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The hydrodynamic diffusion of sedimenting point particles in a vertically sheared
periodic system is investigated numerically and theoretically. In both the velocity-
gradient direction and the vorticity direction, the rate of hydrodynamic diffusion
is reduced as the shear rate is increased. In the velocity-gradient direction, two-
particle interactions cause no net displacement, and three-particle interactions are
necessary for diffusive behaviour. In contrast to an unsheared system, the resulting
diffusion coefficient is only weakly dependent upon the size of the system and
D̂xx ∼ 4.2 × 10−4 n2(f /µ)4γ̇ −3 ln(0.42L̂(µγ̇ /f )1/2), where n is the particle number
density, f the force per particle, µ the fluid viscosity, γ̇ the imposed shear rate, and L̂
the system size. In the vorticity direction, although individual two-particle interactions
cause no net displacement, a superposition of interactions is sufficient to cause
diffusion-like linear growth of the ensemble-averaged square particle displacements.
The associated diffusion coefficient is given by D̂yy ∼ 9.47 × 10−4 n(f /µ)2L̂ γ̇ −1. At
sufficiently long times, the effect of multi-particle interactions cannot be neglected and
there is a transition to another regime in which the diffusion coefficient is similar
in form, but slightly reduced from this value. The dependence of D̂xx and D̂yy on
the number density and dimensionless shear rate is explained using theoretical scaling
arguments and analyses.

Key words: suspensions, low-Reynolds-number flows, particle/fluid flows

1. Introduction
Viscous sedimentation of particles has been the focus of much research dating back

to Smoluchowski (1913), who considered the mean settling velocity of spheres within
a closed container. A significant step forward was taken by Batchelor (1972), who
showed how to handle the divergent integrals arising in such problems. The volume
of continued research since then is evidence both of the importance of sedimentation
problems, and of the complex and subtle physical processes involved. A recent review
of some of the issues can be found in Guazzelli & Hinch (2011).

An important process in sedimenting suspensions is hydrodynamic diffusion since
it leads to the mixing of particles within the suspension. Hydrodynamic diffusion
arises from statistical fluctuations in the particle number density within the suspension

† Email address for correspondence: lister@damtp.cam.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:lister@damtp.cam.ac.uk
https://doi.org/10.1017/jfm.2013.371


700 A. Crosby and J. R. Lister

which drive random velocity fluctuations. It was first observed experimentally by Davis
& Hassen (1988), who analysed the spreading front at the top of a sedimenting
suspension, and was further analysed by Ham & Homsy (1988), who investigated
hydrodynamic diffusion within the bulk of the suspension. More recently there have
been further experimental investigations by Nicolai et al. (1995) and Nicolai &
Guazzelli (1995). These experiments were complemented by numerical simulations
and modelling (see e.g. Ladd 1993; Koch 1994; Cunha et al. 2002; Mucha & Brenner
2003). All these studies have one thing in common: they consider hydrodynamic
diffusion within systems where the statistically averaged velocity (including both
particles and the surrounding fluid) is uniform in space.

The aim of this paper is to investigate hydrodynamic diffusion in a system of
sedimenting particles where the statistically averaged velocity is not uniform in
space, which occurs in a number of different scenarios. It occurs when a suspension
sediments in a closed container and the particle probability distribution has horizontal
variations, most notably in the Boycott effect (Boycott 1920). It also occurs in
unconfined geometries where a region of sedimenting particles, such as a spherical
cloud or a cylindrical plume, generates its own large-scale flow: for a spherical cloud
of particles (Nitsche & Batchelor 1997; Machu et al. 2001; Ekiel-Jeżewska, Metzger
& Guazzelli 2006; Metzger, Nicolas & Guazzelli 2007), hydrodynamic diffusion across
the statistically averaged streamlines determines the rate at which particles are lost into
the tail behind the sphere; for a cylindrical plume (Pignatel et al. 2009; Crosby &
Lister 2012), hydrodynamic diffusion determines the rate at which the plume spreads
radially. Finally, it occurs in any suspension with an imposed background flow.

The system analysed here is that of a dilute suspension of very small particles
sedimenting in the presence of a background linear vertical shear flow. Insights from
the physical processes present in this simple system ought to be applicable to a
much wider range of flows. Our chosen system is arguably the simplest system in
which to consider the coupling between a large-scale flow and hydrodynamic particle
interactions, yet, even for this simple system, we find some surprising and subtle
results that are not what might have been expected from a simple generalization of the
arguments for an unsheared suspension.

It is worth emphasizing that this system is fundamentally different from that of a
sheared suspension of neutrally buoyant finite-sized particles (see e.g. Eckstein, Bailey
& Shapiro 1977; Acrivos et al. 1992; Sierou & Brady 2004). In that system, finite-size
effects are necessary to cause displacements of the particle positions as they are
sheared past each other. By contrast, in the system considered here, displacements to
the particle positions are instead caused by buoyancy-induced interactions between the
particles, which persist even in the limit of zero particle size. There is a common point
of interest: in both systems, the symmetry of two-particle interactions means that they
cause no net horizontal displacement, and this plays an important role in the scaling of
the hydrodynamic diffusion coefficients.

The layout of this paper is as follows. In § 2 we give the governing equations
for point particles sedimenting within a vertically sheared periodic system. In § 3 we
describe a numerical method of solution and present numerical calculations of the
horizontal components of hydrodynamic diffusion for a range of system sizes and
background shear strengths. In § 4 we use simple scaling arguments to examine how
strong the background shear must be in order for the system to behave differently from
an unsheared system. In § 5 we consider strongly sheared systems and approximate
the particle trajectories by including only two-particle interactions in order to obtain
leading-order approximations to the diffusion coefficients. This section also includes
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Hydrodynamic diffusion of sedimenting point particles in vertical shear flow 701

a discussion on the form of two-particle interactions, and explains why the lack of
a net horizontal displacement does not prevent diffusion-like linear growth of the
ensemble-averaged square displacements in the vorticity direction. The effect of multi-
particle interactions is considered in § 6. We first develop a scaling argument based on
three-particle interactions for the diffusivity in the velocity-gradient direction. We also
demonstrate that the leading-order two-particle approximation for displacements in the
vorticity direction breaks down at very long times since the effect of multi-particle
interactions can no longer be neglected.

2. Problem description
We consider a collection of N particles sedimenting within a Newtonian fluid of

viscosity µ. Let the geometry be triply periodic with periods a1, a2 and a3; thus a
particle with position x has periodic images at x+ p, where p= p1a1+ p2a2+ p3a3 and
(p1, p2, p3) ∈ Z3. Each particle is modelled as a point force f ez in the vertical direction,
and its position evolves according to

ui(t)=
∑
p

N∑
j=1

f ez · J(xj − xi + p)+ ub(xi), (2.1)

where

J(x)≡ 1
8πµ

(
I

|x| +
xx
|x|3
)

(2.2)

is the Oseen tensor, ub(x) is an applied background flow, and the self-induced
contribution from j = i and p = 0 is excluded from the sum. The infinite sum in (2.1)
is formally divergent; the divergence arises because the density of the suspension as a
whole is different to that of the ambient fluid. However, as shown by Hasimoto (1959),
this density contrast can be balanced by a global pressure gradient, the inclusion
of which removes the divergence and allows (2.1) to be evaluated. The conditions
under which finite-sized particles can be approximated as point forces are discussed in
appendix B.

We focus on the case where the applied flow is a vertical shear flow of strength γ̇ ,
with velocity gradient in the x-direction (and thus vorticity in the y-direction):

ub(x)= γ̇ (x · ex)ez. (2.3)

The periodic geometry is also sheared by the background flow. For the initial geometry
we choose a periodic cube of side L̂ such that the periodic lattice vectors are given by

a1(t)= L̂(ex + γ̇ tez), a2 = L̂ey, a3 = L̂ez. (2.4)

The spatially periodic geometry is also periodic in time with period γ̇ −1 since
a1(t + γ̇ −1)= a1(t)+ a3, as shown in figure 1.

By grouping together the velocities induced by any particle and all its periodic
images, the velocity (2.1) of a particular particle can be rewritten as

ui(t)=
∑
j6=i

up(xj − xi, γ̇ t)+ us(γ̇ t)+ ub(xi), (2.5)

where up(x, γ̇ t) is the velocity induced on a particle by another particle at separation
x and by all its periodic images, and us(γ̇ t) is the velocity self-induced on a particle
by its own periodic images. Both up and us are functions of the structure of the
periodic lattice, and hence, from (2.4), are functions of γ̇ t. Since the velocity induced
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702 A. Crosby and J. R. Lister

(a) (b) (c) (d)

FIGURE 1. Evolution of the periodic geometry at (a) γ̇ t = 0, (b) γ̇ t = 1/4, (c) γ̇ t = 1/2 and
(d) γ̇ t = 3/4. The spatially periodic lattice evolves periodically in time, with period γ̇ −1, as
demonstrated by the equivalence of the lattice vectors for γ̇ t = 1/2 and γ̇ t = −1/2 shown
in (c).

by a particle’s own images is exactly the same for all particles, us(γ̇ t) has no effect
on the dynamics of the system apart from causing a periodic displacement to all the
particle positions as they are sheared past their own images. We can thus neglect us in
the subsequent theoretical analysis without affecting the coefficients of hydrodynamic
diffusion.

We assume that at t = 0 the particles are distributed randomly within the system
according to a uniform probability distribution. Since a uniform probability distribution
is a solution to the associated equations of probability conservation (Koch & Shaqfeh
1991), the particle distribution remains uniform for all time when averaged across the
ensemble of different realizations.

We non-dimensionalize lengths by the typical inter-particle separation l ≡ L̂N−1/3,
and times by the shear time scale γ̇ −1. We also define a dimensionless shear strength

Γ ≡ µ
f

l2γ̇ , (2.6)

which represents the ratio of the background shear velocity to the hydrodynamic
velocity induced by a single particle at a typical particle separation. Under this non-
dimensionalization, the edges of the initial periodic cube have a dimensionless length
L ≡ N1/3 and, consequently, the average particle number density is unity. From this
point on, all quantities are dimensionless; for simplicity, we continue to use the same
notation x, u and t for the dimensionless positions, velocities and times. For example,
we write the particle velocity as

ui(t)= 1
Γ

∑
j6=i

up(xj − xi, t)+ 1
Γ
us(t)+ ub(xi), (2.7)

where

ub(x)= (x · ex)ez, up(x, t)=
∑
p

ez · J(x+ p), us(t)=
∑
p6=0

ez · J(p), (2.8)
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and

J(x)≡ 1
8π

(
I

|x| +
xx
|x|3
)
. (2.9)

With this choice of non-dimensionalization, increasing the dimensionless shear strength
Γ corresponds to decreasing the magnitude of the hydrodynamic velocities.

2.1. Hydrodynamic diffusion
We define 1xi(t) ≡ xi(t) − xi(0) to be the displacement of a particle from its initial
position. For a single realization, the mean-square particle displacements can be
calculated as N−1

∑
i1xi(t)

2. Since the hydrodynamic velocity fluctuations in this
system of sedimenting particles are dominated by fluctuations on the scale of the
system (Caflisch & Luke 1985), which diverge as L→∞, we cannot obtain statistical
convergence of the mean-square displacements by taking the limit of large system
size L→∞ (and hence of N →∞). Instead we must average the mean-square
displacements either over an ensemble of different realizations, or over many periods
of time from the same realization, in order to obtain statistical convergence. Provided
the system is ergodic, these two averaging methods will be equivalent.

We write the ensemble-averaged mean-square displacements as 〈1x(t)1x(t)〉. If
these mean-square displacements grow linearly at large times, then we consider the
motion to be diffusive with a tensor diffusion coefficient given by

D ≡ lim
t→∞

1
2

d
dt
〈1x(t)1x(t)〉. (2.10)

In general, we might have expected the physical mechanism behind any linear growth
in the mean-square displacements to be a random walk in the position of the particle
caused by velocity fluctuations due to hydrodynamic interactions with other particles.
However, linear growth of the mean-square displacements does not necessarily imply
an underlying random-walk-like behaviour; indeed, we will demonstrate that there is
another mechanism that produces linear growth in a sheared suspension.

Particle displacements in the z-direction are dominated by the background shear
flow and do not grow diffusively. While it is still possible to define a coefficient
of longitudinal diffusion by subtracting the leading-order advective effect of the
background flow (see Sierou & Brady (2004) for a detailed discussion), we restrict our
attention here to analysis of diffusive growth in the horizontal particle displacements.
For the horizontal components of the diffusion tensor D, we find that symmetry
implies that Dxy = Dyx = 0, but Dxx and Dyy are non-zero.

3. Numerical calculations
3.1. Method

We evaluated the sums in (2.8) numerically via Ewald summation (Hasimoto 1959),
which splits the sum up into local contributions, which are evaluated directly, and
far-field contributions, which are evaluated in Fourier space. The Fourier sum was
evaluated by the smooth particle-mesh method of Saintillan, Darve & Shaqfeh (2005),
which uses cardinal B-splines to interpolate the point forces onto a regular grid,
allowing the use of fast Fourier transforms. If the Ewald coefficient is chosen such that
most particles only contribute through the Fourier sum, then this use of fast Fourier
transforms allows the full sum to be evaluated efficiently in O(N log N) operations.
Our numerical calculations used an Ewald coefficient α = 1.4, a cutoff length of 2
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704 A. Crosby and J. R. Lister

for the direct sum, 4L Fourier modes for the Fourier sum, and eighth-order cardinal
B-splines for interpolation.

The numerical simulations were evolved in time using a fourth-order Runge–Kutta
method with a variable time step. The time step was taken to be 0.2 times the
maximum strain rate between any two particles, where the strain rate between two
particles is defined to be the difference in their velocities divided by their separation.
The use of a high-order method and a variable time step defined in this way ensures
accurate resolution of close particle interactions.

Numerical simulations were performed for periodic lengths of L= 5, 10, 15, 20 and
30 (hence N = 125–27 000) and, for each length, shear strengths of Γ = 0.25, 0.5, 1,
2, 4 and 8. For each set of parameters, an ensemble average was taken over many
realizations of the system, and in each case the total number of particles included in
the average was at least 105. All the simulations were evolved up to a dimensionless
time of least t = 100 (100 shear times), and diffusion coefficients were calculated
using a least-squares linear fit to the mean-square particle displacements for t > 20.

Uncertainty in the numerical results might arise from one of two sources: (i)
inaccuracies in the numerical calculation of particle velocities and the subsequent
time-stepping; (ii) statistical uncertainty in the calculation of an ensemble average
from a finite number of realizations.

To confirm that the numerically calculated velocities and the numerical time-stepper
were sufficiently accurate, two ensembles of realizations for Γ = 1 and 2 and L = 10
were also calculated with half the time step, twice the direct-sum cutoff, and twice
the number of Fourier modes. In both ensembles the diffusion coefficients were within
5 % of those calculated using the original set of numerical parameters. This slight
difference is indistinguishable from the expected statistical uncertainty.

The statistical uncertainty can be estimated either from the standard deviation of
the mean-square displacements of NR different realizations scaled by N−1/2

R (cf. the
central limit theorem), or, alternatively, from the magnitude of fluctuations about a
linear fit to the ensemble-averaged mean-square displacements in the diffusive regime.
The latter method is more suited to simulations with very small diffusion coefficients,
for which the standard deviation of the mean-square displacements is dominated by
the contribution from the initial period of ballistic growth; when applied to the
results presented here, it implies statistical uncertainties of no more than 10 % in
the calculated coefficients of diffusion.

The numerical inaccuracies and statistical uncertainties are sufficiently small that the
results below are robust.

3.2. Results
The evolution of the mean-square particle displacements 〈1x2(t)〉 and 〈1y2(t)〉 for an
ensemble of simulations with L = 15 and Γ = 1 is shown in figure 2. Both exhibit
a short-time regime of quadratic (ballistic) growth, and then exhibit linear (diffusive)
growth at long times. The long-time rate of growth of 〈1x2(t)〉 is much less than that
of 〈1y2(t)〉, which suggests that the mechanisms behind diffusive growth in the two
directions is different.

To investigate the dependence of the diffusion coefficients on the shear strength Γ ,
Dxx and Dyy are plotted against Γ in figure 3. In both cases, the coefficients decrease
as Γ is increased, but Dxx decreases much more rapidly. For large Γ , Dyy shows a
clear Γ −2 scaling, whereas the scaling of Dxx is somewhere between Γ −3 and Γ −4.
Note that the choice of non-dimensionalization by the shear time scale introduces a
factor of Γ −1 into each of these scalings that would not have been present if we
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FIGURE 2. Evolution of the mean-square particle displacements 〈1x2(t)〉 and 〈1y2(t)〉 for an
ensemble of simulations with L = 15 and Γ = 1 (heavy lines). After an initial transient,
both mean-square displacements exhibit linear growth. The linear least-squares fits for
20 6 t 6 100 (thin lines) are almost indistinguishable, and give values for the diffusivities
of Dxx = 7.76 × 10−4 and Dyy = 1.23 × 10−2. A close-up of the early-time ballistic growth is
shown in the inset.
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10–5

(a) (b)

Gradient –3
Gradient –4 Gradient –2

FIGURE 3. (a) Variation of Dxx with shear strength Γ . For comparison, scalings of Γ −3

and Γ −4 are also shown (grey lines); the variation of Dxx falls somewhere between the two.
(b) Variation of Dyy with shear strength Γ . For comparison, a scaling of Γ −2 is also shown
(grey line), which is a good match to the variation of Dyy for large Γ .

had instead non-dimensionalized by a time scale based on hydrodynamic interactions.
Consequently, if we return to dimensional variables, these observations correspond
to scalings with the dimensional shear rate γ̇ of γ̇ −1 for D̂yy and between γ̇ −2 and
γ̇ −3 for D̂xx. In both cases, the dimensional diffusion coefficients tend to zero as the
strength of the background shear flow is increased.

The variation of the (dimensionless) diffusion coefficients with L is shown in
figure 4. There is an approximately linear growth of Dyy with L, but the growth of
Dxx with L is sub-linear.
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L
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FIGURE 4. (a) Variation of Dxx/Γ
−3.5 with system size L. The line shows a linear variation

for comparison. While Dxx increases with L, the rate of increase is sub-linear. (b) Variation
of Dyy/Γ

−2 with system size L. A linear variation with L (grey line) is a good match to the
variation of Dyy for the larger values of Γ . In both directions, the scaling D ∝ L3/2 of Koch
(1994) would be recovered in the limit Γ → 0.

In summary, we deduce from the numerical results that Dyy shows a LΓ −2 scaling,
whereas the variation of Dxx with Γ and L cannot be captured by a simple power-law
scaling.

Motivated by the theoretical analysis in § 6.2, we also investigated the very long
time (t� L1/2Γ ) behaviour of the mean-square displacements in the y-direction and
found evidence of another regime with slightly reduced values of Dyy.

4. Simple scalings
The diffusion coefficients in an unsheared system are predicted to vary with system

size according to the simple scaling law D ∝ L3/2 (Koch 1994; Cunha et al. 2002).
We begin by rederiving this scaling and then consider how the introduction of a
background shear flow influences the analysis.

When particles are distributed through a system according to a uniform probability
distribution, there are statistical fluctuations about the average number density of
particles between any two regions. These fluctuations cause differences in the
average density between the two regions, which in turn drive hydrodynamic velocity
fluctuations. The largest velocity fluctuations arise from the system-scale density
fluctuations (Caflisch & Luke 1985) which generate a typical dimensional velocity
ÛL̂ ∼ (f /µ)n1/2L̂1/2 (Cunha et al. 2002). In our non-dimensionalization, this typical
velocity is UL ∼ L1/2Γ −1. (Note that the factor Γ −1 only appears here due to our
choice of a non-dimensionalization based on the shear time scale γ̇ −1.) For sufficiently
small times, particle trajectories evolve ballistically according to the initial system-
scale velocity fluctuations, leading to a quadratic growth in the mean-square particle
displacement

〈1x2(t)〉 ∼ (ULt)2 ∼ LΓ −2t2. (4.1)

If rearrangement of the particles causes the density fluctuations, and hence the velocity
fluctuations, to vary on a time scale T , then the quadratic ballistic growth continues for
an O(T) period of time.
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For an unsheared system, the system-scale velocity fluctuations drive a convective
motion and the velocity fluctuations vary on a time scale TL ∼ L/UL ∼ L1/2Γ that
corresponds to the overturning time of a system-scale convection cell. The random
nature of the fluctuations leads to diffusive growth of the particle displacements for
t� TL with a diffusion coefficient

D∼ U2
LTL ∼ L3/2Γ −1. (4.2)

In contrast, the addition of a background shear flow shears out the system-scale
density fluctuations on a time scale TΓ ∼ 1. The critical parameter that determines
whether velocity fluctuations vary on the convective time scale TL or the shear time
scale TΓ is the dimensionless ratio S ≡ L/UL = L1/2Γ between the shear velocity and
the hydrodynamic velocity fluctuations on the scale of the system. If S� 1, then
hydrodynamic velocity fluctuations are dominant, implying that TL � TΓ , and we
expect (4.2) to hold. If S� 1, then the background shear is dominant, implying that
TΓ � TL, and velocity fluctuations will vary in an O(TΓ ) time (although their typical
magnitude will remain the same). It is tempting at this stage to simply replace the time
scale TL by TΓ in (4.2) to predict that for a strongly sheared system (S� 1)

D∼ U2
LTΓ ∼ LΓ −2. (4.3)

The prediction (4.3) agrees with the scaling that we found numerically for Dyy in
the previous section, but it does not agree with the scaling for Dxx, which suggests
that this simple scaling argument based on TΓ is missing an important physical idea.
The missing idea is that two-particle interactions in a vertical shear flow cause no net
horizontal displacement, and, as the following sections will reveal, the simple scaling
argument does not even give the correct explanation for the LΓ −2 scaling of Dyy.

5. Two-particle interactions at large shear strengths
If the shear strength is infinite (Γ =∞), then hydrodynamic interactions between

particles are negligible, and the particles are simply advected along straight lines by
the background shear flow. In this case, there can be no hydrodynamic diffusion.
For large, but finite, shear strength, the hydrodynamic interactions between particles
will cause small perturbations to the straight infinite-shear-rate trajectories. In this
case, we can perform a perturbation analysis about the infinite-shear-rate trajectories
to determine the leading-order effect of horizontal perturbations due to two-particle
interactions.

5.1. Perturbation analysis for Γ � 1

For Γ � 1, we write the trajectory of particle i as

xi(t)= x0
i (t)+ Γ −1x1

i (t)+ O(Γ −2), (5.1)

where x0
i (t) is the straight infinite-shear-rate trajectory and x1

i (t) is a small first-order
correction due to hydrodynamic interactions (figure 5). The velocity of particle i is
given by (2.7), which, neglecting the periodic contribution from the particle’s own
images, is

ui(t)= ub(xi)+ Γ −1
∑
j6=i

up(xj − xi, t). (5.2)
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z

x

FIGURE 5. When the system is strongly sheared (Γ � 1), the relative motion of two particles
can be closely approximated by replacing the actual trajectories xi(t) and xj(t) (curves) by
vertical straight lines x0

i (t) and x0
j (t) (dashed lines).

Substituting (5.1) in (5.2), we expand the particle’s velocity as

ui(t)= (x0
i · ex)ez + Γ −1

(
(x1

i · ex)ez +
∑
j6=i

up(x0
j − x0

i , t)

)
+ O(Γ −2). (5.3)

Since the hydrodynamic velocities are already O(Γ −1), replacing the actual particle
positions by their leading-order approximations in the argument of up gives rise to
only an O(Γ −2) correction.

At leading order, we recover the infinite-shear-rate trajectory

x0
i (t)= xi(0)+ t(xi(0) · ex)ez, (5.4)

which is simply a straight vertical path.
Equating terms of order Γ −1 in (5.3), we find that the first-order corrections satisfy

dx1
i

dt
=
∑
j6=i

up(x0
ij(t), t)+ (x1

i · ex)ez, (5.5)

where xij = xj − xi denotes the separation between particles i and j. Equation (5.5) can
be interpreted as the sum of N − 1 independent two-particle interactions.

The leading-order horizontal displacements are found by integrating (5.5) with
respect to t to obtain

x1H
i (t)=

∑
j6=i

XH
L (xij(0), t), (5.6)

where

XH
L (x, t)≡

∫ t

0
up H(x+ t̂(ex · x)ez, t̂) dt̂ (5.7)

denotes the (scaled) horizontal displacement due to a single two-particle interaction
between particles with an initial separation x. We use the superscript H to designate
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the horizontal components of a vector, and the subscript L to emphasize that the
periodic velocities up H , and hence also XH

L , depend on the size of the system.
This perturbation analysis for Γ � 1 is valid provided the perturbations Γ −1x1

i
to the infinite-shear-rate trajectory remain sufficiently small. More explicitly, the
expansion used to obtain (5.3) requires these perturbations to be small compared
to the separation between particle i and the other particles in the sum. Since these
perturbations grow with time (figure 2), albeit slowly for Γ � 1, we can see that the
expansion will eventually break down for sufficiently large t at fixed Γ . However, for
a fixed value of t, the expansion

xi(t)∼ x0
i (t)+ Γ −1 x1

i (t) (5.8)

will be asymptotically correct as Γ →∞.
The hydrodynamic diffusion coefficients depend on the ensemble-averaged mean-

square displacements. From (5.1) the horizontal displacements satisfy

〈1xH(t)2〉 = Γ −2〈x1H(t)2〉 + O(Γ −3). (5.9)

Again, we expect this expression to be asymptotically correct as Γ →∞ for a fixed
value of t. The behaviour as t→∞ is less apparent, which we will return to in § 6.2.

To calculate the ensemble average in (5.9), we note that, because the N − 1
contributions in (5.6) are independent, the ensemble average is equivalent to an
integral over the periodic box of all possible initial particle separations. Thus

〈x1H(t)2〉 = N − 1
L3

∫
V(L)

XH
L (x

′, t)2 d3x′, (5.10)

where V(L) is a single copy of the periodic box.
The dependence of (5.10) on L can be made explicit by noting that (N − 1)/L3 ≈ 1

for a system of many particles, and by making the change of variables x̃ = x′/L. The
change of variables produces a factor of L3 from the volume of integration and two
factors of L−1 from the dependence of the hydrodynamic velocities, and hence of XH

L ,
on the inverse separation between particles through (2.9). Thus

〈x1H(t)2〉 = L
∫

V(1)
XH

1 (x̃, t)2 d3x̃. (5.11)

The linear dependence of 〈x1H(t)2〉 on L in (5.11) implies that the leading-order
horizontal displacements are dominated by two-particle interactions on the scale of the
system.

Since 〈x1H(t)2〉 is dominated by the system-scale interactions, the leading-order
approximation in (5.9) should be accurate provided only that Γ is sufficiently large
that the perturbation analysis accurately approximates these system-scale interactions.
Thus we expect only to require S = L1/2Γ � 1 (slightly weaker than the initial
assumption Γ � 1) so that on the scale of the system the shear flow is strong
relative to hydrodynamic velocity fluctuations.

Numerical evaluation of 〈x1(t)2〉 and 〈y1(t)2〉 from (5.11) is shown in figure 6.
At short times, both 〈x1(t)2〉 and 〈y1(t)2〉 exhibit the expected ballistic growth. At
long times, 〈y1(t)2〉 exhibits a diffusion-like linear growth with gradient 1.88 × 10−3L,
whereas 〈x1(t)2〉 asymptotes to a constant value.

Combining the relationship between the diffusion coefficients D and the mean-
square displacements (2.10), the leading-order approximation of the mean-square
displacements (5.9), and the behaviour of this leading-order approximation (figure 6),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.371


710 A. Crosby and J. R. Lister
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FIGURE 6. Numerical evaluation from (5.11) of the scaled mean-square displacements
〈x1H(t)2〉/L due to two-particle interactions (heavy lines). At short times, both

〈
x1(t)2

〉
/L

and
〈
y1(t)2

〉
/L exhibit ballistic growth (inset). At longer times,

〈
y1(t)2

〉
/L grows linearly

with gradient 1.88 × 10−3 (thin line), suggesting diffusive growth in the y-direction; whereas〈
x1(t)2

〉
/L asymptotes to a constant value of 3.35× 10−3 (thin line), implying that there is no

diffusive growth in the x-direction at this order.

we predict that

Dxx ∼ o(Γ −2), Dyy ∼ 9.4× 10−4LΓ −2 (5.12)

as S→∞.

5.2. Comparison with numerical simulations

Figure 7 shows the scaled mean-square displacements 〈1x2〉/Γ −2 from the full
calculations with L = 15 and various values of Γ . As Γ increases, the scaled mean-
square displacements collapse onto the leading-order two-particle predictions 〈x1(t)2〉
in agreement with the preceding perturbation analysis. There is good quantitative
agreement between the two-particle prediction and the full numerical results in
the early-time behaviour. We note, in particular, that the rate of long-term growth
decreases rapidly as Γ increases, in agreement with the predicted lack of long-time
growth in figure 6. We note also that the implication that Dxx is o(Γ −2) in (5.12)
is consistent with the numerical results in figure 3 showing that Dxx has a scaling
somewhere between Γ −3 and Γ −4 as Γ is increased.

Figure 8(a) shows the scaled mean-square displacements 〈1y2〉/Γ −2 from the full
calculations with L = 15 and various values of Γ . Again, these scaled displacements
collapse onto the leading-order two-particle displacements 〈y1(t)2〉 as Γ is increased,
in accordance with the perturbation analysis. Figure 8(b) shows that there is a
corresponding convergence of the scaled diffusion coefficients Dyy/(LΓ −2) onto
the two-particle prediction (5.12) that Dyy/(LΓ −2) ∼ 9.4 × 10−4 as Γ is increased.
Figure 8(b) also shows that the scaled diffusion coefficients, for all the values of
L and Γ considered, collapse onto the same curve when plotted against the inverse
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FIGURE 7. Evolution of 〈1x2〉/Γ −2 for L = 15 and varying values of the shear strength Γ .
As Γ is increased, the curves collapse onto the the two-particle prediction 〈x1(t)2〉 (marked as
Γ =∞), which asymptotes to a constant value.
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FIGURE 8. (a) Evolution of 〈1y2(t)〉/Γ −2 for L = 15 and varying shear strength Γ . As Γ
is increased, the curves collapse onto the two-particle prediction 〈y1(t)2〉 (marked as Γ =∞).
(b) The corresponding hydrodynamic diffusion coefficients Dyy calculated from the period
20 6 t 6 100. The diffusion coefficients are scaled by the predicted LΓ −2 scaling, and the
predicted value from two-particle interactions, 9.47 × 10−4, is marked by a horizontal line.
The data are plotted against the inverse of the system-scale ratio S = L1/2Γ of the shear
velocity to hydrodynamic velocity fluctuations.

of the system-scale ratio S = L1/2Γ of the shear velocity to hydrodynamic velocity
fluctuations, with convergence to (5.12) as S→∞.

Overall, we conclude that the predictions that emerge from two-particle interactions
in the perturbation analysis are in good agreement with the numerical results for
sufficiently large values of S.
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5.3. Behaviour of a two-particle interaction

The O(Γ −1) leading-order horizontal displacements (5.6) are a sum of N − 1
independent two-particle interactions. To explain why these two-particle interactions
do not give rise to diffusive growth in the x-direction (figure 6), we analyse the
properties of a single two-particle interaction by considering a system with only two
particles (N = 2). Such a system has no three-particle interactions, so the perturbation
analysis terminates at O(Γ −1).

The particle velocities (subtracting, for simplicity, the velocity induced on each
particle by its own images) are given by

dxi

dt
= (xi · ex)ez + Γ −1 up(x12(t), t) (5.13)

for i = 1, 2. Each particle induces the same velocity Γ −1 up on the other, the value
of which depends on the separation x12 = x1 − x2 of the particles. Consequently, the
separation between the particles only changes due to the background shear, and is
given by

x12(t)= x12(0)+ t(x12(0) · ex)ez. (5.14)

The periodic nature of the system complicates the behaviour of this ‘two-particle’
interaction since the interaction includes that with all the images of the other particle.
To simplify the discussion, we temporarily switch to considering an unbounded
domain. In this case, the separation of the particle pair evolves as before, but the
periodic Stokeslet velocity up(x, t) in (5.13) is replaced by the unbounded Stokeslet
velocity

uu(x)= 1
8π

ez ·

(
I

|x| +
xx
|x|3
)
. (5.15)

The horizontal velocity components of (5.15) are

uu(x)= 1
8π

xz

|x|3 , vu(x)= 1
8π

yz

|x|3 , (5.16)

from which the horizontal displacements can be found analytically as

1xi(t)= 1
8πΓ

(
(x2

0 + y2
0 + z2

0)
−1/2 − (x2

0 + y2
0 + (z0 + x0t)2)

−1/2
)
, (5.17a)

and

1yi(t)= 1
8πΓ

y0

x0

(
(x2

0 + y2
0 + z2

0)
−1/2 − (x2

0 + y2
0 + (z0 + x0t)2)

−1/2
)
, (5.17b)

where x0 = (x0, y0, z0) is the separation of the particles at t = 0.
A typical unbounded two-particle interaction is shown in figure 9. There are two

important features of such interactions. Firstly, there is no net horizontal displacement,
i.e. 1xi(−∞) = 1xi(∞) and 1yi(−∞) = 1yi(∞). This is a consequence of the
reversibility of Stokes flow, which implies that the flow after t = −z0/x0 when the
particles have the same height can be obtained from that for t < −z0/x0 by reflecting
in the horizontal plane through the particles and reversing time.

Secondly, the typical magnitudes of the horizontal displacements relative to the
positions at t = ±∞ have different forms in the x- and y-directions. For example, the
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x

z

FIGURE 9. A pair of particles rises relative to the shear flow and drifts sideways due to the
hydrodynamic interaction between the particles. The separation of the particles changes due
to the shear flow so that the interaction has finite duration. Circles show the particle positions
at three successive times. The horizontal displacement of the particles is symmetric about the
point when the particles are at the same height (filled circles) implying that there is no net
horizontal displacement from the full interaction.

maximum displacements are given by (5.17) as

1xM = 1
8πΓ

1
r0

and 1yM = 1
8πΓ

y0

x0

1
r0
, (5.18)

where r0 ≡ (x2
0 + y2

0)
1/2 is the horizontal separation between the particles. We

can understand these magnitudes from a simple scaling argument. The dominant
interaction between the two particles occurs while their vertical separation is
comparable to (or less than) their horizontal separation, since the horizontal velocities
decrease rapidly with vertical separation. The vertical separation varies at a rate x0 due
to the background shear flow, and so the duration of the dominant interaction is order
r0/x0. During this time, the typical horizontal velocity of the pair, 1/(Γ r0), leads to a
typical horizontal displacement 1/(Γ x0) in the direction (x0, y0). The scalings of (5.18)
are recovered by resolving this displacement in the x- and y-directions.

Returning to a periodic system with many particles: the O(Γ −1) leading-order
horizontal displacements are given by (5.6) as the sum of two-particle interactions
with each of the N − 1 other particles and their images; furthermore, the periodic
system of N particles and their images can be viewed as an unbounded system
containing infinitely many particles, which happen to be placed in a periodic manner.
Thus, the leading-order displacements can be viewed as the sum of many unbounded
two-particle interactions, each of which causes no net displacement.

This lack of a net horizontal displacement plays a vital role in determining the
diffusive behaviour of a vertically sheared system. It provides an explanation for
why two-particle interactions do not give rise to diffusive growth in the x-direction
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L

FIGURE 10. The quasi-periodic simplification of hydrodynamic interactions (shown in two
dimensions for clarity). Hydrodynamic interactions with a given particle are limited to those
arising from a cube of side L centred on that particle. For example, the velocity of each black
particle is calculated using only the hydrodynamic contributions from the six other particles
in the solid box centred on that particle; the velocity of each grey particle is calculated using
only the hydrodynamic contributions from the six other particles in the dashed box centred on
that particle.

(figure 6) and hence why Dxx = o(Γ −2). It also raises a surprising point that
requires further explanation: displacements due to two-particle interactions cause no
net displacement in both the x- and y-directions, yet two-particle interactions do
give rise to a diffusion-like growth of mean-square displacements in the y-direction
(figure 6).

5.4. Analysis of the mean-square displacements due to two-particle interactions: a
quasi-periodic model

In this section we show how the combination of individual two-particle interactions,
which cause no net horizontal displacement, and the ensemble average over all such
interactions, which is required to calculate mean-square displacements, leads to an
asymptotically constant mean-square displacement in the x-direction, but to a linearly
growing mean-square displacement in the y-direction (figure 6).

Analysis of the fully periodic system is mathematically complicated, and we defer it
to appendix A. To develop an understanding of the physical origins of the difference
in behaviour between the x- and y-directions, we work with a simpler quasi-periodic
model that still captures the essential physical mechanisms.

In the fully periodic system, the hydrodynamic velocity of each particle is given
by the sum of Stokeslet contributions from all the other particles and all their
periodic images. We define a quasi-periodic model as follows: we consider the same
collection of particles and images, but we approximate the hydrodynamic velocity
of each particle by the sum only of the Stokeslet contributions from those particles
and images that happen to lie within a cube of side L centred on that particle (see
figure 10). Contributions from particles and images outside this cube are omitted. This
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model treats all particles equally, since each particle is at the centre of its own cube.
A similar trick has been successfully used to model the dynamics of other periodic
systems numerically (Kerr, Lister & Mériaux 2008; Lister et al. 2011; Crosby & Lister
2012).

In the quasi-periodic model, the horizontal displacement due to a single two-particle
interaction, Γ −1XH

L (x, t), has a simple analytic form, which is closely related to that
for an unbounded domain (5.17). Only one of the periodic images of the second
particle is in the cube of side L centred on the first particle at any given time. The
displacement of the first particle, due to the image of the second particle that is
currently in the cube, is exactly that due to a particle in an unbounded domain (5.17).
This image particle is advected by the background shear until it leaves either the top
or the bottom of the cube, at which point it no longer induces a velocity on the first
particle. However, at the same time, another one of the second particle’s images enters
the cube at the same horizontal position on the opposite side. The process repeats,
leading to a sequence of displacements to the first particle, each of which corresponds
to the section of the displacement due to a second particle in an unbounded domain
for which the vertical separation of the second particle relative to the first particle is in
the range −L/2 < z 6 L/2, and each of which causes no net horizontal displacement.
Consequently, the horizontal displacements of the first particle due to a second particle
at initial separation x and its images can be written as

Γ −1XL(x, t)= 1
8πΓ

(x2 + y2 + z2
)−1/2 −

(
x2 + y2 + L2 frac

(
z+ xt

L

)2
)−1/2


(5.19a)

and

Γ −1YL(x, t)= 1
8πΓ

y

x

(x2 + y2 + z2
)−1/2 −

(
x2 + y2 + L2 frac

(
z+ xt

L

)2
)−1/2


(5.19b)

(cf. (5.17)), where frac(s) is defined to be the fractional part of s in the range
−1/2 < s 6 1/2. The effect of the function frac(s) is to pick out the appropriate
section of the unbounded two-particle interaction for which the second particle is at a
vertical separation in the range −L/2< z 6 L/2.

We now consider the implications of (5.19) for the mean-square displacements. The
leading-order approximation to the mean-square displacement in the x-direction (scaled
by Γ −2) follows from (5.11) and (5.19a):

〈x1(t)2〉 = L

(8π)2

∫
V(1)

{
(x2 + y2 + z2)

−1/2 − (x2 + y2 + frac(z+ xt)2)
−1/2
}2

d3x. (5.20)

Expanding the square in the integrand, and omitting the negative cross-term, we find
that

〈
x1(t)2

〉
must be bounded since the two positive terms give

〈x1(t)2〉 6 2L

(8π)2

∫
V(1)

(x2 + y2 + z2)
−1

d3x

= 2.43× 10−2L. (5.21)

This bound on 〈x1(t)2〉 is consistent with the asymptotic convergence to a constant
value in figure 6. The asymptotic value can be predicted by calculating the time-
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averaged mean-square displacement from a time-integration of (5.20). A detailed
calculation shows that 〈x1(t)2〉 = 3.80 × 10−3L. This value differs slightly from that
in figure 6 owing to the use of quasi-periodicity, rather than true periodicity, in this
section.

Similarly, in the y-direction, the leading-order approximation to the mean-square
displacement follows from (5.11) and (5.19b):

〈y1(t)2〉 = L

(8π)2

∫
V(1)

y2

x2

{
(x2 + y2 + z2)

−1/2 − (x2 + y2 + frac(z+ xt)2)
−1/2
}2

d3x. (5.22)

Attempting to apply the same technique as for (5.21), we find that

〈y1(t)2〉6 2L

(8π)2

∫
V(1)

y2

x2
(x2 + y2 + z2)

−1
d3x. (5.23)

However, this integral is infinite owing to a divergent contribution near x = 0 from the
factor (y2/x2). This lack of success in bounding 〈y1(t)2〉 should, of course, be expected
given the unbounded growth observed in figure 6.

The extra factor y/x in the y-displacements (compare (5.19b) and (5.19a)) is
responsible for the different behaviours of 〈x1(t)2〉 and 〈y1(t)2〉, and leads to the
dominance in (5.22) of two-particle interactions that satisfy x2� y2. In physical terms,
these are the interactions in which both particles are in, or close to, the same plane of
the shear flow. Such nearly coplanar particles differ only slightly in shear velocity and,
consequently, have a long interaction time (see figure 11). We refer to these particles
as weakly sheared. The long interaction time of weakly sheared particles leads to
much larger horizontal displacements of these particles than those of other particles
with the same horizontal separation and, since the displacements of weakly sheared
particles are predominantly in the y-direction, they dominate (5.22). Conversely, the
weakly sheared interactions do not dominate the mean-square displacement in the x-
direction (5.20) because only a small proportion of their large horizontal displacement
is in the x-direction.

We determine the long-time behaviour of 〈y1(t)2〉 in (5.22) by focusing on the
contribution from the weakly sheared interactions, which dominate the integral at large
times. To do this, we make the change of spatial variable s= xt:

〈y1(t)2〉 = Lt

(8π)2

∫ 1/2

−1/2

∫ 1/2

−1/2

∫ t/2

−t/2

y2

s2

({(s

t

)2 + y2 + z2

}−1/2

−
{(s

t

)2 + y2 + frac(z+ s)2
}−1/2

)2

ds dy dz. (5.24)

If s is O(1) as t→∞ then the integrand in (5.24) is also O(1), but when s is O(t), the
integrand is only O(t−2) due to the factor of s−2. Overall, the integral consists of an
O(1) contribution from O(1) values of s and an O(t−1) contribution from O(t) values
of s. Thus, for t� 1, the dominant contribution to the integral comes from values of
s with s� t. Consequently, we can obtain the leading-order behaviour of (5.24) as
t→∞ by replacing the limits of the inner integral over s with ±∞ and neglecting
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A

B

C
D

y
x

z

FIGURE 11. The interaction time between a given particle O and a second particle (A,B,C
or D) depends on the orientation of the vertical plane containing the two particles. Each
of particles A and B, and any other particles in the lightly shaded plane, takes the same
time to be advected past O through a vertical distance that is comparable to its horizontal
separation from O (e.g. through the distance between the dashed lines). Particle C is more
weakly sheared and takes longer to advect past O than A or B. Particle D lies in the same
shear-plane as O and can only advect past O if third-particle interactions nudge O or D into a
neighbouring shear-plane. The duration T of purely two-particle interactions is proportional to
(x2 + y2)

1/2
/x and increases towards infinity the closer the orientation of the plane containing

the particles is to a shear-plane.

the (s/t)2 terms in the integrand. This gives the leading-order behaviour for large t as

〈y1(t)2〉 ∼ Lt

(8π)2

∫ 1/2

−1/2

∫ 1/2

−1/2

∫ ∞
−∞

y2

s2

((
y2 + z2

)−1/2 − (y2 + frac(z+ s)2
)−1/2

)2
ds dy dz

= 2.6× 10−3Lt. (5.25)

The linear growth of
〈
y1(t)2

〉
with t for t� 1 is not due to the usual mechanism

in which a particle undergoes a random walk consisting of a series of many small
random displacements due to interactions with a succession of other particles. Indeed,
it cannot be since each image that passes through the cube surrounding the particle
causes no net displacement. Instead, we can understand the physical mechanism by
noting that the integral in (5.24) is dominated by O(1) values of y and z, and, for
t� 1, by O(1) values of s, which correspond to O(1/t) values of x. These values
correspond to interactions with particles whose separation in the y- and z-directions
is comparable to the system size (remembering that we have scaled out the length L)
but which, crucially, have a small separation in the x-direction and are thus weakly
sheared by the background flow. We deduce that the linear growth of the mean-square
displacements is a result of O(t2) ballistic contributions to the square displacements
from those particles that lie within the O(1/t) wide interval in x in which the particles
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are sufficiently weakly sheared that the interactions are lasting longer than t. Since
these particles have only undergone a fraction of their interaction, the lack of a net
displacement from the full interaction is not yet a limiting factor.

Very similar physical and mathematical arguments apply to the fully periodic system
(see appendix A) since the periodic Stokeslet, despite its complexity, has similar
properties to the simple Stokeslet of the quasi-periodic model. Numerical evaluation
of the integrals analogous to (5.20) and (5.25) predicts the following values for the
time-averaged x-displacements and asymptotic linear growth of the y-displacements:

〈x1(t)2〉 = 3.34× 10−3L, 〈y1(t)2〉 ∼ 1.89× 10−3Lt. (5.26)

From (2.10) and (5.9), the resulting diffusion coefficient from two-particle interactions
in the y-direction is

Dyy ∼ 9.47× 10−4LΓ −2. (5.27)

These asymptotic values are slightly smaller than the quasi-periodic results, and are
in very good agreement with the values found earlier by numerical integration of the
time-dependent problem (see (5.11) and figure 6).

It should be noted that the mechanisms described in this section do not
fundamentally depend upon the vertical periodicity of the system: similar results would
hold for a vertically infinite system.

6. Multi-particle interactions
6.1. Behaviour of Dxx for Γ � 1

As we have shown in the previous section, two-particle interactions alone are not
sufficient to lead to diffusive growth in the x-direction, and the inclusion of at least
three-particle interactions is necessary. The net displacement due to a second particle
is no longer zero when the effect of a third particle, which perturbs the separation
between the first two particles, is taken into account. Here we use a scaling argument
to determine the contribution to hydrodynamic diffusion from these three-particle
interactions. This argument highlights the important physical processes, and is able
to explain the earlier numerical observations that Dxx has a scaling somewhere between
Γ −3 and Γ −4 as Γ increased (figure 3a) and a sub-linear scaling with L (figure 4a).

The key idea behind the scaling argument is the same as that behind the earlier
perturbation analysis in § 5.1: for strongly sheared systems (Γ � 1) the vast majority
of interactions between particles are dominated by the shear flow, with hydrodynamic
velocities providing only a small perturbation. The hydrodynamic velocity fluctuations
are limited by the periodicity of the system to scales smaller than the system size L,
which thus acts as a large-scale cutoff for hydrodynamic interactions in the scaling
argument. Interactions with a given particle on scales smaller than L are dominated by
the nearest of the particle’s periodic images, and can simply be treated as interactions
with only the nearest image in an unbounded domain.

Consider two isolated particles at a separation of x. The bulk of the interaction
of these particles occurs during the period in which their vertical separation is
comparable to (or less than) their horizontal separation, z2 ∼ x2 + y2. Outside this
period, when z2� x2 + y2, the horizontal component of the velocity that each particle
induces on the other is very much smaller by a factor of O[(x2 + y2)/z2], and
the corresponding contribution to the horizontal displacement is negligible. Unless
the particles have exactly the same x-coordinate, the shear flow causes the vertical
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r

s

s

r

(a) (b)

FIGURE 12. The strain rate due to a third particle (open circle) at a separation s from a
particle pair of separation r (closed circles) depends on their relative separations: (a) if s . r,
then the third particle induces a much larger velocity on one particle than the other; (b) if
s & r, then both particles in the pair are at a similar position relative to the third particle and
experience its straining field at that point.

separation of the particles to change at a rate x, so that the typical interaction
time is O(r/x), where r ≡ (x2 + y2)

1/2 is the horizontal separation between the two
particles. During their interaction, the two particles undergo a displacement in the
x-direction of O(Γ −1r−1) (cf. (5.18)), but this displacement is later reversed to leave
no net displacement from the full interaction (figure 9). However, if flow due to other
particles changes the separation between the two particles during their interaction,
then their horizontal displacements will not be exactly reversed and there will be
a net displacement. By estimating the magnitude of the unreversed portion of the
horizontal displacement, first due to the effect of a single third particle and then due
to the cumulative effect of many third particles, we will obtain an estimate of the
mean-square displacement and thence of Dxx.

Before doing so, we note that there is a narrow range of horizontal orientations of
the two particles for which the typical interaction time O(r/x) is large compared to the
O(1) shear time scale. These are the so-called ‘weakly sheared’ particles with x� r.
Since pairs of particles involved in weakly sheared interactions induce only a weak
O(x/r2) velocity in the x-direction on each other, and since only a small proportion of
the particle pairs are weakly sheared, we can assume that the dominant contribution
to displacements in the x-direction and hence to Dxx does not arise from these weak
interactions. The majority of particle pairs (those with x ∼ r) are not weakly sheared
and interact on the O(1) shear time scale, and we will focus on these interactions
below.

Consider the effect of a third particle on the interaction of two particles. The strain
rate due to this third particle causes the separation of the first two particles to vary,
leading to an unreversed portion of the displacement. The magnitude of this strain
rate depends on the separation s of the third particle relative to the nearest of the
other two particles. There are two cases to consider depending on the value of s
(figure 12): if s� r, then the third particle induces an O(Γ −1s−1) velocity on one of
the first two particles and a much smaller velocity on the other, giving an average
strain rate over the distance between the particles of O(Γ −1r−1s−1); if s� r, then
the first two particles are at approximately the same position relative to the third
particle, and experience the O(Γ −1s−2) straining field at that point. (The two cases
match smoothly for s ∼ r.) The separation between the first two particles is changed
by the accumulated strain, which is given by multiplying the strain rate by the O(1)
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interaction time to obtain a strain of magnitude

ε(r, s)∼
{
Γ −1r−1s−1 s . r,
Γ −1s−2 s & r.

(6.1)

In the strong shear limit Γ � 1, most hydrodynamic interactions have r, s & Γ −1/2

and hence the corresponding strain satisfies ε(r, s)� 1. For these interactions, the
unreversed proportion of the O(Γ −1r−1) displacement should depend linearly upon
ε(r, s). Thus the magnitude of the unreversed displacement, 1x(r, s), for a single
three-particle interaction scales as

1x(r, s)∼ ε(r, s)

Γ r
∼
{
Γ −2r−2s−1 s . r,
Γ −2r−1s−2 s & r.

(6.2)

The separation of the first two particles is perturbed by many such third particles.
Since the unreversed displacement due to each of the individual third particles is
equally likely to be in the positive or the negative x-direction, there is significant
cancellation in the magnitude of the overall unreversed displacement. To account for
this cancellation, we consider the variance of the displacements. The variance of a sum
of independent displacements with zero mean is given by the sum of the individual
variances. The variance of the displacement from a single third particle scales as
1x(r, s)2, so the variance of the overall displacement from all third particles, 1X(r)2,
scales as

1X(r)2 ∼
∫ L

0
1x(r, s)2p(s) ds, (6.3)

where p(s) is the probability density of finding a third particle at a separation s. As
noted in § 2, the probability distribution of the particles is uniform at t = 0, and
remains so, and so p(s)∼ s2 for both s . r and s & r.

Combining (6.2) and (6.3) gives

1X(r)2 ∼ Γ −4

∫ r

0
(r−2s−1)

2
s2 ds+ Γ −4

∫ L

r
(r−1s−2)

2
s2 ds

∼ 1
Γ 4r3

. (6.4)

The dominant contribution to the integrals comes from s∼ r, which implies physically
that the dominant contribution to the unreversed displacement of a pair of particles
comes from interactions with a third particle at a similar separation to that of the pair.

Equation (6.4) applies for r & Γ −1/2, since it was based on the assumption
that ε(r, s) � 1. A few hydrodynamic interactions have r . Γ −1/2, and for these
interactions, the O(r) shear flow is no longer strong compared to the O(Γ −1r−1)
hydrodynamic velocities. Instead, a single third particle at a similar separation to the
first two generates an O(1) strain leading to a completely unreversed displacement.
Detailed consideration of various types of three-particle interaction shows that the
magnitude of the unreversed displacement is reduced from (6.4) and instead given by
1X(r)2 ∼ Γ −3r−1 for r . Γ −1/2.

Interactions between two particles at a horizontal separation r occur with some
frequency density f (r). The scaling for f (r) can be found from considering a
horizontal slice through the system: the number density of particles at separation r
in the slice scales as r, and the velocity of particles relative to the test particle
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also scales as r; hence f (r) ∼ r2. Each interaction between two particles leads to
a net displacement of magnitude 1X(r) in the x-direction, due to the three-particle
effects that we have just analysed. As a result of many such interactions, the
particle displacement undergoes a horizontal motion like a random walk. The diffusion
coefficient can be calculated from the mean-square displacements 1X(r)2 weighted by
the frequency density f (r):

Dxx ∼
∫ L

0
1X(r)2f (r) dr

∼
∫ Γ−1/2

0

(
1
Γ 3r

)
r2 dr +

∫ L

Γ−1/2

(
1

Γ 4r3

)
r2 dr

∼ Γ −4 ln(LΓ 1/2)+ O(Γ −4). (6.5)

The physical interpretation of the logarithmic term is that Dxx is not dominated by
interactions at a particular horizontal separation r, but rather by contributions from the
whole range of separations between the system size L and the scale Γ −1/2 on which
hydrodynamic interactions start to dominate shear.

The predicted scaling, Dxx ∼ Γ −4 ln(LΓ 1/2), is consistent with our earlier numerical
observations that Dxx had a scaling somewhere between Γ −3 and Γ −4 and a sub-
linear scaling with L. Including the O(1) coefficients of proportionality in the scaling
arguments, we predict that

Dxx ∼ αΓ −4 ln(β̃LΓ 1/2)

∼ αΓ −4 ln(LΓ 1/2)+ βΓ −4. (6.6)

The form of (6.6) suggests looking at a compensated plot of Dxx/(Γ
−4 ln(LΓ 1/2))

against 1/ ln(LΓ 1/2), which should be a straight line with intercept α and gradient
β. From a linear fit to the data in figure 13, we estimate that α ≈ 4.2 × 10−4 and
β ≈−3.6 × 10−4 (implying that β̃ = 0.42). Due to the slow growth of the logarithmic
term, the order Γ −4 correction term is still numerically significant for even the largest
values of the shear strength Γ that we were able to simulate numerically.

6.2. Impact of multi-particle interactions on the very-long-time behaviour of Dyy

When simulations are evolved for a fixed shear time, there is a very good
agreement between the observed linear growth of the mean-square displacement in
the y-direction for t � 1 and the diffusivity predicted by two-particle interactions,
Dyy ∼ 9.47 × 10−4LΓ −2 (5.12), with convergence as S → ∞ (figure 8b), where
S = L1/2Γ is the ratio of the shear velocity to hydrodynamic velocity fluctuations
on the scale of the system. However, in § 5.1 we noted that the approximation of
the mean-square displacement by the leading-order two-particle approximation might
not be valid for all time. In this section we argue that, indeed, the effects of multi-
particle interactions can no longer be neglected at very long times, leading to another
regime with slightly smaller diffusion coefficient. The need for a new regime can be
understood by the following simple argument.

The linear growth of the mean-square displacement is due to ballistic displacements
from two-particle interactions within a small region of weakly sheared particles
(§ 5.4). The width of this region in the x-direction is O(L/t) and decreases with time.
Consequently, the typical shear velocity between two particles in this region, which is
proportional to their separation in the x-direction, also decreases with time. Underlying
the perturbation analysis in § 5 was the assumption that the shear velocity between
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FIGURE 13. Diffusion coefficients Dxx for Γ > 1 scaled by Γ −4 ln(LΓ 1/2) and plotted
against 1/ ln(LΓ 1/2). Also shown is a linear fit to the data 4.22 × 10−4 − 3.62 × 10−4x (grey
line); such linear behaviour is consistent with the prediction (6.6) from scaling arguments.
The collapse of scaled values of Dxx exhibited here should be contrasted with figures 3(a) and
4(a) in which the corresponding unscaled values of Dxx can be seen to vary by several orders
of magnitude with Γ and by an order of magnitude with L.

two particles is sufficiently strong compared to hydrodynamic velocity fluctuations that
the path of one particle relative to another was a vertical straight line at leading order.
Eventually, the O(L/t) width of the ballistic region will become sufficiently narrow,
and the particles within it sufficiently weakly sheared, that this assumption no longer
holds. On this time scale, the two-particle approximation must break down, and we
expect a transition to a new regime in which multi-particle interactions are important.

To test this idea, the evolution of 〈1y(t)2〉 was calculated for an extended period
of time and is shown in figure 14(a) for the case L = 15 and Γ = 4. Initially, for
approximately eighty shear times (t . 80), there is good agreement with the rate of
linear growth predicted by the two-particle approximation. Then, on a similar time
scale, there is a subtle transition to another regime, which again exhibits linear growth
but with a slightly smaller gradient. Figure 14(b) shows the gradient of the (smoothed)
mean-square displacement. The transition is evident despite the statistical noise. This
transition is consistent with our expectation that the two-particle approximation will
eventually break down and give way to a regime in which multi-particle interactions
are important. We refer to this later regime as the very-long-time regime.

The transition shown in figure 14 for the case L = 15 and Γ = 4 is quite subtle
because there is a decrease in gradient of only 14 % over a period of several hundred
shear times. Such behaviour seems to be generic for S� 1. Diffusion coefficients
calculated from a linear fit to the period 20S 6 t 6 40S for a range of parameters
(all with S� 1) are shown in figure 15 alongside the values that were previously
calculated from a linear fit to the earlier period 20 6 t 6 100 (figure 8b). In all cases,
the diffusion coefficients calculated from the later period are reduced from their earlier
values, but only slightly; the largest decrease is 26 % for L= 5 and Γ = 8.
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FIGURE 14. (a) Very-long-time evolution of the (scaled) mean-square displacement in the
y-direction for L= 15 and Γ = 4 averaged over 600 simulations containing a total of 2× 106

particles (black line). The statistical uncertainty is comparable to the width of the line. Also
shown are the asymptotic linear growth with gradient 1.89 × 10−3 predicted by the two-
particle approximation (5.26) (dashed grey line), and a linear fit to the period 400 6 t 6 800
which has a smaller gradient 1.62 × 10−3 (dot-dashed grey line). (b) The local gradient of
the (scaled) mean-square displacement shown in (a), calculated after smoothing the data over
a time-window of length 10 and excluding three outlying simulations in order to reduce
statistical noise. Initially, for t . 80, the gradient matches the two-particle approximation.
Then, on a similar time scale, the gradient falls to a slightly smaller value, which we suggest
corresponds to a transition into a new very-long-time regime.
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FIGURE 15. Diffusion coefficients calculated from the period 20 6 t 6 100 (grey symbols),
which converge to the two-particle approximation as S = L1/2Γ →∞ (as shown in figure 8b),
and coefficients calculated from a later period 20S 6 t 6 40S (black symbols), which
have slightly smaller values. Each diffusion coefficient is calculated from an ensemble of
simulations containing at least 105 particles.
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We now present two scaling arguments: one demonstrating that the very-long-time
diffusivities should scale as Dyy ∼ LΓ −2 independently of the time at which the two-
particle approximation breaks down, and another suggesting that the breakdown occurs
when t ∼ S.

When the two-particle approximation breaks down, we expect the dominant
contribution to the mean-square displacement in the y-direction to arise from those
interactions for which the horizontal displacement is not reversed: these are the
interactions that are sufficiently weakly sheared, due to a small separation in the
x-direction, that the path of one particle relative to the other is not well approximated
by a vertical straight line. Suppose that Λ, to be determined, is the width of the planar
region of small separations in the x-direction that lead to unreversed displacements.
The contribution to the displacement of a given particle in the y-direction from other
particles within this region, i.e. the contribution from particles with separation x such
that x = O(Λ) and y, z = O(L), can be calculated as follows. The velocity in the
y-direction induced by one particle in the region is O(Γ −1L−1). Hence, the total
velocity fluctuation VΛ in the y-direction induced by the O(ΛL2) particles in the
region, assuming that there are many such particles (ΛL2� 1), is given by adding the
O(Γ −1L−1) random velocity fluctuations from each particle to obtain a total variance
V2
Λ ∼ (ΛL2)/(Γ L)2 = ΛΓ −2. The total velocity fluctuation VΛ is expected to persist

for the time TΛ = L/Λ that it typically takes for the O(Λ) shear-velocity difference
across the region to change the relative position of the particles by O(L). We expect
the random nature of the fluctuations to lead to diffusive growth for t� TΛ with a
coefficient Dyy ∼ V2

ΛTΛ ∼ LΓ −2, which happens to be independent of Λ.
The scaling Dyy ∼ LΓ −2 is the same as that of the two-particle diffusivity

(5.12). However, in contrast to the two-particle diffusivity, which arises from the
ever-decreasing proportion of ballistic displacements that have yet to be reversed,
the diffusive growth in this very-long-time regime arises from the more familiar
mechanism of a random walk of particle displacements due to repeated unreversed
interactions with other particles. The scaling LΓ −2 is also the same as that suggested
by the naive scaling argument in § 4, since the naive argument is simply the
above argument with Λ = L; however, we now understand that L is not the correct
choice of Λ since, unless a two-particle interaction is weakly sheared, any horizontal
displacement that it causes is mostly reversed at a later time.

The common scaling of the two-particle diffusivity and the very-long-time
diffusivity explains why the transition observed in figure 14 is so subtle: the transition
simply represents a change in the value of the O(1) coefficient of LΓ −2. The
scaled diffusivities shown in figure 15 suggest that the very-long-time diffusivity
is approximately 8 × 10−4LΓ −2 compared to 9.47 × 10−4LΓ −2 for the two-particle
diffusivity when S� 1. We note that the scaled values for L = 5 are somewhat lower
than those for L > 10, perhaps because L = 5 is insufficiently large for the assumption
ΛL2� 1 to hold in the estimate of VΛ.

We expect the transition to the very-long-time regime to occur when the O(L/t)
width of the ballistic region in the two-particle approximation becomes comparable
to Λ, which occurs when t ∼ L/Λ = TΛ. Hence, in order to determine the transition
time TΛ, we must determine Λ, which is the range of separations in the x-direction
for which the path of one particle relative to another is not well approximated by a
vertical straight line. This occurs when the perturbation to the separation between two
particles in the x-direction, due to hydrodynamic interactions with other particles, is
comparable to their initial separation in the x-direction. Perturbations to the separation
in the x-direction can be divided into two groups: relatively large perturbations due
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FIGURE 16. Comparison of the local gradient of the (scaled) mean-square displacement for
L = 15 and Γ = 4 (grey solid line) as shown in figure 14(b) with those for L = 15 and
Γ = 8 (dark grey solid line) and L= 30 and Γ = 8 (black solid line). The asymptotic gradient
1.89 × 10−3 predicted by the two-particle approximation (5.26) (dashed grey line) is also
shown. (a) Gradient plotted against shear time t, and (b) gradient plotted against a scaled time
of t/S.

to the system-scale hydrodynamic velocity fluctuations, the majority of which are
subsequently reversed and thus do not lead to continued growth; and unreversed
perturbations, which lead to a very slow diffusive growth as discussed in § 6.1. The
reversed perturbations have an O(L1/2Γ −1) magnitude arising from the O(L1/2Γ −1)

system-scale velocity fluctuations which vary on the O(1) shear time scale. For
comparison, the diffusive growth due to unreversed perturbations in the period up
to TΛ has an O[(DxxTΛ)

1/2] magnitude, and we recall from (6.6) that Dxx decays
rapidly as Γ increases. Then, assuming that the O(L1/2Γ −1) reversed perturbations are
the larger of the two contributions, we deduce that Λ ∼ L1/2Γ −1 and, consequently,
that TΛ ∼ L1/2Γ = S. This scaling of TΛ, combined with the scaling (6.6) for Dxx,
confirms that the reversed perturbations are indeed the larger of the two contributions.

The prediction of an O(S) time scale for transition to the very-long-time regime
is consistent both with the convergence of diffusion coefficients calculated up to a
fixed shear time onto the two-particle diffusivity prediction as S→∞ (figure 8b), and
with the different values of the coefficients obtained from a later period when t� S
(figure 15). The transitions for L = 15 and Γ = 4, for L = 15 and Γ = 8, and for
L = 30 and Γ = 8 visualized by changes in the local gradient of the mean-square
displacement, are compared in figure 16. Figure 16(a) shows that, with L = 15, the
transition for Γ = 8 occurs at a later shear time than that for Γ = 4; and that, with
Γ = 8, the transition for L = 30 occurs at a later shear time than that for L = 15.
The apparent collapse of the three curves when plotted against a scaled time of t/S
in figure 16(b) supports the argument that TΛ ∼ S. (Calculation of the gradient of the
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mean-square displacement over the long transition period with only a small amount of
statistical noise, as in figure 16, is computationally very expensive.)

7. Conclusion
Viscous sedimentation of a suspension of monodisperse point particles in a vertically

sheared periodic domain is arguably the simplest example of sedimentation in the
presence of a background flow. However, even this simple example exhibits a range of
surprising and subtle behaviours.

We have investigated the growth of mean-square particle displacements due to
hydrodynamic interactions via numerical simulations with a range of background shear
strengths and system sizes. The numerical simulations demonstrated that the horizontal
diffusion coefficients decrease as the background shear strength increases, and they
revealed a marked contrast between the velocity-gradient and vorticity directions, with
diffusion coefficients in the velocity-gradient direction decreasing much more rapidly.

A simple scaling argument shows that the effect of a background shear flow on
hydrodynamic diffusion becomes significant when the shear velocity is comparable
to hydrodynamic velocity fluctuations on the scale of the system, at which point the
shear flow, rather than convective motions driven by the density fluctuations, limits the
correlation time of any fluctuations. For strongly sheared systems, where the system-
scale shear flow is large compared to the hydrodynamic velocity fluctuations (S� 1,
or γ̇ � n1/2(f /µ)L̂−1/2 in dimensional terms), it was possible to approximate the
horizontal mean-square displacements by considering only two-particle interactions.

In the velocity-gradient direction (x-direction), a numerical calculation showed that,
after a transient, the mean-square displacement due only to two-particle interactions
asymptotes to a constant value. The absence of any long-term asymptotic growth
is due to the symmetry of two-particle interactions in a vertical shear flow and
the consequent lack of net horizontal displacements. A scaling argument based on
three-particle interactions, which break the symmetry of two-particle interactions
by perturbing the separation of the two particles, predicts a dimensional diffusion
coefficient of the form

D̂xx ∼ αn2

(
f

µ

)4

γ̇ −3 ln

(
β̃L̂

(
µγ̇

f

)1/2
)
, (7.1)

provided the shear flow is strong compared to the hydrodynamic velocity due
to a particle at the typical inter-particle separation (Γ � 1, or γ̇ � n2/3(f /µ)
in dimensional terms). Comparison with numerical simulations showed very good
agreement with the predicted scaling and determined the numerical coefficients in the
above expression to be α = 4.2× 10−4 and β̃ = 0.42.

In the vorticity direction (y-direction), a numerical calculation showed that the
mean-square displacement due only to two-particle interactions has an asymptotic
diffusion-like linear growth, with a dimensional diffusion coefficient

D̂yy ∼ 9.47× 10−4 n

(
f

µ

)2

L̂ γ̇ −1. (7.2)

The growth of the mean-square displacements occurs despite two-particle interactions
causing no net displacement. It was shown to originate from displacements due to
the weakly sheared two-particle interactions where the two particles are at a similar
position in the velocity-gradient direction. Those particles that are separated by only
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an O(L/t) distance in the velocity-gradient direction have only undergone a fraction
of their interaction by time t and, consequently, their effects are not yet limited by
the lack of a net displacement from the full interaction. The O(t2) ballistic growth
of these square displacements combines with the O(L/t) decreasing width of the
region of weakly sheared particles to give the observed linear O(t) growth of the
mean-square displacements. An asymptotic analysis based on consideration of these
weakly sheared particles gave the same diffusivity as the numerically calculated value
in (7.2). There is no equivalent effect in the velocity-gradient direction because weakly
sheared particles induce much weaker hydrodynamic velocities in that direction.

If diffusion coefficients in the vorticity direction are calculated from a fixed
period of shear time, then they converge as S is increased onto the two-particle
approximation described above. However, we also found numerical evidence if the
shear time becomes very large of a transition into another regime with slightly
reduced diffusivity. This transition is associated with the failure of the two-particle
approximation when the O(L/t) width of the region contributing to the growth of the
mean-square displacements becomes sufficiently narrow, and thus sufficiently weakly
sheared, that changes in particle separation are no longer dominated by the shear
flow. Beyond this transition, we suggest that the diffusive growth of the mean-square
displacements is instead due to unreversed displacements from those interactions for
which changes in particle separation are not dominated by the shear flow.

Our original motivation for this study was an improved understanding of
hydrodynamic diffusion in sedimenting suspensions with a non-uniform background
flow (either imposed or generated by the suspension occupying a spherical or
cylindrical region, for example). Although we have only considered a simple system
with an imposed uniform vertical shear flow, we can make several observations
that ought to be applicable to a wider range of flows. At the most basic level,
a background flow introduces new time scales to the system which can influence
the time scale on which hydrodynamic velocity fluctuations are correlated. If the
background flow is such that two-particle interactions cause no net displacement, then
the coefficient of hydrodynamic diffusion could be strongly reduced due to the need
for three-particle interactions for any diffusive growth to occur (as seen with Dxx in
our system). Also, if some regions of the flow remain approximately stationary relative
to other regions, then those regions could contribute significantly to hydrodynamic
diffusion (as seen with the contribution to Dyy from the region of weakly sheared
particles in vertical shear). More generally, we note that the long-range nature of
hydrodynamic interactions implies that the large-scale structure of the sedimenting
suspension is likely to be important in determining hydrodynamic diffusion. As such,
it seems unlikely that general results can be obtained for a wide range of systems, but
rather that each system must be considered individually.
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Appendix A. Analysis of two-particle interactions in a periodic system
In § 5, we analysed the mean-square displacements due to two-particle interactions

under a quasi-periodic approximation. Here, we perform a similar analysis for
the fully periodic system. This requires a suitable method for decomposing the
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periodic hydrodynamic velocities. Hasimoto (1959) found the flow due to a triply
periodic Stokeslet by Fourier-decomposing the forcing and resulting flow in all
three spatially periodic directions. However, for a sheared system, the inverse lattice
vectors associated with this decomposition are time-dependent. It is thus simpler to
consider the triply periodic Stokeslet as a sum of doubly periodic Stokeslets at
different positions x, each of which is periodic in the y–z plane, for which the
two-dimensional inverse lattice vectors are time-independent. The solution for a doubly
periodic Stokeslet was calculated by Ishii (1979); we only require the result for a
square lattice with forcing along one of the periodic directions, which we briefly
rederive here in a more concise form.

A.1. Doubly periodic Stokeslet
Consider a fluid (with unit viscosity) in an unbounded domain with forcing f (x) due
to a sheet of sinusoidally varying buoyancy in the plane x= 0:

f (x)= exp(ily+ imz)δ(x)ez. (A 1)

The solution to the Stokes equations for this forcing, with l and m not both zero, can
be calculated analytically (e.g. via the Papkovich–Neuber solution) to give

u(x)= ûlm(x) exp
(

ily+ imz−
√

l2 + m2|x|
)

(A 2)

and

p(x)= −im

2
√

l2 + m2
exp

(
ily+ imz−

√
l2 + m2|x|

)
, (A 3)

where

ûlm(x)= −m

4(l2 + m2)

i
√

l2 + m2x
l|x|
m|x|

+ 1

4(l2 + m2)
3/2

 0
−lm

2l2 + m2

 . (A 4)

For convenience, we also define

ũlm(x)≡ exp
(
−
√

l2 + m2|x|
)
ûlm(x), (A 5)

which captures all of the variation of u(x) with x.
The mode l = m = 0, which represents spatially uniform buoyancy, must be treated

separately and has solution

u(x)=
(
−|x|

2
+ c

)
ez. (A 6)

This solution has an undetermined constant c and, since the buoyancy force is
unbalanced, cannot be matched onto a condition of zero flow at x = ±∞. In a triply
periodic system, the buoyancy due to such modes is balanced by a global pressure
gradient. For our present purposes, it is sufficient to note that this mode produces no
velocity component in the horizontal directions.

The forcing due to a vertically directed, doubly periodic Stokeslet in the plane x= 0
is given by

f (x)=
∑
q

δ(x− q)ez, (A 7)
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where the values of q are the lattice vectors in the y–z plane. For a square grid of unit
length, the lattice vectors are given by q = nyey + nzez with (ny, nz) ∈ Z2. In this case,
Fourier decomposition of the forcing gives

f (x)=
∑
l,m

exp(ily+ imz)δ(x)ez, (A 8)

where (l,m) ∈ 2πZ2 are inverse lattice vectors. The linearity of the Stokes equations
implies that the velocity due to this forcing is simply the forcing due to each of the
modes in the sum. Thus, using the above results for the velocity due to a single mode,
the horizontal components of the velocity induced at x by such a doubly periodic
Stokeslet are

ud H(x)=
∑

l

∑
m6=0

exp(ily+ imz)ũlm(x), (A 9)

where modes with m = 0 are excluded since they give rise to no horizontal velocity
component.

We can reconstruct the horizontal velocities due to a triply periodic Stokeslet as a
sum over the x-direction of doubly periodic Stokeslets with z offsets suitably adjusted
to take account of advection by the background shear flow:

up H(x, t)=
∑

n

∑
l

∑
m6=0

exp{ily+ im(z− nt)}ũlm(x− n), (A 10)

with n ∈ Z.

A.2. Two-particle displacements
From (5.7) and (A 10), the horizontal two-particle displacement, XH

1 (x, t), due to a
particle at initial separation x, can be calculated as

XH
1 (x, t)=

∑
n

∑
l

∑
m6=0

1
im(x− n)

(exp{ily+ im[z+ t(x− n)]}

− exp{ily+ imz})ũlm(x− n). (A 11)

Then (5.11) and (A 11) imply that the ensemble-averaged two-particle displacements
satisfy

〈x1H(t)2〉 =
∑

n

∑
l

∑
m6=0

∫ ∞
−∞

L

m2x(x− n)

× (exp{imtx} − 1)(exp{−imt(x− n)} − 1)ũlm(x)ũ−l−m(x− n) dx. (A 12)

We are now in a position to rederive the results of § 5.4, but for the fully
periodic system. To check whether unbounded growth is possible, we consider the
time-averaged displacements

〈x1H(t)2〉 =
∑

l

∑
m6=0

∫ ∞
−∞

2L

m2x2
ũlm(x)ũ−l−m(x) dx. (A 13)

For the x-direction, this integral is finite and

〈x1(t)2〉 =
∑

l

∑
m6=0

∫ ∞
0

L

4(l2 + m2)
exp

(
−2x

√
l2 + m2

)
dx
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=
∑

l

∑
m6=0

L

8(l2 + m2)
3/2

= 3.34× 10−3L. (A 14)

This is consistent with the numerical evolution of the time-dependent problem
(figure 6), which found that

〈
x1(t)2

〉
converged to a constant value of 3.35× 10−3L.

From (A 13),
〈
y1(t)2

〉
is unbounded, since ṽlm(x) tends to a constant value as x→ 0,

leading to a divergent 1/x2 factor in the integrand. This is the divergent contribution
from weakly sheared two-particle interactions as discussed in § 5.4.

Following § 5.4, we determine the asymptotic behaviour of 〈y1(t)2〉 by considering
the contribution from weakly sheared particles (x� 1), which dominates (A 12) at
long times (t� 1). In the region where x� 1, the dominant contribution is from the
mode n = 0, and ṽlm(x) can be approximated by its value at x = 0. Excluding modes
with n 6= 0, and making this approximation for ṽlm(x), gives a long-time asymptotic
behaviour of

〈y1(t)2〉 ∼
∑

l

∑
m6=0

∫ ∞
−∞

l2m2L

8(l2 + m2)
3x2
(1− cos(mtx)) dx. (A 15)

To evaluate the integral we make the substitution mtx= φ to obtain

〈y1(t)2〉 ∼ Lt
∑

l

∑
m6=0

(
l2|m|

8(l2 + m2)
3

)∫ ∞
−∞

1
φ2
(1− cos(φ)) dφ

∼ Lt
∑

l

∑
m6=0

(
πl2|m|

8(l2 + m2)
3

)
∼ 1.89× 10−3Lt. (A 16)

Thus the mean-square displacement in the y-direction due to two-particle interactions
exhibits asymptotic linear growth. From (2.10) and (5.9), the implied diffusion
coefficient is Dyy ∼ 9.47× 10−4LΓ −2.

Appendix B. A note on the neglect of finite-size effects
In this appendix, we consider the conditions under which it is appropriate to

approximate a suspension of finite-size particles by point particles.
Suppose that the particles occupy a volume fraction φ so that their dimensionless

size is of order φ1/3. The strain due to the background shear flow will induce a
stresslet on each particle, as will hydrodynamic interactions with other particles (with
additional higher-order multipole corrections). These stresslets generate velocities that
add to the Stokeslet velocities due to the net force on each particle, and affect the
particle interactions.

Consider the interaction between a pair of particles with size φ1/3 and separation r.
Each particle generates at the other a Stokeslet velocity of order Γ −1r−1, a stresslet
velocity due to the background shear of order φr−2, and a stresslet velocity due
to hydrodynamic interactions of order φΓ −1r−4. At large separations the Stokeslet
velocity will dominate, and at small separations the stresslet velocity (and the higher-
order corrections) due to hydrodynamic interactions will dominate. If φ� Γ −3/2, then
there is a regime at intermediate separations where the stresslet velocity induced by
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the background shear dominates. However, if φ� Γ −3/2, then the stresslets due to the
background shear flow can be neglected at all separations. Now consider this case.

On scales that are large compared to the particle size (r � φ1/3), the Stokeslet
velocity is dominant as in the point-particle approximation. On the scale of the
particle (r ∼ φ1/3), the Stokeslet velocity Γ −1r−1 and the stresslet velocity φΓ −1r−4 are
comparable, and the finite particle size has an effect on the dynamics. The neglect of
finite-size effects is appropriate provided such small scales do not make a significant
contribution to hydrodynamic diffusion. Since the smallest length scale that we found
to contribute to hydrodynamic diffusion in our analysis was Γ −1/2 (which was the
lower limit of contributions to Dxx), we expect the neglect of finite-size effects to be
appropriate provided that φ1/3� Γ −1/2.

The conditions on φ in the preceding two paragraphs are in fact equivalent, and
imply that the neglect of finite-size effects is appropriate provided simply that the
shear strength is not too large Γ � φ−2/3, or γ̇ � (n/φ)2/3(f /µ) in dimensional terms.
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