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 SUMMARY
 A calibration method for a Stewart platform has been
 developed as part of a project aimed at developing a
 calibration method for a Delta robot .  The Delta has 3
 degrees of freedom (DOF) but is more complex than the
 Stewart platform for calibration purposes because an
 extra link is inserted in each kinematic chain between the
 base and the Nacelle member .
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 INTRODUCTION
 Parallel topology robots have not yet made a significant
 impact in industrial applications and this is probably why
 there has been very little work on the calibration of fully
 parallel manipulators .  The Stewart platform 1  was
 originally proposed as a flight simulator platform ,  and is
 widely used for this today .  McCallion and Pham 2  used
 the mechanism as a 6 DOF platform for robotic
 assembly ,  while Dunlop et al . 3  applied the mechanism to
 satellite tracking .  The Stewart platform has also been
 considered for use as a machine tool . 4 , 5

 The Delta robot was first proposed by Clavel . 6 , 7  The
 robot is a simplification of a 6 DOF mechanism first
 proposed by Hunt 8  which ,  in turn ,  bears a resemblance
 to the Stewart platform .  The Delta robot has 3
 translational degrees of freedom and is actuated by 3
 kinematic chains consisting of a rotary arm in series with
 2 ball-jointed parallel arms .  A number of prototypes
 have been constructed at the Swiss Federal University of
 Lausanne (EPFL) and a production version now exists .

 The work presented in this paper is at an early stage of
 development .  The goal is to develop an ef fective
 calibration model for the full Delta robot .  Thus far ,  work
 has focused on developing a calibration model for the
 Stewart platform because it is similar in form to a
 sub-structure of the Delta robot .  In this paper ,  the model
 for a variant of the Stewart platform with fixed leg
 lengths and mobile base joints is developed as an
 intermediate step to the Delta structure .

 NOTATION
 In this paper ,  vector quantities are represented in lower
 case bold type (e . g .   p i ) ,  matrices are represented in
 upper case bold (e . g .   R ) ,  and scalars are shown in italic
 (e . g .   t i ) .  Vector valued functions are denoted with an
 arrow above an upper case italic symbol (e . g .   T #  ) .  Unit
 vectors are identified with a ‘‘hat’’ or caret above a
 vector symbol (e . g .   r ̂ ) and error parameters are

 indicated by the symbol  d   before the appropriate symbol .
 For instance ,  the vector of error parameters relating to
 the vector  p i   is the same dimension as  p i   and is written
 d  p i  .

 THE FIXED-LEG STEWART PLATFORM
 This variant of the Stewart platform structure is not
 proposed as a practical design .  It serves as a simplified
 structure with similar properties to the lower part of the
 Delta robot .

 In this design ,  the Stewart platform has 6 inextensible
 legs that are connected by ball joints to the nacelle and
 the base (Figure 2) .  The nacelle ball joints are fixed in
 position relative to the nacelle coordinate frame while
 the base ball joints are allowed to move along straight
 rails .  The robot is actuated by sliding the base ball joints
 along these rails a distance  b i   ( i  5  1  ?  ?  ?  6) from the base
 point of the rail .  In the Delta robot model ,  the 6 straight
 rails will be replaced by 3 paired circular arcs
 representing the loci of the 3 actuator arms .

 The error model allows for deviations in the ball joint
 positions and in the lengths of the legs ,  giving 42 error
 parameters in total .  For this simplified model ,  the rails
 are assumed to be perfectly straight and accurately
 located .

 1 .  Modelling
 For the fixed-leg Stewart platform ,  the loop closure
 condition is given by (1) .  The meanings of the symbols in
 (1) may be inferred from Figure 2 .

 x  1  R ( q i  1  d  q i )  2  ( p i  1  d  p i  1  b i  r ̂ i )  2  ( t i  1  d t i ) t ̂ i  5  0  (1)

 Matrix  R  is the 3 by 3 rotation matrix that converts the
 nacelle basis vectors into the base frame basis fectors .
 The  in y  erse geometric solution  expresses the actuator
 coordinates as a function of the endpoint position .  If the
 nacelle is fixed in space and leg  i  is allowed to swing from
 the nacelle ,  then the locus of the base ball joint traces
 out a sphere .  The sphere intersects the rail in 2 locations
 and the convention is adopted that the point of
 intersection furthest from base platform centre is taken
 to be the attachment point .  Given  x ,  the centre of the
 spherical locus for leg  i  is located in the base coordinate
 frame by vector  c i  .

 c i  5  h x  1  R ( q i  1  d  q i ) j  (2)

 Point  s  lies on the sphere and on the line representing
 the rail .

 ( s  2  c ) T ( s  2  c )  5  ( t i  1  d t i )
 2  (3)

 s  5  p i  1  d  p i  1  b i  r ̂  (4)
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 Fig .  1 .  Schematic diagram of the Delta robot

 The sphere is described by (3) and the line is described
 by (4) .  By substitution ,

 ( b i  r ̂  2  h i )
 T ( b i  r ̂  2  h i )  5  ( t i  1  d t i )

 2  (5)

 where :
 h i  5  c  2  p i  2  d  p i  (6)

 hence :

 b i  5  r ̂ T
 i  h i  Ú  4 ( r ̂ T

 i  h i )
 2  2  2 r ̂ T

 i  h i ( h T
 i  h i  2  t 2

 i  2  d t 2
 i  )  (7)

 Substituting (4) into (3) ,  a quadratic equation (5) is
 generated in terms of  b i  .  Provided that  x  is within the
 workspace of the robot ,  (5) will generally have 2 real
 roots (7) .  Following the convention mentioned above ,
 the largest root is the one that is selected .

 The  direct geometric solution  expresses the endpoint
 position as a function of the actuator coordinates ,  robot
 geometry ,  and error parameters .  While the direct
 geometric solution has been solved analytically , 9  it is
 much more computationally ef ficient to use a numerical
 solution algorithm such as the Newton-Raphson
 algorithm . 1 0

 e  5  [ d t 1  ?  ?  ?  d t 6 ( d  q 1 )
 T  ?  ?  ?  ( d  q 6 )

 T ( d  p 1 )
 T  ?  ?  ?  ( d  p 6 )

 T ] T  (8)

 where

 (9)
 ( d  q i )

 T  5  [ d q 1 i  d q 2 i  d q 3 i ] ,

 ( d  p i )
 T  5  [ d p 1 i  d p 2 i  d p 3 i ]

 J  ;
 ­ x
 ­ e

 5 F  ­ x
 ­ ( d t i )

 ­ x
 ­ ( d  q i )

 ­ x
 ­ ( d  p i )

 G ,  1  #  i  #  6 .  (10)

 The  dif ferential solution  expresses rates of change in
 the endpoint coordinates as a function of changes in the
 error parameters .  If the error parameters are grouped
 into a single 42 by 1 partitioned vector as in (8) then the
 direct Jacobian matrix is defined as in (10) .

 d t i  5  i  x  1  R ( q i  1  d  q i )  2  ( p i  1  d  p i  1  b i  r ̂ i )  2  t i  t ̂ i  i  (11)

 T $  ( x ,  e )  5  [ d t 1  d t 2  d t 3  d t 4  d t 5  d t 6 ]
 T  (12)

 The terms in (10) are not simple to express or
 evaluate ,  but the loop closure equation (1) may be
 rearranged as in (11) and the  d t i   collected into a vector
 function (12) .  It may be shown that

 ­ x
 ­ ( d t i )

 5 H  ­

 ­ x
 T $  ( x ,  e ) J 2 1

 5  D  (13)

 hence

 J  5 F D ,  D  ?
 ­

 ­ ( d  q i )
 T $  ( x ,  e ) ,  D  ?

 ­

 ­ ( d  p i )
 T $  ( x ,  e ) G  (14)

 which is easier to evaluate .
 In the following expression ,  the subscript represents

 the ordinal number of the measurement points .  Each
 nominal measurement position ,   x nom

 j  ,  is associated with a
 Jacobian matrix  J j   evaluated at  x nom

 j  .  The  identification
 Jacobian  M  is defined as

 M  5  [ J T
 1  J T

 2  ?  ?  ?  J T
 n ] T  (15)

 2 .  Measurement and Identification
 For simplicity ,  the measurement device in the example

 is assumed to be capable of measuring all 6 components
 of the endpoint position expressed in the world frame .  A
 set of  n  measurement points in the workspace is chosen
 and readings are taken from the measurement device
 when the robot is moved to these points .  It is appropriate
 to consider which set of measurement points in the

 Fig .  2 .  The fixed-leg Stewart Platform .
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 robot’s workspace guarantees a complete solution for the
 error parameters  d I  .  This is a question of  obser y  ability .

 O ( M )  5
 4
 L

 s  1  ?  s  2  ?  ?  ?  s L

 4 n
 (16)

 where  s  1  ,  s  2  ,  .  .  .  ,  s L   are the singular values of the
 identification Jacobian .

 Menq and Borm 1 1  present an observability index (16)
 based on the singular value decomposition of the
 identification Jacobian  M  (15) .  It is normally advan-
 tageous to choose measurement points that maximise the
 observability index .  Borm and Menq 1 2  use a numerical
 optimisation procedure to search for optimum measure-
 ment positions .  For the example presented here ,  a
 similar numerical optimisation was performed using a
 steepest ascent method .  It was observed that the
 measurement points generally migrate towards the edges
 of the workspace and toward singular configurations as
 the optimisation progresses .  This is because the best
 increase in the Menq and Borm observability index is
 achieved by increasing the greatest singular value of the
 identification Jacobian .  This is not a great problem with
 serial manipulators since there are no singularities of the
 type where mobility is gained however parallel robots
 often possess singularities of this type .  When the robot is
 moved close to a singular configuration some terms of
 the direct Jacobian matrix become very large .  This
 appears in the singular value decomposition as a very
 large greatest singular value .  The other singular values
 are less prone to inflation .  The near-singular points
 caused numerical range dif ficulties during the identifica-
 tion phase .  Similar dif ficulties were encountered when
 using either the least singular value or the condition
 number as the observability index .  A possible solution to
 this problem would be to set an arbitrary limit on the
 2-norm of the direct Jacobian matrix of the manipulator
 at each measurement point .  This is equivalent to creating
 an imaginary sphere around each singular point which
 the measurement points cannot move into during
 optimisation .

 The data for this example were generated numerically .
 A set of values was chosen for the  d I    error parameters .
 The object was to recover these values from the data
 using the identification technique .

 Once the measurement data has been obtained ,  the
 values of the error parameters  d I    must be determined .
 This is a model fitting exercise .  The simplest approach to
 solving for  d I    is to use a linear least squares solution .
 Linear least squares estimation works satisfactorily if the
 identification Jacobian is well conditioned ,  the obser-
 vability is relatively high ,  and the calibration model is
 suf ficiently linear .  For situations where the condition
 number is poor ,  singular value decomposition 1 3  is often
 used .  For improved performance , 1 4  it is possible to use a
 weighted least squares solution which weights the
 contribution of each data point to the result according to
 the inverse of its uncertainty .

 Non-linear least squares solutions are generally more
 computationally demanding but they often give a more

 accurate result .  A practical technique is the Levenberg-
 Marquardt algorithm . 1 3  The technique involves minimis-
 ing a cost function (17)

 χ  2  5 O  ( x act
 i  2  G #  ( x nom

 i  ,  e ̃  ))  ?  diag  ( C ) 2 1  (17)

 where  G ( x nom
 i  ,  e ̃  ) is the direct geometric solution and  C

 is the covariance matrix of the experimental data .  Matrix
 C  may be known a-priori or it may be estimated from the
 experimental data .

 For this example ,  the simulated data were processed
 using MatLab . 1 5  The number of measurement points
 used was 50 .  The results for noisy and noise free data
 heave been analysed by both linear and non-linear
 methods and presented in Table I .

 RESULTS
 To evaluate the improvement in accuracy due to
 calibration ,  the RMS error in the endpoint position may
 be evaluated before and after calibration .  The tabulated
 results were obtained using a set of randomly distributed
 points within the workspace ,  not equal to the points used
 for measurement .

 The iterative linear least squares results were generally
 poor because the calibration model is significantly
 non-linear .  The Levenberg-Marquardt result for noise
 free data converges to a result that is very close indeed to
 the actual error parameter vector ,  while the same
 method applied to noised data reduces the RMS position
 error in world space to about 2% of the original
 uncalibrated RMS error .

 When measurements that have been optimised for
 Menq-and-Borm observability are used ,  a problem is
 encountered in that some of the measurement points are
 close to physical singularities of the robot .  Near
 singularities ,  the iterative direct geometric solution
 methods are less likely to converge .  Apart from that ,  the
 repeatability of the physical robot would suf fer near
 singularities ,  adding noise to the data .  It was necessary to
 move these points away from the singularities in order to
 achieve convergence .  The optimised measurements do
 not provide better parameter estimates than the
 non-optimised measurements .

 CONCLUSION
 A method for robot calibration has been applied
 successfully to the simulated calibration of a parallel
 manipulator .  The high degree of non-linearity in the
 calibration model strongly favours the use of non-linear
 solutions in the identification phase .

 Problems were encountered when the observability
 criterion of Menq and Borm was applied to optimise the
 measurement positions .  Methods for ensuring conver-
 gence of the direct geometric solution by constraining the
 optimised points to avoid areas of poor conditioning
 need to be applied .

 Future work is aimed at expanding the fixed-leg
 Stewart platform model so that it may be applied to
 calibration of the Delta robot .
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 Table I .  A set of typical results from simulated calibration procedures

 Solution method  d I
 Not

 calibrated

 d ̃
 Least Sqr .
 No noise

 d ̃
 Least Sqr .

 Noise

 d ̃
 Lev . -Marq .
 No noise

 d ̃
 Lev . -Marq .

 Noise

 d ̃
 Lev . -Mar .
 No noise

 Optimised

 d ̃
 Lev . -Mar .

 Noise
 Optimised

 RMS Error
 Position (mm)
 Orientation (rad)

 4 ? 33
 0 ? 0546

 0 ? 0774
 2 ? 80  3  10 2 4

 0 ? 175
 1 ? 13  3  10 2 3

 1 ? 38  3  10 2 5

 5 ? 87  3  10 2 8
 0 ? 082
 1 ? 36  3  10 2 4

 3 ? 65  3  10 2 5

 1 ? 92  3  10 2 7
 0 ? 086
 1 ? 31  3  10 2 4
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 LIST OF SYMBOLS

 Notation
 In this paper ,  vector quantities are represented in lower case bold type
 (e . g .   p i ) ,  matrices are represented in upper case bold (e . g .   R ) ,  and
 scalars are shown in italic (e . g .   t i ) .  Vector valued functions are denoted
 with an arrow above an upper case italic symbol (e . g .   T $  ) .  Unit vectors
 are identified with a ‘‘hat’’ or caret above a vector symbol (e . g .   r ̂ ) and
 error parameters are indicated by the symbol  d   before the appropriate
 symbol .  For instance ,  the vector of error parameters relating to the
 vector  p i   is the same dimension as  p i   and is written  d  p i .
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