

been further analytically studied in [4,5,16,42] and related boundary value problems have

been studied in [2,45]. In [35], a relevant PDE has been solved using matched asymptotics

with a numerical method. Existence and stability of under-compressive travelling waves
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r=R  

h(t,r)

0

Figure 1. Geometry of the axisymmetric spin-coating solution.

have been discussed in [9, 10] and thermal effects have been included in [7] to obtain

travelling wave solutions and a range of admissible contact angles. We would like to

point out that the behaviour of a retracting liquid has been analysed using matched

asymptotics and travelling wave solutions in [21, 31, 36]. Travelling wave solutions have

also been considered in many analytical studies of thin-film equations, e.g., [12,15,26] where

behaviours of positive solutions, asymptotics, existence and uniqueness of solutions have

been investigated. We note that degenerate fourth-order diffusion equations have been

considered in the framework of image processing [8,27,28], surface diffusion [41] and phase

field theory [14]. Let us finally note that, although most of the mathematical literature on

the spin-coating problem is concerned with one-dimensional solutions, experiments show

the formation of non-radial solutions, related to the occurrence of fingering instabilities

[22, 29, 33, 40]. It would be interesting to analyse the qualitative behaviour of solutions

in such a more general setting. Furthermore, it would be also interesting to include

other effects into the model such as evaporation which is relevant at a later stage of the

spin-coating process.

The structure of the paper is as follows: In Section 2, we derive an ODE for travelling

wave solutions. Conditions of the flow shape are also introduced in this section. In

Section 3, we present the main result on the existence and uniqueness of the solutions

satisfying these conditions. The proof of existence and regularity at the contact point

is given in Sections 4–7 and the proof of the uniqueness is given in Section 8. In

the Appendix, we give a derivation of the thin-film equation (1.1) in the lubrication

approximation regime in the setting of the spin-coating process.

2 The model and travelling waves

In the following, we give a heuristic derivation of the considered travelling wave model.

Let us note that the thin-film equation is already non-dimensionalized with respect to the

typical vertical and horizontal length scales where the evolution is expected to occur (see

also Appendix). We assume the setting sketched in Figure 1, where the film has extended

to the point r = R � 1 at some initial time. Setting x := r − R and expanding (1.1) in

powers of R−1, we formally obtain for |x| � 1

∂th− R
(
∂x(m(h)h) + O(R−1)

)
+

(
∂x

(
m(h)h∂3

xh
)

+ O(R−1)
)

= 0, t > 0. (2.1)

By scaling and neglecting higher order terms in R−1, we then arrive at the problem

∂th− ∂x(m(h)h) + ∂x

(
m(h)h∂3

xh
)

= 0, t > 0, x ∈ �. (2.2)
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x = 0 x = xc

A

H

Figure 2. Geometry of the solution near the left edge of support with a characteristic ridge at

x = 0.

We also assume that the film height, away from the contact line, is well approximated

by a constant A of order 1. Note that in the mobility m(h) = h + h2, the linear term

(coming from the Navier-slip condition) dominates in the contact line region, while the

full mobility is relevant in the bulk.

This motivates investigating travelling wave solutions to (2.2) by considering h(t, x) :=

hTW(x + Vt), where V ∈ � is the speed of the wave. Omitting subscript “TW” and

inserting this ansatz into (2.2), we obtain the ODE

d

dx

(
Vh− m(h)h+ m(h)h

d3h

dx3

)
= 0, (2.3)

of the travelling wave profile h (see Figure 2). We will look for solutions of (2.3) which

also satisfy the following conditions:

(1) h(x) → A > 0 as x→ ∞.

(2) h attains its global maximum H = h(0) at x = 0.

(3) There exists a contact point xc < 0 such that h(xc) = dh
dx

(xc) = 0 and such that

supp h = [xc,∞).

The condition h(xc) = 0 simply determines the contact point xc, whereas dh
dx

(xc) = 0

ensures the contact angle to be zero (these boundary conditions are relevant in the case

of complete wetting, see e.g., [17]). For given A > 0, the parameters H , V and xc are

unknown a priori and have to be found as part of the solution. Instead of (A2), we will

use the slightly weaker condition

(2) h(0) = H , dh
dx

(0) = 0, and d2h
dx2 (0) = κ,

where we have also introduced the new parameter κ � 0 to have a two-parameter family

of solutions h(x) depending on the free parameters H and κ.

We will show that the solution of this problem also satisfies two additional properties

related to the velocity and the fluid profile near the contact point:

(1) The velocity V is determined in terms of the film height A by

V = A+ A2. (2.4)

(2) For 0 � x� 1 and with θ :=
√

8V
3

, β = 1
4
(
√

13 − 1), the solution satisfies

h(xc + x) = θx
3
2

(
1 + v

(
x

3
2 , xβ

))
, (2.5)
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where v is analytic in a neighbourhood of (y1, y2) = (0, 0) with v(0, 0) = 0.

The first identity is trivial and we will see that it follows by integrating equation (2.3)

utilizing (A1)–(A3). The second condition is more intricate: Note that the leading-order

behaviour in (2.5) can be guessed by observing that

ψ(x) := θx
3
2 (2.6)

is a solution of the problem

ψ
d3ψ

dx3
= −V for x > 0, (2.7a)

ψ =
dψ

dx
= 0 at x = 0. (2.7b)

Hence, ψ also represents a travelling wave solution for the thin-film equation with

quadratic mobility, where the mobility m(h) is replaced by its dominating contribution h

as h ↘ 0. This explains the leading behaviour of the solution. For the structure of the

correction term, we refer to Section 6.

3 Main result

The main result in this paper is the construction of a travelling wave solution to the

approximated thin-film equation (2.2) satisfying (A1)–(A3) and (B1)–(B2) as stated in

Section 2.

Theorem 3.1 (Existence, uniqueness and qualitative behaviour) For every asymptotic film

height A > 0, there exists a unique solution h of (2.3) satisfying (A1)–(A3). The para-

meters H > A, V > 0 and xc < 0 are uniquely determined by A. Furthermore, conditions

(B1)–(B2) are satisfied.

In particular, Theorem 3.1 shows that the constructed solution is analytic in terms of two

variables x3/2 and xβ . The travelling solution constructed in Theorem 3.1 describes the

profile of the propagating liquid thin film in the later stages of the spin-coating process

when the tangential curvature of the expanding liquid film is relatively small and can be

neglected. Theorem 3.1 also yields a formula for the speed of propagation V in terms

of the film height A in the bulk. Qualitatively, the travelling wave solution exhibits an

approximately constant film height in the bulk (i.e., as x → ∞), while it exhibits a local

bump near the contact line where the maximal film height is attained. See also [21, 36]

where a similar shape for retracting films has been found. Mathematically, it is related to

the fact that equation (1.1) is a fourth-order equation for which a comparison principle

does not hold.

We remark that the existence result in Theorem 3.1 is contained in the result [4] by

Beretta, Hulshof and L.A. Peletier (compare [4, Problem (1.10) and Theorem A] with

Theorem 3.1 and Equations (4.2) and (4.5) in the next section). However, the result in [4]

is only concerned with existence of a solution while we additionally obtain uniqueness.

Furthermore, our proof method differs from [4]: In [4], existence is proven by shooting
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from an arbitrary point in the bulk to −∞ and to the contact point xc, respectively, in

order to obtain two solution manifolds with appropriate asymptotic behaviour, having a

non-trivial intersection. In our approach, we directly shoot from the contact point to the

global maximum and from there to −∞. This enables us to obtain qualitative properties

of solutions at the contact point as stated in (B2) and the fact that a unique global

maximum exists (cf. (A2)).

Note that for negligible capillary forces, the propagation of the liquid film formally is

described by the conservation law:

∂th+ r−1∂r
(
r2m(h)h

)
= 0, for t > 0, r > 0. (3.1)

Indeed, we expect that in this limit, the solutions of (1.1) converge to a viscosity solution

(also called entropy solution but not to be confused with the notion of entropy-weak

solutions for the thin-film equation) of (3.1). Usually, entropy solutions are defined as the

solutions arising from a regularization via a second-order term. We note that fourth-order

approximations of conservation laws have been studied (see, e.g., [19, 23]). However, we

have not found literature about regularizations as in (1.1), where the regularizing term is

non-linear, degenerate parabolic and of fourth order. It hence seems to be an interesting

open question to prove convergence of solutions of (1.1) to an entropy solution of (3.1).

Because of mass conservation, the film height A is approximatively proportional to

R(t)−2 where R(t) is the radius of the expanding film. Hence, (2.4) yields a formula for the

speed of propagation for the expanding thin film in terms of the average film height and

thus also in terms of the radius. In fact, formula (2.4) can also be obtained by exploiting

the Rankine–Hugoniot condition for the Burgers’ type equation (3.1) (cf. [20]).

For the proof of the theorem, we use the following strategy:

(1) We perform a first trivial integration of (2.3), keeping the asymptotic behaviour (A1)

of our solution in mind. As a result, we obtain a new equation for h in Section 4 as

a third-order ODE.

(2) Shooting from 0 to ∞: By standard ODE theory, we construct a two-parameter family

of solutions h obeying h(0) = H , dh
dx

(0) = 0, d2h
dx2 (0) = κ, where H > 0 and κ � 0

are free parameters. Then we choose κ = κ+(H) such that for every H > A, the

asymptotic behaviour (A1) is fulfilled (see Figure 3).

(3) Shooting from xc to 0: We construct a one-parameter family of solutions in a right

neighbourhood of x = xc (similar to reference [24]) and match the conditions

h(0) = H and d2h
dx2 (0) = κ+(H) for some H > A.

(4) Uniqueness: We prove uniqueness under the assumptions (A1)–(A3) by a method

first used in [6] in the context of source-type self-similar solutions.

4 Simplification of the travelling wave equation

We integrate equation (2.3) and get

Vh− m(h)h+ m(h)h
d3h

dx3
= C, (4.1)
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H

A

x0

Figure 3. Sketch for solution satisfying (A1) and (A2∗) in Section 5.

where C ∈ � is an integration constant. Therefore,

d3h

dx3
= F(h), (4.2)

where

F(h) := 1 − V

m(h)
+

C

m(h)h
= 1 − V

h+ h2
+

C

h2 + h3
. (4.3)

If C > 0, condition (A3) in conjunction with (4.2) and (4.3) would imply d3h
dx3 (x) �

c(x− xc)
−2 as x↘ xc for some c > 0. Integrating twice, this would lead to a logarithmic

divergence of dh
dx

as x ↘ xc, thus violating condition (A3). In the same way, also C < 0

can be excluded, that is, we necessarily have C = 0.

Equations (4.2) and (4.3) with C = 0 and h→ A as x→ ∞ (cf. (A1)) imply that

d3h

dx3
→ 1 − V

m(A)
= 1 − V

A+ A2
as x→ ∞. (4.4)

As any non-vanishing value of limx→∞
d3h
dx3 would violate condition (A1), we necessarily

have that the speed of the wave is given by (2.4), i.e.,

V = m(A) = A+ A2,

and the function F(h) simplifies to

F(h) = 1 − V

h+ h2
= 1 − A+ A2

h+ h2
. (4.5)

For later use, we note that F ∈ C∞((0,∞)) is strictly increasing with limh↘0 F(h) = −∞,

limh→∞ F(h) = 1 and F(A) = 0.

5 Behaviour as x→ ∞

In this section, we construct solutions h of formula (4.2) satisfying the conditions (A1)

and (A2∗) (see Figure 3).

We introduce the notation h = hκ for the corresponding solution of (4.2) and (4.5)

which satisfies condition (A2∗). We have the following result:
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Proposition 5.1 (First shooting argument) For any A > 0 and any H � A, there exists a

unique κ = κ+(H) � 0 such that the corresponding solution hκ+
satisfies (A1) and (A2∗).

Furthermore, hκ+
decreases monotonically in (0,∞).

Proof of Proposition 5.1 If H = A, we have the trivial solution h0(x) ≡ A with κ = 0.

In the following, we hence assume H > A. For given κ � 0, let x+ = x+(κ) > 0 be the

smallest point such that hκ(x+) = A, if such a point exists and x+ = ∞ otherwise. We

define

K :=
{
κ ∈ � : x+(κ) <∞

}
. (5.1)

Step 1 We claim that K is an open interval of the form

K = (−∞, κ+) (5.2)

for some κ+ := κ+(H) � 0. In order to see this, we first note that by standard ODE

theory, x+ = x+(κ) depends continuously on the initial datum κ and hence K is an open

set. By a Taylor expansion of hκ(x) around x = 0, we have

hκ(x) = H +
1

2
κx2 +

1

6
F(h(ξ))x3 (5.3)

for any x < x+ and for some ξ ∈ (0, x). In view of (5.3) and since 0 < F(h) � 1 for h > A,

we conclude that κ ∈ K for κ sufficiently negative. In particular, K 
= ∅.
Now, assume that κ1 ∈ K and let κ2 < κ1. By construction, we have hκi � A in [0, x+]

for i = 1, 2 where x+ := min{x+(κ1), x+(κ2)}. In view of the initial data at x = 0 and

since F is monotonically increasing in h, this implies hκ2
(x) < hκ1

(x) for all x ∈ (0, x+] and

hence A = hκ2
(x+) < hκ1

(x+). This shows that x+(κ2) � x+(κ1) <∞ and hence κ2 ∈ K. It

follows that K = (−∞, κ+) for some κ+ := κ+(H) ∈ �.

For H > A and κ = 0, we have d2h0

dx2 (0) = 0. Since d3h
dx3 = F(h) > 0 for h > A, we have

dnh0

dxn
(x) � 0 for all n ∈ � and h0 ↗ ∞ as x→ ∞. In particular, 0 � K and hence κ+ � 0.

Step 2 We claim that hκ+
is monotonically decreasing, i.e.,

dhκ+

dx
(x) � 0 for x ∈ (0,∞). (5.4)

By the arguments in Step 1, x+(κ) is monotonically increasing in κ and x+(κ) → ∞ for

κ ↗ κ+. Since also dhκ
dx

(x) depends continuously on κ on compact subsets of [0,∞), in

order to obtain (5.4), it is, hence, enough to show

dhκ
dx

(x) � 0 for x ∈ I := (0, x+(κ)), (5.5)

for any κ ∈ K. Indeed, by (5.3), for any κ ∈ K, we have dhκ
dx

(x) < 0 for x ∈ (0, η) and

η > 0 sufficiently small. Since A � hκ � H for x ∈ I , we have d3hκ
dx3 = F(hκ) > 0, i.e., dhκ

dx
is

a convex function in I . Further noting that dhκ
dx

(x+(κ)) � 0 by construction, we necessarily

have dhκ
dx
< 0 in I , i.e., (5.5) holds true.
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Step 3 We have

hκ+
(x) → A as x→ ∞. (5.6)

Indeed, by definition of K and since κ+ � K, we have hκ+
(x) > A for all x ∈ (0,∞). By

Step 2, h is monotonically decreasing in (0,∞). In particular, there exists C � A such that

hκ+
→ C as x → ∞. If C > A, we would have

d3hκ+
dx3 (x) = F(hκ+

(x)) � F(C) > 0 for all

x ∈ [0,∞), which contradicts the fact that h decreases monotonically in (0,∞).

Step 4 It remains to show uniqueness. Arguing by contradiction, we assume that hκi
satisfies (A1) for κ2 < κ1. With the notation ϕ := hκ1

− hκ2
, we have ϕ(0) = 0, dϕ

dx
(0) = 0

and d2ϕ
dx2 (0) = κ1 − κ2 > 0. It follows that ϕ(x) > 0 for x ∈ (0, η) for some η > 0. In view

of (4.2) and (4.5), we also have d3ϕ
dx3 (x) = F(hκ1

(x)) − F(hκ2
(x)) > 0 for x ∈ (0, η). Hence,

d2ϕ
dx2 (x) is positive and increases strictly monotonically for x > 0. On the other hand, by

assumption, we have ϕ(x) → 0 as x→ ∞, hence a contradiction. �

We conclude the section with a discussion of κ+(H).

Proposition 5.2 (Properties of κ+(H)) The function κ+ : [A,∞) → (−∞, 0], defined in Pro-

position 5.1, has the following properties:

(1) κ+(A) = 0.

(2) κ+ is strictly monotonically decreasing in H .

(3) κ+ ∈ C0([A,∞)).

(4) κ+(H) → −∞ as H → ∞.

Proof of Proposition 5.2 Let us denote by h,H the corresponding solution h of (4.2) and

(4.5) which satisfies conditions (A1) and (A2∗) with H > 0 and κ = κ+(H).

Proof of 1. This follows immediately, since h(x) ≡ A solves (4.2) and (4.5) and satisfies

(A1) and (A2∗) for κ = 0.

Proof of 2. For given A � H1 < H2 ∈ �, we define hi := h,Hi
for i = 1, 2. By Proposi-

tion 5.1, we have in particular hi(x) > A for all x ∈ (0,∞). Arguing by contradiction, we

assume κ+(H2) � κ+(H1). With the notation ϕ = h2−h1, we then have ϕ(0) = H2−H1 > 0,
dϕ
dx

(0) = 0 and d2ϕ
dx2 (0) = κ+(H2)−κ+(H1) � 0. By (4.2) and (4.5), it then follows that ϕ > 0

and ϕ are monotonically increasing for all x ∈ (0,∞). This is a contradiction to the fact

that by assumption, we have limx→∞ ϕ(x) = 0.

Proof of 3. By 2, κ+ is a strictly decreasing function, and hence there can at most be a

countable number of discontinuities. Arguing by contradiction, let us assume that κ+ is

discontinuous at H0 � A. We first consider the case H0 > A and assume,

δ0 := lim sup
ε↘0

(
κ+(H0 + ε) − κ+(H0 − ε)

)
< 0.

For ε > 0, let ϕε := h,H0+ε − h,H0−ε and δε := κ+(H0 + ε) − κ+(H0 − ε) < 0. We then
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have ϕε(0) = 2ε, dϕε
dx

(0) = 0, d2ϕε
dx2 (0) = δε,

d3ϕε
dx3 (x) = F(h,H0+ε(x)) − F(h,H0−ε(x)). For ε > 0

sufficiently small, we have by Taylor expansion for all x ∈ (0,∞):

ϕε(x) � 2ε+
δ0

4
x2 +

1

6

d3ϕε

dx3
(ξ)x3 for some ξ ∈ (0, x), (5.7)

which shows that for ε > 0 sufficiently small, there is x∗ > 0 such that ϕε(x
∗) = 0,

dϕε
dx

(x∗) < 0 and d2ϕε
dx2 (x∗) < 0. Since d3ϕε

dx3 has the same sign as ϕε by equation (4.2) and the

definition (4.5) of F , d3ϕε
dx3 (x) < 0 for x > x∗, and hence ϕε is negative and decreasing for all

x > x∗. This contradicts the fact that by assumption, we have limx→∞ ϕε(x) = 0. A similar

argument can be applied for H0 = A by defining ϕε := h,A+ε−A and δε := κ+(A+ ε) > 0.

Proof of 4. In view of 2, κ+(H) decreases monotonically. We assume by contradiction

that κ+(H) � −K for all H � A and for some K > 0. Then, by Proposition 5.1, h := h,H

satisfies h > A, d3h
dx3 > 0 and hence d2h

dx2 > −K in (0,∞). Since dh
dx

(0) = 0, we get dh
dx

� −Kx
and

h− A � (H − A) − 1

2
Kx2 for x � 0.

This implies h − A � H−A
2

for x �
√

H−A
K

=: xK and thus d3h
dx3 � δ > 0 for x � xK and

δ = F
(
H+A

2

)
> 0. In turn, this implies d2h

dx2 � −K+δx and dh
dx

� −Kx+ δ
2
x2 for x � xK . If

H−A
K

= x2
K is sufficiently large, it follows that h(xK ) > A, dh

dx
(xK ) > 0, and d2h

dx2 (xK ) > 0. In

view of (4.2) and (4.5), this implies that h increases monotonically for x > xK and hence

h > A for all x � 0. This contradicts that, by construction, we have limx→∞ h = A. �

6 Behaviour near the contact point

In this section, we construct a solution near the contact point xc which satisfies (A3)

and (B2) (see Figure 2). In [25] as well as [3, 26], two approaches for the construction of

solutions are detailed, one of which is based on invariant manifold theory for dynamical

systems using the Hartman–Grobman theorem. Here, we opt for the more direct approach

in which we explicitly construct solutions by linearization and a fixed-point argument.

For this, we shift equation (4.2) by x → x−xc and take the assumption (A3) into account.

Hence, we will consider

d3h

dx3
= F(h)

(4.5)
= 1 − V

h+ h2
= 1 − A+ A2

h+ h2
for x > 0, (6.1a)

h =
dh

dx
= 0 at x = 0, (6.1b)

whose expected solution is sketched in Figure 4.

6.1 New dependent variables

We factor off the leading-order travelling wave ψ (cf. (2.5)–(2.7)) by setting

h(x) =: ψ(x)S(x)
(2.6)
= θx

3
2 S(x) (6.2)
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H

0x =  x c

Figure 4. Sketch of the solution near the contact point x = xc. In this section, we consider the

shifted problem (6.1) with contact point x = 0.

for S to be determined and where θ is defined in (B2). We also define the scaling-invariant

(logarithmic) derivative D := x d
dx

= d
d ln x

. For later use, we note that

d

dx
xμ = xμ−1(D + μ) for μ ∈ �. (6.3)

Also, using the equivalent identity Dxμ = xμ(D+μ) for μ ∈ �, a straightforward calculation

shows that

d3h

dx3
= x−1Dx−1Dx−1D(θx

3
2 S) = θx−

3
2 q(D)S,

where the polynomial q is given by

q(ζ) :=
(
ζ − 1

2

)(
ζ +

1

2

)(
ζ +

3

2

)
.

In terms of the scaling invariant derivative D, problem (6.1) can hence be expressed as

Sq(D)S + θx
3
2 S2q(D)S − (x

3
2 )2S2 − 1

θ
x

3
2 S = −3

8
for x > 0,

with the single boundary condition S = 1 at x = 0. In terms of the new variable u given

by S =: 1 + u, we arrive at the problem

p(D)u = N(x
3
2 , D, u) for x > 0, (6.4a)

u = 0 at x = 0, (6.4b)

where

p(ζ) := q(ζ) + q(0) = (ζ + 1)(ζ − α)(ζ − β), (6.5)

N(x
3
2 , D, u) := −uq(D)u− θx

3
2 (1 + u)2q(D)(1 + u)

+(x
3
2 )2(1 + u)2 +

1

θ
x

3
2 (1 + u) (6.6)
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with

α := −1

4

(√
13 + 1

)
< 0 and β :=

1

4

(√
13 − 1

)
> 0. (6.7)

Clearly, problem (6.4) does not allow for a solution u that is smooth up to the boundary

x = 0, since terms containing the non-smooth factor x
3
2 appear in (6.6). In order to deal

with this hurdle, we will apply an “unfolding of variables” in the sequel.

6.2 Unfolding of variables

We consider the following non-homogeneous linearized problem:

p(D)u = g for x > 0, (6.8a)

u = 0 at x = 0. (6.8b)

The general solution of the initial value problem (6.8) is given as the sum of a particular

solution and a linear combination of the solutions of the homogeneous equation, i.e.,

ker p = span〈x−1, xα, xβ〉.

Among these three solutions, the two solutions x−1 and xα are ruled out by the boundary

condition in (6.8). For this reason, and in view of (6.4), we expect the solution to be

smooth in terms of the unfolding

u(x) = u(x
3
2 , bxβ),

where u(y1, y2) is a smooth function in (y1, y2) and b ∈ � is a free parameter. In fact, we

will even show that u is real analytic. Correspondingly, as in [24, 25], we define

D :=
3

2
y1∂1 + βy2∂2.

In terms of the unfolded variables, we look for a solution u(y1, y2) of

p(D)u = g for y1 � 0, y2 ∈ �, (6.9a)

(u, ∂2u) (0, 0) = (0,−1) (6.9b)

for some smooth function g(y1, y2). Indeed, if u is a solution of (6.9), then by the chain

rule, it follows that u(x) := u(x
3
2 , bxβ) is a solution of (6.8) for every b ∈ �. The non-linear

problem (6.4) can be correspondingly expressed in terms of unfolded variables as

p(D)u = N(y1, D, u) for y1 � 0, y2 ∈ �, (6.10a)

(u, ∂2u) (0, 0) = (0,−1) (6.10b)

with

N(y1, D, u) = −uq(D)u− θy1(1 + u)2q(D)(1 + ū) + y2
1(1 + u)2 +

y1

θ
(1 + u). (6.11)
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Again, if u is a solution of (6.10), then a simple calculation shows that ub(x) := u(x
3
2 , bxβ)

is a solution of (6.4) for every b ∈ �.

6.3 The linear problem

We first investigate the linear problem (6.9). In terms of v(y1, y2) := u(y1, y2) + y2, we can

as well consider the problem

p(D)v = g for y1 � 0, y2 ∈ �, (6.12a)

(v, ∂2v) (0, 0) = (0, 0), (6.12b)

since p(D)y2 = 0. Note that the boundary conditions in (6.12) imply corresponding

boundary conditions, or compatibility conditions, for the right-hand side. Indeed, since

Dv(0, 0) = 0 and by using the commutation relation ∂2D = (D + β)∂2, we have

p(D)v(0, 0) = p(0)v(0, 0) = 0,

∂2p(D)v(0, 0) = p(D + β)∂2v(0, 0) = p(β)∂2v(0, 0) = 0.

This calculation shows that the compatibility conditions g(0, 0) = 0 and ∂2g(0, 0) = 0 are

necessary for the existence of a smooth solution.

The following lemma establishes existence and uniqueness for a solution of (6.12), if g

satisfies appropriate compatibility conditions, and gives corresponding estimates for the

solution operator. For the proof, we refer to [25, Proposition 1], where an operator of the

same type is estimated by explicitly inverting p
(
D

)
using the method of characteristics.

Lemma 6.1 Let 1, 2 > 0 and suppose that g ∈ C∞([0, 1] × [−2, 2]), g = g(y1, y2),

satisfies the compatibility conditions

g(0, 0) = 0, ∂2g(0, 0) = 0.

Then problem (6.12) admits a solution v ∈ C∞([0, 1]× [−2, 2]). Furthermore, we have the

maximal-regularity estimate

3∑
m=0

‖∂k1∂l2D
m
v‖C0 � C‖∂k1∂l2g‖C0 for all (k, l) ∈ �2

0 \ {(0, 0), (0, 1)}, (6.13)

where ‖ · ‖C0 denotes the supremum norm on [0, 1] × [−2, 2] and C > 0 is a universal

constant. We denote the solution operator by T , i.e., Tg := v.

Our aim is to estimate the solution of the non-linear problem (6.10) by using the linear

problem (6.12). In the following lemma, we define two norms and show that the solution

of problem (6.12) can be estimated by the inhomogeneous term with the help of the norms

following an argument in the proof of [25, Lemma 3].
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Lemma 6.2 Define the norms

|||f|||0 :=

∞∑
k=0

∞∑
l=0

k1
l
2

k!l!
‖∂k1∂l2f‖C0 and |||f|||1 :=

3∑
m=0

|||Dmf|||0. (6.14)

Then we have sub-multiplicativity of |||·|||0 in the sense that

|||fg|||0 � |||f|||0|||g|||0, (6.15)

for f(y1, y2), g(y1, y2) smooth. Furthermore, for g as in Lemma 6.1, we have

|||Tg|||1 � C|||g|||0,

where Tg is the solution of (6.12) and C > 0 is universal.

Proof of Lemma 6.2 Suppose f(y1, y2) is smooth with f(0, 0) = ∂2f(0, 0) = 0, then

‖f‖C0 + 2‖∂2f‖C0 � C
(
1‖∂1f‖C0 + 2

2‖∂2
2f‖C0

)
, (6.16)

with a universal C > 0, which as well as (6.15) is elementary to prove (cf. [25, proof of

Lemma 3]).

By means of Lemma 6.1 and (6.16), we obtain

|||Tg|||1 =

3∑
m=0

∞∑
k=0

∞∑
l=0

k1
l
2

k!l!
‖∂k1∂l2D

m
(Tg)‖C0 � C

∑
(k,l)�=(0,0),(0,1)

k1
l
2

k!l!
‖∂k1∂l2g‖C0 � C|||g|||0,

where C > 0 is universal. �

6.4 The non-linear problem

We proceed to the analysis of the non-linear problem (6.10). We will apply a fixed-point

argument to obtain existence of a local solution near the origin:

Proposition 6.3 There is 0 > 0 such that for  ∈ (0, 0), problem (6.10) with 1 = 2,

2 =  admits a solution u ∈ C∞([0, 2] × [−, ]). Furthermore, the solution u = u(y1, y2)

is analytic.

Proof of Proposition 6.3 We first reduce problem (6.10) to the corresponding problem

with homogeneous boundary conditions by setting u(y1, y2) =: v(y1, y2)−y2. Then v(y1, y2)

solves

p(D)v = N(y1, D, v − y2) for y1 > 0, y2 ∈ �, (6.17a)

(v, ∂2v) (0, 0) = (0, 0). (6.17b)

We note that if v ∈ C∞([0, 2] × [−, ]) satisfies v(0, 0) = ∂2v(0, 0) = 0, then

g := N(y1, D̄, v − y2)
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satisfies g ∈ C∞([0, 2] × [−, ]) and g(0, 0) = ∂2g(0, 0) = 0. This follows by direct

computation, using the commutation relation ∂2D = (D + β)∂2. By application of the

solution operator T , constructed in Lemma 6.1, we hence obtain the fixed-point equation

v = T (v) , where T (v) := Tg = TN(y1, D, v − y2). (6.18)

We also define the metric space S by

S := closure with respect to |||·|||1 of{
v ∈ C∞([0, 2] × [−, ]) : |||v|||1 � , v(0, 0) = ∂2v(0, 0) = 0

}
,

where the norms defined in (6.14) of Lemma 6.2. We claim that for an  > 0 sufficiently

small, the fixed-point problem (6.18) allows for a unique solution in S . Our argument is

based on Banach’s fixed-point theorem.

By Lemma 6.2, we have

|||T (v)|||1 � C|||N(y1, D, v − y2)|||0, (6.19)

|||T (v1) − T (v2)|||1 � C|||N(y1, D, v1 − y2) −N(y1, D, v2 − y2)|||0 (6.20)

for smooth functions v, vi (i = 1, 2) satisfying the compatibility conditions (6.12b), where

here and in what follows in this proof, C, C̃, Ĉ > 0 are universal. Clearly, we have

|||q(D)y2|||0 � C. In addition, it is also easy to see that we have (cf. (6.11))

|||N(y1, D, v − y2)|||0 � C
(
|||v − y2|||0 + |||y1(1 + v − y2)

2|||0
)
|||q(D)(1 + v − y2)|||0

+C|||y2
1 |||0|||1 + v − y2|||20 + C|||y1|||0|||1 + v − y2|||0 � C̃ (6.21)

for v ∈ S and

|||N(y1, D, v1 − y2) −N(y1, D, v2 − y2)|||0
� C|||(v1 − y2)q(D)(v1 − y2) − (v2 − y2)q(D)(v2 − y2)|||0

+C|||y1(1 + (v1 − y2))
2q(D)(v1 − y2) − y1(1 + (v2 − y2))

2q(D)(v2 − y2)|||0
+C|||y2

1 |||0|||(1 + (v1 − y2))
2 − (1 + (v2 − y2))

2|||0 + C|||y1|||0|||v1 − v2|||0
� C̃

(
+ |||v1|||1 + |||v2|||1

)
|||v1 − v2|||1 � Ĉ|||v1 − v2|||1 (6.22)

for v1, v2 ∈ S . Using (6.20) and (6.22), by Banach’s fixed-point theorem, we obtain a unique

solution of (6.18) in S for sufficiently small  > 0. �

We are ready to prove the existence of a solution of (6.1):

Proposition 6.4 For any b ∈ �, there is a unique solution hb of (6.1) such that

hb(x) = θx
3
2 (1 + ub(x)) for 0 � x � x∗b := min

{


4
3 ,

(

|b|

) 1
β
}
, (6.23)

where ub(x) = u(x
3
2 , bxβ) for some analytic function u : [0, 2]×[−, ] → � with u(0, 0) = 0,

∂2u(0, 0) = −1.
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Proof of Proposition 6.4 Let u be the solution of Proposition 6.3. Then hb, given by (6.23),

satisfies (6.4). Furthermore, the value x∗b = min { 4
3 ,

(

|b|

) 1
β } follows from the corresponding

range of an analytic function u defined on [0, 2] × [−, ]. �

7 Matching argument

In this section, we will match the solution (6.23) obtained in Section 6 to the conditions

(A1) and (A2∗), described in Section 5. We use the same coordinates as in the previous

section, i.e., the contact point is shifted to x = 0 (cf. (6.1)).

We first investigate the behaviour of the solution in Proposition 6.4 in dependence of

the parameter b. This will be used later for the matching argument.

Lemma 7.1 Let hb(x) be the solution of (6.1), given as (6.23) in Proposition 6.4, and ψ =

ψ(x) = θx
3
2 be the leading-order behaviour of hb, given in (2.6). Let xb be the maximal

value such that hb is smooth and satisfies hb > 0 in (0, xb). Then dkhb
dxk

(x) and d
db

dkhb
dxk

(x)

depend smoothly on b on compact subsets of [0, xb). Furthermore, we have

(1) for any x > 0 and b � 0, we have for k = 0, 1, 2, 3

dk

dxk
(hb − ψ)(x) � 0 (overshooting);

(2) for any x > 0, we have for k = 0, 1, 2, 3

d

db

dk

dxk
(hb − ψ)(x) =

d

db

dk

dxk
hb(x) < 0 (monotonicity in b);

(3) for any b ∈ �, we have xb > 0 and

xb ↘ 0 as b↗ ∞ (undershooting).

Proof of Lemma 7.1 For the proof, we use representation (6.23) which gives precise notion

of the behaviour of hb(x) for x � 0 sufficiently small. Furthermore, we note that

d

db
ub(x) = xβ∂2u

(
x

3
2 , bxβ

)
. (7.1)

By (6.23), (7.1) and in view of (2.6) and (6.3), we have

dk

dxk
(hb(x) − ψ(x)) = −bθ

(
dk

dxk
x

3
2 +β

)
(1 + o(1)), (7.2a)

d

db

dk

dxk
(hb(x) − ψ(x)) = −θ

(
dk

dxk
x

3
2 +β

)
(1 + o(1)), (7.2b)

for k = 0, 1, 2 and x > 0 sufficiently small. The continuous dependence of hb and its

derivatives follows by expansions (7.2) and standard ODE theory for larger values of x.

Now, we turn our attention to the proofs for assertions 1, 2 and 3.
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Proof of 1. By (7.2a) and if b < 0, the estimate holds for k = 0, 1, 2 and for x > 0

sufficiently small. For k = 3, we use (2.7) and (6.1), i.e.,

d3

dx3
(hb(x) − ψ(x)) = 1 + V

hb + h2
b − ψ

ψ(hb + h2
b)
, (7.3)

which is non-negative if hb−ψ � 0. Hence, the estimate holds for x > 0 sufficiently small.

For larger values of x, the estimate also follows by (7.3) and an ODE argument (in fact

with a strict inequality). For b = 0, assertion 1 follows from the smooth dependence of

the solution on b.

Proof of 2. For x > 0 sufficiently small, the estimate holds by (7.2b). For larger x, the

estimate continues to hold by an ODE argument as in 1, employing (7.3).

Proof of 3. This claim follows by a Taylor expansion of hb(x) − ψ(x) at x∗b (cf. (6.23))

up to second order, appropriately estimating the third derivative from above by using

(7.3). This argument is detailed in a similar case in [25, proof of Lemma 5c]. �

With the help of Lemma 7.1, we can prove:

Lemma 7.2 There exists b̂ � 0 maximal such that the solution hb̂, constructed in Proposi-

tion 6.4, meets the conditions

hb̂(x) = A,
dhb̂
dx

(x) = 0 and
d2hb̂
dx2

(x) < 0 (7.4)

for some x > 0. We denote by x̂ the minimal x such that (7.4) holds true.

Proof of Lemma 7.2 For any b ∈ �, we define x̆b > 0 as the minimal point with

hb(x̆b) = A, if it exists and otherwise x̆b = ∞. Furthermore, we set

B := {b ∈ � : x̆b <∞ }.

By Lemma 7.11, we have (−∞, 0] ⊂ B. In view of Lemma 7.12, 3, the set B is bounded

from above. Lemma 7.12 also shows that hb is continuous and monotonically decreasing

in b and hence B = (−∞, b̂] for some b̂ ∈ B with b̂ � 0. Then x̂ = x̆b̂ satisfies hb̂(x̂) = A.

We claim that
dh

b̂

dx
(x̂) = 0. Indeed, the inequality

dh
b̂

dx
(x̂) > 0 would contradict the fact

that b̂ is the supremum of B and
dh

b̂

dx
(x̂) < 0 would contradict the minimality of x̂. By

equation (6.1a),
d2h

b̂

dx2 is monotonically decreasing as long as hb̂ � A. Since
dh

b̂

dx
(x) > 0 for

x > 0 sufficiently small, by (7.2a) and
dh

b̂

dx
(x̂) = 0, we necessarily also have

d2h
b̂

dx2 (x̂) < 0.

�

We next discuss the set of heights H which represent the maximum of hb for some b:

Lemma 7.3 For any H � A, let x̌H > 0 be such that

hb̌ < H in [0, x̌H ), hb̌ (x̌H ) = H,
dhb̌
dx

(x̌H ) = 0,
d2hb̌
dx2

(x̌H ) < 0 (7.5)
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for some b̌ < b̂ if such a point exists and let

H = {H > A : there are b̌ < b̂, x̌H > 0 such that conditions (7.5) hold}.

Then there is H− > A such that H = (A,H−). Furthermore, b̌ = b̌(H) is uniquely determined,

monotonically decreasing in H and x̌H is monotonically increasing in H . Both functions are

continuous in H .

Proof of Lemma 7.3 By Lemma 7.2, there is b̂ � 0 and x̂ > 0 such that the corresponding

solution hb̂ satisfies hb̂ < A in [0, x̂), hb̂(x̂) = A,
dh

b̂

dx
(x̂) = 0 and

d2h
b̂

dx2 (x̂) < 0. By Lemma 7.1,

for b < b̂, we have dhb
dx

(x̂) > 0. Since by equation (6.1a), we have d3hb
dx3 (x) � 1, a Taylor

expansion yields

dhb
dx

(x) �
dhb
dx

(x̂) +
d2hb

dx2
(x̂)(x− x̂) +

1

2
(x− x̂)2. (7.6)

By Lemma 7.1, d2hb
dx2 (x̂) depends smoothly on b. In particular, we have d2hb

dx2 (x̂) < 0 and

| d2hb
dx2 (x̂)|2 � 2| dhb

dx
(x̂)| for 0 < b̂ − b � 1. Since the quadratic right-hand side in (7.6) has

a real solution if its discriminant is non-negative, by (7.6) and since dhb
dx

is continuous,

this implies that there is a minimal x̃b > x̂ such that dhb
dx

(x̃b) = 0 and d2hb
dx2 (x̃b) < 0 for

any b ∈ (b̂ − η, b̂) and η > 0 sufficiently small. We also set Hb := hb(x̃b). By Lemma

7.1 and the implicit function theorem, x̃b and Hb depend continuously on b. This shows

that (A,Hb̂−η) ⊂ H and hence H 
= ∅. Using the same argument as before, based on the

implicit function theorem, it follows that H is an open set. By Lemma 7.11, it follows that

H is a bounded set.

Let H1, H2 ∈ H with H1 < H2, xi := x̌Hi
, bi := b̌(Hi), and hi := hbi for i = 1, 2. Lemma

7.12 implies that x1 < x2 and b1 > b2. Together with Lemma 7.1 and the implicit function

theorem, it also follows that x̌H and b̌(H) are continuous functions in H .

It remains to show that H is connected. By Lemma 7.12, we have for b ∈ (b2, b1) that
dhb
dx

(x1) >
dh1

dx
(x1) = 0 and dhb

dx
(x2) <

dh2

dx
(x2) = 0. This implies that hb has at least one

maximum in (x1, x2) and we again denote by x̃b the minimal value for which a maximum

is attained. Suppose d2hb
dx2 (x̃b) = 0. Because of dhb

dx
(x̃b) = 0 and hb(x̃b) > hb(x1) > h1(x1) =

H1 � A by Lemma 7.12, equation (6.1a) implies that hb is strictly increasing for x � x̃b,

which is a contradiction to hb having a maximum at x = x̃b. Thus, by the implicit function

theorem, x̃b depends continuously on b such that x̃b → xi as b → bi. Since Hb = hb(x̃b)

depends continuously on b, we get [H1, H2] ⊂ H. �

We are now able to conclude:

Proposition 7.4 For H ∈ H = (A,H−), let

κ− : H → �, κ−(H) :=
d2hb̌(H)

dx2
(x̌H ). (7.7)

Then κ− ∈ C0(H) and
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(1) −C � κ− < 0 for some universal C > 0.

(2) κ−(H) → 0 as H → H−.

We are now ready to establish the existence part of Theorem 3.1:

Proposition 7.5 (Existence) For any A > 0, there are H > A and xc < 0 such that there

exists a solution of (2.3) satisfying (A1)–(A3) and (B1)–(B2).

Proof of Proposition 7.5 In view Proposition 5.2 and Proposition 7.4, the functions κ+(H)

and κ−(H) intersect in a point H > A. The corresponding solution h,H is the sought-after

solution, whence the existence part of Theorem 3.1 follows. �

Proof of Proposition 7.4 The continuity of κ−(H) follows from Lemma 7.1 and the

continuity of x̌H and b̌(H). In the proof of Lemma 7.3, we already have shown that

κ−(H) < 0 for all H ∈ H. Let H̃ ∈ H, let x̃ = x̌H̃ , b̃ = b̌(H̃) and let h̃ = hb̃. By Lemma

7.3, we have d2h̃
dx2 (x̃) >

d2h̃
dx2 (x̂) >

d2h
b̂

dx2 (x̂) > −∞, where we also used that h̃ > A in (x̂, x̃) and

hence d3h̃
dx3 > 0 in the same interval by (4.2) and (4.5). This shows 1. The arguments in the

proof of Lemma 7.3 show that every point H ∈ H such that κ−(H) < 0 is an interior

point of H. Together with 1, this shows that 2 holds. �

8 Uniqueness

In this section, we give an argument why any solution satisfying (A1)–(A3) is already

unique (without the assumption (B2)). The method is based on an argument by Bernis,

Peletier and Williams in [6] for the proof of uniqueness of source-type self-similar solutions

and has also been applied to other situations, e.g., [3, 15].

Proposition 8.1 (Uniqueness) Suppose that A > 0. Then there exists at most one solution of

(2.3) satisfying (A1)–(A3).

Proof of Proposition 8.1 Let us suppose that there are two solutions hi, i = 1, 2, of (2.3)

satisfying (A1) and (A3). By a shift in x, we may assume that the left boundaries of the

support of the functions hi coincide at the same point xc, i.e., hi ∈ C1 ([xc,∞))∩C3 ((xc,∞))

with hi(xc) = dhi
dx

(xc) = 0. We set ϕ := h1 − h2. We claim that it suffices to show that

ϕ
d2ϕ

dx2
�

1

2

(
dϕ

dx

)2

� 0 for all x � xc. (8.1)

Indeed, if (8.1) holds, then we also have

d2ϕ2

dx2
= 2ϕ

d2ϕ

dx2
+ 2

(
dϕ

dx

)2 (8.1)

� 3

(
dϕ

dx

)2

� 0.

The non-negative function ϕ2 is therefore convex and because of (A1) and (A3) fulfils

ϕ2(xc) = 0 and ϕ2(x) → 0 as x → ∞. This implies ϕ2 ≡ 0 and hence h1 ≡ h2. In
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particular (after shifting in x), the two functions h1 and h2 coincide with the solution h

constructed in Proposition 7.5 having a unique global maximum at x = 0. This implies

that condition (A2) fixes the shift in x and thus guarantees uniqueness.

It remains to show that (8.1) holds. For this, we introduce the auxiliary function

Ψ := ϕ
d2ϕ

dx2
− 1

2

(
dϕ

dx

)2

. (8.2)

We need to show that Ψ � 0 for x ∈ [xc,∞). We first calculate

dΨ

dx
= ϕ

d3ϕ

dx3

(4.2)
= (h1 − h2) (F(h1) − F(h2)) � 0,

since F(h) is strictly increasing in h, see (4.5). It is hence sufficient to show that Ψ (x) → 0 as

x↘ xc. By assumption, ϕ ∈ C1([xc,∞)) and ϕ(xc) = dϕ
dx

(xc) = 0, and hence ( dϕ
dx

(x))2 → 0

as x → xc. We will show that (ϕ d2ϕ
dx2 )(xk) → 0 for some sequence xk ↘ xc. This yields

Ψ (x) ↘ 0 as x ↘ xc and thus proves our claim because Ψ is monotonically increasing

in x.

We fix i ∈ {1, 2}. For δ > 0 sufficiently small, we have hi < A and hence F(hi) < 0

in Iδ := (xc, xc + δ). It follows that d2hi
dx2 is monotonically decreasing in Iδ (in particular,

oscillations are excluded) and because of h(xc) = dhi
dx

(xc) = 0, we necessarily have

hi(x) = o (x− xc) ,
dhi
dx

(x) = o(1) and
d2hi

dx2
(x) = o

(
(x− xc)

−1
)

as x↘ xc.

Because of ϕ = h1 − h2, this amounts to

Ψ
(8.2)
= ϕ

d2ϕ

dx2
− 1

2

(
dϕ

dx

)2

→ 0 as x↘ xc.

�
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Appendix. Governing equations of the spin-coating problem

In this section, we derive the evolution equation (1.1). The derivation is mainly standard.

Similar discussions can be found, for instance, in [13, 17, 38]. For axisymmetric solutions,

we use the lubrication approximation regime which allows us to ignore gravitation and

Coriolis force. But, at the beginning of the derivation, we include both forces to enhance

understanding. We start from the incompressible Navier–Stokes equations describing the

fluid flow in the rotating frame of reference as

ρ (∂tu + (u · ∇)u) = −∇p+ μΔu − ρω × (ω × u) − 2ρω × u,

∇ · u = 0,
(A.1)

where u is the fluid velocity consisting of ur, uθ, uz as velocity components in each direction

of the cylindrical coordinate (r, θ, z) and ω = (0, 0, ω) is the angular velocity of the rotation.
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On the right-hand side, the third and fourth terms describe the centrifugal force and the

Coriolis force, represented by

−ρω × (ω × u) = −∇
(ρω2r2

2

)
, −2ρω × u = −2ρω(−uθr + urθ),

respectively (r, θ are unit vectors along r, θ directions). In components, (A.1) turns into

ρ
(

∂tur + ur(∂rur) +
uθ

r
(∂θur) + uz(∂zur) −

u2
θ

r

)

= −∂rpR + μ
(
Δur −

ur

r2
− 2

r2
(∂θuθ)

)
+ 2ρωuθ,

ρ
(

∂tuθ + ur(∂ruθ) +
uθ

r
(∂θuθ) + uz(∂zuθ) −

uθur

r

)

= −1

r
(∂θpR) + μ

(
Δuθ −

uθ

r2
+

2

r2
(∂θur)

)
− 2ρωur,

ρ
(

∂tuz + ur(∂ruz) +
uθ

r
(∂θuz) + uz(∂zuz)

)
= −∂zpR + μΔuz,

where pR = p+ ρgz − ρ
2
ω2r2 and where the continuity equation takes the form

1

r
∂r(rur) +

1

r
(∂θuθ) + ∂zuz = 0. (A.2)

We assume the Navier-slip boundary condition and the condition for no flux through the

solid boundary, i.e., (ur, uθ)|z=0 = λ
3

(∂zur, ∂zuθ)|z=0 and uz|z=0 = 0, where λ
3

is the slip

length. For the surface function z = h(r, θ, t) of the fluid interface, the kinematic boundary

condition is given by uz = ∂th + ur(∂rh) + uθ
r
(∂θh), and normal stress is represented by[

−pI + μ(∇u + (∇u)T )
]
n = κσn + ∇Sσ, where κ = −∇ · n is the mean curvature of the

interface, σ is the surface tension and n is the unit normal vector.

Let H , R be characteristic thickness and radius of the film and assume δ := H
R

� 1.

Denote by Ur,Uθ,Uz the velocity components in the r, θ, z directions, respectively. We

also introduce the dimensionless variables r̄ = r
R
, z̄ = z

H
, t̄ = Urt

R
, ω̄ = ω

Ω
and ūα = uα

Uα
for

α ∈ {r, θ, z}. The continuity equation (A.2) is rescaled as 1
r̄
∂r̄(r̄ūr)+

Uθ

Ur

1
r̄
(∂θ̄ ūθ)+

Uz

δUr
(∂z̄ ūz) =

0, implying Uz = δUr . We choose Uθ = ρΩH2

μ
Ur in order to keep the Coriolis force in

the angular direction. Furthermore, we represent the scaled pressure pR = μUrR
H2 p̄R with

p̄R = H2

μUrR
(p + ρgHz̄ − ρ

2
Ω2R2ω̄2r̄2) = p̄ + St−1z̄ − ω̄2 r̄2

2
, where St = μUr

δρgH2 is the Stokes

number. It follows Ur = ρΩ2RH2

μ
to keep the effect of the centrifugal force.

Now let us consider the axisymmetric problem. We consider the regime when both the

Reynolds number Re = ρUrR
μ

∼ O(1) and the Capillary number Ca = δ−3 μUr

σ
∼ O(1)

are O(1); this is the so called lubrication approximation regime. Furthermore, when we

consider dominant viscosity with respect to the gravity, the Navier–Stokes equations in

leading order are given by

∂2
zur = ∂rp− ω2r, ∂2

zuθ = 2ωur, ∂zp = 0, (A.3)
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the continuity equation is 1
r
∂r(rur) + ∂zuz = 0 (we have skipped the bars in the notation).

The boundary conditions at z = 0 are (ur, uθ) = λ
3H

(∂zur, ∂zuθ), uz = 0, the kinematic

boundary condition at the free surface z = h(r, t) is uz = ∂th + ur(∂rh). We rewrite the

stress conditions at z = h(r, t) as

p = −Ca−1

r
∂r(r(∂rh)), ∂zur = 0, ∂zuθ = 0. (A.4)

By means of the continuity equation and boundary conditions, we find the relation

∂th+
1
r
∂r

( ∫ h
0
rurdz

)
= 0. Together with (A.3) and (A.4) we then obtain the non-dimensional

thin-film equation in highest order

∂th+ r−1∂r

(
ω2r2

(h3

3
+
λh2

3H

))
+ r−1∂r

(
Ca−1r

(h3

3
+
λh2

3H

)
∂r

(
r−1∂r(r(∂rh))

))
= 0.

Written in the original variables the thin-film equation is given by

∂th+
ρω2

3μ
r−1∂r

(
r2m(h)h

)
+

σ

3μ
r−1∂r

(
rm(h)h∂r

(
r−1∂r(r(∂rh))

))
= 0, (A.5)

where m(h) = h2 + λh is the mobility. Scaling according to

h → λh, t → 3μ

ρω2λ2
t, r →

(
σλ

ρω2

) 1
4

r, (A.6)

the thin-film equation (A.5) can be transformed to (1.1). In view of (A.6), the approxim-

ation when passing from (2.1) to the travelling wave equation (2.2) requires the distance

R(t) of the contact line from the symmetry point (cf. Figure 1) to be large compared to

the length scale ( σλ
ρω2 )

1
4 .
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