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Computation of intermodulation distortion
in RF MEMS variable capacitor circuits
using moments

dani a. tannir

This paper introduces a new technique for the efficient computation of intermodulation distortion in radio frequency circuits
that contain microelectromechanical system (MEMS) variable capacitors using moments analysis. This method is applied to
an extended harmonic balance formulation, which contains the nonlinear equations that describe the dynamic mechanical
behavior of MEMS variable capacitors, in addition to the nonlinear electric circuit equations. As a result, the moments
method becomes a general multi-domain simulation method for quantifying nonlinear intermodulation distortion, while
presenting significant computational cost reduction over harmonic balance-based methods.
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I . I N T R O D U C T I O N

Recent technological advances and trends in consumer elec-
tronics have led to a significant increase in the complexity
of wireless communication circuits. At the same time, the
commoditization of wireless components has considerably
increased competition and made reducing the design cycle,
and thus the time-to-market, an important competitive
advantage for the industry. Microwave microelectromechani-
cal systems (MEMS) have become important components in
many modern radio frequency (RF) circuits as they provide
significant added value in terms of cost, size, and weight
reduction to circuits, such as matching networks, phase shif-
ters, voltage-controlled oscillators, filters, antennas, and
impedance tuners [1–3]. The increased popularity of RF
MEMS devices and technologies has resulted in novel inte-
grated circuits and systems that incorporate them.
Consequently, the development of new state-of-the-art
computer-aided design (CAD) tools for accurate modeling
and efficient simulation of such systems is now required.
These new CAD tools must be capable of capturing both the
electrical characteristics of the circuit and the dynamic mech-
anical behavior of the MEMS devices [4–6].

From the perspective of the RF circuit designer, one of the
most important performance characteristics that must be
accounted for is the nonlinear intermodulation distortion,
which can significantly affect circuit performance and
output RF power levels. Until recently, RF MEMS devices

were assumed to be intermodulation-free devices, since they
do not contain a semiconductor junction and therefore do
not have an exponential current–voltage relationship.
However, it has since been proven that with MEMS variable
capacitors, significant third and higher order intermodulation
products are generated by the nonlinear dependence of the
membrane displacement on the applied voltage [1, 7, 8].
The simulation of nonlinear distortion is one of the most
important bottlenecks in the design automation of RF circuits.
This distortion is due to the inherent nonlinearity of circuit
components and results in the harmonics of input tones, as
well as the intermodulation products, being present at the
output. Of particular interest are the odd-order intermodula-
tion products, such as the third and fifth order intermodula-
tion tones, because they mix back into the frequency band
of operation and result in many undesirable effects, such as
gain compression [9]. The most common metric for charac-
terizing and quantifying the in-band distortion caused by
the third-order nonlinearity is the third-order intercept
point (IP3) [10].

In a simulation environment, the most common approach
for determining intercept points is to mimic laboratory mea-
surements by applying a two-tone test input and performing a
steady-state analysis using techniques, such as the harmonic
balance method [11, 12]. This approach is general and gives
very accurate results. However, the harmonic balance simula-
tion requires a large computational cost because of the large
number of variables present due to the multi-tone inputs. In
the presence of MEMS variable capacitors, there is the
added challenge of having to solve the ordinary electric
circuit equations simultaneously with the nonlinear electro-
mechanical equations that describe the dynamics of motion
in the device, which could exhibit singularities in some
regions of the state variable space [13, 14]. This typically
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leads to numerical ill-conditioning and poor convergence of
the solution. Alternatively, Volterra series analytical techni-
ques can be employed to measure the distortion in circuits
that contain MEMS devices. In [8], analytic Volterra
series-based models were developed for MEMS variable capa-
citors. However, the same challenges associated with trad-
itional circuits remain, that is, the complexity of deriving
the higher order kernels necessary for determining the inter-
cept points.

In [13, 15], the harmonic balance method was extended to
cover the simulation of nonlinear circuits containing MEMS
variable capacitors. This was accomplished by including the
membrane displacement as an additional variable in the har-
monic balance formulation. In [13], additional state variables
were incorporated to remove the MEMS equation singularities
along with numerical techniques that improve conversion.
However, the main computational bottlenecks in the classical
harmonic balance algorithm remain. In [16–18], a method for
computing IP3 using moments analysis was presented. This
method links the value of IP3 to the moments of the
two-tone harmonic balance equations using closed form
expressions. The computation of IP3 was thus reduced to
finding the moments of the harmonic balance equations,
without the need for a harmonic balance simulation, thus
resulting in a considerable computation speed-up. However,
this approach was limited to traditional semiconductor-based
RF circuits.

In this paper, we show, for the first time, how the moments
approach that was first presented in [16–18], can be developed
to cover a new class of circuits which contain MEMS variable
capacitors. To that end, the modified moments computation
algorithm, which includes the mechanical membrane dis-
placement as a variable, is presented. In addition, the deriv-
ation of the expansion of the derivatives for the MEMS
device nonlinearities, which are required for the moments
computation algorithm, are also presented. For this modified
moments algorithm, we will show that the considerable com-
putation cost advantage that moments analysis has over per-
forming a full harmonic balance simulation is preserved.
Finally, it is important to emphasize that the moments
approach does not require iterative solutions, and therefore
avoids some of the convergence problems associated with
solving the harmonic balance equations for RF MEMS
circuits.

This paper is organized into six sections. Following the
introduction, Section II provides an overview on the modeling
of MEMS nonlinearities while Section III provides an over-
view of the moments based method for IP3 computation in
semiconductor RF circuits. The proposed algorithm is pre-
sented in Section IV including the extended formulation of
the system equations and the derivation of all the numerical
terms required for determining the value of IP3 of circuits
that contain MEMS nonlinearities. Finally a numerical
example is described in Section V in order to illustrate the
speedup and accuracy of the new method, followed by conclu-
sions in Section VI.

I I . O V E R V I E W O F M E M S
C A P A C I T O R M O D E L I N G

The dynamics of motion for a two-parallel plate topology elec-
trostatic actuation can be expressed using a second-order

nonlinear differential equation of a mass-spring-damper
system as [1, 13]

m
d2z
dt2

+ b
dz
dt

+ kz = 1
2
e0AV2

(d − z)2 , (1)

where z is the membrane displacement, m is the mass, b is the
damping coefficient, k is the suspension stiffness, d is the
initial gap, A is the area of the electrode, e0 is the permittivity
of free space, and V is the applied voltage. These parameters
are illustrated in Fig. 1.

The main parameters of interest when using a MEMS vari-
able capacitor in an electric circuit are the charge Q on the
plates, and the voltage V across them [8]. The charge Q is a
function of the voltage V in addition to the membrane dis-
placement z as follows

Q(V , z) = e0A
d − z

V. (2)

Combining the relation in (2) with the MEMS equation in
(1) allows us to express the equation of motion as a nonlinear
function of charge as follows:

m
d2z
dt2

+ b
dz
dt

+ kz = F(Q) = Q2

2e0A
. (3)

The mechanical resonance frequency of the MEMS device
is defined as v0 =

�����
k/m

√
[2]. For an accurate multi-domain

simulation that captures both the electrical and mechanical
properties of the system, the simulator must solve for the

Table 1. Frequency components present in displacement and intermodu-
lation products [1].

Frequencies Displacement Intermodulation
harmonics products

v1 − v2 , v0
3 1st, 2nd, 3rd 3rd, 5th, 7th

v0
3 , v1 − v2 , v0

2 1st, 2nd, 3rd 3rd, 5th
v0
2 , v1 − v2 , v0 1st, 2nd, 3rd 3rd, 5th
v0 , v1 − v2 1st 3rd
v0 ,< v1 − v2 none none

Fig. 1. Cross-section of an RF MEMs capacitor in the (a) unactuated and (b)
actuated positions.
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displacement variable z in addition to the capacitor charge Q
and the voltage V. A summary of the distortion components
due to the membrane displacement harmonics as well as the
intermodulation products for a circuit containing a MEMS
variable capacitor that is subjected to a two-tone test (at fre-
quencies v1 and v2) is provided in Table 1 [1].

In this paper, we show how the relations in (2) and (3) can
be incorporated in the moments algorithm for distortion ana-
lysis. Note that the nonlinear electromechanical equations of
the MEMS motion given by (1–3) are based on the simplified
1-D model described in the literature [1, 3, 13, 15]. However, it
is important to emphasize that more detailed expressions can
be added to better describe the nonlinear behavior of the
MEMS model. In this paper, for simplicity of presentation,
we will restrict the analysis to the model described by (1–3),
with a brief discussion on how more refined models can be
incorporated and what their effects will be on the computation
cost of the proposed method provided in Section IV.D.

I I I . O V E R V I E W O F M O M E N T S
B A S E D I P 3 C O M P U T A T I O N

In [17], an efficient method for computing IP3 of
semiconductor-based RF amplifier and mixer circuits based
on moments analysis was presented. The RF circuit was
modeled using the general harmonic balance formulation
for nonlinear systems. The formulation of the system was fol-
lowed by the computation of the moments of the output
vector, rather than the computation of the steady-state
response, as is the case with a regular harmonic balance simu-
lation. The moment vectors, once determined, were shown to
contain the numerical values of the Volterra kernels that are
required to determine the value of IP3 according to the
Volterra series formulation. The Volterra series approach,
which is an extension of Taylor series to nonlinear systems
with memory, works well for circuits that are mildly nonlinear
[9]. This is therefore also the case when performing distortion
analysis using the moments method. An overview of the for-
mulation, computation of the moments, and the closed form
relation between IP3 and the moments are presented in this
section. For the complete details of the method and numerical
examples, the reader is encouraged to refer to the literature
[16–18].

A) Moments of the harmonic balance
equations
The moments computation algorithm is applied to a general
nonlinear system described by its harmonic balance equations
[19]. The harmonic balance formulation is derived from the
modified nodal analysis (MNA) formulation for a nonlinear
system in the time domain which is of the form [20]

Gx(t) + Cx(t) + f (x(t)) = b(t), (4)

where x(t) [ Rn is a vector of n unknown variables consisting
of node voltages and branch currents. G [ Rn×n and
C [ Rn×n are matrices representing the contributions of the
linear memory less and memory elements, respectively.
f (x) [ Rn and b(t) [ Rn are the vectors of nonlinear equa-
tions and the independent sources, respectively.

The harmonic balance equations can be obtained from the
formulation in (4) by expressing the vector of variables x(t) as
a Fourier Series of H harmonics given by:

x(t) = A0 +
∑H

k=1

Akcos(vkt) + Bksin(vkt)( ). (5)

In this case, the number of variables in the formulation
increases to Nh and the harmonic balance equations can be
expressed as:

�GX + �CX + F(X) = BDC + aBRF . (6)

In this formulation, X [ RNh is a vector of unknown
cosine and sine coefficients for each of the variables in x(t).
The vectors BDC [ RNh and BRF [ RNh contain the contribu-
tions of the dc and the RF signal sources, respectively. In this
paper, a refers to the amplitude of the input RF voltage signal.
�G [ RNh×Nh and �C [ RNh×Nh are block matrices representing
the contributions of the linear memoryless and memory ele-
ments, respectively, and F(X) [ RNh is the vector of nonlinear
equations which also includes the nonlinear charge
expressions.

The moments of the system are defined as the coefficients
of the Taylor series expansion of the output solution vector X
with respect to the input RF amplitude a. This can be
expressed as

X = M0 + M1a+ M2a
2 + M3a

3 + . . . =
∑1
k=0

Mka
k, (7)

where Mk is the kth moment vector and can also be expressed
as [19]:

Mk =
1
k!
∂kX
∂ak

∣∣∣∣
a=0

. (8)

It is important to note that the Jacobian matrix of the
harmonic balance equations given in (6) is typically large
and block dense, therefore making the harmonic balance solu-
tion computationally expensive. Alternatively, the moments
method does not require performing a harmonic balance
simulation, but rather computes the moments defined in (7)
using a sparse moments matrix, thereby presenting significant
computation cost reduction.

B) Moments computation algorithm
The moments computation algorithm has been presented
several times in the literature [21–23] and has many useful
applications in electronic circuit simulation, such as in
model order reduction based simulation methods. In this
section, an overview of the moments computation algorithm
is presented, with an explanation of what makes the algorithm
very computationally attractive for distortion analysis applica-
tions. For the full details of the algorithm, the reader is invited
to refer to the literature [17, 21–23].

The moments computation algorithm is about determining
the unknown moment vectors, Mk, when the vector of
unknown variables X is expressed using (7). Just as is the
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case with Taylor series, the moments expansion has a finite
radius of convergence, thereby limiting their application to
circuits that are mildly nonlinear in the signal path. The
moments expansion for general mildly nonlinear amplifier
circuits is therefore carried out at the DC operating point,
which must be computed first as the ‘zero’ moment vector,
as will be shown next. To account for stronger nonlinearities
that occur outside the RF signal path, such as when simulating
mixer circuits with a high power local oscillator, the moments
expansion must be carried out at the local oscillator operating
point, as shown in [17].

The main steps of the moments computation algorithm for
amplifier circuits are as follows:

2 The zero moment vector, M0, is obtained by finding the
solution of the system described by (6) with the RF ampli-
tude (a) set to zero. This is equivalent to obtaining the dc
solution of the system.

2 The first moment vector, M1, is obtained by using one LU
decomposition to solve the relation given by

FM1 = BRF , (9)

where the matrix F is the sparse moment computation
matrix which has the same structure as a harmonic
balance Jacobian, but contains only dc spectral compo-
nents. It is defined as

F = �G + �C + ∂F(X)
∂X

∣∣∣∣
a=0

. (10)

Note that the matrices �G and �C are very sparse, while the
Jacobian of the nonlinear vector F(X) is given by

∂F(X)
∂X

=

∂F1

∂X1
· · · ∂F1

∂Xn

..

. . .
. ..

.

∂Fn

∂X1
· · · ∂Fn

∂Xn

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (11)

In a standard harmonic balance Jacobian, each
∂Fj

∂Xi
term is,

when present, a full block matrix which is not the case with
the moments matrix since it is evaluated with the RF amp-
litude set to zero [19].

2 The remaining moment vectors, Mn, are found by solving
the following recursive relation

FMn = −n
∑n−1

j=1

(n − j)T jMn−j. (12)

2 In this relation, Tj is a matrix that contains the jth moment
of the derivatives of the nonlinear equations.

As can be seen from (9) to (12), the computation of the
moment vectors is a solution of a set of linear algebraic equa-
tions where the left-hand-side matrix (F) is the same
throughout. A summary of the moments computation algo-
rithm is given in the flowchart of Fig. 2.

C) Link between the moment vectors and IP3

The input–output relation of a nonlinear circuit can be
expressed using a Volterra series as [24]

x(t) = H0 + H1[vin(t)] + H2[vin(t)] + H3[vin(t)]

+ . . . , (13)

where Hn is the nth Volterra operator. When the values of the
Volterra kernels (Hn(jv1, . . . , jvn)) can be analytically
obtained at specific frequency values, we can say that the IP3

of amplifier circuits can be determined using

IP3 =
�������������������������
4
3

|H1(jv1)|
|H3(jv1, jv1, − jv2)|

√
. (14)

In [16–18], it was shown that the kernels required to deter-
mine IP3 according to (14) were obtained numerically from
the first and third moment vectors. This allowed us to
express the relation for computing IP3 as

IP3 =
�����������������

|M1[v1]|
|M3[2v1 − v2]|

√
, (15)

where M1[v1] is the numerical entry in the first moment
vector at the fundamental frequency, and M3[2v1 2 v2] is

Fig. 2. Moments computation algorithm flowchart.

196 dani a. tannir

https://doi.org/10.1017/S1759078714001548 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714001548


the numerical entry in the third moment vector at the
third-order intermodulation frequency.

I V . M O M E N T S M E T H O D F O R R F
M E M S V A R I A B L E C A P A C I T O R S
C I R C U I T S

In [13, 15], it was shown that the harmonic balance method
can be extended to include equations that describe the non-
linear behavior of MEMS switches. In [8], it was shown that
the expression for determining IP3 given in (14) can also be
applied to MEMS variable capacitor circuits. In this paper,
we expand the moments method to allow for the numerical
evaluation of the expressions needed for computing IP3 in cir-
cuits containing MEMS variable capacitor devices using the
relation given in (14), without the need to perform a full har-
monic balance simulation. The new extended moments
method is general for arbitrary circuit configurations, and is
not restricted in frequency. As a result, the method presents
a true general purpose approach for the analysis of nonlinear
RF circuits that contain MEMS devices and therefore has the
potential to solve new classes of nonlinear circuits in an effi-
cient manner.

The new moments computation algorithm is based on the
extended formulation defined in [13] whereby the MEMS
switch is described as a nonlinear charge-controlled capacitor
whose relations depend on two variables, namely the RF
voltage and the displacement. We will begin with the formu-
lation of the extended system equations in a way that facili-
tates the computation of the new moments. This will then
be followed by a description of the new moments computation
algorithm and the derivations of the partial derivatives of the
MEMS equation nonlinearities.

A) Extended formulation of system equations
Consider a nonlinear circuit excited by one or more input
tones and containing a MEMS variable capacitor. The electric-
al steady-state solution can be obtained using the harmonic
balance approach by expressing the periodic solution as a
truncated series of sine and cosine functions at the harmonics
of the inputs as well as at the intermodulation products. This
results in a set of nonlinear algebraic equations in the form
given by (6). In order to account for the mechanical character-
istics of the MEMS device, this formulation has to be
expanded to include the MEMS mechanical dynamic model
nonlinearities. Therefore, additional variables for the charge
of the nonlinear capacitor (q(t)) and the displacement of
the membrane (z(t)) must be accounted for alongside the
regular unknown node voltages and currents of the MNA for-
mulation [20]. For a general system containing a MEMS vari-
able capacitor, the set of variables will therefore include,
among other variables,

x1(t) = V(t), (16)

x2(t) = z(t), (17)

where x1(t) and x2(t) will be two variables in the unknown
solution vector x(t). The charge Q defined in (2) is also

expressed as an unknown variable, q(t), in the solution
vector x(t), as a function of the applied voltage and the dis-
placement as given by

x3(t) = q(t) = q[x1(t), x2(t)]. (18)

The electromechanical equation in (1) can now be rewrit-
ten as a function the variables x1(t) and x2(t) as:

f (t) ; f x1(t), x2(t),
dx2(t)

dt
,

d2x2(t)
dt2

[ ]
= 0. (19)

This new set of nonlinear dynamic equations will comple-
ment the regular electric circuit equations for all the MEMS
capacitors in the system. It is important to observe from
these relations that difficulties in performing a full simulation
will arise due to the presence of singularities at z ¼ d. In [13],
it is shown that an introduction of a carefully selected add-
itional state variable xA(t) is sufficient to remove all
singularities.

The combination of the new MEMS variables and expres-
sions of (16–19) with the regular MNA formulation of non-
linear electronic components given by (4) results in a new
set of second-order differential algebraic equations as follows

Gx(t) + Cẋ(t) + Sẍ(t) + f (x(t)) = b(t), (20)

where x(t) is the vector of unknown variables and can be
expressed using a Fourier Series as:

x(t) = A0 +
∑H

k=1

Akcos(vkt) + Bksin(vkt)( ). (21)

Similarly, the first and second derivatives of x(t) with
respect to time can also be expressed as:

ẋ(t) =
∑H

k=1

vkBkcos(vkt) − vkAksin(vkt)( ), (22)

ẍ(t) =
∑H

k=1

−v2
kAkcos(vkt) − v2

kBksin(vkt)
( )

, (23)

where v1 � vk are the harmonics of the operating frequency.
The matrices G, C, f(x(t)) and b(t) are identical to those
defined in (14). The new matrix S [ Rn×n contains the coeffi-
cients of the second-order differentials associated with the
MEMS equation of motion and is of the same dimensions as
G and C.

The expression in (20) should be expressed in the fre-
quency domain in order to be able to develop the moments
computation algorithm. The new set of equations is therefore
defined as

VX + F(X) = BDC + aBRF , (24)

where the matrix V = �G + �C + �S. The structures of the �G, �C,
and �S matrices are as follows. �G [ RNh×Nh is a block matrix
�G = Gij

[ ]
representing the contribution of the linear mem-

oryless elements of the network to the frequency components.
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The blocks Gij [ RNb×Nb are diagonal matrices given by

Gij = diag(gij, · · · , gij), (25)

with gij being the corresponding (i, j)th entry in the G matrix
in (6). Similarly, �C [ RNh×Nh is a block matrix �C = Cij

[ ]
representing the contribution of the linear memory elements
of the network to the frequency components. The blocks
Cij [ RNb×Nb are diagonal matrices given by

Cij = ci,j

0 0 0 · · · 0 0
0 0 v1 · · · 0 0
0 −v1 0 · · · 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 · · · 0 vk

0 0 0 · · · −vk 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

with cij being the corresponding entry in the C matrix in (20).
Finally the matrix �S [ RNh×Nh is a block matrix �S = Sij

[ ]
with

each Sij [ RNb×Nb block being a diagonal matrix with the fol-
lowing structure

Sij = si,j

0 0 0 · · · 0 0
0 −v2

1 0 · · · 0 0
0 0 −v2

1 · · · 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 · · · −v2
k 0

0 0 0 · · · 0 −v2
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (27)

with sij being the corresponding entry in the S matrix in (5).
Note that Nb varies with the number of harmonics (H ) and
is equal to 2H + 1.

B) Moments computation for MEMS circuits
In this section, we derive the moments computation algorithm
using the new formulation given in the previous subsection. In
this way, we show how to compute the moments for circuits
that contain both the electrical nonlinearities associated with
semiconductor circuits, in addition to the nonlinearities asso-
ciated with MEMS variable capacitors. The moments expan-
sion will be performed around the DC operating point for
the same reasons that were previously discussed in Section III.

The derivation of the moments computation algorithm
begins by substituting (7) into (24), which results in the fol-
lowing expression:

V
∑q

k=0

Mka
k +

∑q

k=0

Fka
k − BDC − aBRF = 0. (28)

The terms Fk are the Taylor expansion coefficients of F(X)
with respect to a given by:

F(X) =
∑q

k=0

Fka
k. (29)

It is useful to also express the derivative of this nonlinear
vector with respect to the solution vector X (i.e. the Jacobian

matrix
∂F(X)
∂X

) as a Taylor series expansion with respect to a

as follows

T(a) = ∂F(X)
∂X

=
∑
k=0

Tka
k, (30)

where Tn are referred to as the moments of the nonlinear
Jacobian matrix. The zero moment vector, M0, is obtained
by setting the value of a in (28) to zero which yields the
relation:

VM0 + F(M0) = BDC. (31)

Note that the solution to equation (31) is essentially the
computation of the dc solution for the circuit, which has a
relatively small computation cost. To solve for the remaining
moments (Mn; n ≥ 1), coefficients of equal powers of a are
equated on both sides of (28). Equating the coefficients of
the first power of a results in:

VM1 + F1 = BRF . (32)

It is useful here to rewrite F1 =
∂F
∂a

a=0 as|
F1 = ∂F

∂X
· ∂X
∂a|a=0

= T0M1. Substituting this expression into

(32) then yields:

(V+ T0)︸����︷︷����︸
C

M1 = BRF . (33)

The first moment can now be obtained using one LU
decomposition to solve (33). It is important to note that the
matrix C ¼ (V + T0) is a sparse matrix which is already eval-
uated when obtaining the dc solution of the nonlinear system.
Therefore, it has a similar structure to a Jacobian matrix, but is
significantly more sparse. In addition, a comparison of C in
(33) with F in (10) shows that the sparsity pattern of the ori-
ginal moments computation matrix is preserved for systems
that contain MEMS nonlinearities. To obtain the remaining
moments, the coefficients of an on both sides of (28) are
equated to obtain:

VMn + Fn = 0 n . 1. (34)

The evaluation of Fn in (34) remains unchanged from the
original moments computation algorithm described in
Section III.B and is given by:

Fn = T0Mn + n
∑n−1

j=1

(n − j)T jMn−j. (35)

Combining the expression in (35) with that of the relation
in (34) results in the following recursive relation for comput-
ing the nth moment vector:

(V+ T0)︸����︷︷����︸
C

Mn = −n
∑n−1

j=1

(n − j)T jMn−j. (36)
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The Tj terms are as defined in (30). Note that since F(X)
and X are vectors, Tj will be block matrices of the form

T j =
∂F(X)
∂X j

=

∂F1
∂X1j

· · · ∂F1
∂Xnj

..

. . .
. ..

.

∂Fn
∂X1j

· · · ∂Fn

∂Xnj

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦, (37)

where each
∂Fk

∂Xi
term is a matrix in itself. For example, if we

consider the first block matrix
∂F1

∂Xi
, then each coefficient of

its Taylor series expansion with respect to a is given by

∂F1

∂X1 j
= G−1

∂f1(x1(t1))
∂x1 j

0

. .
.

0
∂f1(x1(ts))

∂x1 j

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦G, (38)

where t1 to ts are time sample points that are equally spaced
over the fundamental period. Note that frequency mapping
and truncation methods [11] are used in order to handle
quasi-periodic inputs efficiently using the Fast Fourier
Transform, and G is the Inverse Direct Fourier Transform
matrix. Also note that the matrix vector multiplication with

G can be done efficiently by taking advantage of the Fast

Fourier Transform algorithm. Once evaluated, the Taylor

coefficient
∂F1
∂X1j

is entered in Tj at the location corresponding

to
∂F1
∂X1

.

From (37) and (38), it can be seen that the evaluation of the
Tj matrices reduces to the evaluation of the moments for the
derivatives of the nonlinear functions, i.e. the evaluation of
∂f (x)
∂x j

for each function f and each variable x. Next, we show

how these derivatives are determined for the MEMS
nonlinearities.

C) Computation of the derivatives for the
MEMS nonlinearities
The computation of the moments requires the computation
of the coefficients of the series expansions of the partial deriva-
tives for each of the nonlinear functions found in the nonlinear
MEMS dynamical model described by (1–3) so they can be eval-
uated using (38). Note that the derivation of these expressions is
done only once, and are then stored in the simulator to then be
evaluated numerically in an efficient manner going forward.

The two primary nonlinear functions of interest are:

F1(Q) = Q2

2e0A
, (39)

F2(V , z) = e0A
d − z

V. (40)

Using the variable assignment of Section IV.A., these non-
linear functions can be expressed as:

f1 =
x2

3

2e0A
, (41)

f2 =
e0A

d − x2
x1. (42)

We need to determine the derivatives of these functions
with respect to the variables, x1, x2, and x3, in addition to
the required expressions for the evaluation of their series
expansion coefficients. To simplify the presentation, we
define a new variable g(m,n) which is the partial derivative of
function fm with respect to variable xn. With this new variable,
the task at hand becomes determining the expressions
required for computing each g(m,n)

j term, which are the coeffi-
cients of the series expansions of g(m, n) with respect to the RF
amplitude a defined as:

g(1,3) = ∂f1

∂x3
= x3

e0A
=
∑
i=0

g(1,3)
i ai, (43)

g(2,1) = ∂f2

∂x1
= e0A

(d − x2)
=
∑
i=0

g(2,1)
i ai, (44)

g(2,2) = ∂f2

∂x2
= e0A

(d − x2)2 x1 =
∑
i=0

g(2,2)
i ai. (45)

Note that the variables x1(t), x2(t), and x3(t) can also be
represented using series expansions in the time domain as:

x1 =
∑
i=0

m(1)
i ai, (46)

x2 =
∑
i=0

m(2)
i ai, (47)

x3 =
∑
i=0

m(3)
i ai. (48)

We begin the derivations with the first function shown in
(41). A comparison of this function with its partial derivative
expression given in (43) allows us to express f1 in terms of g(1,3)

and x3 as follows:

f1 =
1
2

x3g(1,3). (49)

Taking the derivative of (49) with respect to a then yields
the expression:

∂f1

∂a
= 1

2
g(1,3) ∂x3

∂a
+ 1

2
∂g(1,3)

∂a
. (50)
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At this point, we make use of the chain rule so we can

express
∂f1

∂a
as:

∂f1

∂a
= ∂f1

∂x3
∂x3

∂a
= g(1,3) ∂x3

∂a
. (51)

We can then substitute (51) into (50) and rearrange to
obtain:

g(1,3) ∂x3

∂a
= 1

2
g(1,3) ∂x3

∂a
+ 1

2
x3

∂g(1,3)

∂a
, (52)

x3
∂g(1,3)

∂a
= g(1,3) ∂x3

∂a
. (53)

Finally, we replace g(1,3) and x3 in (53) with their series
expansions found in (43) and in (48) to obtain:∑

i=0

mia
i
∑
i=1

ig(1,3)
i ai−1 =

∑
i=0

g(1,3)
i ai

∑
i=1

imia
i−1. (54)

From this expression, each g(1,3)
j term required for the

moments algorithm as given by (38) is found accordingly.
The general expressions for evaluating g(1,3)

n are therefore:

g(1,3)
0 = m(3)

0

e0A
, (55)

g(1,3)
n = 1

nm(3)
0

ng(1,3)
0 m(3)

n +
∑n−1

i=1

g(1,3)
n−i m(3)

i (2i − n)

( )
. (56)

A fundamentally similar procedure is followed for the
second function f2 shown in (42). The difference here is that
f2 is a function of two variables and therefore we need to deter-
mine the partial derivatives with respect to both x1 and x2. The
relation between f2 and the derivatives g(2,1) and g(2,2) are:

f2 = x1g(2,1), (57)

f2 = (d − x2)g(2,2). (58)

Notice that the partial derivative with respect to x1 results
in a constant term and therefore only g(2,1)

0 will be nonzero in
value. As for determining the g(2,2)

j terms, we start by taking
the derivative of (58) with respect to a which yields

∂f2

∂a
= d

∂g(2,2)

∂a
− g(2,2) ∂x2

∂a
+ x2

∂g(2,2)

∂a

( )
. (59)

By once again employing the chain rule,
∂f2

∂a
can be

expressed as

∂f2

∂a
= ∂f2

∂x2
∂x2

∂a
= g(2,2) ∂x2

∂a
, (60)

which can then be substituted into the expression of (59) to

obtain:

2g(2,2) ∂x2

∂a
= (d − x2)

∂g(2,2)

∂a
. (61)

Replacing the variables x2 and g(2,2) in (61) by their series
expansions given in (45) and (47) we then obtain:

d − mi

∑
i=0

ai

( )∑
i=1

igia
i−1

= 2
∑
i=0

gia
i
∑
i=1

imia
i−1. (62)

This relation is used to determine the individual g(2,2)
j terms

required for determining the moments, which are evaluated
using:

g(2,2)
0 = e0A

(d − m(2)
0 )

2 m(1)
0 , (63)

g(2,2)
n = 1

n(d − m(2)
0 )

2ng(2,2)
0 m(2)

n +
∑n−1

i=1

g(2,2)
i m(2)

n−i(2n − i)

( )
.

(64)

Note that the CPU cost of computing these derivatives is
negligible when compared to the overall algorithm. The
expressions for the derivatives are stored in the simulator
along with the derivatives of other nonlinear expressions
present in the circuit model, such as diode nonlinearities,
MOSFET saturation current voltage relations and others.
Note that a summary of the relations to determine the
moment expansions of common standard functions present
in most nonlinear expressions is provided in Table 2 [25].

Finally, we remind the reader that once the moment
vectors have been evaluated, the computation of a figure of
merit like IP3 is accomplished according to the relation
given by (15) using the values of numerical entries at specific
locations in the moments which we have now shown how to
compute. A summary of the main steps of the algorithm is
given in Fig. 3.

Table 2. Formulas for derivatives of standard functions.

Equation x1 =
∑
i=0

m(1)
i ai, x2 =

∑
i=0

m(2)
i ai, f =

∑
i=0

dia
i

f = ex
1 d0 = em(1)

0

dn = (1/n)
∑n−1

i=0
dim

(1)
n−i(n − i)

f = log(x1) d0 = log(m(1)
0 )

dn = (1/m(1)
0 ) m(1)

n −
∑n−1

i=1
dn−im

(1)
i ((n − i)/n)

( )
f = xp

1 dn = pd0m1
nn +

∑n−1

i=1
dn−im1

i (i(p + 1) − n)

( )
/nm1

0

f = x1 + x2 dn = m(1)
n + m(2)

n

f = x1 − x2 dn = m(1)
n − m(2)

n

f = x1x2 dn =
∑n
i=0

m(1)
i m(2)

n−i

f = x1/x2 dn = m(1)
n −

∑n−1

i=0
dim

(2)
n−i

( )
/m(2)

0
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D) Effect of using a more refined MEMS
model
In this paper, we have developed the proposed moments
method for efficient distortion analysis of circuits containing
MEMS variable capacitors on the basis of the simplified 1-D
MEMS model that was presented in Section II. For studying
intermodulation distortion in addition to the effects of Q
and V on the dynamic response of MEMS switches, the 1-D
model works well and provides a lot of useful information.
The simplified model, however, has its limitations. For a
more accurate analysis of intermodulation distortion in add-
ition to other phenomena, such as pull-down, power handling
and noise, more refined models can be used. These refine-
ments can include, for example, an expression that accounts
for the nonlinear behavior of the spring in the mass–spring–
damper model [8]. Another modification can be made to
include the effects of the contact force, Fc, between the
moving plate and the dielectric layer, in addition to the elec-
trostatic force [3]. Similarly, we can also include a general
nonlinear expression to more accurately describe the value
of the damping coefficient, b, in the refined model [26].
These additional refinements would come at the expense of
additional model complexities, which will mainly appear
when determining the additional expressions for the deriva-
tives of the MEMS nonlinearities required to compute the
moments. This can be accomplished with the aid of Table 2
for most nonlinear expressions, with the resulting derivatives
stored in the simulator as part of the device model.

If the additional expressions in the refined models are only
functions of the existing variables in the formulation, the com-
putation time of the proposed moments method will not be
significantly affected since the size of the system formulation
will remain the same. On the other hand, if new variables
are introduced, though the computation time will increase,
this will also be equally the case with the reference harmonic
balance method since both approaches are based on similar
formulations, thereby preserving the CPU cost advantage of
the proposed method.

V . E X A M P L E A P P L I C A T I O N : L C
T A N K

In this section, the numerical results of simulations performed
on an example circuit using the proposed moments approach
are benchmarked and compared with the results of the

harmonic balance approach to demonstrate the efficiency of
the new method. Note that the results of the harmonic
balance simulations provide a good reference point for our
method since harmonic balance simulations of circuits with
RF MEMS-based variable capacitors have been compared
with measurements on several occasions in the literature
[13, 15].

The example circuit which we will consider in detail is a
tunable LC tank (also referred to as a LC section) with a vari-
able capacitor that can be used to implement tunable RF filters
[8]. To test the moments-based method, we will consider a
linear inductor and a nonlinear MEMS variable capacitor as
illustrated in Fig. 4. The model parameters used in the simu-
lation are listed in Table 3 and are based on the MEMS design
described in [8].

The circuit is simulated using two input tones of 1 dBm
power, with a fixed frequency spacing of 1 KHz and varying
average frequencies in the range of 10 KHz–1 MHz. Note
that since the moments method is based on the same extended
system formulation as that used in a full harmonic balance
simulation, the accuracy of the numerical results of both
methods, when compared to lab measurements, are expected
to be similar, with the moments method providing a clear and
significant saving in CPU cost. A prototype MATLAB simula-
tor is used to test the circuit using both approaches on a work-
station running a dual-core Intel Core i5 processor with 6 GB
of system RAM.

Using our prototype MATLAB simulator, the computa-
tion time of a single harmonic balance simulation with
9 harmonics was 3.85 s. On the other hand, the moments
method was completed in only 1.88 s. This represents a
speed-up of around 2.1 times. With these results in mind, it
is important at this point to give some insight on the main
reasons behind the observed speedup, and how it could vary
depending on the type of circuit and the simulation variables
selected.

2 The sparsity difference between the harmonic balance
Jacobian matrix and the moments computation matrix
used in the new approach, is a key factor in the reduced

Fig. 4. Parallel LC tank implemented.

Fig. 3. Summary of the IP3 computation algorithm using moments.

Table 3. Model parameters for the MEMS variable capacitor in the
example circuit.

Parameter Value

k 2881 N/m
b 0.001 Ns/m
m 4.67 × 1026 g
d 1.88 × 1026 m
A 256 × 1029 m2

v0 24 845

computation of intermodulation distortion in rf mems variable capacitor circuits using moments 201

https://doi.org/10.1017/S1759078714001548 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714001548


CPU cost of the new approach. As illustrated in the spars-
ity patterns of the two matrices shown in Figs 5 and 6, the
harmonic balance Jacobian contains several dense blocks,
while those same blocks are significantly sparser in the
moments matrix since the derivatives are evaluated at dc.
As a result, the moments matrix has a significantly
smaller number of non-zeros even though both matrices
are of equal dimensions.

2 The minimum number of harmonics that must be
accounted for to perform the simulation is 3 (due to the
need to compute IP3). However, for more accurate
results using harmonic balance, a greater number of har-
monics should be accounted for in the simulation, which
would come at the expense of a greater number of variables
in the equations. The moments method presents greater
speedup when a higher number of variables are present
in the formulation. A comparison of the computation
times for this example circuit shows that the speedup
does indeed increase when higher harmonics are taken
into account, as shown in Fig. 7.

2 This example LC tank circuit is a relatively small one in
size and simple in complexity. Having a larger circuit
with more unknown variables and more nonlinear compo-
nents would result in a greater speedup for the proposed
method. This is clearly illustrated when we compare the
computation times of both approaches in more complex
RF circuit topologies as shown in Table 4 [27].

2 It is common for harmonic balance solvers to take more
iterations to converge for different circuit topologies, espe-
cially ones with MEMS nonlinearities. In fact, convergence
of the harmonic balance simulation is one of the major
challenges in the presence of MEMS variable capacitors,
as highlighted in [13]. The moments method, on the
other hand, will always run to completion in the same
number of steps due to the direct nature of the algorithm
with no need to apply iterative methods such as Newton
iteration or the Generalized Minimum Residual
(GMRES) approach. In the case more iterations are
required for the harmonic balance method to converge,
the speedup of the moments method will be even greater.

In order to verify the accuracy of the moments method, a
direct comparison of the expected numerical results obtained
using the moments approach with those obtained using har-
monic balance was made. In this circuit, the value of IP3 is
proportional to both the biasing voltage and the frequencies
of the applied tones (both the average frequency and the
tone difference). The simulations were performed with the
bias voltage much smaller than the pull-in voltage of the
MEMS capacitor, which is found using [8]:

Vpi =

�������
8

27
kd3

e0A

√
. (65)

In Fig. 8, a comparison is shown for the expected IP3 values
computed for the circuit with varying input frequency tones
relative to the resonant frequency v0. Note that the frequency
spacing between the tones was kept the same at 1 KHz. As can
be seen from the plot, the results are projected to track the
results of the harmonic balance approach very well.

Fig. 5. Sparsity pattern of the harmonic balance Jacobian.

Fig. 6. Sparsity pattern of the moments matrix.

Fig. 7. Effect of number of harmonics on computation times.
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V I . C O N C L U S I O N

In this paper, the moments based method for efficient dis-
tortion analysis was extended to cover a new class of circuits
that includes RF MEMS variable capacitor devices. It was
shown that by including the membrane displacement as
an additional variable in the extended formulation, the
sparsity pattern of the moments computation matrix is
not affected. The method does not require finding the
steady-state solution of the system in order to compute its
third-order intercept point. The computation cost of the
moments method is of the order of a solution of a sparse
set of linear equations.
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