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SUMMARY
A fast numerical procedure is presented for computing
growth distances between a pair of polytopes in three
dimensional space that move incrementally along specified
smooth paths. The procedure carrys out the growth distance
evaluations efficiently by predicting and verifying contact
configurations between a pair of grown polytopes. In the
prediction and verification the procedure uses vertex and
facial characterizations of polytopes and exploits their
geometric adjacency information. The computation time, in
average, is very small and does not depend significantly on
the geometric complexity of two polytopes. A numerical
example is presented to demonstrate the applicability of the
procedure to interference detection in robotic simulations.

KEYWORDS: Growth distance; Incremental distance; Inter-
ference detection; Robotic simulations

1. INTRODUCTION
Recently, new quantitative measures of object separation
and penetration, called growth distances, have been intro-
duced by Gilbert and Ong.1,2 The growth distances are
defined for a pair of convex objects. They are a measure of
how much each of the objects must be grown, outward from
fixed seed points in their interiors, so that they just touch.
One important aspect of the growth distances is in that,
when a pair of object models intersect each other, they can
quantify depth of the intersection and provide information
on changes in objects position which can reduce or
eliminate the intersection. Besides many desirable proper-
ties, their principal advantage is from computational
simplicity and speed. For a pair of polytopal objects in three
dimensional space, the growth distance is computed by
solving a simple linear programming problem. In particular,
the speed advantage is significant for penetration distance,
compared to translational penetration measures (see Ref. 2
for a review of translational penetration measures and their
references). Consequently, their advantages are significant
in a variety of applications:2–5 robot path-finding in the
presence of obstacles; and interference detection in com-
puter-aided design and computer graphics.

In these applications, it is often necessary to compute the

growth distances between a pair of objects as they move
incrementally along a specified geometric path. Specifically,
it is necessary to carry out the growth distance calculations
on a closely spaced grid of points along the path. Since
number of grid points along the path may be large, it is
important to minimize the overall computational time. It has
been noted1,2 that the closeness of the grid points can be
exploited to reduce the overall computational time. The
incremental scheme in Ref. 2 uses good initializations based
on the growth distance computation before the motion
increment. It gives faster computations without using
structural information about the objects, but the time still
increases linearly with object complexity. Near-constant
time results can be obtained by utilizing structural informa-
tion on the adjacency of faces and/or vertices. Ong and
Huang6 achieved this improvement in speed by using only
facial and their adjacency information. The advantage of
adjacency structures was first introduced by Lin and Canny7

in computations of incremental Euclidean distances. Lin
and Canny7 used full structural information consisting of
vertex, edge and facial as well as their adjacency informa-
tion. See also references 8–10.

In this paper we present an efficient procedure for
computing the growth distances on a closely spaced grid of
points along a specified smooth path. This procedure carrys
out the growth distance evaluations efficiently by predicting
and verifying contact configurations between a pair of
grown polytopal objects. In the prediction and verification
the procedure uses vertex and facial characterizations of
polytopes and exploits their geometric adjacency informa-
tion. Preprocessing of the data structure is required for the
procedure. For small incremental motions between grid
points, the prediction is almost always correct and the total
computational time for the entire sequence of points is
significantly reduced. The total computational time does not
depend significantly on the geometric complexity of two
polytopes. For an asymptotic case where motion increments
are sufficiently small, the procedue requires approximately
20% less arithematic operations than Ong and Huang’s6

version.
The organization of this paper is as follows; Section 2

reviews the definition of growth distance and some related
issues. Our algorithmic procedure, including the sub-
procedues for the prediction and verification, and its
computational complexity are discussed in Section 3. In
Section 4, results of extensive numerical experiments on our
procedure are presented to show its computational advan-
tage in speed and to demonstrate its applicability to robotic
simulations.

The following is a summary of basic notations and
definitions. They and the notations in subsequent sections
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agree with those given in reference 2. The empty set is �;
the non-negative real numbers are R + ; x, y�R n are column
vectors with real components; vector and matrix transposes
are indicated by a superscript T. The interior and relative
interior11 of a set A�R n are, respectively, int A and ri A. The
Minkowski sum or difference of A, B�R n is A±B=
{a±b: a�A, b�B}. The multiplication of A by a scaler
��R is �A={�a : a�A}. SO(n) is the special orthogonal
group of real n� n orthogonal matrices with determinant
one, i.e., T�SO(n) is a rotation matrix. The hyperplane in
R n passing through p with normal �≠0 is
P( p, �)={x : �T(x�p)=0}; the half space bounded by
P(p, �) with outward normal � is
H( p, �)={x : �T(x�p)�0}. A and B are said to be sepa-
rated if there exists a separating hyperplane P( p, �) such
that A�H( p, �) and B�H( p, ��); A and B are said to be
regularly separated if A�B is a singleton and the hyper-
plane which seperates A and B is unique. The cardinality of
the index set I is | I |.

The class of sets in R n that are compact, convex and have
a non-empty interior is denoted by O. O is the natural class
of sets for modeling convex objects. In the representation of
objects n=3. If the object A�O undergoes a rotation
T�SO(3) followed by a translation s�R, it is represented by
TA+{s}.

2. PRELIMINARIES
In this section, we review briefly the definition of growth
distance and some related issues. (See reference 2 for
details). The growth distance between a pair of objects,
A, B�O, is a measure of how much each of the objects must
be grown outward, from fixed seed points in their interiors,
so that they just touch. The fractional growth required for
touching is called the growth function. When it is scaled
appropriately it generates both the separation and penetra-
tion growth distances.

The growth models for the objects A�O and B�O are
given by A(�)={ pA}+�Ā and B(�)={ pB}+�B̄, where
Ā=A�{ pA}, B̄=B�{ pB}, and pA and pB satisfy the
conditions pA�int A, pB�int B. For �=1, the original
objects are obtained, i.e., A(1)=A and B(1)=B; for �<1, the
objects contract about their respective seed points; for �>1,
the objects expand about their respective seed points. The
growth function for the object pair is defined by

g(A, B)=�*=min{��R + : A(�)�B(�)≠�} (1)

Geometrically, the growth funtion is the value of � such that
A(�) and B(�) just touch. If g(A, B)<1, objects A and B
must be contracted so that they just touch. In fact,
g(A, B)<1 if and only if int A� int B≠�. Similarly,
g(A, B)>1 means that A and B are strictly separated.
Obviously, g(A, B)�1 is a numerical measure of separation
and penetration whose sign distinguishes separation and
penetration. A penetration distance is obtained by scaling
1�g(A, B) according to the size of A and B. For example,
the scaling factor was chosen in reference 2 by RA +RB,
where RA and RB are radii of circumscribing spheres for the
sets Ā and B̄, respectively.

Figure 1 shows a geometric configuration of A(�) and
B(�) at �*. As indicated in the figure, A(�*) and B(�*) are

separated by a hyperplane P(x*, �*) passing through the
corresponding point of contact x*�A(�*)�B(�*). The
optimal configuration of the two grown objects at �*
corresponds to the existence of a seperating hyperplane
between A(�*) and B(�*) and that of the optimal point
x*.1,2.

When A and B are convex polytopes the computation of
g(A, B) is simple. In this situation Ā and B̄ are polytopes
which can be characterized respectively by

Ā={x : � T
i x�1, i�FA} and B̄={x : � T

i x�1, i�FB} (2)

Here FA and FB are the index sets which designate each face
of Ā and B̄, respectively. �FA� and �FB� are respectively the
number of “faces” of Ā and B̄. It then follows that
A(�)={x : �T

i x���	i, i�FA}, where 	i =�T
i pA, and

B(�)={x : �T
i x���	i, i�FB}, where 	i =�T

i pB. Using this
characterization of A(�) and B(�), �*=g(A, B) and
x*�A(�*)�B(�*) can be found by solving the linear
programming problem:

min �, (x, �)�R n+1 (3)

subject to �T
i x��≤	i, i�F=FA �FB, where 	i =�T

i pA,
i�FA, and 	i = �T

i pB, i�FB. It is well known that such a
linear programming problem can be solved in O(�F �)
time.13

Suppose that the objects A and B undergo rigid-body
motions along paths specified by t�R. The rigid-body
motions of the objects can be described in general by a
quadruple (TA(t), sA(t), TB(t), sB(t)). More specifically, let Ā
and B̄ be the objects in their base positions with the origin
being their seed points, i.e., pA =0 and pB =0. Correspond-
ingly, we can represent the objects moved along the paths
and grown by � as:

A(�, t)=�TA(t)Ā+{sA(t)} and B(�, t)=�TB(t)B̄+{sB(t)}. (4)

When they are grown until they just touch, they determine
�*(t) and x*(t), the growth required for touching and
a corresponding point of contact. Obviously, A(�*(t), t)
and B(�*(t), t) represent respectively the grown objects,
and int A(�*(t), t)� int B(�*(t), t)=�, x*(t)�A(�*(t), t)�
B(�*(t), t).

In the sequel, we assume that Ā and B̄ are polytopes with
pA =0 and pB =0, respectively.

3. COMPUTATIONAL PROCEDURES FOR
INCREMENTAL GROWTH DISTANCES
We are interested in how �*(t) and x*(t) behave as
t= tk, tk+1, . . . , etc. Specifically, we wish to determine C, the
configuration of the contact. The configuration defines the
geometric nature of the contact between A(�*(t), t) and
B(�*(t), t) in R 3. If the contact configuration has been

Fig. 1. Geometric configuration of A(�*) and B(�*).
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determined, the computations of �*(t) and x*(t) are
straightforward.

Geometrically, the contact features in each grown poly-
topal object can be vertex (V ), edge (E ) or face (F ). The
geometric configuration is the specific feature pair at
contact. The generic contact pairs are VF and (non-
collinear) EE. The nongeneric pairs VE and EF are much
more likely to occur than the remaining nongeneric pairs
VV, FF and (collinear) EE. In fact, VE and EF represent the
generic transitions between one generic configuration and
the next generic configuration; i.e., if t̄ is a transition time,
where the configurations at t̄�
 and t̄ +
(
>0 and suf-
ficiently small) are different, then the generic transition at t̄
is either VE or EF. Suppose, for example, that the
configuration VF undergoes a transition. The EF transition
takes place when an edge of A(�*(t), t), adjacent to the
vertex Vi moves into a face of B(�*(t), t) while Vi remains in
the interior of the face; see Figure 2. There are two ways in
which these EF trasitions can happen; see Figure 3. The VE

transition takes place when Vi moves to an edge of the face
Fj while A(�*(t), t) and B(�*(t), t) remain strictly separated;
see Figure 4. A similar discussion can be given for the
transition from (non-collinear) EE.

Now suppose we know C � , the contact configuration at
t̄�
. Given the configuration C � , what is C + , the
configuration at t̄ +
? This is the prediction problem. If the
object motions are continuous and t= tk, tk+1 represent grid
points along the motion, the validity of prediction from tk to
tk+1 depends on �t= tk+1 � tk . If �t is sufficiently small and
C � and C + are generic, prediction of C + from C � is
possible.

Often there is no transition between C � and C + : for �t
small it is usually true that C � =C + . Computational
procedures are required to verify the hypothesis that
C � =C + : given the pair (�*(tk), x*(tk))=(�*k,x*k) which is
feasible (x*k�A(�*k, tk)�B(�*k, tk)) and optimal (there is a
separating plane between A(�*k, tk) and B(�*k, tk) passing
through x*

k), it is required to test whether or not the

Fig. 2. View along EFjFj0
for VF loss of optimality. (a) t = tk. (b) t = t̄. (c) t = tk+1.

Fig. 3. EF-type transition contacts at t = t̄.
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configuration C � determines a feasible and optimal pair at
tk+1 . In particular, does there exist (�, x) such that
x�A(�, tk+1)�B(�, tk+1) and there is a separating plane
between A(�, tk+1) and B(�, tk+1) passing through x? These
tests procedures, which are simple and computationally
inexpensive, are described in Section 3.1.

Even if the test procedures indicate C � ≠C + , we can
predict a “likely” C + using the data available from C � and
the test procedures. It is based on the assumption that �t is
small and that there is only one transition time t̄, tk < t̄< tk+1.
In practice, there is no easy way to determine if �t is
sufficiently small, so the prediction is C + : the prediction C
may not equal C + . We hope in most cases that C is not
indeed C + . Then, restart steps (steps of the active set
approach13 for solving the full linear programming problem
(3)), which are computationally expensive, will only be
needed occasionally. The prediction procedures are dis-
cussed in Sections 3.2 and 3.3. In Sections 3.1–3.3, we
assume that contact configurations C � and C + are generic.
We can relax this assumption, but from a practical point of
view it seems not worth the added algorithmic complexity
that relaxing the assumption requires. Section 3.4 describes
our algorithmic steps for computing incremental growth
distances which use the test and prediction procedures as
substeps.

To proceed to further discussion, we need some addi-
tional notations to represent input data for polytopal objects.
The input data required for our procedures include the facial
and vertex information and their geometric adjacency
information. Thus, in addition to the facial characterization
of (2) we need a vertex characterization. Specifically, a

polytope Ā can be characterized by the convex hull of its
vertices:

Ā=co{vi : i�VA}. (5)

Here, vi denotes the coodinates of a vertex Vi and VA is the
index set which designates each vertex of Ā. The character-
izations of the polytopes by (2) and (5) are minimal in the
sense that removal of any inequality or vertex forces a
change in Ā and B̄. We will represent the information of the
face adjacency by the following index to index set maps: for
i�VA, V i

A ={i
-
: i
-

is the index adjacent to the vertex Vi}; for
j�FA, F j

A ={j̄ : j̄ is the index of face adjacent to the face Fj }
where Fj denotes a face of Ā designated by the index j.
Clearly, V i

A �VA and F j
A �FA. Tables of indices can be

implemented for the index to index set map. An edge of Ā
can be described either in terms of a corresponding face pair
or a corresponding vertex pair interchangeably. Because
edges are uniquely defined, there is a one-to-one correspon-
dence between their face pairs and vertex pairs. We also
need tables of indices for these functions.

The VF configuration between Vi , i�VA and Fj , j�FB

will be represented by C=Vi Fj. Similarly, C=FiVj repre-
sents the FV configuration between Fi, i�FA and Vj , j�VB.
C=EVi1Vi2

EFj1Fj2
represents the EE configuration between the

edge defined by a pair of adjoining vertices Vi1
, i1�VA, and

Vi2
, i2�V i1

A , and the edge defined by a pair of adjoining
faces Fj1

, j1�FB, and Fj2
, j2�F j1

B.

3.1. Tests of contact configurations
Consider the test procedure for the generic configuration
C=ViFj at tk+1 . The pair (�, x) is determined from the

Fig. 4. View along EFjFj̄0
for VF loss of feasibility. (a) t = tk. (b) t = t̄. (c) t = tk+1.
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condition that the vertex Vi of A(�, tk+1) belongs to the facial
plane containing the face Fj of B(�, tk+1), i.e.,

(�T +
A vi +s+

A )�{ y : T +
B �j)

T( y�s+
B )=�}. (6)

The condition gives

�=
(T +

B �j)
T(s+

A �s+
B )

1� (T +
B �j)

T(T +
A vi) 

and x=�T +
A vi +s+

A . (7)

Here, T and s with the subscript +(� ) denote the
corresponding quantities computed for tk+1(tk). Then feasi-
bility is determined by confirming that x belongs to the
relative interior of the face Fj of B(�, tk+1), i.e.,

(T +
B �j)T(x�s+

B )<�, j̄�F j
B. (8)

The regular separation (of the grown sets) of the generic
configuration at tk+1 can be described in terms of the tangent
cones of the objects defined by C and their corresponding
normal cones11. For C=ViFj , the tangent cone of A(�, tk+1)
at x is TC+

A (Vi)={�x=T +
A (�i

-
�Vi

A
i

-(vi
- �vi)) : i

- �0, ı̄�v i
A},

and the tangent cone of B(�, tk+1) at x is
TC+

B (Fj)={�x : (T +
B �j)

T�x�0}, a half space. At tk+1 these
tangents cones, which are local description of A(�, tk+1) and
B(�, tk+1) at x, are separated if there exists �≠0 such that
�T�x≥0 for all �x�TC+

A (Vi) and �T�x≤0 for all
�x�TC+

B (Fj). Note that � is a normal to a seperating
plane. The regular seperation is expressed more directly
in terms of the relative interiors of the normal
cones: riNC+

A (Vi)={ y : yT�x<0 for all �x�TC+
A (Vi)}=

{ y : yTT +
A (vı̄ �vi )<0 for all i

-
�V i

A} and riNC+
B (Fj)=

{ y : yT�x<0 for all �x�TC+
B (Fj)}={y : y=T +

B �j, >0}.
Specifically, TC+

A (Vi ) and T +
B (Fj ) are separated regularly if

riNC+
A (Vi )��riNC+

B (Fj)≠�; �T +
B �j�riNC+

A (Vi ) is the
requirement for regular seperation of TC +

A (Vi ) and TC +
B (Fj ).

Thus, it is clear that the regular seperation is checked by
showing that

(�T +
B �j)

TT +
A (vi

- �vi)<0, ı̄�V i
A. (9)

The pair (�, x) for ViFj configuration is optimal if both
feasibility and regular separation conditions are satisfied.
Specifically: if the conditions (8), (9) are satisfied, then it is
verified that C=C+ , and the pair (�, x) of (7) is feasible and
optimal; otherwise, it turns out that C≠C+ . If C=C� and it
turns out C≠C+ , there must be a transition between tk and
tk+1 , almost certainly of the EF or VE type.

The test procedure for a generic EE configuration is also
simple. Let vA1

, vA2
and �A1

, �A2
denote a pair of vertex

coordinates and a pair of face normals, respectively,
defining the contact edge of Ā. Similarly, let vB1

, vB2
and

�B1
, �B2

represent the corresponding data for B̄. Also, let eA

and eB denote the edge vectors vA2
�vA1

and vB2
�vB1

,
respectively. The line extending from the edge of A(�, tk+1)
is given by

{ y : y=�T +
A ((1�A) vA1

+A vA2
)+s+

A , A�R}, (10)

or, it can be given in term of the intersection of a pair of
corresponding facial planes by

{ y : (T +
A �Ai

)T(y�s+
A )=�, i=1, 2}. (11)

Similarly, the line extending form the edge of B(�, tk+1) is

given by

{ y : y=�T +
B ((1�B) vB1

+BvB2
)+ s+

B , B�R}, (12)

or,

{ y:(T +
B �Bi

)T(y�s+
B )=�, i=1, 2}. (13)

The pair (�, x) and A, B at x are computed as the
intersection of the two lines. Substituting (10) into two
equations in (13), we obtain the two equations which
determine ��1 and A:

q0i

1
�

+q1i
A =�q2i

, i=1, 2 (14)

where q0i
=(T +

B �Bi
)T(s+

A �s+
B ), q1i

= (T +
B �Bi

)TT +
A eA, q2i

=
(T +

B �Bi
)TT +

A vA1
�1. Once � is obtained, it is possible to

obtain B by solving either one of the following two
equations (obtained by substituting (12) into the two
equations in (11))

q3i

1
�

+q4i
B =�q5i

, i=1, 2 (15)

where q3i
=(T +

A �Ai
)T(s+

B �s+
A ), q4i

= (T +
A �Ai

)TT +
B eB , q5i

=
(T +

A �Ai
)TT +

B vB1
�1. As a result, a set of conditions for

feasibility at tk+1 can be stated in terms of A and B:

A >0, (16)

A �1<0, (17)

B >0, (18)

B �1<0, (19)

We also need to assure that the tangent cones of A(�, tk+1)
and B(�, tk+1) at the point x of edge-edge contact remain
regularly separated to assure that indeed the optimality of
the � determination holds. For the EE configuration,
the relative interiors of the normal cones are
riNC +

A (EFA1FA2
)={ y : y=T +

A (�1�A1
+�2�A2

), �1 >0, �2 >0} and
riNC +

B (EFB1FB2
)={ y : y=T +

B (�1�B1
+�2�B2

), �1 >0, �2 >0}. The
regular separation required of the two fan-like tangent cones
is equivalent to riNC +

A (EFA1
FA2)��riNC +

B (EFB1FB2
)≠�.

Specifically, there must exist positive numbers �1, �2, �1, �2

such that

r+ =T +
A (�1�A1

+�2�A2
)=�T +

B (�1�B1
+�2�B2

), (20)

where r+ denotes a normal vector to the plane determined
by the two edges. Since �T

Bi
eB =0, i=1, 2, it follows that 

(r+ )TT +
B eB =�1(T

+
A �A1

)TT +
B eB +�2(T

+
A �A2

)TT +
B eB =0. (21)

Thus, it must hold that

�2

�1

=�
(T +

A �A1
)TT +

B eB

(T +
A �A2

)TT +
B eB

>0. (22)

Similarly, from �T
Ai
eA =0, i=1, 2, it follows that

(r+ )TT +
A eA =�1(T

+
B �B1

)TT +
A eA +�2(T

+
B �B2

)TT +
A eA =0, (23)

and it must hold that 

�2

�1

=�
(T +

B �B1
)TT +

A eA

(T +
B �B2

)TT +
A eA

>0. (24)
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In addition to (22) and (24), the regular separation of the EE
configuration requires

�T +
A��A1

+
�2

�1

�A2��T��T +
B��B1

+
�2

�1

�B2��>0. (25)

If both the feasibility conditions (16)–(19) and the regular
separation conditions (22), (24) and (25) are satisfied, then
it is verified that C=C + , and the pair (�, x) is feasible and
optimal; otherwise, it turns out that C≠C + . If C=C � and it
turns out that C≠C + , there must be a transition between tk

and tk+1, almost certainly of the EF or VE type.

3.2. Prediction for non-optimal configurations
Suppose that the test procedures are entered at tk+1 with a VF
configuration C � . Using C � with the object data at tk+1,
compute (7) for (�, x) and test the feasibility conditions (8)
and the regular separation conditions (9). If the VF
configuration is feasible but not regularly seperated (not
optimal), it follows that a transition has occurred between tk

and tk+1. Generically, the transition is of the EF type and
leads to a VF or EE type configuration. A similar argumant
also holds for the case that C � is an EE configuration.

We will discuss the procedures for determining the
prediction C for the EF-type transition. First, consider the
geometric situation corresponding to loss of optimality of a
VF configuration, which is shown in Figure 2. The VF
configuration C � applied at tk+1 gives (�, x) where the
vertex Vi belongs to the relative interior of the face Fj, but
the edge EViVi

-
0

penetrates below the face Fj. The transition
configuration at t= t̄ is generically of the EF type. For
A(�, tk+1) and B(�, tk+1) to touch it is clear that � must
decrease; when they do touch the likely generic configura-
tions are Vi

-
0
Fj or EViVi

-
0
EFjFj̄0

. The configuration ViFj is
impossible because the decrease in � means Vi is not
contained in the facial plane of Fj. Note that the vertex Vi

-
o is

predicted by an inequality in (9) which is violated by the
loss of optimality, i.e., Vi

-
0

is a vertex adjacent to Vi and
(�T +

B �j)
TT +

A (vi
-
0
�vi)>0. We assume implicitly that only

one of the inequalities (9) is violated, i.e., (�T +
B �j)

T

T +
A (vi

- �vi)<0, i
-
�V i

A, i
-
≠ i

-
0. Generically, this is the situation

if �t is sufficiently small.
More specifically, consider the geometric situation at the

transition time t̄; see Figure 3. The edge EViVi
-
0
is lying on the

facial plane containing the face Fj . If �t is sufficiently
small, the vertex Vi belongs to the relative interior of
the face Fj . Then, generically there are two possible
cases: the edge EViVi

-
0
is included in the relative interior of the

face Fj (see Figure 3(a)); and the edge EViVi
-
0
crosses an edge

defined by the face Fj and a face Fj̄0
, j̄0�F j

B (see Figure
3(b)). The first case implies the contact between the vertex
Vi

-
0

and the face of Fj at t+
 as a result of the EF–type
transition; the second implies the contact between the edge
EViVi

-
0
and the edge EFjFj̄0

. Thus, under the assumption that �t
is sufficiently small, we assume that the first case has
occurred if the edge EViVi

-
0

of A(�, tk+1) does not puncture
any one of the faces Fj̄ , j̄�F j

B, of B(�, tk+1), and we predict
the configuration Vi

-
0
Fj. Similarly, we assume that the second

case has occurred if the edge EViVi
-
0
of A(�, tk+1) punctures a

face Fj̄0
, j̄0�F j

B, of B(�, tk+1), and we predict the configura-
tion EViVi

-
0
EFjFj̄0

.
The prediction procedure is described as follows: Sup-

pose that the conditions (8) hold, and suppose that only one
of the inequalities of (9) is violated for i

-
0�V i

A, i.e.,
(�T +

B �j)
TT +

A (vi
-
0
�vi)>0 under the assumption that C + is

generic. Obviously, points along the edge EViVi
-
0
of A(�, tk+1)

are given by

{ y : y=�T +
A (vi +(vi

-
0
�vi))+s+

A , 0��1}. (26)

Thus, a point on the line segment is contained in the
intersection of the closed half spaces bounded by the facial
planes containing respectively the faces Fj̄, j̄�F j

B, of
B(�, tk+1) if and only if

(T +
B �j̄)

T(�T +
A (vi +(vi

-
0
�vi))+s+

A �s+
B )��, j̄�F j

B, (27)

or, equivalently,

(T +
B �j̄)

T(�T +
A ((vi

-
0
�vi))+x�s+

B )��, j̄�F j
B (28)

where x=�T +
A vi +s+

A ; see (7). We need to determine the
maximum value of , max, such that all the inequalities (28)
are satisfied. Note that: if max >1, the edge does not
puncture any one of the faces; if max <1, the edge punctures
the face (more precisely, the facial plane containing the
face) which determines max. Since the conditions (8)
hold, i.e., (T +

B � j̄ )
T(x�s+

B )<�, j̄�F j
B, it follows that: if

(T +
B � j̄)

TT +
A (vı̄0

�vi)�0, the inequality in (28) is satisfied for
all �0. Thus, max is given by

max = min
j̄�F j

B

�� (T +
B �j̄)

T(x�s+
B )

(T +
B �j̄)

T(�T +
A (�ı̄0

��i ))
. (29)

(T+
B�j̄)

T(T+
A(�ı̄0 ��i))>0

Then: if max >1, we determine the prediction C = Vi
-
0
Fj; if

max <1, we determine C = EViVi
-
o

EFjFj̄o
where j̄0 denotes the

face index j̄ which determines max of (29); if max =1, either
of the predictions can be employed.

A similar discussion applies if the configuration at tk is of
an EE type. Suppose that the test procedures are entered at
tk+1 with an EE configuration C � . Using C � with the object
data at tk+1, solve (14) and (15) for �, A, and B and
determine x. Suppose that (16)–(19), (22) and (25) are
satisfied at tk+1, and suppose that only (24) does not hold at
tk+1, i.e., �2, �1 <0 under the assumption that C + is generic.
This is the case that the edge of A(�, tk+1) penetrates through
x below one of the two faces of the edge of B(�, tk+1). In this
case, the transition at t= t̄ is generically of the EF type.
Thus, the prediction idea for the case C � =ViFj can be
applied similarly to this case. First we need to determine
which one of the two faces of B(�, tk+1) is involved and
which one of the two vertices of the edge of A(�, tk+1) has
moved into the face. We can show that if �2, �1 <0, either
(T �

B �B1
)T(T �

A eA) · (T +
B �B1)

T(T +
A eA)<0 or (T �

B �B2)
T(T �

A eA) ·
(T +

B �B2)
T(T +

A eA)<0 must hold. Furthermore, if
(T �

B �B1
)T(T �

A eA)·(T+
B �B1)

T(T+
A eA)<0, then the face involved is

of the face normal �B1; otherwise, the face is of the face of
normal �B2. Let us denote the index of the face by j. Having
determined the face, we can determine the vertex that has
moved into the face by testing the sign of (T +

B �j)
T(T +

A eA): if
the sign is positive, the vertex is of vA1; if the sign is

Growth distances434

https://doi.org/10.1017/S0263574799001939 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799001939


negative, it is of vA2. Let us denote the index of the vertex by
i
-

0 and the other by i. Then, the procedure is the same as the
preceeding VF case except that

max = min
j̄�F j

B

�� (T +
B �j̄)

T(x�s+
B )

(T +
B �j̄)

T(�T +
A � ı̄0

+ s+
A �x)

. (30)
(T+

B� j̄)
T(� T+

A� -ı 0 + s+
A �x)>0

If (22), instead of (24), does not hold at tk+1, i.e., �2�1 <0,
then the procedure is the same except for the interchange in
the role of A(�, tk+1) and B(�, tk+1).

3.3. Prediction for infeasible configurations
In the preceding discussion, we have considered the
prediction for the EF-type transition. Recall that we assume
that the EF transition has occurred if a VF configuration is
feasible but not regularly-separated. Now we will discuss
the prediction procedures for the case that a VF configura-
tion is not feasible. First, consider the geometric situation
corresponding to infeasibility of a VF configuration. This is
shown in Figure 4. The VF configuration C � applied at tk+1

gives (�, x) where Vi belongs to the facial plane containing
Fj, but does not belong to B(�, tk+1). The transition
configuration at t= t̄ is generically of the VE type. For
A(�, tk+1) and B(�, tk+1) to touch it is clear that � must
increase; when they do touch the likely generic configura-
tions are ViFj̄o

or EFjFj̄0
with one of the edges emanating from

Vi . The configuration ViFj is impossible because the
increase in � means Vi is not contained in the facial plane of
Fj. Note that the face Fj̄0

is predicted by one of the facial
inequalities (8) which is violated by the loss of feasibility,
i.e., Fj̄0

is a face adjacent to Fj and (T +
B � j̄0

)T(x�s+
B )>�. We

assume implicitly that only one facial inequality is violated,
i.e., (T +

B � j̄)
T(x�s+

B)<�, j̄�F j
B, j̄≠ j̄0. Generically, this is the

situation if �t is sufficiently small.
The prediction of the configuration at tk+1 is best

understood in terms of the tangent cones of the objects
defined by C � and their corresponding normal cones. For
example, let C � be ViFj and assume that the vertex Vi has
three adjacent vertices with indices i1, i2, i3�V i

A, respec-
tively. The normal cone geometry is displayed in Figure
5(a), looking “down” on NC �

A (Vi) “into” the vector �T �
B �j

emanating upwards from the origin. The figure indicates the
vectors T �

A (vi1 �vi), T
�
A (vi2 �vi), and T �

A (vi3 �vi), which are
outward normal to each corresponding face of NC �

A (Vi).
The shaded triangle represents the intersection of NC �

A (Vi)
with a plane lying “above” the origin. The dots show where
the plane intersects the ray emnating from the origin in the
directions �T �

B �j . From Figure 5(a), �T �
B �j�riNC �

A (Vi),
so that indeed there is ViFj configuration at tk. As the objects
move to their positions at tk+1, the normal cone picture
changes slightly because T �

A →T +
A and T �

B →T +
B . The

resulting new picture is the basis for predicting C + . The two
possible transitions that can occur from the loss of
feasibility of (�, x) at tk+1 are illustrated in Figure 5(b) and
(c). The transition to a new VF configuration is charac-
terized by �T +

B �j̄0
�riNC �

A (Vi) (Figure 5(b)). Note that
�T +

B �j is not involved in the determination of C + since it
corresponds to the facial constraint by which feasibility was
lost. The transition to an EE configuration is characterized
by �T +

B �j�riNC +
A (Vi) and �T +

B �j̄0
� NC +

A (Vi) (Figure
5(c)). The resulting EE configuration is determined by
riNC +

A (EViVi1
)��riNC +

B (EFjFj̄0
)≠�. The intersection of only

two fan-like cones, i.e., a unique prediction of contact
configuration, is assured by �T +

B �j�riNC +
A (Vi) and

�T +
B �j̄0

�NC +
A (Vi). Since �T �

B �j is contained in
riNC �

A (Vi), �T +
B �j is contained in riNC +

A (Vi) under the
assumption that the regular separation conditions (9) are

Fig. 5. Normal cone transitions for an infeasible VF configuration. (a) C� = ViFj. (b) C+ = ViFj̄0
. (c) C+ = EVivi1

EFjFj̄0
.
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satisfied for sufficiently small �t. Thus, the transition
determination implicit in the preceding dicussion is valid if
�t is sufficiently small.

The transition determination is described as follows:
Suppose that the regular separation conditions (9) are
satisfied, i.e., �T +

B �j�riNC +
A (Vi), and suppose that only one

inequality of the feasibility conditions (8) is violated for
j̄0�F j

B, i.e., (T +
B �j̄0

)T(x�s+
B )>� under the assumption

that C + is generic. We need to determine whether or
not the fan-like cone �NC +

B (EFjFj̄0
) intersects any

face of the normal cone NC +
A (Vi), and, if it does, what

face of NC +
A (Vi) the fan-like cone intersects. Note

that �NC +
B (EFjFj̄0

)={ y : y= �(�T +
B �j +(�T +

B (�j̄ ��j))),
�>0, 0≤≤1}. A half-line in �NC +

B (EFjFj̄0
) is contained in

NC +
A (Vi) if and only if

(T +
A (vi

- �vi))
T(�T +

B �j +(T +
B (�j̄0

��j)))�0, i
-
�V i

A. (31)

Let max denote the maximum value of  such that
all the inequalities (31) are satisfied. Note that: if
max >1, �T +

B �j̄0
�riNC +

A (Vi); if max <1, �T+
B �j̄0

�NC+
A (Vi)

and �NC +
B (EFjFj̄0

) intersects a face of NC +
A (Vi) which

determines max. Since the conditions (9) hold, i.e.,
(�T+

B �j)
TT +

A (vi
- �vi)<0, i

-
�V i

A, it follows that: if (TA
+ (vi

-

�vi))
T(�T +

B (�j̄0
��j))�0, the inequality in (31) is satisfied

for all �0. Thus, �max is given by

max = min
ı̄�V i

A

(T +
A (�i

- ��i))
T(T +

B �j)
(T +

A (� i
- ��i))

T(�T +
B (�j̄0

��j))
. (32)

(T+
A(� i

- ��i))
T(�T+

B(�j̄0
��j))>0

Then: if max >1, we determine the prediction C=ViFj̄0
; if

max <1, we determine C=EViVi
-
0
EFjFj̄0

where i
-

0 denotes the
vertex index i

-
which determines max of (32). If max =1,

there is a possibility that C + is nongeneric and the
prediction is indeterminate.

A similar discussion applies if the configuration at tk is of
an EE type. Feasibility is lost at tk+1 if the two infinite lines

extending along the two edges intersect at (�, x) and x does
not belong to one of the edges. The transition configuration
is then of type VE where the edge is one of the original
edges (the one which x belongs) and V is a vertex at the end
of the other edge (the vertex corresponding to the end of the
edge which is closest to x). Again, generically for small �t,
contact of A(�, tk+1) and B(�, tk+1) requires an increase in �
and two types of contact can occur: E with one of the other
edges of V and V with one of the faces adjoining E.

More specifically, let C � be EViVi1
EFj1Fj2

configuration. Of
course, the vertex pair Vi, Vi1

and the face pair Fj1
, Fj2

define
the edges of A(�*k, tk) and B(�*k, tk) in contact, respectvely.
Suppose that the test procedures are entered at tk+1 with the
EE configuration C � . Using C � with the object data at tk+1,
we obtain (�, x) as the intersection of �-dependant lines
extending from the edge EViVi1

of A(tk+1) and the edge EFj1Fj2

of B(�, tk+1). Suppose that feasibility is lost at tk+1 because x
lies beyond a vertex of the edge of A(�, tk+1), and suppose,
for example, that the vertex of A(�, tk+1) is Vi and it is
adjacent to three vertices. Clearly, one of them is Vi1; let
Vi2

, Vi3
denote the other two vertices. Then arrangement of

the normal cones is shown in Figure 6. The picture of the
normal cones are depicted in same manner as in Figure 5;
however, for simplicity the vectors T +

A (vi
- �vi), i

-
= i1, i2, i3,

which are outward normal to a corresponding face of
NC +

A (Vi), are not shown. The resulting VF and EE
configurations at tk+1 do not involve the edge EViVi1

because
it is the edge on which feasibility is lost. Note that �T +

B �j1
and �T +

B �j2
can’t both be in NC +

A (Vi) if �t is sufficiently
small; the cones NC �

A (EViVi1
) and �NC �

B (EFj1Fj2
) intersect in

their relative interiors and the same must be said for
NC +

A (EViVi1
) and �NC +

B (EFj1Fj2
). Suppose as in Figure 6(b),

�T +
B �j2

�NC +
A (Vi). Then, there are two possibilities:

�T +
B �j1

�NC +
A (Vi) and �T +

B �j1
�NC +

A (Vi). The arguments
are not changed in substance if �T +

B �j1
�NC +

A (Vi) and

Fig. 6. Normal cone transitions for an infeasible EE configuration. r� = riNC�
A (EViVi1

) � �riNC�
B (EFj1Fj2

) and r+ = riNC+
A (EViVi1

)
��riNC+

B (EFj1Fj2
). (a) C� = EViVi1

EFj1Fj2
. (b) C+ = Vi Fj1

. (c) C+ = ViFj2
. (d) C+ = Evivi3

E Fj1Fj2
.
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�T +
B �j2

�NC +
A (Vi); see Figure 6(c). The first possibility

implies the ViFj1
configuration (Figure 6(b)); the second

implies an EE configuration where the new edge is
determined by where �NC +

B (EFj1Fj2
) intersects the normal

cone NC +
A (EViVi3

) that is a face of NC +
A (Vi) (Figure 6(d)). In

fact, the face of NC +
A (Vi) has the outward normal vector

T +
A (vi3

�vi). Because of the convexity of the normal cones,
generically there can only be one such face of NC +

A (Vi).
Thus, in both VF and EE cases the prediction is uniquely
determined.

The transition determination is stated as follows: Suppose
that the test procedures are entered at tk+1 with C � =
EViVi

-
1
EFj1Fj2

. Suppose that only one of either (16) or (17) is
violated among the feasibility conditions (16)–(19), and
suppose that all the regular separation conditions (22), (24)
and (25) are satisfied. If (16) is violated, i.e., A <0 under the
assumption that C + is generic, the transition configuration
is generically of type VE and the vertex involved is of vA1

. If,
(17), instead of (16), is violated, i.e., A >1, the vertex
involved is of vA2

. Without, loss of generality, let us denote
the vertex by Vi. First, we need to determine which
movement from r+ =riNC +

A (EViVi
-
1
)��riNC +

B (EFj1Fj2
) toward

�T +
B �j1

or �T +
B �j2

directs toward inside of NC +
A (Vi). This

question is answered easily. Since T +
A (�i

-
1 ��i) is the

outward normal to the face NC +
A (EViVı̄1

) of NC +
A (Vi), it

follows that: if (T +
A (�i

-
1
��i))

T(�T +
B �j1

)<0, then the direc-
tion is toward �T +

B �j1
; if (T +

A (�i
-
1
��i))

T(�T +
B �j2

)<0, then it
is toward �T +

B �j2
. Having decided the direction, the

transition determination is similar to the infeasible VF case.
If the direction is toward �T +

B �j1
, we need to determine if

�T +
B �j1

�riNC +
A (Vi), and, if not, what face of NC +

A (Vi),
except the face NC +

A (EViVi
-
1
), is intersected by the fan-like

cone �NC +
B (EFj1Fj2

). Since �NC +
B (EFj1Fj2

)={y:y=�(�T +
B �j2

+
(�T +

B (�j1
��j2

))), �>0, 0≤≤1}, a half-line in
�NC +

B (EFj1Fj2
) is contained in NC +

A (Vi) if and only if

(T +
A (vi

- �vi))
T(�T +

B �j2
+(�T +

B (�j1
��j2

)))≤0, i
-
�V i

A. (33)

Let max denote the maximum value of  such that all the
inequalities (33) are satisfied. Note that max is determined
by a face of NC +

A (Vi) where the half-line is leaving
behind NC +

A (Vi) as  increases. That is, max is determined
for i

-
�V i

A such that (T +
A (vi

- �vi))
T(�T +

B (�j1
��j2))>0. Since

there exists a >0 such that (33) holds for all i
-
�V i

A,
(T +

A (vi
- �vi))

T(�T +
B (�j1

��j2
))>0 implies (T +

A (vi
- �vi))

T

(�T +
B �j2)<0. Accordingly, max is given by

max = min
i
-
�V i

A

(T +
A (�i

- ��i))
T(T +

B �j2
)

(T +
A (� i

- ��i))
T(�T +

B (�j1
��j2

))
(34)

(T+
A(� ı̄

-
��i))

T(�T+
B(�j1

��j2))>0

If max >1, we determine the prediction C=ViFj1
; if max <1,

then we determine C=EViV i
-

0
EFj1Fj2

where i
-

0 denotes the
vertex index i

-
which determines max of (34); if max =1,

there is a possibility that C + is nongeneric and the
prediction is indeterminate. If the direction is toward
�T +

B �j2
, then the preceding arguments apply with �j1

and �j2
being interchanged. If either (18) or (19) is violated, the
arguments are not changed in substance except for the
interchange in the role of A(�, tk+1) and B(�, tk+1).

3.4. The incremental growth distance algorithm (IGDA)
One iteration of our IGDA algorithm is described as
follows: (1) Given C � , set C to C � and enter the test
procedures; (2) If C=C + , then return C + and (�*k+1, x*k+1);
otherwise, enter the prediction procedures to determine C;
(3) If C is determinate, enter restart steps to return C + and
(�*k+1, x*k+1). (4) Given C, enter the test procedures; (5) If
C=C+ , then return C+ and (�*k+1, x*k+1); otherwise, enter
restart steps to return C + and (�*k+1, x*k+1).

The input arguments of IGDA at each iteration are the
quadruple (T +

A , s+
A , T +

B , s+
B ) and C � . IGDA returns C + and

(�*k+1, x,*k+1). For the initial point of a given path, C� is not
available and we must use restart steps to determine C � and
(�*0, x*0). For simplicity, we did not include the step to scale
�* appropriately to generate the separation and penetration
growth distances. Recall that, for example, the penetration
growth distance is simply obtained by scaling 1��*
according to the size of Ā and B̄.

Note that the prediction procedures of IGDA can
determine a “likely” C + when either only one inequality of
(8), (9) or only one of (16)–(19), (22), (24) is violated. That
can occur where there is only one transition time between tk

and tk+1. We can circumvent this requirement by assigning
some points between tk and tk+1 so that the requirement can
be satisfied and, thus, the prediction is possible for each pair
of adjacent (assigned) points and so the prediction of C + is
eventually possible. Each point is assigned sequentially and
its location can be selected adaptively based on results of
prediction and verification at previously assigned points.
However, such a scheme seems not required for incremental
motions of our interest where the prediction of IGDA is
almost always possible and correct.

The computational complexity of the test procedures is
O(|V i

A| + |Fj
B|) for the VF configuration, and it is a constant

for EE configurations. The complexity of the prediction
procedures is O(|Fj

B|) for the non-optimal configuration and
O(|V i

A|) for the infeasible configuration. That is, the
computational complexity of the test and prediction proce-
dures depends on the local geometric complexity of two
polytopes. It is very difficult to predict a precise computa-
tion time for IGDA, because the time depends on the
geometric complexity of polytopes, the complexity of
motion, and the number of grid points along the path which
specifies the motion. The number of contact transitions
increases as the complexities of polytopes and their motion
increase. Consider the situation that grid points are closely-
spaced so that there is at most one transition between each
pair of adjacent grid points. In this situation, the prediction
rarely fails and as rarely restart steps are brought into play.
Furthermore, if the number of contact transitions is a small
fraction of the number of grid points, only a test procedure
is executed at most of the grid points to confirm that
C � =C + . In this case the computation time of IGDA, in
average, is determined by the execution time of the test
procedures which depends on the local geometric complex-
ity.

We can reduce further the computation time required for
the test procedures. Consider that the conditons (8) are
tested for the VF configuration. The computation time for
this testing is O(|Fj

B|) . If the face Fj of B̄ is complex, i.e.,
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|Fj
B| is large, it causes difficulties in fast implementation of

IGDA. Alternatively, we can divide the complex face into a
set of subfaces. Using the facial subdivision, the computa-
tion time required for the feasibility test can be reduced
substantially for complex faces. We implemented in IGDA
the feasibility test procedure which takes advantage of facial
subdivision data. The idea of the facial subdivision can be
applied in testing the separation conditions (9): the normal
cone of a complex vertex can be decomposed into a set of
simple cones. As a result, the total computational time of
IGDA for a closely-spaced grid does not depend sign-
ificantly on object complexity. Numerical experiments
confirm this. Similar subdivision structures have been used
in reference 7.

4. NUMERICAL EXPERIMENTS
We implemented IGDA in C-language. Many numerical
computations have been performed. They involved a variety
of different objects in R 3 with (|FA| + |FB|) ranging between
8 and 200. The objects include various simple polytopes, an
isocosahedron, a Bucky ball with 12 pentagons and 20
hexagons as its faces, and circular right cylinders approxi-
mated by polytopes with 40 and 100 faces. All objects were
contained within outer sphere of radius 5. A facial
subdivision was employed for a complex faces of the right
cylinders with 40 and 100 faces.

Object A moves along a straight line path from (�10,
0.5, 10) to (10, 0.5, 10) and rotating at a constant rate. The
rotation was generated by using an Euler angle parametriza-
tion of SO(3) and increasing linearly the angles from 0 to �.
Object B is fixed at the origin with the angles from a
uniform distribution on [��, �]. For each object pair 100
paths were generated each with the random orientation of
the object B. For each of nearly 150 object pairs, the
numbers of contact transitions were obtained and averaged

over the 100 paths. The average number is nearly linear with
respect to the total number of faces, and is given
approximately by 0.75(|FA| + |FB|).

The C-language code, with an optimal run-time compila-
tion, was run on an HP 9000/710 (50 MHz) to evaluate the
growth distances on an equally-spaced grid of 1000 points
along each path. The test and prediction procedures
succeeded for most of the 1000 grid points: they failed, in
average over the 100 paths, at less than one point for 1000
grid–points. Except at such points, the average computation
times at each grid point were between 100 microseconds
and 160 microseconds; see Figure 7. For finer grids, the
computation time increased slightly from 100 microseconds
to 120 microseconds as the number of faces of two objects
increases. The results confirm that the average computation
times depend little on the geometric complexity of two
polytopes. When the grids are coarser, the computation time
can increase more noticeably as the object complexity
increases. Not surprisingly, this is due to the fact that our
test and prediction procedures can have more chances to fail
as the grids become coarser and as the object complexity
increases. The coarser grids, however, are not the case that
IGDA is intended to apply to.

Using an active set method (LP)13 with a special
initialization1,2, we solved the full linear programming
problem (3) to obtain the total computational times for the
1000 grid-point paths. We compared the total computation
times to the IGDA’s. The comparison shows that IGDA is
faster by ratios that are approximated by 0.25(|FA| + |FB|)
(Figure 8): the speed advantage is more significant as object
complexity increases. A simple scheme, which exploits the
coherence of contact configurations in incremental motions,
has been discussed in references 1 and 2. However, the
scheme, called maintaining active constraints (MAC), takes
O(|FA| + |FB|) time because it does not take advantage of
geometric adjancency structures. We also obtained the total

Fig. 7. Average computational time at each grid point (for 1000 grid-point paths).
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computational times of MAC for the 1000 grid-point paths.
As expected, IGDA is faster approximately by the ratios of
0.05(|FA| + |FB|), but not less than one, than MAC; see
Figure 9. Note that IGDA is approximately 10 times faster
than MAC when the total number of faces is 200. We
compared IGDA with Ong and Huang’s incremental
version6 with respect to the number of arithematic opera-
tions required for an asymptotic case where motion
increments are sufficiently small. The result indicates that
IGDA requires approximately 20% less operations than Ong
and Huang’s version.

We applied IGDA to solve an interference detection

problem which is a typical problem in robotic and graphic
simulations. Consider a situation that a six-axis PUMA
robot (reference 13, p.37) is moving a payload along a path
between two obstacles. The payload is a dumbbell with
Bucky balls on either side, and the obstacles are a pair of
100-face rectangular cyclinders. Figure 10 shows the
trajectory of the payload that moves from the left to the right
position along a path between the rectangular cylinder pair.
The path is specified by a straight line connecting the
starting point (1.904, �0.393, 2.444, �3.142, 2.051,
1.238) [rad] and the destination point (0.866, �0.518,
�2.411, 0.000, 1.248, 0.866) [rad] in the joint space of the

Fig. 8. Ratio of average computational times (LP)/(IGDA).

Fig. 9. Ratio of average computational times (MAC)/(IGDA).
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PUMA robot. We obtained the interfering intervals along
the path by computing the growth distance between each
element pair of the payload and the obstacles at 1000
equally-spaced grid points along the path. The growth
distance is presented in Figure 11 for each object pair. The
positive value of the growth distance implies no interference
between the corresponding object pair at the grid point. The
figure shows that, for example, a Bucky ball (BB1) and the
upper cylinder (CYL1) intersect each other at the grid points
between [45, 298], but the Bucky ball (BB1) and the lower
cylinder (CYL2) does not intersect each other at all. On

HP 9000/710, the computation time of IGDA was 1.23 sec
that was required to solve this inteference detection
problem. For LP and MAC, the computation times were
49.8 sec and 7.62 sec, respectively. It implies that IGDA is
faster than LP and MAC, respectively, by aproximately 40
and 6 times in solving this problem. This result is consistant
with our experimental results above.

5. CONCLUSION
A numerical procedure has been presented for computing
incremental growth distances between a pair of polytopes.

Fig. 10. Trajectory of the payload.

Fig. 11. Growth distance between each pair of payload and obstacle elements.
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The procedure uses vertex and facial characterizations of
polytopes and exploits their geometric adjacency informa-
tion. Preprocessing of the data structure is required.The
average time of computation for incremental motions is very
small and does not depend significantly on object complex-
ity. An interference detection problem was solved using our
procedure to demonstrate its applicability to robotic sim-
ulations.
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