Proceedings of the Edinburgh Mathematical Society (2016) **59**, 435–444 DOI:10.1017/S0013091515000103

DIAGONALS OF SEPARATELY ABSOLUTELY CONTINUOUS MAPPINGS COINCIDE WITH THE SUMS OF ABSOLUTELY CONVERGENT SERIES OF CONTINUOUS FUNCTIONS

OLENA KARLOVA, VOLODYMYR MYKHAYLYUK AND OLEKSANDR SOBCHUK

Chernivtsi National University, Department of Mathematical Analysis, Kotsjubyns'koho 2, Chernivtsi 58012, Ukraine (maslenizza.ua@gmail.com)

(Received 16 February 2012)

Abstract We prove that, for an interval $X \subseteq \mathbb{R}$ and a normed space Z, diagonals of separately absolutely continuous mappings $f: X^2 \to Z$ are exactly mappings $g: X \to Z$, which are the sums of absolutely convergent series of continuous functions.

Keywords: absolutely continuous function; semi-continuity; Baire-one mapping

2010 Mathematics subject classification: Primary 26B30 Secondary 26A15; 54C10

1. Introduction

Let $f: X^2 \to Z$ be a mapping. We call a mapping $g: X \to Z$, g(x) = f(x, x), the diagonal of f.

Investigations focusing on diagonals of separately continuous functions $f: X^2 \to \mathbb{R}$ started in the classical work of Baire [1]. He showed that diagonals of separately continuous functions of two real variables are exactly Baire-one functions, i.e. pointwise limits of continuous functions. His result was generalized by Lebesgue and Hahn for real-valued functions of several real variables (see [5,8,9]).

Since the second half the 20th century, Baire classification of separately continuous mappings and their analogues has been intensively studied by many mathematicians (see [2,3,12,13,16,18]). The inverse problem on the construction of separately continuous functions with a given diagonal was solved in [11]. In [15] it was shown that for any topological space X and a function $g: X \to \mathbb{R}$ of the (n-1)th Baire class there exists a separately continuous function $f: X^n \to \mathbb{R}$ with the diagonal g.

In [10] the diagonal variant of the problem of Eidelheit from the famous 'Scottish book' on a composition of absolutely continuous functions was investigated. It was proved that there exists a separately absolutely continuous function $f: [0,1]^2 \to \mathbb{R}$ such that its partial derivatives f'_x and f'_y in the degree p are integrable on $[0,1]^2$ for every p > 1, and such that its diagonal g is not absolutely continuous.

© 2015 The Edinburgh Mathematical Society

The following problem naturally arises.

Problem 1.1. Find necessary and sufficient conditions on a function $g: [0,1] \to \mathbb{R}$ under which there is a separately absolutely continuous function $f: [0,1]^2 \to \mathbb{R}$ with the diagonal g.

In this paper we prove that for any interval $X \subseteq \mathbb{R}$ and a normed space Z, diagonals of separately absolute continuous mappings $f: X^2 \to Z$ are exactly mappings $g: X \to Z$, which are the sums of absolutely convergent series of continuous functions.

2. Preliminaries

For topological spaces X, Y and Z, a mapping $f: X \times Y \to Z$ that is continuous with respect to every variable is called *separately continuous*.

Let X and Y be topological spaces. A mapping $f: X \to Y$ is a mapping of the first Baire class, or a Baire-one mapping, if there exists a sequence $(f_n)_{n=1}^{\infty}$ of continuous mappings $f_n: X \to Y$ that pointwise converges to f on X.

For a metric space X, we denote the metric on this space by $|\cdot - \cdot|_X$.

Let $X \subseteq \mathbb{R}$ be an interval and let Z be a metric space. A mapping $f: X \to Z$ is called absolutely continuous if for an arbitrary $\varepsilon > 0$ there exists $\delta > 0$ such that for every collection $a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n$ of elements $a_1, b_1, \ldots, a_n, b_n \in X$ with $\sum_{k=1}^n (b_k - a_k) < \delta$, the inequality $\sum_{k=1}^n |f(b_k) - f(a_k)|_Z < \varepsilon$ holds. Let, moreover, Y be an interval. A mapping $f: X \times Y \to Z$ that is absolutely continuous with respect to each variable is called *separately absolutely continuous*.

A mapping $f: X \to Z$ has bounded variation on an interval X if there exists C > 0 such that for any collection $a_1 < b_1 \leq a_2 < b_2 \leq \cdots \leq a_n < b_n$ of elements $a_1, b_1, \ldots, a_n, b_n \in X$, the inequality $\sum_{k=1}^n |f(b_k) - f(a_k)|_Z \leq C$ holds. Moreover, for an interval X = [a, b], the least upper bound of all values $\sum_{k=1}^n |f(b_k) - f(a_k)|_Z$ is called the variation of f on [a, b].

Let $X \subseteq \mathbb{R}$ be an interval, let Z be a metric space, let $f: X \to Z$ be a mapping and let $x_0 \in X$. We say that f has finite variation at x_0 if there exists a segment $[a, b] \subseteq X$ such that [a, b] is a neighbourhood of x_0 in X and f has finite variation on [a, b].

Let X and Z be metric spaces and let $A \subseteq X$. A mapping $f: X \to Z$ is Lipschitz on a set A with a constant $C \ge 0$ if $|f(x) - f(y)|_Z \le C|x - y|_X$ for any $x, y \in A$. A mapping $f: X \to Z$ is called Lipschitz on a set A if there exists $C \ge 0$ such that f is Lipschitz on A with the constant C. A mapping $f: X \to Z$ is called Lipschitz (with a constant C) if it is Lipschitz (with a constant C) on X.

A function $p: X \to \mathbb{R}$ defined on a vector space X over a field K is said to be a pseudonorm if for any $x, y \in X$ and $\lambda \in \mathbb{K}$ with $|\lambda| \leq 1$ the following conditions hold: $p(x) \geq 0$, moreover, p(x) = 0 if and only if x = 0; $p(\lambda x) \leq p(x)$ and $p(x+y) \leq p(x)+p(y)$. It is well known that for any metrizable topological vector space X there exists a metric ρ on X that generates a topological structure on X and $\rho(x, y) = p(x-y)$ for some pseudo-norm p on X.

Let X be a topological space and let Z be a metric space. A mapping $f: X \to Z$ is said to be an absolute Baire-one mapping or a mapping of the first absolute Baire class

if there exists a sequence $(f_n)_{n=1}^{\infty}$ of continuous functions $f_n: X \to Z$ such that

$$\lim_{n \to \infty} f_n(x) = f(x) \quad \text{and} \quad \sum_{n=1}^{\infty} |f_{n+1}(x) - f_n(x)|_Z < \infty$$

for every $x \in X$. Note that for a normed space Z a mapping $f: X \to Z$ is an absolute Baire-one mapping if and only if f is the sum of an absolutely convergent series of continuous functions. It is well known (see [17] and [6, Chapter 41 §5, Chapter 42 §2]) that a real-valued function is the sum of an absolutely convergent series of continuous functions if and only if it is the sum of a lower semi-continuous and an upper semicontinuous function. Properties of real-valued absolute Baire-one functions have been studied by many mathematicians (see, for example, [7, 14]).

3. Necessary conditions on diagonals of separately absolutely continuous mappings

Proposition 3.1. Let $X = \mathbb{R}$, let Z be a metric topological vector space with the metric generated by a pseudo-norm p, let $f: X^2 \to Z$ be a continuous mapping with respect to the first variable and let $\alpha: X \to (0, +\infty)$ be a continuous function. Then there exist functions $\beta, \gamma: X \to (\frac{1}{2}\alpha(x), \alpha(x))$ and a continuous mapping $g: X \to Z$ such that

$$p(g(x) - f(x, x + \beta(x))) \leq p(f(x, x + \beta(x)) - f(x, x + \gamma(x)))$$

for every $x \in X$.

Proof. For every $x \in X$ we write $y_x = x + \frac{3}{4}\alpha(x)$ and, taking into account that α is continuous at x, we choose an open neighbourhood U_x of x in X such that $t + \frac{1}{2}\alpha(t) < y_x < t + \alpha(t)$ for every $t \in U_x$.

Let $(V_i: i \in I)$ be an open locally finite refinement of $(U_x: x \in X)$ such that for every $x \in X$ the set $I_x = \{i \in I: x \in V_i\}$ contains at most two elements. Let $(\varphi_i: i \in I)$ be a partition of unity on X such that $V_i = \varphi_i^{(-1)}((0,1])$ for every $i \in I$. For every $i \in I$ we choose $x_i \in X$ such that $V_i \subseteq U_{x_i}$ and let $y_i = y_{x_i}$. For every $x \in X$ let

$$g(x) = \sum_{i \in I} \varphi_i(x) f(x, y_i).$$

Clearly, g is continuous. Moreover, according to the choice of U_x the following condition holds:

$$t + \frac{1}{2}\alpha(t) < y_i < t + \alpha(t) \quad \text{for every } t \in V_i.$$
(a)

For every $x \in X$ we pick $i_x \in I_x$. Moreover, we take $j_x \in I_x \setminus \{i_x\}$ if $|I_x| = 2$, and $j_x = i_x$ if $|I_x| = 1$. Let $\beta(x) = y_{i_x} - x$ and let $\gamma(x) = y_{j_x} - x$. Since $x \in V_{i_x}$ and $x \in V_{j_x}$, by (a) we have $\frac{1}{2}\alpha(x) < \beta(x) < \alpha(x)$ and $\frac{1}{2}\alpha(x) < \gamma(x) < \alpha(x)$.

Let $|I_x| = 1$, i.e. $I_x = \{i\}$. Then, $i_x = i$ and $g(x) = f(x, y_i) = f(x, x + \beta(x))$. Now assume that $|I_x| = 2$. Then $I_x = \{i_x, j_x\}$ and

$$p(g(x) - f(x, x + \beta(x))) = p\left(\sum_{i \in I_x} \varphi_i(x) f(x, y_i) - f(x, y_{i_x})\right)$$
$$= p(\varphi_{j_x}(x) f(x, y_{j_x}) - \varphi_{j_x}(x) f(x, y_{i_x}))$$
$$\leq p(f(x, y_{j_x}) - f(x, y_{i_x}))$$
$$= p(f(x, x + \beta(x)) - f(x, x + \gamma(x))).$$

Theorem 3.2. Let $X = \mathbb{R}$, let Z be a metric linear space with the metric generated by a pseudo-norm p, and let $f: X^2 \to Z$ be a mapping that is continuous with respect to the first variable and has a finite variation and is continuous with respect to the second variable at every point of the diagonal $\Delta = \{(x, x): x \in X\}$. Then g(x) = f(x, x) is an absolute Baire-one mapping.

Proof. For every $n \in \mathbb{N}$ we apply Proposition 3.1 to f and to $\alpha_n \colon X \to (0, +\infty)$, where $\alpha_n(x) = 1/2^n$. We then obtain sequences $(g_n)_{n=1}^{\infty}$, $(\beta_n)_{n=1}^{\infty}$ and $(\gamma_n)_{n=1}^{\infty}$ of continuous mappings $g_n \colon X \to Z$ and functions $\beta_n \colon X \to (1/2^{n+1}, 1/2^n)$ and $\gamma_n \colon X \to (1/2^{n+1}, 1/2^n)$ such that

$$p(g_n(x) - f(x, x + \beta_n(x))) \leqslant p(f(x, x + \beta_n(x)) - f(x, x + \gamma_n(x)))$$

for any $n \in \mathbb{N}$ and $x \in X$.

We show that the sequence $(g_n)_{n=1}^{\infty}$ is as required. Fix $x \in X$ and let $z_n = g_n(x)$, $u_n = f(x, x + \beta_n(x))$ and $v_n = f(x, x + \gamma_n(x))$ for every $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \beta_n(x) = \lim_{n \to \infty} \gamma_n(x) = 0$ and f is continuous with respect to the second variable at (x, x),

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = f(x, x) \text{ and } \lim_{n \to \infty} p(u_n - v_n) = 0.$$

Now, taking into account that $p(z_n - u_n) \leq p(u_n - v_n)$ for every $n \in \mathbb{N}$, we obtain that $\lim_{n\to\infty} p(z_n - u_n) = 0$ and

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} z_n = \lim_{n \to \infty} (z_n - u_n) + \lim_{n \to \infty} u_n = f(x, x) = g(x).$$

We remark that for every $n \in \mathbb{N}$ the points $x + \beta_n(x)$ and $x + \gamma_n(x)$ belong to the interval $I_n = (x + 1/2^{n+1}, x + 1/2_n)$ and $I_n \cap I_m = \emptyset$ for all distinct n and m. Moreover, $\lim_{n \to \infty} (x + \beta_n(x)) = \lim_{n \to \infty} (x + \gamma_n(x)) = x$ and the mapping $f^x \colon X \to Z$, $f^x(t) = f(x, t)$, has a finite variation at x. Hence,

$$\sum_{n=1}^{\infty} p(f^x(x+\beta_n(x)) - f^x(x+\gamma_n(x))) = \sum_{n=1}^{\infty} p(u_n - v_n) = C_1 < \infty$$

and

$$\sum_{n=1}^{\infty} p(f^x(x+\beta_{n+1}(x)) - f^x(x+\beta_n(x))) = \sum_{n=1}^{\infty} p(u_{n+1}-u_n) = C_2 < \infty.$$

Taking into account that $p(z_n - u_n) \leq p(u_n - v_n)$ for all $n \in \mathbb{N}$, we have

$$\sum_{n=1}^{\infty} p(g_{n+1}(x) - g_n(x)) = \sum_{n=1}^{\infty} p(z_{n+1} - z_n)$$

$$\leqslant \sum_{n=1}^{\infty} (p(z_{n+1} - u_{n+1}) + p(u_{n+1} - u_n) + p(z_n - u_n)))$$

$$\leqslant \sum_{n=2}^{\infty} p(u_n - v_n) + \sum_{n=1}^{\infty} p(u_{n+1} - u_n) + \sum_{n=1}^{\infty} p(u_n - v_n)$$

$$\leqslant 2C_1 + C_2$$

$$< \infty.$$

Thus, $\sum_{n=1}^{\infty} |g_{n+1}(x) - g_n(x)|_Z < \infty$ and g is an absolute Baire-one mapping.

Corollary 3.3. Let $X \subseteq \mathbb{R}$ be an interval, let Z be a metric linear space with the metric generated by a pseudo-norm, and let $f: X^2 \to Z$ be a separately continuous mapping, which has finite variation with respect to the second variable at every point of the diagonal $\Delta = \{(x, x): x \in X\}$. Then the mapping $g: X \to Z$, g(x) = f(x, x), is an absolute Baire-one mapping.

Proof. (a) Let X = (a, b), where $a \in \mathbb{R} \cup \{-\infty\}$ and $b \in \mathbb{R} \cup \{+\infty\}$. Consider a homeomorphism $\varphi: (a, b) \to \mathbb{R}$ such that φ and φ^{-1} are locally Lipschitz. Then the mapping $\tilde{f}: \mathbb{R} \to Z$, $\tilde{f}(t) = f(\varphi^{-1}(t))$, satisfies the conditions of Theorem 3.2. Therefore, there exists a sequence $(\tilde{g}_n)_{n=1}^{\infty}$ of continuous functions $\tilde{g}_n: \mathbb{R} \to Z$ such that $\lim_{n\to\infty} \tilde{g}_n(t) = \tilde{f}(t,t)$ and $\sum_{n=1}^{\infty} |\tilde{g}_{n+1}(t) - \tilde{g}_n(t)|_Z < \infty$ for every $t \in \mathbb{R}$. Then the sequence $(g_n)_{n=1}^{\infty}$ of continuous functions $g_n: X \to Z$, $g_n(x) = \tilde{g}_n(\varphi(x))$, pointwise converges to g on X and $\sum_{n=1}^{\infty} |g_{n+1}(x) - g_n(x)|_Z < \infty$ for every $x \in X$.

(b) Now let X = [a, b). According to (a) there is a sequence $(h_n)_{n=1}^{\infty}$ of continuous functions $h_n: (a, b) \to Z$ such that $\lim_{n\to\infty} h_n(x) = g(x)$ and $\sum_{n=1}^{\infty} |h_{n+1}(x) - h_n(x)| < \infty$ for every $x \in (a, b)$. We choose a convergent to a monotone sequence $(a_n)_{n=1}^{\infty}$ of real numbers $a_n \in (a, b)$ and for every $n \in \mathbb{N}$ let $g_n: X \to Z$ be a continuous mapping such that $g_n(a) = g(a)$ and $g_n(x) = h_n(x)$ for every $x \in [a_n, b)$. Then $(g_n)_{n=1}^{\infty}$ pointwise converges to g on X and $\sum_{n=1}^{\infty} |g_{n+1}(x) - g_n(x)| < \infty$ for every $x \in X$.

(c) For the case in which X = (a, b] or X = [a, b] we argue analogously to the proof of (b).

O. Karlova, V. Mykhaylyuk and O. Sobchuk

4. The characterization of diagonals of separately absolutely continuous functions

Proposition 4.1. Let X be a metric space, let Z be a normed space, let $f: X \to Z$ be a continuous mapping and let $\varepsilon > 0$. There then exists a locally Lipschitz mapping $g: X \to Z$ such that $||f(x) - g(x)|| \leq \varepsilon$ for every $x \in X$.

Proof. For every $x \in X$ we choose an open neighbourhood U_x of x in X such that diam $f(U_x) < \varepsilon$. Using [4, Theorem 4.4.1], we choose an open locally finite refinement \mathcal{U} of $(U_x : x \in X)$. Thus, \mathcal{U} is a locally finite cover of X by open non-empty sets U with diam $f(U) < \varepsilon$. For every $U \in \mathcal{U}$ and $x \in X$, by $\psi_U(x)$ we denote the distance from x to $X \setminus U$. Let $\varphi_U = \psi_U / \sum_{V \in \mathcal{U}} \psi_V$ for every $U \in \mathcal{U}$. Note that $(\varphi_U : U \in \mathcal{U})$ is a partition of unity on X, all the functions $\varphi_U : X \to [0, 1]$ are locally Lipschitz and supp $\varphi_U = U$. Moreover, for every $U \in \mathcal{U}$ we take $z_U \in f(U)$. Consider the function $g: X \to Z$, $g(x) = \sum_{U \in \mathcal{U}} \varphi_U(x) z_U$. It is easy to see that $||f(x) - g(x)|| \leq \varepsilon$ for every $x \in X$. Since \mathcal{U} is locally finite and the φ_U are locally Lipschitz, g is locally Lipschitz.

The following example shows that the analogue of Proposition 4.1 for locally convex F-spaces Z is not valid.

Example 4.2. Let $0 , let <math>X = \mathbb{R}$ be a space with the Euclid metric, let $Z = \mathbb{R}$ be a space with the metric $|x - y|_Z = |x - y|^p$, let f(x) = x for every $x \in X$ and let $\varepsilon > 0$. Since every locally Lipschitz mapping $g: X \to Z$ is a constant, $\sup\{|f(x) - g(x)|_p: x \in X\} > \varepsilon$ for any locally Lipschitz mapping $g: X \to Z$.

Proposition 4.3. Let $g: [a, b] \to \mathbb{R}$ and $h: [a, b] \to \mathbb{R}$ be Lipschitz functions with a constant K, let $\varphi: [a, b] \to [0, 1]$ be a Lipschitz function with a constant L and let $|g(x) - h(x)| \leq M$ for every $x \in [a, b]$. Then the function

$$f(x) = \varphi(x)g(x) + (1 - \varphi(x))h(x)$$

is Lipschitz with the constant C = K + LM on [a, b].

Proof. Let $x_1, x_2 \in [a, b]$. Then we have

$$\begin{aligned} |f(x_2) - f(x_1)| &= |(\varphi(x_2) - \varphi(x_1))(g(x_2) - h(x_2)) + \varphi(x_1)(g(x_2) - g(x_1)) \\ &+ (1 - \varphi(x_1))(h(x_2) - h(x_1))| \\ &\leq LM |x_2 - x_1| + \varphi(x_1)K |x_2 - x_1| + (1 - \varphi(x_1))K |x_2 - x_1| \\ &= (K + LM)|x_2 - x_1|. \end{aligned}$$

Proposition 4.4. Let Z be a metric space, let $f: [a, b] \to \mathbb{Z}$ be a continuous mapping and let $(a_n)_{n=1}^{\infty}$ be a strictly increasing sequence such that $a_1 = a$, $\lim_{n\to\infty} a_n = b$. Let, for every $n \in \mathbb{N}$, the mapping f be Lipschitz with a constant C_n on $[a_n, a_{n+1}]$ and, moreover, let the series $\sum_{n=1}^{\infty} C_n(a_{n+1} - a_n)$ be convergent. Then f is absolutely continuous on [a, b].

Proof. Fix $\varepsilon > 0$ and choose $m \in \mathbb{N}$ such that $\sum_{n>m} C_n(a_{n+1} - a_n) < \varepsilon/2$. Set $\delta = \varepsilon/2 \max\{C_n \colon 1 \leq n \leq m\}$. Let

 $a \leqslant u_1 < v_1 \leqslant u_2 < v_2 \leqslant \cdots \leqslant u_i < v_i \leqslant a_m \leqslant u_{i+1} < v_{i+1} \leqslant \cdots \leqslant u_{i+j} < v_{i+j} \leqslant b$

with $\sum_{k=1}^{i+j} (v_k - u_k) < \delta$. Then

$$\sum_{k=1}^{i+j} |f(v_k) - f(u_k)|_Z = \sum_{k=1}^{i} |f(v_k) - f(u_k)|_Z + \sum_{k=i+1}^{i+j} |f(v_k) - f(u_k)|_Z$$

$$\leq \max\{C_n \colon 1 \leq n \leq m\} \cdot \sum_{k=1}^{i} (v_k - u_k) + \sum_{n>m} C_n (a_{n+1} - a_n)$$

$$< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$$

$$= \varepsilon.$$

Now let

$$a \leqslant u_1 < v_1 \leqslant \cdots \leqslant u_i < v_i \leqslant b$$

with $\sum_{k=1}^{i} (v_k - u_k) < \delta$ and $k \leq i$ such that $a_m \in (u_k, v_k)$. Using the above-obtained estimation, we have

$$\sum_{j=1}^{i} |f(v_j) - f(u_j)|_Z = \sum_{j=1}^{k-1} |f(v_j) - f(u_j)|_Z + |f(a_m) - f(u_k)| + |f(v_k) - f(a_m)| + \sum_{j=k+1}^{i} |f(v_j) - f(u_j)|_Z \le \varepsilon.$$

Theorem 4.5. Let $X \subseteq \mathbb{R}$ be an interval, let Z be a normed space and let $g: X \to Z$ be an absolute Baire-one mapping. There then exists a separately absolutely continuous mapping $f: X^2 \to Z$ such that g(x) = f(x, x) for every $x \in X$.

Proof. Let $(I_n)_{n=1}^{\infty}$ be an increasing sequence of segments $I_n = [a_n, b_n]$ such that $X = \bigcup_{n=1}^{\infty} I_n$. Let $g_0(x) = 0$ for every $x \in X$. Using the definition of absolute Baire-one class and Proposition 4.1, we choose a sequence $(\tilde{g}_n)_{n=1}^{\infty}$ of locally Lipschitz mappings $\tilde{g}_n: X \to Z$ such that $\lim_{n\to\infty} \tilde{g}_n(x) = g(x)$ and $\sum_{n=1}^{\infty} \|\tilde{g}_{n+1}(x) - \tilde{g}_n(x)\| < \infty$ for every $x \in X$. Now, for arbitrary $n \in \mathbb{N}$ and $x \in X$, let

$$g_n(x) = \begin{cases} \tilde{g}_n(x), & x \in I_n, \\ \tilde{g}_n(a_n), & x \in X \cap (-\infty, a_n), \\ \tilde{g}_n(b_n), & x \in X \cap (b_n, +\infty). \end{cases}$$

We then obtain the sequence $(g_n)_{n=1}^{\infty}$ of Lipschitz mappings $g_n: X \to Z$ such that $\lim_{n\to\infty} g_n(x) = g(x)$ and $\sum_{n=1}^{\infty} ||g_{n+1}(x) - g_n(x)|| < \infty$ for every $x \in X$.

Let $(K_n)_{n=1}^{\infty}$ be a sequence of real numbers $K_n > 0$ such that the functions g_{n-1} and g_n are Lipschitz with the constant K_n . We choose a strictly decreasing sequence $(\delta_n)_{n=1}^{\infty}$ of real numbers $\delta_n > 0$ such that $\lim_{n \to \infty} \delta_n = 0$ and $\sum_{n=1}^{\infty} K_n \delta_n < \infty$. For every $n \in \mathbb{N}$ let $F_n = \{(x, y) \in X^2 : |x - y| \leq \delta_n\}$ and $G_n = \{(x, y) \in X^2 : |x - y| < \delta_n\}$

 δ_n . We consider the function $\varphi_n \colon \mathbb{R} \to [0,1]$ defined by

$$\varphi_n(t) = \begin{cases} 1, & |t| > \delta_n, \\ \frac{t - \delta_{n+1}}{\delta_n - \delta_{n+1}}, & \delta_{n+1} \leqslant |t| \leqslant \delta_n, \\ 0, & |t| < \delta_{n+1}. \end{cases}$$

We remark that every function φ_n is Lipschitz with the constant $L_n = 1/(\delta_n - \delta_{n+1})$.

We consider the following function $f: X^2 \to Z$:

$$f(x,y) = \begin{cases} g_0(x), & |x-y| > \delta_1, \\ \varphi_n(x-y)g_{n-1}(x) + (1-\varphi_n(x-y))g_n(x), & (x,y) \in F_n \setminus F_{n+1}, \\ g(x), & x = y \in X. \end{cases}$$

Let us show that f has the desired properties. Since for every $n \in \mathbb{N}$ with $|x - y| = \delta_{n+1}$ we have $\varphi_n(x-y) = 0$ and $\varphi_{n+1}(x-y) = 1$,

$$f(x,y) = g_n(x) = \varphi_n(x-y)g_{n-1}(x) + (1 - \varphi_n(x-y))g_n(x).$$

Therefore,

$$f(x,y) = \varphi_n(x-y)g_{n-1}(x) + (1 - \varphi_n(x-y))g_n(x)$$

for every $(x, y) \in F_n \setminus G_{n+1}$. The continuity of g_n and φ_n implies that f is jointly continuous on $X^2 \setminus \Delta$, where $\Delta = \{(x, x) \colon x \in X\}$. Moreover, the equality $\lim_{n \to \infty} g_n(x) = g(x)$ for every $x \in X$ implies that f is continuous with respect to the first and second variables at all points of Δ . Thus, f is separately continuous. Moreover, since all g_n and all φ_n are Lipschitz, f is Lipschitz on $X^2 \setminus G_n$ for every $n \in \mathbb{N}$.

We fix $x_0 \in X$ and show that the mapping $f_{x_0} \colon X \to Z$, $f_{x_0}(x) = f(x, x_0)$, is absolutely continuous. It is sufficient to prove that the mapping f_{x_0} is absolutely continuous on the intervals $X_1 = X \cap (-\infty, x_0]$ and $X_2 = X \cap [x_0, +\infty)$. Let us consider the case when the interval X_1 is non-degenerated, i.e. $X_1 \cap (-\infty, x_0) \neq \emptyset$. Since $X = \bigcup_{n=1}^{\infty} I_n$ and since $(I_n)_{n=1}^{\infty}$ increases and $\lim_{n\to\infty} \delta_n = 0$, there exists a number $m \in \mathbb{N}$ such that $[x_0 - \delta_m, x_0] \subseteq I_m$. Observe that $f_{x_0}(x) = 0$ for every $x \in X \cap (-\infty, x_0 - \delta_1]$ and f_{x_0} is Lipschitz on $X_1 \cap [x_0 - \delta_1, x_0 - \delta_m]$. Therefore, the absolute continuity of f_{x_0} of X_1 is equivalent to the absolute continuity of f_{x_0} on $[x_0 - \delta_m, x_0]$.

Fix $n \ge m$. Notice that g_{n-1} and g_n are Lipschitz with the constant K_n , and φ_n is Lipschitz with the constant L_n . Moreover, for every $x \in [x_0 - \delta_n, x_0 - \delta_{n+1}]$ we have

$$\begin{aligned} \|g_n(x) - g_{n-1}(x)\| &\leq \|g_n(x_0) - g_{n-1}(x_0)\| + \|g_n(x) - g_n(x_0)\| + \|g_{n-1}(x) - g_{n-1}(x_0)\| \\ &\leq \|g_n(x_0) - g_{n-1}(x_0)\| + 2K_n\delta_n \\ &= M_n. \end{aligned}$$

Hence, f_{x_0} is Lipschitz on $[x_0 - \delta_n, x_0 - \delta_{n+1}]$ with the constant

$$C_n = K_n + L_n M_n = K_n + \frac{1}{\delta_n - \delta_{n+1}} (\|g_n(x_0) - g_{n-1}(x_0)\| + 2K_n \delta_n)$$

by Proposition 4.3. Now we have

$$\sum_{n \ge m} C_n(\delta_n - \delta_{n+1}) \leqslant 3 \sum_{n \ge m} K_n \delta_n + \sum_{n \ge m} \|g_n(x_0) - g_{n-1}(x_0)\| < \infty.$$

By Proposition 4.4, f_{x_0} is absolutely continuous in $[x_0 - \delta_m, x_0]$ and, consequently, on X_1 .

The absolute continuity of f_{x_0} on X_2 and the absolute continuity of f with respect to the second variable are proved similarly.

Theorems 3.2 and 4.5 imply the following result.

Theorem 4.6. Let $X \subseteq \mathbb{R}$ be an interval, let Z be a normed space and let $g: X \to Z$. Then the following conditions are equivalent.

- (i) There exists a separately absolutely continuous mapping $f: X^2 \to Z$ with the diagonal g.
- (ii) There exists a mapping $f: X^2 \to Z$ with the diagonal g that is continuous with respect to the first variable and has a finite variation and is continuous with respect to the second variable at every point of the diagonal $\Delta = \{(x, x) : x \in X\}$.
- (iii) g is an absolute Baire-one mapping.

5. Open problems

Question 5.1. Let X = [0, 1], let Z be a metric space and let $f: X^2 \to Z$ be a separately absolutely continuous mapping. Is g(x) = f(x, x) an absolute Baire-one mapping?

Question 5.2. Let X = [0,1], let Z be a metric topological vector space and let $g: X \to Z$ be an absolute Baire-one mapping. Does there exist a separately absolutely continuous mapping $f: X^2 \to Z$ such that g(x) = f(x, x) for every $x \in X$?

References

- 1. R. BAIRE, Sur les fonctions de variables reélles, Annali Mat. Pura Appl. **3**(1) (1899), 1–123.
- 2. T. BANAKH, (Metrically) quarter-stratifiable spaces and their applications in the theory of separately continuous functions, *Math. Stud.* **18**(1) (2002), 10–18.
- 3. M. BURKE, Borel measurability of separately continuous functions, *Topol. Applic.* **129**(1) (2003), 29–65.
- 4. R. ENGELKING, General topology (Heldermann, Berlin, 1989).
- 5. H. HAHN, Theorie der reellen Funktionen 1 (Springer, 1921).
- 6. F. HAUSDORFF, *Set theory*, AMS Chelsea Publishing Series, Volume 119 (American Mathematical Society, Providence, RI, 1957).

- R. HAYDON, E. ODELL AND H. ROSENTHAL, On certain classes of Baire-1 functions with applications to Banach space theory, in *Functional analysis*, Lecture Notes in Mathematics, Volume 1470, pp. 1–35 (Springer, 1991).
- 8. H. LEBESGUE, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278–287.
- 9. H. LEBESGUE, Sur les fonctions respresentables analytiquement, J. Math. 2(1) (1905), 139–216.
- L. MALIGRANDA, V. MYKHAYLYUK AND A. PLICHKO, On a problem of Eidelheit from the Scottish book concerning absolutely continuous functions, J. Math. Analysis Applic. 375(2) (2011), 401–411.
- 11. V. MASLYUCHENKO, V. MYKHAYLYUK AND O. SOBCHUK, Construction of a separately continuous function of n variables with the given diagonal, *Math. Stud.* **12**(1) (1999), 101–107 (in Ukrainian).
- O. V. MASLYUCHENKO, V. K. MASLYUCHENKO, V. V. MYKHAYLYUK AND O. V. SOBCHUK, Paracompactness and separately continuous mappings, in *General topology* in Banach spaces, pp. 147–169 (Nova Science, Commack, 2001).
- W. MORAN, Separate continuity and support of measures, J. Lond. Math. Soc. 44 (1969), 320–324.
- M. MORAYNE, Sierpiński hierachy and locally Lipschitz functions, Fund. Math. 147 (1995), 73–82.
- 15. V. MYKHAYLYUK, Construction of separately continuous functions of n variables with the given restriction, *Ukrain. Math. Bull.* **3**(3) (2006), 374–381 (in Ukrainian).
- 16. W. RUDIN, Lebesgue's first theorem, Math. Analysis Applic. B7 (1981), 741-747.
- 17. W. SIERPIŃSKI, Sur les fonctions développables en séries absolument convergentes de fonctions continues, *Fund. Math.* **2** (1921), 15–27.
- G. VERA, Baire measurability of separately continuous functions, Q. J. Math. 39(153) (1988), 109–116.